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Abstract 

 

 

VIX futures contracts have produced negative returns.  I develop a method to decompose 

the daily returns of VIX futures contracts in to the return components of roll down and 

level.  I show that roll down is the largest contributor to the negative returns.  The return 

decomposition analysis is carried out across the VIX futures term structure which 

includes the one- to six-month VIX futures contracts.  I use time series regressions to 

estimate the beta coefficients of the return components relative to the VIX.  The results of 

the regression analyses are used to create a VIX curve strategy that is combined with the 

S&P 500 Index.    
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Chapter I 

Introduction 

 

 

 

In Chapter 1 I review the Chicago Board Options Exchange’s Implied Volatility 

Index (VIX) and VIX futures.  I discuss the mechanics and pricing of each and provide 

context regarding the historical performance of VIX futures contracts.  I also provide 

several theoretical explanations for the implied volatility term structure and discuss how 

the VIX futures term structure has negatively impacted the performance of VIX futures 

contracts.  I conclude by discussing how this paper extends the current literature 

regarding the performance attribution of VIX futures contracts.   

 

 

1.1 Implied Volatility Index (VIX)  

 

The price of an options contract is derived in a model, and the required model 

inputs include price of the underlying, strike price, number of days until expiration, 

interest rate, and implied volatility.  Of the option pricing model inputs, option implied 

volatility is the only variable that is inferred from the option’s price and is not directly 

observed.  Option implied volatility is the market’s expectation for the realized volatility 

of the underlying asset from the current period until expiration of the options contract 

(Natenberg, 2014).  For example, the 30-day implied volatility of an at-the-money S&P 

500 Index options contract is the market’s expectation for the realized volatility of the 

S&P 500 Index over the next 30-days.  

In finance it is a stylized fact that options contracts traded on financial assets, 

such as equities and bonds, have implied volatilities that on average exceed the realized 

volatility of the underlying asset (Coval and Shumway, 2001).  The difference between 
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the implied volatility embedded in an options contract price and the subsequent realized 

volatility is called the volatility risk premium (i.e. realized volatility minus implied 

volatility).  Bakshi and Kapadia (2003) find that a negative volatility risk premium exists 

for buyers of equity index options and the premium is the price option investors are 

willing to pay away to protect their equity position.    

Equity market implied volatility generally increases when equity prices decline.  

That has been especially true during periods of sharp equity market price declines, as 

market participants expect higher realized volatility in the future which leads to higher 

implied volatilities.  The inverse price relationship between the S&P 500 Index and the 

VIX is evident from their observed historical negative return correlation.  The negative 

correlation of returns between the S&P 500 Index and the VIX highlights why owners of 

equity securities who are concerned about price declines might have a desire to own the 

VIX or a VIX-related derivative contract.  

The Chicago Board Options Exchange (CBOE) introduced the CBOE Implied 

Volatility Index (VIX) in 1993 to provide a timely and consistent measure of equity 

market implied volatility.  Today, the VIX is widely quoted in the media and is often 

used to gauge the market’s expectation for future realized volatility.   

Originally, the VIX represented the 30-day implied volatility for the S&P 100 

Index and was derived from exchange-traded S&P 100 Index option contracts.   In 2003, 

the CBOE, in conjunction with Goldman Sachs, modified the VIX calculation 

methodology to reflect the 30-day implied volatility for the S&P 500 Index using price 

information from CBOE-traded S&P 500 Index option contracts.  The VIX calculation 
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methodology was enhanced in 2014 to include price information from S&P 500 Index 

weekly option contracts.  

The VIX price is quoted as the S&P 500 Index 30-day implied volatility 

(annualized).  The VIX is calculated from the prices of CBOE S&P 500 Index put and 

call contracts that have more than 23 days but less than 37 days to expiration.  To 

maintain a constant 30-day implied volatility, the VIX calculation proportionally weights 

one-month and two-month option contracts.  The proportion changes each week.1    

The option contracts used to calculate the VIX include CBOE out-of-the-money 

(OTM) puts and calls on the S&P 500 Index.  The center strike price of the puts and calls 

is the strike price that sits just below the calculated forward S&P 500 Index price.  Option 

contracts with a zero-bid price are excluded from the VIX calculation and the number of 

different strike prices used in the calculation is limited by the number of consecutive 

strike prices with a non-zero bid price.  The VIX price-squared is equal to the 30-day 

variance swap rate (Zhang et al., 2010).   

A unique characteristic of the VIX relative to other indices is that the VIX is not 

directly investable since a VIX cash market does not exist.  The reason for a nonexistent 

VIX cash market is due to the cost prohibitive nature of replicating the VIX, which would 

require buying and selling OTM puts and calls that are generally less liquid and have 

wide bid-ask spreads.  Transacting in a market with wide bid-ask spreads usually results 

in outsized trading costs.  For example, Buetow and Henderson (2016) find that the 

average bid-ask spread for OTM S&P 500 Index puts and calls traded on the CBOE are 

46.2% and 50.5% (bid-ask spread as percentage of midpoint price), respectively.  Their 

                                                            
1 Refer to the equation in Appendix A for VIX calculation details. 
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research shows that buying OTM options at the offer price and then selling them at the 

bid price, ceteris paribus, would result in a 50% loss in value.  Furthermore, since the 

VIX is a measure of constant 30-day implied volatility, the options used in the calculation 

are continually changing as time passes.  This implies that several transactions would be 

required monthly to replicate the VIX.   

In March 2004, the CBOE launched trading of VIX futures contracts.  VIX 

futures contracts are listed and traded electronically on the CBOE Futures Exchange (the 

Exchange).  The Exchange lists nine consecutive monthly futures contracts and six 

consecutive weekly futures contracts.  Each contract price is quoted as the forward S&P 

500 Index 30-day implied volatility (annualized).  For example, the price of a VIX 

futures contract with three months remaining until expiration is the market expectation 

for the S&P 500 Index 30-day implied volatility three months from now.   

The notional value of each futures contract is equal to the futures contract price 

multiplied by $1,000 and the minimum price interval is 0.05 points which is equal to $50.  

On the day of expiration, the expiring VIX futures contract is cash-settled and will settle 

at VIX spot based on the opening trades of the S&P 500 Index option contracts used in 

the VIX calculation.  The expiration date for the expiring monthly VIX futures contract is 

30-days prior to the third Friday of the month immediately following the contract month.2    

Since their inception, VIX futures have experienced a dramatic increase in trading 

volume and open interest.  The average daily volume of the one-month VIX futures 

contract increased over 500 times and the total open interest of all listed VIX futures 

contracts increased over 600 times (from March 2004 to June 2017).  On December 4, 

                                                            
2 http://cfe.cboe.com/cfe-products/vx-cboe-volatility-index-vix-futures/contract-specifications  

http://cfe.cboe.com/cfe-products/vx-cboe-volatility-index-vix-futures/contract-specifications
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2017, the total outstanding notional amount of all VIX futures contracts listed was 

approximately $8.1 billion, which compares to a total notional amount of approximately 

$20.1 million on March 31, 2004.   

A unique feature of the VIX futures contracts, relative to other markets that offer 

futures contracts, is that a VIX cash market does not exist.  The absence of a VIX cash 

market diminishes the relationship between the price of the VIX and VIX futures 

contracts since market participants are not able to execute cash and carry trades.3  The 

lack of a cash VIX market also contributes to a wider VIX basis.4  Buetow and 

Henderson (2016) point out that during extreme market events the difference in prices 

(and returns) between the VIX and the first and second month VIX futures contracts can 

be explained by the lack of a VIX cash market.  

The financial performance of VIX futures contracts can be evaluated from either 

the change in price and associated dollar profit and loss or percentage change in price (or 

return).  For example, consider a VIX futures contract that changes in price from 10 at 

time t to 10.50 at time t+1.  The change in price and profit is 0.50 and $500, respectively, 

and the percentage change in price is equal to 5.0% (= 0.50/10). 

During December 2009-December 2017, VIX futures experienced negative 

average returns and the point on the VIX futures term structure with the sharpest declines 

came from the one-month VIX futures contract.  The leading contributor to the negative 

returns of VIX futures contracts is the roll down.  Roll down is the return that comes from 

                                                            
3 Cash and carry refers to buying (selling) a cash market instrument and simultaneously selling (buying) a 

derivative instrument of the same market.  The ability of market participants to engage in cash and carry 

trades preserves the cash and theoretical derivatives pricing relationship.    
4 Basis refers to the price differential between the cash price, or spot, and a futures contract of the same 

market.   
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a change in price due to the VIX futures contract moving down the VIX term structure as 

it approaches expiration.  For example, when the VIX futures term structure is upward 

sloping, the price of each futures contract declines with the passage of time as each 

futures contract moves down the term structure.  The magnitude of the price decline is 

determined by the slope, or steepness, of the term structure.  I define the slope as the 

difference in price between two points on the term structure (e.g., the one-month VIX 

futures price minus the two-month VIX futures price).  The roll down return from an 

upward sloping (contango) futures curve will be negative while the roll down from an 

inverted (backwardated) futures curve will be positive holding all else constant. 

The slope is most negative between the one-month and two-month VIX futures 

contracts relative to all other term structure combinations using one- to six-month 

contracts.  For example, the daily average slope between the one- and two-month VIX 

futures contracts is -0.9 versus a daily average slope of -0.2 for the five- and six-month 

VIX futures contracts (during December 16, 2009-December 19, 2017).   

The rounded cumulative compound return of the one-month VIX futures contract 

is -100%.  Other points on the term structure lost a similar amount with the three- and 

five-month VIX futures contracts producing cumulative compound returns of -99.1% and 

-95.3%, respectively.  This research will show that most, if not all, of the negative return 

of VIX futures contracts is accounted by the roll down.   

 

1.2 VIX Term Structure  

A VIX term structure exists and can be inferred from the price of VIX futures 

contracts with different expirations or from S&P 500 Index option contracts using the 
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VIX calculation methodology and different expiration dates.  Most of the time the VIX 

term structure is upward sloping and is described by VIX spot having the lowest price 

and each successive VIX futures contract with a longer time to expiration having a higher 

price.  An upward sloping VIX term structure is analogous to an upward sloping US 

Treasury yield curve where the yield-to-maturity is greater for longer maturities.   

VIX spot was lower than the price of the six-month VIX futures contract 92.6% 

of the time with an average daily price differential of -4.4 (during December 2009-

December 2017).  The graph below illustrates the average shape of the VIX term 

structure by plotting and connecting the average daily VIX price with the average daily 

VIX futures contract prices (during December 2009-December 2017).    

 

Figure 1.1:  Average Daily VIX and VIX Futures Closing Prices (December 2011 to December 2016) 

 

 

There are various theoretical and empirical explanations for the shape of the 

implied volatility term structure.  The main explanations include the expectations 
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hypothesis, volatility mean reversion, and the risk premia of variance risk.  The 

theoretical concept of the expectations hypothesis is summarized well by Campa and 

Chang (1995).  They note that long-dated foreign currency implied volatility is equal to 

the average of short-dated implied volatilities spanning the same time until expiration.    

The expectations hypothesis postulates that an upward sloping implied volatility 

term structure is explained by the market’s expectation for higher implied volatility in the 

future.  Mixon (2007) rejected the expectations hypothesis but found that the slope of the 

implied volatility term structure was able to forecast short-dated implied volatility.  After 

correcting their model for the variance risk premium, the results improved but not enough 

to satisfy the expectation hypothesis.  An important insight from the research of Mixon 

(2007) is that the implied volatility term structure is based on the risk neutral measure, 

but real world implied and realized volatility is based on the objective measure.5  The 

differences in the VIX term structure between the risk neutral and objective measures is 

discussed by Nossman and Wilhelmsson (2009) and Simon and Campasano (2014).    

Nossman and Wilhelmsson (2009) find stronger evidence of the expectations 

hypothesis relative to Mixon (2007).  They use VIX futures and conclude that the 

expectations hypothesis holds for VIX futures over a 1-to-21-day forecasting horizon 

after adjusting for the variance risk premium.  The variance risk premium is negative and 

is derived by estimating the risk neutral and objective parameters using a constant 

elasticity stochastic variance model with jumps in the variance.6  The results show that 

                                                            
5 Options are priced from the risk neutral measure which imply arbitrage-free pricing, a complete market, 

and discounted security values that follow a martingale process.  Objective measures are probability 

densities based on actual price innovations.   
6 The constant elasticity stochastic variance model is a diffusion process with instantaneous volatility.  The 

model measures the mean reversion and instantaneous volatility of the variance process.   
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the variance risk premium is larger for long-dated option expirations when VIX spot is 

high.  Additionally, Nossman and Wilhelmsson (2009) find that the negative correlation 

between VIX futures and the S&P 500 Index is enough to incentivize investors to pay a 

variance risk premium for being long an instrument that will hedge S&P 500 Index 

losses.   

 Using a normal inverse Gaussian maturity dependent risk premium model, 

Huskaj and Nossman (2013) suggest that the variance risk premium for short-dated VIX 

futures contracts is negative while being positive for long-dated contracts.  This is 

supported by showing that the beta7 and correlation of VIX futures contracts and VIX 

declines as the time to expiration increases.   

Johnson (2017) strongly rejects the expectations hypothesis for the VIX term 

structure.  He proposes that changes in the term structure are due to variation in the 

variance risk premia embedded in the option contracts that are used to compute the VIX.  

Johnson (2017) shows that longer maturity VIX contracts have smaller absolute Sharpe 

ratios8 compared to the absolute Sharpe ratios of short-dated VIX contracts.  This 

indicates that variance risk is being priced differently at different maturities.   

The differences in correlation between VIX futures contracts with different 

expirations and VIX was also noted by Zhang et al. (2010).  However, Zhang et al. 

suggest that the VIX and VIX futures relationship can be established by modelling the 

instantaneous variance using a square root, mean-reverting process with a stochastic 

                                                            
7 Slope coefficient estimated from an ordinary least squares regression.  
8 Sharpe ratio is a measure of return per unit of standard deviation (

𝑟𝑖−𝑟𝑟𝑓

𝜎𝑖
).  
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long-term mean level.  Zhang et al. conclude that the term structure for VIX futures 

volatility is downward-sloping and is explained by mean reversion of volatility. 

Several previously written research papers have discussed the negative returns of 

VIX futures contracts, and many have suggested the negative returns are due to the 

upward sloping VIX futures term structure and the associated negative roll down.  

However, very few papers in the existing literature attribute the daily returns of VIX 

futures contracts to the two return components of roll down and level (changes in VIX).  

Also, the existing literature does not provide an analysis of the return attribution for the 

VIX futures term structure.  The current literature focuses the return attribution on the 

one-month VIX futures contract.     

Alexander and Korovilas (2013) emphasize that in most market regimes the VIX 

futures term structure is in contango and that has eroded the returns of exchange-traded 

funds that buy and hold VIX futures contracts.  Their research focuses on the early 

redemption and front running issues associated with exchange-traded funds and 

exchange-traded notes that trade VIX futures contracts.  Buetow and Henderson (2016) 

discuss why a cash VIX market does not exist and how that has led to a decoupling of 

VIX and VIX futures pricing.  They show that replicating a cash VIX market is cost 

prohibitive due to the average illiquidity and wide bid-ask spreads of the out-of-the-

money options used in the VIX calculation.     

Simon and Campasano (2014) study the VIX futures basis (slope) and assess its 

ability to forecast changes in the VIX.  Through their research they conclude that the VIX 

futures basis was not able to predict changes in the VIX but was able to forecast changes 

in the prices of VIX futures contracts.  Using their research findings, they devise a 
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profitable trading strategy that buys and sells short VIX futures contracts.  However, they 

did not quantify how much the roll down return contributed to the negative returns of 

VIX futures contracts.        

The research conducted by Whaley (2013) finds that VIX futures contracts are 

comprised of two return components, one relating to changes in VIX (level) and the other 

being roll down.  He shows that the calculation of roll down return is deterministic and is 

quantified as the slope divided by the price of the constant maturity VIX futures contract 

measured the previous day.  Whaley provides summary statistics for the slope measured 

at various points on the VIX futures term structure.  While his work advances the 

literature of decomposing the VIX futures returns, it does not provide an attribution 

analysis for the VIX futures term structure.   

 

1.3 Objective 

Prior VIX futures research leaves open the question: how much do changes in 

VIX level returns and roll down returns account for the realized returns of VIX futures? 

My research proposes to help fill this gap by decomposing the daily returns of VIX 

futures and attributing the returns to the return components (roll down and level).   

 My first research objective is to determine what proportion the roll down return 

represents of the negative total return to VIX futures contracts.  I plan to accomplish this 

using daily VIX futures prices from the CBOE and developing a methodology for 

decomposing and attributing the VIX futures returns. The expectation is that the roll 

down return component can account for a large proportion of the negative returns of VIX 

futures contracts.  
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 The second objective of my research is to evaluate how returns, and return 

components, vary across the VIX futures term structure.  Specifically, I want to answer 

the question: how do the total return and return components change for each contract on 

the term structure relative to changes in VIX?  I plan to use daily returns of the VIX and 

the two return components (roll down and level) to conduct a regression analysis that 

measures the sensitivity of each return component to changes in the VIX.   

The third objective of my research is to evaluate whether the regression results 

will allow me to construct a long-short VIX trading strategy using one-month and three-

month VIX futures contracts.  More specifically, I want to determine if a VIX futures 

curve strategy can be combined with a passive S&P 500 Index investment to create a 

more efficient investment compared to the passive S&P 500 Index.  I plan to evaluate the 

dynamic nature of the estimated beta coefficients to determine the number of three-month 

VIX futures contracts needed to hedge a single one-month VIX futures contract in 

different market regimes.   

   

1.4 Approach and Organization   

 In Chapter 2 I describe the data, calculations for each return component, and 

provide summary statistics.  In Chapter 3 I describe the time series regression model I use 

to derive the sensitivities of each return component to the returns of the VIX.  Chapter 4 

is a discussion of the results from the regression and principal component models.  

Chapter 5 provides the results of combining the S&P 500 Index returns with the returns 

of a VIX futures curve strategy.  In Chapter 6 I offer concluding comments and the 

potential for future research.   
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Chapter II 

Data 

 

 

In this chapter I describe my original data by using basic statistical measures and 

graphs.  I then show and discuss how I decompose the total return of the VIX futures 

contracts into two return components, roll down and level.  I provide basic statistical 

measures for the roll down and level returns and conclude by discussing the 

autoregressive properties of the various return series.    

 

2.1 VIX Futures Data 

The analysis in this chapter is based on the daily total returns for the VIX and 

VIX futures contracts.  In addition, I analyze the daily returns of the VIX futures return 

components, roll down and level.  The total returns are calculated from the closing prices 

of the VIX and monthly VIX futures contracts which are sourced from Excel data files 

(file) posted by the CBOE on their website.  Each file represents a single monthly VIX 

futures contract and includes the daily open, close, high and low, and settlement prices.  I 

calculate the total returns and derive the returns of the return components for the one- to 

six-month VIX futures contracts.  Roll down and level returns are not calculated for the 

VIX given that it is a spot price.  All returns are calculated for the period of December 

16, 2009 to December 19, 2017.  The daily returns of each monthly VIX futures contract 

are calculated from the settlement date of the prior contract up to and including the day 

before the settlement date of the current contract.      
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2.2 The VIX Futures Term Structure  

 In chapter 1 I discuss that the price of a VIX futures contract represents the 

expected VIX price, which is equivalent to the annualized 30-day implied volatility of the 

S&P 500, at expiration of the VIX futures contract.  For example, if on April 8, 2018 the 

July VIX futures contract has a price of 19 this indicates the VIX is expected to be 19 on 

July 18, 2018.     

The VIX term structure is constructed from the closing prices of the VIX and each 

VIX futures contract with expirations of one to six months.  The shape of the term 

structure is determined by the slope, or difference in price, between two points on the 

term structure.  In this analysis I measure the slope between each point on the term 

structure starting with VIX and including each successive monthly VIX futures contract.  

A steep term structure is characterized by large slopes between each point on the term 

structure, whereas a flat term structure is distinguished by small to zero slopes between 

each point.  An inverted term structure is identified by VIX having the highest price on 

the term structure and each successive VIX futures contract having a lower price.  

 

Table 2.1: Average Daily Slopes Between VIX and VIX Futures Contracts (December 15, 2009 to 

December 19, 2017) 

 

 

VIX minus            

1-month

1-month 

minus                

2-month

2-month 

minus                

3-month

3-month 

minus                 

4-month

4-month 

minus                 

5-month

5-month 

minus                

6-month

VIX Range

Average Slope -0.9 -1.1 -0.8 -0.6 -0.5 -0.4

Percent Negative Slope 84.2% 88.4% 91.7% 92.5% 92.6% 91.5%

Average Slope by VIX Level

   VIX Level 1st Quintile -1.3 -1.3 -0.9 -0.7 -0.6 -0.5 9 to 13

   VIX Level 2nd Quintile -1.2 -1.3 -0.9 -0.7 -0.5 -0.5 13 to 15

   VIX Level 3rd Quintile -0.9 -1.3 -1.0 -0.7 -0.7 -0.6 15 to 17

   VIX Level 4th Quintile -0.8 -1.4 -1.0 -0.7 -0.6 -0.5 17 to 21

   VIX Level 5th Quintile -0.1 -0.4 -0.3 -0.2 -0.3 -0.2 21 to 48
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Table 2.1 includes the average slopes and average slopes based on a quintile 

ranking of the VIX price.  I calculate the slope by subtracting from the closing price of 

VIX, or a VIX futures contract, the closing price of the next month VIX futures contract.  

For example, on January 18, 2013 the VIX closing price was 12.46 and the one-month 

VIX futures contract closed at 14.65 which corresponds to a slope of -2.19.   The average 

slope is the arithmetic average of the daily slopes.  I use Table 2.1 to illustrate that the 

VIX term structure is upward-sloping and is steepest in the first couple of months.   

The average slope can be used to compare the relative steepness between two 

points on the term structure.  In Table 2.1, observe that the average slope between the 

one-month and two-month VIX futures contracts is -1.1 which is the most negative 

among all the average slopes.  The second most negative average slope (-0.9) is between 

VIX and the one-month VIX futures contract.  They compare to the negative average 

slope of just -0.4 between the fifth and sixth month VIX futures contract.  This highlights 

that on average the front part of the VIX term structure (i.e., from VIX to the three-month 

VIX futures contract) is steeper when compared to the rest of the term structure.   

The Percent Negative Slope is the percentage of daily calculated slopes for a point 

on the term structure that are negative.  For example, the slope of the VIX and one-month 

VIX futures contract is negative 84.2% of the time.  Similarly, the four-month VIX 

futures price is lower than the five-month VIX futures price 92.6% of the time.  Each 

highlighting that the VIX term structure is upward-sloping most of the time.   

The price of VIX will influence the shape of the VIX term structure.  This is 

shown in the bottom half of Table 2.1 where the average slopes are provided based on a 

quintile ranking of the VIX closing price.  The average VIX closing price from the data 
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set is 17.11.  When the VIX price is above its average, the VIX term structure becomes 

relatively flat.  Conversely, when the VIX is below its average the VIX term structure is 

steeper.     

When the VIX is between 9 and 13 the average slopes between VIX and the one-

month VIX futures contract (-1.3) and between the one-month and two-month VIX 

futures contracts (-1.3) are more negative relative to the slopes between the other VIX 

futures contracts.  This illustrates that when the VIX closing price is well below its 

average the VIX term structure becomes upward sloping and relatively steep.  However, 

when the VIX closing price is between 21 and 48 (fifth quintile) the average slope of the 

VIX and one-month VIX futures contract (-0.1) is less negative than the slope between 

the four- and five-month contracts (-0.3) highlighting that the VIX term structure 

becomes flat (slope near zero) with above average VIX closing prices.  

Figure 2.1 portrays the three possible shapes (relatively steep, relatively flat, 

inverted) for the VIX term structure.  These curves display the minimum, maximum, and 

average prices for the VIX and VIX futures contracts that have a constant number of days 

until expiration.  I calculate the closing price of the constant nth month VIX futures 

contract as, 

 

 

𝐶𝑀𝑛,𝑡 =
𝐷𝑡

𝑇𝑡
∗ 𝐹𝑛,𝑡 +

𝑇𝑡−𝐷𝑡

𝑇𝑡
∗ 𝐹𝑛+1,𝑡 ,                     (1) 

 

 

where, CMn,t is the closing price of the constant nth month VIX futures contract at time t, 

Dt is the number of days remaining until the expiration of the one-month VIX futures 

contract (including day t but not including the settlement date), Tt is the total number of 

trading days of the current one-month VIX futures contract from the settlement date of 
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the prior one-month contract until one day prior to the current contract settlement date, 

and Fn is the closing price of the nth month VIX futures contract.    

 

Figure 2.1:  Average, Maximum, and Minimum Daily Closing Price for VIX and Constant nth Month 

VIX Futures Contracts (December 15, 2009 to December 19, 2017) 

 

 

 The line representing the maximum depicts an inverted term structure which is 

identified by VIX having the highest closing price and the constant five-month VIX 

futures contract having the lowest closing price.  In most cases, an inverted VIX term 

structure has been the result of large price declines for the S&P 500 Index.  An inverted 

VIX term structure is uncommon and one lasting more than a few months is quite rare.   
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2.3 Two-Component Return Calculation  

 A daily total return can be calculated for VIX and each VIX futures contract.  

Additionally, the daily total return of each VIX futures contract can be decomposed into 

two return components, roll down and level.  The total return of VIX futures contract 

over the interval [t-1, t] is given by, 

 

 

𝑟𝑡 =  
𝐹𝑛,𝑡

𝐹𝑛,𝑡−1
− 1 =

𝑃𝑛,𝑡

𝐹𝑛,𝑡−1
,                       (2) 

 

 

where over the interval [t-1, t] the terms Fn and Pn denote the nth month VIX futures 

closing price and change in price of the nth month VIX futures contract, respectively.  

 The multiperiod compounded return for k periods can be written as, 

 

𝑟𝑡[𝑘] = (∏ (1 + 𝑟𝑡−𝑗)) − 1𝑘−1
𝑗=0 ,              (3) 

where 𝑟𝑡[𝑘] is the product of the k one-period returns. 

The total return can be decomposed as, 

 

 

𝑟𝑡 = 𝐶𝑟𝑡 + 𝐿𝑟𝑡 ,                                                                  (4) 

 

 

where Crt and Lrt denote the roll down return and level return, respectively.  More 

specifically, I define the roll down return at time t as,  

 

 

𝐶𝑟𝑡 =
𝐶𝑛,𝑡

𝐹𝑛,𝑡−1
,                        (5) 
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where the term Cn,t denotes the one day roll down of the nth VIX futures contract at time 

t.  The roll down of F1 is calculated relative to the closing price of VIX and for all other 

VIX futures contracts (Fn+1), the roll down is calculated relative to an n-1 constant month 

VIX futures closing price.  I calculate the roll down at time t as,  

 

 

𝐶𝑛,𝑡 =  
𝐶𝑀𝑛−1,𝑡−1−𝐹𝑛,𝑡−1

𝐷𝑡
,                       (6) 

 

 

and where Dt is the number of trading days remaining until the expiration of F1 including 

day t but not including the settlement date.  The constant nth month VIX futures closing 

price (𝐶𝑀𝑛,𝑡) is calculated as the daily proportion of the n and n+1 VIX futures closing 

prices (as in equation 1).   

I define the level return at time t as,  

 

 

𝐿𝑟𝑡 =  𝑟𝑡 − 𝐶𝑟𝑡 .                        (7) 

 

2.4 Characteristics of Return Series  

 In the following sections I provide and discuss the return characteristics of the 

VIX and the one-, three-, and five-month VIX futures contracts.  I leave out the results of 

the two-, four-, and six-month VIX futures contracts to keep the results compact but 

without detracting from the analysis.9  In Section 2.4.1 I highlight the characteristics of 

the entire return series and then in Section 2.4.2 I segment the returns and return 

characteristics based on a quintile ranking of the VIX price.  In Section 2.5 I provide the 

output of testing the various returns series for stationarity and autocorrelation.   

                                                            
9 Results for the two-, four-, and six-month VIX futures contracts are provided in Appendix B.   
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Table 2.2: Statistical Characteristics of Daily Returns for VIX and VIX Futures Contracts (December 16, 2009 to December 19, 2017)ab 

 

 

 

 

                                                            
a The data in Table 2.2 has been rounded.   
b The t-Value in Table 2.2 is used to test the significance of the sample mean relative to zero at the significance level of 0.05.  Specifically, 𝐻𝑜: �̅� = 0 against 

𝐻𝑎: �̅� ≠ 0.  The critical value for the one-sided test is equal to 1.645.   

Return Component Mean Median Cumulative Std Dev Min Max t Value

One-Month Roll Down Return -0.7% -0.6% - 1.3% -20.1% 12.3% -26.3

One-Month Level Return 0.5% 0.1% - 5.1% -22.0% 35.7% 4.1

One-Month Total Return -0.3% -0.8% -100.0% 5.1% -20.9% 35.9% -2.5

Three-Month Roll Down Return -0.2% -0.3% - 0.2% -1.3% 1.1% -57.1

Three-Month Level Return 0.1% -0.1% - 2.8% -13.2% 19.6% 0.9

Three-Month Total Return -0.2% -0.4% -99.1% 2.8% -12.9% 19.5% -3.1

Five-Month Roll Down Return -0.1% -0.1% - 0.1% -1.1% 0.4% -57.8

Five-Month Level Return 0.0% -0.1% - 2.1% -9.0% 13.6% 0.4

Five-Month Total Return -0.1% -0.2% -95.3% 2.1% -9.0% 13.5% -2.8

VIX 0.2% -0.5% -53.3% 7.7% -29.6% 50.0% 1.4
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2.4.1 Basic Statistics  

In Table 2.2 I display basic statistical characteristics for the daily total returns of 

the VIX and VIX futures contracts as well as the two VIX futures return components.  

VIX futures contracts with expirations of one, three, and five months are shown to 

illustrate the differences in return statistics across the term structure.   

In Table 2.2, the mean and median roll down returns are negative for each 

monthly VIX futures contract.  The average roll down returns of the one-month VIX 

futures contract (-0.7%) are more negative than the average roll down returns of the 

three- (-0.2%) and five-month (-0.1%) contracts, which supports the view that the VIX 

term structure is on average upward sloping and steeper in the front-end.  A futures 

contract has a finite life and as the time to expiration approaches, the contract loses value 

if an upward-sloping term persists.  Hence, the negative return on an upward-sloping 

term structure.   

Unlike the average roll down returns, the average level returns are positive for 

each monthly VIX futures contract.  Although comparing the mean and median level 

returns shows that the average level returns are pulled higher by the larger relative 

changes in the price for VIX.  For example, from December 16, 2009 to December 19, 

2017 the average VIX price was 17.11 with a maximum price of 48 (180% from average) 

and minimum price of 9.14 (47% from average).  During the same period, the maximum 

and minimum closing price, and average closing prices for the one-month VIX futures 

contract were 45, 9.88 and 17.93, respectively.   

The average level return of the one-month VIX futures contract (0.5%) compared 

to the three- and five-month VIX futures contracts (0.1% and 0.0%) shows that the one-
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month VIX futures contract has the greatest sensitivity to changes in the VIX price.  This 

is also supported by the large difference between the mean and median level returns of 

the one-month VIX futures contract (0.5% versus 0.1%) relative to the difference in mean 

and median level returns of the other two contracts.   

The standard deviation of returns in Table 2.2 highlight that the total return 

standard deviation for each monthly VIX futures contract is primarily accounted for by 

the standard deviation of level returns.  In fact, 96.6% of the total standard deviation of 

the one-month VIX futures contract is accounted for by the level return component.  I 

calculate the percentage contribution of level return standard deviation to the total return 

standard deviation as the covariance of level and total returns divided by the variance of 

total returns.  The reason that the level return standard deviation accounts for so much of 

the total return standard deviation is due to the strong positive correlation between the 

level and total returns (0.97) and the similar return standard deviations between the two 

return components.   

Since VIX is a spot price, it does not have a roll down return component and 

therefore, it’s standard deviation of returns can be considered both level return and total 

return standard deviation.  The standard deviation of the level return declines starting 

with VIX and as the time to expiration increases (i.e. each successive VIX futures 

contract).  For example, the VIX standard deviation of returns (7.7%) is 1.5 times greater 

than the standard deviation of the one-month VIX futures contract level return (5.1%) and 

more than 3.5 times the standard deviation of the five-month VIX futures contract level 

return (2.1%).  This shows that the term structure of realized volatility for the VIX and 

VIX futures contracts is inverted.  Zhang et al (2010) find similar results and conclude 
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that the downward sloping realized volatility term structure of VIX futures contracts is 

explained by the volatility mean-reversion process.  

The t-values shown in Table 2.2 are used to test the significance of the mean 

return for each return component relative to zero.  The one-tailed critical value at the 0.05 

level is 1.645.  All but the VIX, three-month level, and five-month level returns are 

statistically different from zero at the 0.05 level.  The t-values for the return components 

of the one-, three-, and five-month VIX futures contracts highlight the relative magnitude 

of loss from the roll down component and standard deviation of the level component.   

   

2.4.2 Returns by VIX Ranking  

 I use a quintile ranking of the VIX price to gain perspective for the various return 

components under different implied volatility regimes by inspecting the average return, 

minimum and maximum returns, and standard deviation of each return component for the 

various VIX futures contracts.  The quintile ranking uses the daily closing prices of VIX 

published by the CBOE.   
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Table 2.3:  Daily Returns and Standard Deviation of the One-Month, Three-Month and Five-Month VIX Futures Contracts Ranked by VIX Quintile 

(December 16, 2009 to December 19, 2017)a 

 

 

 

                                                            
a The data in Table 2.3 has been rounded.   

1-month Roll 

Down Return

3-month Roll 

Down Return

5-month Roll 

Down Return

1-month Level 

Return

3-month Level 

Return

5-month Level 

Return

1-month Total 

Return

3-month Total 

Return

5-month Total 

Return
VIX

First Quintile Avg Return -1.4% -0.3% -0.2% 0.2% -0.3% -0.2% -1.2% -0.6% -0.4%

Std Dev 1.5% 0.2% 0.1% 2.6% 1.6% 1.1% 2.7% 1.5% 1.1%

Min -20.1% -1.2% -0.7% -10.1% -11.1% -7.6% -19.3% -11.3% -7.6% 9.1

Max 0.3% 1.1% 0.0% 8.5% 4.0% 2.6% 6.1% 3.5% 2.3% 12.7

Second Quintile Avg Return -1.0% -0.3% -0.2% 0.0% -0.3% -0.3% -0.9% -0.6% -0.4%

Std Dev 1.1% 0.1% 0.1% 3.6% 1.8% 1.4% 3.4% 1.8% 1.4%

Min -10.2% -0.9% -1.1% -19.9% -7.9% -6.7% -16.5% -8.1% -6.7% 12.7

Max 3.4% 0.0% 0.0% 14.0% 4.1% 3.5% 14.1% 3.8% 3.1% 14.5

Third Quintile Avg Return -0.7% -0.3% -0.2% 0.1% -0.2% -0.1% -0.6% -0.4% -0.3%

Std Dev 1.2% 0.2% 0.1% 4.7% 2.6% 1.8% 4.8% 2.6% 1.8%

Min -10.7% -1.3% -0.8% -14.1% -7.6% -6.6% -13.1% -7.8% -6.7% 14.5

Max 12.3% 0.0% 0.0% 20.1% 10.5% 6.9% 32.4% 10.1% 6.8% 16.9

Fourth Quintile Avg Return -0.5% -0.3% -0.1% 0.6% 0.3% 0.1% 0.1% 0.0% 0.0%

Std Dev 0.9% 0.2% 0.1% 5.9% 3.1% 2.3% 5.8% 3.1% 2.2%

Min -8.9% -0.9% -0.5% -21.0% -12.8% -9.0% -20.9% -12.8% -9.0% 16.9

Max 3.8% 0.2% 0.0% 33.7% 10.6% 8.1% 31.0% 9.9% 7.8% 20.6

Fifth Quintile Avg Return -0.2% -0.1% -0.1% 1.3% 0.7% 0.6% 1.2% 0.7% 0.5%

Std Dev 1.2% 0.2% 0.1% 7.1% 4.0% 3.0% 7.1% 4.0% 3.0%

Min -7.3% -1.2% -0.8% -22.0% -13.2% -8.7% -16.8% -12.9% -8.7% 20.6

Max 5.2% 0.6% 0.4% 35.7% 19.6% 13.6% 35.9% 19.5% 13.5% 48.0

Roll Down Returns Level Returns Total Returns
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The data in Table 2.3 offers some interesting insight regarding the characteristics 

of the VIX term structure.  For example, the large negative roll down returns of the one-

month VIX futures contract (-1.4%) compared with the negative roll down returns of the 

three- (-0.3%) and five-month ( -0.2%) VIX futures contracts highlight the fact that the 

front-end of the VIX term structure is generally steeper when the VIX is in the first 

quintile (below 12.7) of its price history.  However, when the VIX price is in the fifth 

quintile (greater than 20.6) the average roll down returns of the one-month VIX futures 

contract (-0.2%) is similar to the average roll down returns of the three- (-0.1%) and five-

month (-0.1%) VIX futures contracts.  This illustrates the fact that the average VIX term 

structure is flat when the VIX price is high.   

The standard deviation and the range of roll down and level returns vary greatly 

depending on the level of the VIX closing price.  For example, the standard deviation of 

the one-month level returns in the first quintile (2.6%) is less than half of the standard 

deviation in the fifth quintile (7.1%).  This demonstrates that the VIX is more volatile 

when the VIX is above its average price.   

Similarly, the range of level returns for the one-month contract significantly 

expand between the first (18.6%) and fifth (57.7%) quintiles.  However, the standard 

deviation of the one-month roll down returns in the first quintile (1.5%) is slightly greater 

than the fifth quintile (1.2%).  And the range of roll down returns for the one-month 

contract decline between the first (20.4%) and fifth (12.5%) quintiles.  These results 

support the view that the VIX term structure becomes flat when the VIX price is above its 

average price of 17.11.   
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2.4.3 VIX Futures Profit and Loss  

 The returns shown previously are helpful in drawing conclusions about the total 

return distribution of VIX futures contracts and return distributions for the roll down and 

level return components.  The cumulative profit and loss (P&L) from buying and holding 

a VIX futures contract aid in illustrating the differences between the roll down and level 

components.   

I use Table 2.4 to show the cumulative profit and loss (P&L) from buying and 

holding a one-, three-, and five-month VIX futures contract.  Like the returns calculated 

earlier, a buy-and-hold VIX futures strategy involves buying and holding the current 

month contract up to and including one-day prior to the settlement date.  On the day prior 

to the settlement date, the buy-and-hold strategy sells the current contract at the closing 

price and simultaneously buys the new month contract at the closing price.    

The total, roll down, and level P&Ls are derived from equations 2, 6, and 7 and 

are indicative of a buy-and-hold strategy with one VIX futures contract.  For example, 

during December 16, 2009 to December 19, 2017 the one-month VIX futures contract 

lost 127.89 points or -$127,885 (-127.89*1,000).  During the same period the roll down 

component lost 228.753 points (-$228,753) and the level component gained 100.868 

points ($100,868).   The P&Ls shown in Table 2.4 are the summed daily P&Ls for each 

component during December 16, 2009 to December 19, 2017 and for each component 

from quintile one and five.  The quintiles were determined by a quintile ranking of the 

VIX price.   
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Table 2.4: VIX Futures Cumulative P&L (December 16, 2009 to December 19, 2017) 

 

 

 The P&L data in Table 2.4 provide several interesting insights regarding buying 

and holding VIX futures contracts.  For example, the negative roll down P&L of the one- 

and three-month VIX futures contracts (-$228,753, -$93,732) is entirely responsible for 

the negative total P&L of each contract.  The negative roll down P&L of the five-month 

VIX futures contract (-$59,712) accounts for 98.6% of the negative total P&L.  

Additionally, the five-month contract has a negative level P&L (-$878) whereas the one- 

and three-month contracts have a positive level P&L ($100,868, $7,687).     

 In Table 2.4, I provide the P&L of each component from quintiles one and five to 

show their differences based on the VIX price.  As discussed earlier, when the S&P 500 

Index declines the VIX price increases and the VIX term structure becomes flatter and in 

extreme cases, the VIX term structure will invert.  For example, the roll down P&Ls of 

quintile one are more negative than the roll down P&Ls of quintile five highlighting a 

steeper VIX term structure in quintile one.  Additionally, the differences in roll down 

VIX Futures Contract Roll Down Level Total 

One-Month -$228,753 $100,868 -$127,885

Three-Month -$93,732 $7,687 -$86,045

Five-Month -$59,712 -$878 -$60,590

Quintile One (VIX: 9.1-12.7)

One-Month -$71,323 $4,588 -$66,735

Three-Month -$20,705 -$17,905 -$38,610

Five-Month -$13,263 -$13,407 -$26,670

Quintile Five (VIX: 20.6-48.0)

One-Month -$14,106 $90,506 $76,400

Three-Month -$7,722 $59,232 $51,510

Five-Month -$5,768 $48,358 $42,590

Cumulative P&L
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P&L between the monthly VIX futures contracts show that when the VIX price is low 

(quintile one) the VIX term structure is steeper as illustrated by the greater roll down 

losses.   

 The difference in level P&Ls between quintiles one and five highlight that the 

level component produces the largest P&L when the VIX price is high.  Additionally, the 

level P&L is greater than the roll down P&L for each VIX futures contract in quintile 

five.  This finding implies that buying and holding a VIX futures contract when the VIX 

price is at or above 20.6 results in a positive total P&L.   

 

2.5 Stationarity and Autocorrelation of Returns   

 To evaluate the characteristics of the return series I assess the stability of the 

mean and variance as well as correlation of returns with respect to time.  A return series 

that exhibits a mean and variance that is invariant with time and where the covariances 

between xt and xt+h only depend on the distance between them is considered covariance 

stationary.  Covariance stationary time series offer a greater ability to make inferences 

regarding future observations.   

Time series regression analysis relies on a covariance stationary process in the 

residuals.   If the data series are not covariance stationary, or adjusted to be covariance 

stationary, then the estimated variance of the regression coefficient(s) can be biased 

leading to invalid t-statistics.  For example, an independent variable that has a positive 

autocorrelated series can result in an underestimation of the beta coefficient variance, 

leading to overstated t-statistics.  In finance it is common to assume that return series are 

covariance stationary since the derived returns are a form of detrending transformation.  
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However, using return series does not jettison the need to check and possibly correct the 

time series regression model for autocorrelated or heteroskedastic residuals.    

In this section I discuss the results of the Augmented Dicky Fuller (ADF) unit 

root test for stationarity in the daily returns of the VIX, and the daily total returns and 

returns of each return component (roll down and level) for the one-month, three-month, 

and five-month VIX futures contracts.  Additionally, I present the autocorrelation test 

results for the returns of the VIX and one-month VIX futures contract.  The partial 

autocorrelation test results are provided in Appendix C.   

The ADF test is conducted for the VIX returns and the various returns (total, roll 

down, level) of the VIX futures contracts.  The ADF test includes a test of the null 

hypothesis of a unit root (𝐻0: 𝛾 = 0) versus the alternative hypothesis (𝐻𝑎: 𝛾 < 0).  The 

equation for the ADF-test statistic can be written as, 

 

𝐴𝐷𝐹 𝑡𝑒𝑠𝑡 =  
�̂�−1

𝑠𝑡𝑑(�̂�)
,                       (8) 

where �̂� is estimated in a least-squares regression (Tsay, 2010, pp. 77).  The estimating 

equation is written as, 

 

∆𝑦𝑡 = 𝜇 + 𝛽𝑡 + 𝛾 ∗ 𝑦𝑡−1 + ∑ ∅𝑖
𝑝−1
𝑖=1 ∆𝑦𝑡−𝑖 + 휀𝑡 ,                   (9) 

where ∅𝑖 = − ∑ 𝛾𝑘
𝑝
𝑘=𝑖+1 , 𝛾 ∗= (∑ 𝛾𝑖) − 1,

𝑝
𝑗=1  and ∆𝑦 is the daily change in y (the total 

return or return component).  

Since each time series is comprised of daily derived returns, stationarity is not an 

issue as most return series are covariance stationary.  In fact, the ADF test for the returns 

of the VIX and VIX futures contracts confirm this with each test result rejecting the null 
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hypothesis (non-stationary) for the alternative hypothesis (stationary) at all levels of 

significance.   

I now test the linear dependence of returns (r) at time t with returns at time t-i by 

estimating the correlation coefficient.  The correlation coefficients estimated from 𝜌1 to 

𝜌𝑖 are called the sample autocorrelation function.  The equation for the sample 

autocorrelation function can be written as, 

 

𝜌𝑖 =
𝐶𝑜𝑣(𝑟𝑡,𝑟𝑡−𝑖)

√𝑉𝑎𝑟(𝑟𝑡)𝑉𝑎𝑟(𝑟𝑡−𝑖)
,                                               (10) 

 

where 𝜌i is the correlation coefficient between 𝑟𝑡 and 𝑟𝑡−𝑖 (Tsay, 2010, pp. 31).  This is 

known as the lag-𝑖 autocorrelation of 𝑟𝑡.   
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Figure 2.2: Plot of the Autocorrelations for the VIX Daily Return (December 16, 2009 to December 

19, 2017) 

 

 

 Figure 2.2 is a graphical representation of the autocorrelations for the VIX return 

series to the 24th lag.  Beginning at lag 1, each bar represents the correlation coefficient 

between the nth lagged return and the return at time t.  The light blue upper and lower 

bounds represent the 5% confidence interval for autocorrelation.  The VIX return series 

appears to have some mild negative autocorrelation at the 1st and 3rd lags.  Regressions 

that use the VIX return series will most likely need to correct for autocorrelated residuals 

and inferences regarding the standard deviation of VIX returns may need to correct for 

the autocorrelated return series.   
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Figure 2.3: Plot of the Autocorrelations for the Daily One-Month VIX Futures Roll Down Return 

(December 16, 2009 to December 19, 2017) 

 

 

 Figure 2.3 illustrates the autocorrelations for the roll down returns of the one-

month VIX futures contract.  These returns are highly autocorrelated and the return series 

follows an autoregressive process with lags 1 through 10 positive and significant at the 

5% level.  The partial autocorrelations for lags 1, 3, and 5 are significant at the 5% level 

indicating that the autoregressive process is driven by the first few lags.  The residuals of 

any time series regression analysis using the one-month VIX futures roll down returns 

will need to be carefully examined and corrected for autocorrelation.  Otherwise, the 

variance of the estimated beta coefficient will be misstated leading to invalid t-statistics.  

Additionally, the one-month VIX futures roll down return series should be corrected for 

autocorrelation before inferences regarding the standard deviation are made.   
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Figure 2.4: Plot of the Autocorrelations for the Daily One-Month VIX Futures Level Return 

(December 16, 2009 to December 19, 2017) 

 

 

Figure 2.4 illustrates the autocorrelations for the one-month VIX futures level 

return series.  The return series appears to have mild negative autocorrelation at the 1st 

and 5th lag that is significant at the 5% confidence level.  Any inference the standard 

deviation of returns or regression results for the one-month VIX futures level return may 

need to be corrected for autocorrelation.   
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Figure 2.5: Plot of the Autocorrelations for the Daily One-Month VIX Futures Total Return 

(December 16, 2009 to December 19, 2017) 

 

 

 Figure 2.5 illustrates the autocorrelations for the total returns of the one-month 

VIX futures contract.  The total return series of the one-month VIX futures contract does 

not appear to be autocorrelated given that none of the correlation coefficients for the lags 

are statistically different from zero.  Therefore, the one-month VIX futures contract total 

return series is considered covariance stationary.  Although it is interesting to note that 

the roll down and level returns of the one-month VIX futures contract were not 

covariance stationary as shown in Figures 2.3 and 2.4.  
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Chapter III 

Methods 

 

 

I begin Chapter 3 by discussing the assumptions of a time series regression model.  

I discuss covariance stationarity and highlight its importance with the asymptotic 

properties of a least squares regression.  Next, I review and provide details for the 

univariate regression models that will be estimated.  I conclude Chapter 3 by providing 

my expectations for the output of the regression models.   

 

3.1 Time Series Regression Model  

 Time series regression models are used extensively in economics and finance to 

identify and explain the relationship between variables that are indexed by time.  An 

example of a time series regression model in finance is one that uses the returns of the 

S&P 500 Index to explain the returns of a long/short equity hedge fund.  Here, the returns 

of the long/short equity hedge fund represent the dependent variable and the returns of 

the S&P 500 Index represent the explanatory variable.  Using this simple example, the 

time series least squares regression model can be written as, 

 

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑢𝑡 ,        

where y is the return of the long/short equity hedge fund at time t, x is the return of the 

S&P 500 Index at time t, 𝛽 is the estimated beta coefficient, and 𝑢 is the error term.   

  There are five assumptions that must hold for the estimated beta coefficient to be 

the best linear unbiased estimator (𝛽) of the regression.  The term “best” has the meaning 
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minimum variance and unbiased means that the estimates are unbiased across all time 

periods (Wooldridge, 2013).   

The first assumption of a time series regression model is that the model 

parameters are linear.  The second assumption necessitates that the independent variables 

are not constant and are not perfectly correlated.  The third assumption of a time series 

regression model requires that the expected value of the error term, u, is zero for all time 

periods.  Assumption four imposes that the variance of error term is constant across all 

time periods and assumption five requires that the error term be serially uncorrelated.  If 

only assumptions one, two, and three hold then the time series regression estimator, β, is 

considered unbiased but is not considered the best linear unbiased estimator (Wooldridge, 

2013).   

 The law of large numbers and central limit theorem applied to cross-sectional data 

can be applied to time series data through sample averages and covariance stationarity.  

As discussed in 2.4.3, a return series (rt) is said to be covariance stationary if both the 

mean and variance of rt are time invariant and the covariance between rt and rt-h, where h 

is an arbitrary integer, only depends on h.  Covariance stationarity requires that the 

correlation between rt and rt-h goes to zero sufficiently quickly as h increases.  As we will 

see, covariance stationarity is required for asymptotically valid regression results (Tsay, 

2010).   

 As the size of the return series (T) goes to infinity, asymptotic distribution theory 

can be used to describe the first and second moments (parameter estimates) of the 

dependent and explanatory variables.  The probability limit (e.g., 95% probability) that 

the sample parameter estimates of the dependent and explanatory variables converge to 
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their true parameter estimates can be achieved with a sufficiently large T.  When the 

probability limit is reached, the parameter estimates are considered consistent.  Although 

a return series can be serially correlated, the sample parameter estimates can converge to 

the true parameter estimates based on the probability limit provided the return series is 

covariance stationary (Hamilton, 1994).   

The first assumption of a time series regression model, linearity, is enhanced by 

requiring that the independent and dependent variables be covariance stationary.  The 

third assumption of the time series regression model is relaxed by requiring that the 

independent variable is contemporaneously exogenous.  The fourth assumption is relaxed 

so that the requirement is for contemporaneous homoskedastic errors conditioned on the 

independent variable at time t.  The assumptions of no perfect collinearity among the 

independent variables and zero correlation in the errors across time remain.  Provided the 

time series regression model can meet these assumptions, the beta coefficient estimates 

are consistent, and the various inferences (e.g., t-statistics, F-statistics) are asymptotically 

valid (Wooldridge, 2013).    

  

3.2 Model Estimation     

 I use univariate time series regressions to estimate the daily total returns and 

return components, roll down and level, for the one-, three-, and five-month VIX futures 

contracts based on contemporaneous daily returns of the VIX.  Additionally, I use 

univariate time series regressions to estimate the daily returns of VIX from 

contemporaneous daily total returns of the S&P 500 Index.  Three equations are 
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estimated for each VIX futures contract and one is estimated for the VIX, which yields 

ten regression models estimated in total.  The first set of equations are written as,   

 

𝑂𝑉𝐹𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑂𝑖𝑉𝐼𝑋𝑡 + 𝜖𝑖,𝑡 ,                               (11) 

 

where t is the counter for time and i=1,2,3 represents daily total return (1), roll down 

return (2), and level return (3) of the one-month VIX futures contract (OVF), 𝛼𝑖 is the 

intercept of the regression equation, 𝐵𝑂𝑖 is the beta coefficient, and 𝑉𝐼𝑋𝑡 is the daily 

return of the VIX.  The second set of equations are written as, 

 

𝑇𝑉𝐹𝑗,𝑡 =  𝛾𝑗 + 𝛽𝑇𝑗𝑉𝐼𝑋𝑡 + 𝜖𝑗,𝑡 ,                                 (12) 
 

where t is a counter for time and j=1,2,3 represents daily total return (1), roll down return 

(2), and level return (3) of the three-month VIX futures contract (TVF), 𝛾𝑗 is the intercept 

of the regression equation, 𝐵𝑇𝑗 is the beta coefficient, and 𝑉𝐼𝑋𝑡 is the daily return of the 

VIX.  The third set of equations are written as, 

 

𝐹𝑉𝐹𝑘,𝑡 =  𝛿𝑘 + 𝛽𝐹𝑘𝑉𝐼𝑋𝑡 + 𝜖𝑘,𝑡 ,                                 (13) 
 

where t is a counter for time and k=1,2,3 represents daily total return (1), roll down return 

(2), and level return (3) of the five-month VIX futures contract (FVF), 𝛿𝑘 is the intercept 

of the regression equation, 𝐵𝐹𝑘 is the beta coefficient, and 𝑉𝐼𝑋𝑡 is the daily return of the 

VIX.  The final set of equations are written as, 

 

𝑉𝐼𝑋𝑡 =  𝜃𝑣 + 𝛽𝑣𝑆𝑃𝑋𝑡 + 𝜖𝑣,𝑡 ,                                (14) 
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where 𝑉𝐼𝑋𝑡 is the daily return of the VIX and 𝑆𝑃𝑋𝑡 is the daily total return of the S&P 

500 Index. 

 I expect the estimated beta coefficients for the total returns of the VIX futures 

contracts to be positive.  Additionally, I anticipate the beta coefficient for the total returns 

of the one-month VIX futures contract being the largest of the VIX futures contracts and 

then declining for each successive VIX futures contract.  My expectation is based on the 

inverted term structure for the realized volatility of VIX futures contracts which I 

discussed earlier.   

In addition, I anticipate that the level returns will have a positive and larger 

estimated beta coefficient compared to the roll down returns given their contribution to 

the volatility of total returns of VIX futures contracts.  The estimated beta coefficient for 

level returns of the one-month VIX futures contract should be larger than the level return 

beta coefficients of the other VIX futures contracts given the inverted realized volatility 

term structure of VIX futures contracts.   

My expectations are supported by the findings of Huskaj and Nossman (2013) and 

Zhang (2010) where they find that the realized volatility of the VIX futures term structure 

is inverted and the estimated correlation coefficient between VIX and the VIX futures 

contracts declines as the time to expiration increases.    

 

3.3 Regression Model Testing and Calibration  

 The residuals of each regression are tested for autocorrelation and 

heteroskedasticity.  I discuss the testing methodologies and techniques used to correct for 

significant autocorrelation and heteroskedasticity.   
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3.3.1 Testing for Autocorrelated Residuals   

 Each time series regression model is tested for significant (two standard 

deviations) autocorrelation in the regression residuals.  Autocorrelated residuals violate 

assumption five of the time series regression model assumptions and cause issues with 

the regression estimates and interpretation of the regression results.  For example, 

autocorrelated residuals result in biased variance estimates of the beta coefficient leading 

to invalid t-statistics.  The estimated correlation coefficient of each residual is written as, 

𝜌ℎ =
𝐶𝑜𝑣(𝑒𝑡,𝑒𝑡−ℎ)

√𝑉𝑎𝑟(𝑒𝑡)𝑉𝑎𝑟(𝑒𝑡−ℎ)
=  

𝐶𝑜𝑣(𝑒𝑡,𝑒𝑡−ℎ)

𝑉𝑎𝑟(𝑒𝑡)
,                   (15) 

where 𝜌h is the correlation coefficient of the error term for the time series regression 

between 𝑒𝑡 and 𝑒ℎ and where ℎ is an arbitrary integer (Tsay, 2010, pp. 31). 

 The result from equation 19 can be used to test the null hypothesis that 𝜌ℎ is equal 

to 0 versus the alternative hypothesis that it is not equal to 0.  The test statistic can be 

written as, 

 

𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝜌ℎ

√(1+2 ∑ 𝜌𝑖
2ℎ−1

𝑖=1 )/𝑇

,                    (16)    

where 𝑇 is the total number of observations (Tsay, 2010, pp. 32).  The null hypothesis 

would be rejected if the absolute value of the t ratio, |t ratio|, is greater than 𝑍𝛼/2 (two-

tailed test critical value).  

Each residual autocorrelation test is evaluated using the partial autocorrelations of 

the regression residuals.  The partial autocorrelations remove the indirect correlations of 

the autocorrelation test.  Meaning, the partial autocorrelation of the lag 2 residual (∅22) is 
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the autocorrelation coefficient of 𝑒𝑡 and 𝑒𝑡−2 removing the autocorrelation of 𝑒𝑡 and 𝑒𝑡−1.  

The partial autocorrelations are used in conjunction with the autocorrelations to identify 

the autoregressive process.  The partial autocorrelation can be written as,  

 

∅11 = 𝜌1,                       (17)       

 

∅22 =
𝜌2−𝜌1

2

1−𝜌1
2 ,                      (18) 

for lags 1 and 2, and for additional lags, 

 

∅𝑠𝑠 =
𝜌𝑠−∑ ∅𝑠−1

𝑠−1
𝑗=1 ,𝑗𝜌𝑠−𝑗

1−∑ ∅𝑠−1
𝑠−1
𝑗=1 ,𝑗𝜌𝑗

, 𝑠 = 3,4,5 ….                   (19) 

where ∅𝑠𝑠 is the partial autocorrelation of 𝑒𝑡 and 𝑒𝑡−𝑠 (Enders, 2015, pp. 65).    

  The statistical software SAS is needed to run and analyze each regression model.  

For each regression SAS calculates the autocorrelation function (ACF) and partial 

autocorrelation function (PACF).  SAS produces separate ACF and PACF plots that 

contain the autocorrelations and partial autocorrelations up to the 25th lag.  Each plot 

includes two standard error upper and lower bounds, which makes it easy to identify the 

presence of significant (5% level) autocorrelation.  Visually inspecting the ACF and 

PACF plots serve as a reasonable substitute to calculating the Ljung-Box Q statistic.   

 

3.3.2 Correcting for Autocorrelated Residuals  

 To correct for autocorrelated residuals, I use an autoregressive error model in 

SAS, which relies on maximum likelihood estimates.  The autoregressive error model 
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corrects for residual autocorrelation up to the specified lag.  I determine the specified lag 

from the ACF and PACF of the least squares regression and base it on the last residual 

that is significantly autocorrelated at the 5% level.  The corrected residuals from the 

autoregressive error model are saved and used to test for heteroskedasticity.  

3.3.3 Testing for Heteroskedastic Residuals   

Tests for residual heteroskedasticity are conducted using the Ljung-Box Q(m) and 

Lagrange Multiplier tests after the residuals have been corrected for significant 

autocorrelation.  I test for a null hypothesis of no heteroskedasticity against an alternative 

hypothesis that heteroskedasticity exists at the 5% level.  The null hypothesis is rejected 

if the p-value is less than or equal to 5%.  The Ljung-Box Q(m) statistic can be written as,  

 

𝑄(𝑚) =
𝑇(𝑇+2) ∑ 𝑎𝑘

2𝑚
𝑘=1

𝑇−𝑘
,                      (20) 

 

where T is the sample size, 𝑎𝑘
2 is the squared residual of the kth lag, and m is the number 

of lags being tested (Tsay, 2010, pp. 32).    

 The Lagrange Multiplier statistics for heteroskedasticity can be written as, 

 

LM statistic = 𝑛 ∗ 𝑅𝑢2
2 ,                           (21) 

where n is the sample size, and 𝑅𝑢2
2  is the r-squared from a regression of the OLS squared 

residuals on the explanatory variables (Woolridge, 2013, pp. 277).   

 

3.3.4 Correcting for Heteroskedastic Errors  

To correct for significant heteroskedasticity I use a GARCH model.  In the 

presence of autocorrelated residuals I estimate the models as a combined autoregressive 
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error model and the GARCH model in SAS.  The GARCH model is estimated as a 

GARCH (q=1, p=1) model.   

The SAS AR(m)-GARCH(q,p) regression model can be written as, 

 

𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝑣𝑡, 

where 𝑣𝑡 = 휀𝑡 − 𝜑1𝑣𝑡−1 − ⋯ − 𝜑𝑚𝑣𝑡−𝑚, 

and  휀𝑡 = √ℎ𝑡𝑒𝑡 , 

where ℎ𝑡 = 𝜔 + ∑ 𝛼𝑖휀𝑡−𝑖
2 + ∑ 𝛾𝑗ℎ𝑡−𝑗,

𝑝
𝑗=1

𝑞
𝑖=1  

where 𝑣𝑡 is the corrected residual, 𝜑𝑚 is the autoregressive parameter at lag m, and ℎ𝑡 is 

the conditional variance.13  

 

3.4 Principal Component Analysis of Returns  

Principal component analysis (PCA) reduces the dimensionality of the covariance 

matrix by uniquely combining the return vectors of the covariance matrix into a smaller 

set of components that explain most of the variance of the covariance matrix.  More 

specifically, a covariance matrix (∑𝑟) of k-dimensional return vectors, where 𝑟 =

(𝑟1, … . , 𝑟𝑘)′, is reduced to a smaller set 𝑦𝑖 through a unique linear combination of 𝑟𝑖 and 

𝑤𝑖, where 𝑤𝑖 = (𝑤𝑖1, … . , 𝑤𝑖𝑘)′.   

PCA is an orthogonal component analysis which requires that each 𝑦𝑖 component 

be completely uncorrelated with all other 𝑦𝑖 components.  The first principal component 

will explain the greatest amount of variance of the covariance matrix compared to the 

                                                            
13http://support.sas.com/documentation/cdl/en/etsug/63939/HTML/default/viewer.htm#etsug_autoreg
_sect024.htm 

http://support.sas.com/documentation/cdl/en/etsug/63939/HTML/default/viewer.htm#etsug_autoreg_sect024.htm
http://support.sas.com/documentation/cdl/en/etsug/63939/HTML/default/viewer.htm#etsug_autoreg_sect024.htm
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other components.  The second component will explain the second greatest amount of 

variance followed by the third component and so on.  The variance and covariance of the 

ith principal component (𝑦𝑖) can be written as follows, 

 

𝑉𝑎𝑟(𝑦𝑖) = 𝑤𝑖
′∑𝑟𝑤𝑖,                     (22) 

for i = 1,…,k, and   

𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 𝑤𝑖
′∑𝑟𝑤𝑖,                     (23) 

for i,j = 1,….,k (Tsay, 2010, pp. 484). 

If we let the eigenvalues of ∑𝑟 be represented by 𝜆𝑖, where 𝜆𝑖 = (𝜆1, … . , 𝜆𝑘)′, 

then we can show that the proportion of variance explained by the ith principal 

component is written as, 

 

𝑉𝑎𝑟(𝑦𝑖)

∑ 𝑉𝑎𝑟(𝑟𝑖)𝑘
𝑖=1

=
𝜆𝑖

𝜆1+⋯+𝜆𝑘
 (Tsay, 2010, pp. 484).                    (24) 

I conduct the principal component analysis using the total returns of the VIX 

futures contracts and VIX returns to identify latent market variables that exist among the 

return series of the VIX term structure.  For the VIX futures contracts I use the total 

returns of the one- to six-month contracts.  My hypothesis is that the PCA results will 

show that most of the variance of the VIX term structure can be explained by three 

principal components (level, slope, and curvature).  This expectation is backed by the 

findings of Litterman and Scheinkman (1991), who find that three common factors (level, 

slope, curvature) explain more than 90% of the variance of US government bond returns.   
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Chapter IV 

Results 

 

 

I briefly summarize the objectives of the regression analyses.  Then I provide and 

discuss the regression results highlighting the beta coefficients and goodness-of-fit 

measures for the roll down, level, and total returns of the VIX futures contracts.  Next, I 

reference results from Chapters 2 and 4 to show that the realized volatility of the VIX 

term structure is downward sloping.  I conclude by discussing the results of the principal 

components analysis.   

 

4.1 Regression Results 

  The objective of the regression analysis is to study the relationship between the 

return components (roll down, level, total) of the VIX futures contracts at different points 

on the VIX futures term structure and the returns of VIX.  I am interested to learn if the 

linear relationship between VIX and the VIX futures contracts decreases as the time to 

expiration for the VIX futures contracts increases.  I use the regression models to 

estimate the daily roll down, level, and total returns of the one-, three-, and five-month 

VIX futures contracts by regressing the returns of the VIX futures contracts on the returns 

of VIX.  Additionally, I use the regression model to estimate the returns of VIX by 

regressing the VIX returns on the total returns of the S&P 500 Index.   
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4.1.1 VIX and VIX Futures   

  In estimating each regression, I identified significant (1%) autocorrelated and 

heteroskedastic residuals.  The results shown in Table 4.1 are from models that combine 

an autoregressive error model and GARCH model to correct for autocorrelated and 

heteroskedastic residuals.   The autoregressive error model corrects for the autocorrelated 

residuals using the maximum likelihood method.  The GARCH model is a (q=1, p=1) 

model. 

  In Table 4.1 I report the results of the ten regressions including the estimated beta 

coefficients and associated p-values.  I also include the results for several goodness-of-fit 

measures including the R-square, root mean square error (RMSE), Akaike information 

criterion (AIC), and the Schwartz Bayesian information criterion (SBC).   

  The AIC and SBC measures are useful for evaluating and selecting a 

parsimonious model.  The AIC and SBC become smaller and approach −∞ as the model 

fit improves.  The AIC and SBC can be written as, 

 

𝐴𝐼𝐶 = −
2 ln(𝐿)

𝑇
+

2𝑛

𝑇
,                     (25) 

𝑆𝐵𝐶 = −
2 ln(𝐿)

𝑇
+

𝑛ln(𝑇)

𝑇
,                (26) 

where L is the maximized value of the log of the likelihood function, T is the number of 

usable observations, and n is the number of parameters estimated (Enders, 2015, pp. 70).   
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Table 4.1: Regression Results for VIX and VIX Futures (December 16, 2009 to December 19, 2017) 

 

 

  The regression results in Table 4.1 offer insight regarding the relationship 

between the returns of VIX futures contracts and the returns of VIX.  For example, the 

estimated beta coefficients for the total returns of the one-, three, and five-month VIX 

futures contracts decrease as the time to expiration increases from one to five months.  

The beta coefficient for the total return of the one-month VIX futures contract is 0.585, 

which is more than twice the beta coefficient of the three-month VIX futures contract 

VIX
One-Month VIX 

Futures 

Three-Month VIX 

Futures

Five-Month VIX 

Futures

Equation 14 11 12 13

Roll Down

α -0.006 -0.003 -0.002

   prob > |t| <.0001 <.0001 <.0001

β -0.025 -0.002 -0.001

   prob > |t| <.0001 <.0001 <.0001

r-square 0.24 0.68 0.74

RMSE 0.01 0.00 0.00

AIC -15021 -23855 -26013

SBC -14965 -23810 -25968

Level

α 0.002 0.000 -0.001

   prob > |t| <.0001 0.1377 0.0146

β 0.594 0.289 0.197

   prob > |t| <.0001 <.0001 <.0001

r-square 0.74 0.67 0.61

RMSE 0.03 0.02 0.01

AIC -9641 -11159 -12048

SBC -9602 -11120 -12020

Total

α 0.006 -0.005 -0.003 -0.002

   prob > |t| <.0001 <.0001 <.0001 <.0001

β -6.690 0.585 0.284 0.196

   prob > |t| <.0001 <.0001 <.0001 <.0001

r-square 0.65 0.70 0.65 0.61

RMSE 0.05 0.03 0.02 0.01

AIC -6778 -9448 -11101 -12019

SBC -6728 -9391 -11068 -11963
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(0.284) and almost three times greater than the total return beta coefficient for the five-

month VIX futures contract (0.196).  Each of the estimated beta coefficients is significant 

at the 1% level.  The estimated beta coefficients for the total returns of the one-, three-, 

and five-month VIX futures contracts indicate that the contracts will change by 

approximately 0.58%, 0.28%, and 0.20% for every 1.0% change in VIX, respectively.    

   The goodness-of-fit measures improve for each model going from the one-month 

to the three- and five-month VIX futures contracts.  The improvement can be seen by 

comparing the RMSE, AIC, and SBC, which are all lower for the total returns of the five-

month VIX futures contract compared to the one- or three-month VIX futures contracts.  

For example, the RMSE for the total returns of the five-month VIX futures contract is 

0.01 whereas the RMSE for the one-month VIX futures contract is 0.03.  However, the 

differences among the goodness-of-fit measures is the result of a lower standard deviation 

of total returns for the five-month VIX futures contract compared to either the one- or 

three-month VIX futures contract.  

  The regression results for the level returns are like the regression results of the 

total returns.  For example, the level return beta coefficient of the one-month VIX futures 

contract is 0.594 which compares to 0.289 and 0.197 for the beta coefficients of the three- 

and five-month VIX futures contracts, respectively.  The beta coefficient estimates for 

each VIX futures contract is significant at the 1% level.   

  Like the total returns, the level return goodness-of-fit measures show slight 

improvement in the three- and five-month VIX futures contracts versus the one-month 

VIX futures contract.  Additionally, the value of the goodness-of-fit measures for the 

level returns are close to those of the total returns.  For example, the RMSE of both the 
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one-month level and one-month total returns is 0.03.  The similarity in regression results 

between the level and total returns of each VIX futures contract is a result of the strong 

positive correlation between the two return series and the return series having very 

similar standard deviations.  As noted earlier, the level returns of the one-month VIX 

futures contract account for 96.6% of the one-month total returns.   

  The regression results for the roll down returns are quite distinct from the level 

and total returns.  The roll down beta coefficients are negative for the one-, three-, and 

five-month VIX futures contracts.  The moderately negative beta coefficients are to be 

expected given the negative covariance between the roll down and VIX returns.  This can 

be inferred from the Pearson correlation matrix in the appendix (Table D.1).  In addition, 

the negative correlation between the roll down and VIX returns can be explained by the 

average negative returns of the roll down component and the positive average returns of 

VIX.  As shown earlier, the average slope between each of the VIX futures contracts is 

negative (i.e., upward sloping term structure) more than 84% of the time, which 

explicates the negative roll down returns.   

  The regression results for VIX in Table 4.1 show that the VIX and S&P 500 Index 

are negatively correlated and the VIX is much more volatile than the S&P 500 Index.  

With an estimated beta coefficient of -6.690, the regression results indicate that the VIX 

returns are more than six times as volatile as the S&P 500 Index returns.  The RMSE of 

the regression is approximately 5%, which indicates that the differences between the 

actual and predicted values can be +/- 10% at the 95% level.    
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4.1.2 VIX Realized Volatility Term Structure  

  The results from Table 2.2 and Table 4.1 illustrate that the realized volatility term 

structure for VIX (i.e., VIX and VIX futures contracts) is downward sloping.  For 

example, in Table 2.2 I find that the standard deviation of returns is greatest for VIX 

followed in order by the total returns of the one-, three-, and five-month VIX futures 

contracts.  The total return beta coefficients in Table 4.1 are greatest for the one-month 

VIX futures contract and decline for the three- and five-month VIX futures contracts.  

The declining beta coefficients for the total returns of the VIX futures contracts is 

illustrative of a downward sloping realized volatility term structure.   

 

4.2 PCA Results  

  I provide and discuss the results of the principal component analysis.  In the 

discussion I draw conclusions regarding the eigenvector results and the roll down and 

level return components.   

  

4.2.1 VIX Futures  

  The PCA was conducted from the VIX returns and the total returns of the one- to 

six-month VIX futures contracts.  Using those seven return series provides a return for 

each point on the VIX term structure from the spot (VIX) to the six-month point.  The 

eigenvalues and eigenvectors of each principal component are evaluated to identify latent 

variables (i.e. hidden variables) that exist across the term structure of returns and explain 

a large amount of the variance of returns.  The relative size of each eigenvalue is used to 

determine the relative importance as a principal component.  I include all seven principal 
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components in the graph and table that follow but limit the analysis to the first three 

principal components given the low amount of variance explained by the fourth to 

seventh principal components.   

 

Figure 4.1: Proportion of Variance Explained by Each Principal Component 

 

 

  Figure 4.1 is a graph showing the amount of variance explained by the principal 

components.  The x-axis represents each principal component (1 to 7).  The y-axis is 

representative of the proportion of variance explained by the ith principal component and 

is calculated as the eigenvalue of the ith principal component divided by the total 

eigenvalue of the PCA.   

  The first principal component explains 91.2% of the total variance of the return 

series.  The second and third principal components explain 4.8% and 2.6%, respectively.  
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In sum, the first three principal components explain 98.6% of the total variance of all the 

return series.   

  Each principal component is derived through a unique linear weighting of the return 

series for VIX and the VIX futures contracts.  The unique weighting scheme of each 

principal component is called the eigenvector.  The eigenvectors in Table 4.2 are used to 

identify latent variables that exist in the VIX and VIX futures return series.  Given the 

low amount of variance explained by principal components 4 to 7 (1.4%), I focus on 

interpreting the eigenvectors of the first three principal components.   

 

Table 4.2: Eigenvectors and Percent of Variance Explained from PCA with VIX Returns and Total 

Returns of One- to Six-Month VIX Futures Contracts 

 

 

   The eigenvector of the first principal component (PC1) shows that the first 

principal component is approximately an equally-weighted linear combination of all the 

return series.  The equal-weighted eigenvector values and large eigenvalue of PC1 

(91.2%) results in PC1 being interpreted as a variable representing level returns.  From 

the PCA results I conclude that the level returns account for most of the variance in the 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7

VIX 0.341 0.801 0.486 -0.062 0.041 -0.010 -0.015

One-Month Total Return 0.373 0.279 -0.622 0.535 -0.324 0.062 0.043

Two-Month Total Return 0.386 0.029 -0.426 -0.311 0.716 -0.220 -0.104

Three-Month Total Return 0.390 -0.134 -0.076 -0.548 -0.271 0.491 0.457

Four-Month Total Return 0.390 -0.226 0.077 -0.242 -0.425 -0.195 -0.717

Five-Month Total Return 0.385 -0.305 0.266 0.188 -0.079 -0.637 0.490

Six-Month Total Return 0.380 -0.344 0.335 0.468 0.347 0.512 -0.152

Percent of Variance Explained 91.3% 4.8% 2.6% 0.7% 0.3% 0.2% 0.1%

Eigenvectors
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VIX and VIX futures return series.  My conclusion is consistent with the analysis 

provided in section 2.4.1.    

   The second principal component (PC2) has positive eigenvector values for the 

return series representing the front-end of the VIX term structure (VIX to two-month) 

and negative eigenvector values for the return series representing the back-end of the 

VIX term structure.  In addition, the absolute eigenvector values are largest at the ends of 

the VIX term structure (VIX and six-month).  From that I interpret PC2 as a variable for 

the slope of the VIX term structure.  The slope variance accounts for 4.8% of the total 

variance of the VIX return series.    

   Although the third principal component (PC3) only accounts for 2.6% of the total 

variance of the return series, the eigenvector values indicate that it is a variable 

representing the curvature of the VIX term structure.   

  

 

 

 

 

 

 

 

 

 

 

 



54 
 

Chapter V 

Application  

 

 

I review the Portfolio Strategy objectives which include constructing a portfolio 

using the S&P 500 Index and a VIX futures curve strategy to earn a return that is equal to 

or better than the S&P 500 Index while producing a lower standard deviation of returns.  

I discuss the methodology for the Portfolio Strategy and highlight the weighting scheme 

used for the S&P 500 Index and the VIX Strategy.  I conclude by discussing the 

regression and summary risk and return statistics.    

 

5.1 Portfolio Strategy 

 The objective of the Portfolio Strategy is to construct an efficient portfolio that 

consists of both a passive investment in the S&P 500 Index and a VIX futures curve 

strategy that achieves a lower risk with the same or better return as the S&P 500 Index.  I 

define risk as the standard deviation of returns and drawdown.  Drawdown is the 

cumulative percentage return of the Portfolio Strategy conditioned on periods of sharp 

declines for the S&P 500 Index.  Having a lower risk implies that the Portfolio Strategy 

will have a lower standard deviation of returns and will lose less when the S&P 500 

Index experiences a sharp decline.  Achieving a lower standard deviation of returns while 

earning the same or better return as the S&P 500 Index will result in a higher risk-

adjusted return (i.e., Sharpe Ratio) compared to the S&P 500 Index.   The Sharpe Ratio is 

a measure of the return per unit of risk and is calculated as the return in excess of the 

risk-free rate divided by the return standard deviation.    
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5.2 Portfolio Strategy Methodology  

The Portfolio Strategy is constructed as a passive investment in the S&P 500 

Index combined with an investment in the VIX futures curve strategy (VIX Strategy).  

The VIX Strategy consists of a long position in the one-month VIX futures contract and 

two short positions in the 3-month VIX futures contracts.   The ratio of VIX futures 

contracts (i.e., 1:-2) is held constant when deriving the VIX Strategy returns.  VIX 

Strategy returns are calculated as the total dollar profit or loss divided by the total 

absolute notional amount of the VIX futures contracts.   

The Portfolio Strategy returns are produced using a beginning of month weighting 

scheme that weights the VIX Strategy returns by 60% and the passive S&P 500 Index 

returns by 40%.  The Portfolio Strategy weights are rebalanced back to 60% VIX 

Strategy and 40% S&P 500 Index at the beginning of each new month.  The 60%/40% 

weighting scheme and monthly rebalancing is used because of its favorable risk-return 

characteristics compared to other weighting schemes and rebalancing frequencies.  

Multiple weighting combinations of the VIX Strategy and S&P 500 Index were tested 

ranging from 10% VIX Strategy and 90% S&P 500 Index to 90% VIX Strategy and 10% 

S&P 500 Index.  Each combination involved changing the weights in 10% increments 

while ensuring the total weight summed to 100%.  Evaluating the different weighting 

combinations included comparing the annualized returns, annualized standard deviations, 

Sharpe Ratios, and drawdown returns.   

I construct the VIX Strategy using the one- and three-month VIX futures contracts 

based on the results from Table 2.3, Table 4.1, and Table 5.1.  The level return 

component is the most desirable VIX return component to have exposure to when 



56 
 

investing in the S&P 500 Index as the level return component will increase when the 

S&P 500 Index decreases.  Unlike the level return component, the roll down return 

component is the least desirable return component to have exposure to as it produces 

most of the negative returns of a VIX futures contract and will continue providing 

negative returns when the VIX term structure is upward sloping.   

The results provided in Table 2.3 show how the average returns and risk 

characteristics for the one-, three-, and five-month VIX futures contracts vary conditional 

on the VIX price.  For example, the average roll down returns of the one-month VIX 

futures contract change for each quintile and are most negative in the first quintile (-

1.4%) and least negative in the fifth quintile (-0.2%).  This compares to the average roll 

down returns of the three-month VIX futures contract, which is the same for quintiles 1 to 

4 and only change by 0.2% in the fifth quintile.  Comparing the conditional average roll 

down returns of the one-, three-, and five-month VIX futures contracts across the 

different quintiles illustrate that changes in the VIX futures term structure are most 

pronounced at the one-month contract.  The results also indicate that using a static ratio 

(e.g., 1:-2) of one-month to three-month VIX futures contracts derived from 

unconditional returns will result in the roll down returns of the VIX Strategy being over-

hedged or under-hedged depending on the VIX price.   

The conditional average level returns of the one-month VIX futures contract 

demonstrate similar return behavior as the one-month roll down returns.  For example, 

the one-month average level returns change in every quintile and are the smallest in the 

first quintile (0.2%) and largest in the fifth quintile (1.3%).  The results compare to the 

average three-month level returns which are the same for quintiles one and two, negative 
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in quintiles 1 to 3, and only increase by a multiple of 2.3 between the first and fifth 

quintiles.  The results illustrate that being short the three- or five-month VIX futures 

contract when the VIX price is below 16.9 will result in positive average returns.    

The regression results from Table 4.1 show that the beta coefficient for the level 

returns of the one-month VIX futures contract are the largest compared to the other level 

return beta coefficients.  In fact, the beta coefficient for the one-month level returns is 

more than two times the beta coefficient of the three-month level returns and slightly 

more than three times the beta coefficient for the five-month level returns.  The 

regression results from Table. 4.1 support the view that the one-month VIX futures 

contract is the most responsive futures contract on the VIX futures term structure to 

changes in the VIX price.  Therefore, the one-month VIX futures contract provides the 

greatest exposure to the level return.    

The hedge ratio of one-month to three-month VIX futures contracts is determined 

by regressing the returns of the three-month VIX futures contract on the one-month VIX 

futures contract.  I provide the regression results in Table 5.1.  The regression residuals of 

the roll down return component have been corrected for autocorrelation using the 

autoregressive error model discussed in earlier.  The regression residuals for the level and 

total return components did not appear to be autocorrelated or heteroskedastic.   
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Table 5.1: Results from Regressing the Daily Returns of the Three-Month VIX Futures Contract on 

the One-Month VIX Futures Contract (December 16, 2009 to December 19, 2017) 

 

 

 In Table 5.1 I show the regression results including the beta coefficients and 

goodness-of-fit measures for the roll down, level, and total return components.  The beta 

coefficients for level and total returns are approximately 0.50 and are significant at 1%.  

They indicate that the ratio of one-month VIX futures to three-month VIX futures is 1:2. 

Therefore, I calculate the VIX Strategy returns as a static combination of two short 

positions in the three-month VIX futures contract for every long position in the one-

month VIX futures contract.    

 

5.3 Portfolio Strategy Results  

 In Table 5.2 I provide summary risk and return statistics for the long S&P 500 

Index, VIX Strategy, and Portfolio Strategy.  I evaluate the effectiveness of the Portfolio 

Strategy relative to the long S&P 500 Index by comparing the annualized return, 

annualized standard deviation, Sharpe ratio, and performance during S&P 500 Index 

drawdowns.  Additionally, I compare the skewness and kurtosis as a means of evaluating 

the distributional characteristics of each return series.  The annualized return is calculated 

as the geometric return annualized based on 252 trading days per year.  The annualized 

α  β

(prob > |t|)    (prob > |t|)

-0.002 0.014

(<.0001) (<.0001)

-0.002 0.503

(<.0001) (<.0001)

-0.001 0.501

(0.0446) (<.0001)

r-square RMSE AIC SBC

Roll Down Return 0.02 0.00 -21801 -21773

Total Return 0.83 0.01 -12309 -12298

Level Return 0.83 0.01 -12329 -12317
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standard deviation is calculated as the standard deviation of daily returns multiplied by 

the square root of 252.   

The returns presented in the S&P 500 Index Drawdowns section of Table 5.2 are 

calculated as the cumulative compound returns during the period shown.  The specific 

dates were chosen based on the peak-to-trough decline for the S&P 500 Index.   

 

Table 5.2: Risk and Return Statistics for the S&P 500 Index, VIX Strategy, and Portfolio Strategy 

(December 16, 2009 to December 19, 2017) 

 

 

The Portfolio Strategy outperforms the S&P 500 Index with approximately 28% 

less standard deviation.  The combination of a slightly better annualized return and lower 

standard deviation results in the Portfolio Strategy having a higher Sharpe Ratio (1.1 

versus 0.8) compared to the S&P 500 Index.  Additionally, the skewness of the Portfolio 

Strategy (-0.1) compared to the skewness of the S&P 500 Index (-0.4) indicates that the 

Portfolio Strategy has less of a left tailed distribution compared to the S&P 500 Index.  

S&P 500 

Index

VIX 

Strategy

Portfolio 

Strategy

Annualized Return 11.7% 11.6% 11.8%

Annualized Standard Deviation 14.7% 12.4% 10.6%

Skewness -0.4 0.0 -0.1

Kurtosis 4.6 17.7 6.1

Sharpe Ratio 0.8 0.9 1.1

Means t -Test -0.3 0.4

F -Test 0.7 0.5

S&P 500 Index Drawdowns

   May 2, 2011-Oct. 3, 2011 -19.4% 1.0% -7.6%

   July 20, 2015-Aug. 25, 2015 -13.1% 1.9% -4.3%

   Nov. 3, 2015-Feb. 11, 2016 -12.2% 0.2% -4.8%
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The results for kurtosis show that the Portfolio Strategy has slightly more extreme 

observations compared to the S&P 500 Index.  However, the skewness results for the 

VIX Strategy show that the extreme observations fall on both sides of the mean return.   

During the periods identified as S&P 500 Index drawdowns, the Portfolio 

Strategy greatly outperformed the S&P 500 Index.  For example, during the period of 

May 2, 2011-October 3, 2011 the S&P 500 Index declined 19.4% while the Portfolio 

Strategy declined 7.6%.  The outperformance during each drawdown period was a result 

of the strong performance of the VIX and one-month VIX futures contract.  For example, 

the VIX increased in price from 16 to 45.45 from May 2, 2011 to October 3, 2011.   

The Means t-Test values shown in Table 5.2 are the test statistics for comparing 

the annualized returns of the Portfolio Strategy and VIX Strategy to the annualized 

returns of the S&P 500 Index.  The null hypothesis is equal annualized returns (i.e., 

𝐻0: 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑟𝑆&𝑃 500 𝑎𝑛𝑑 𝑟𝑉𝐼𝑋 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑟𝑆&𝑃 500) against an alternative 

hypothesis that they are not equal.  The absolute critical value for a two-tailed test is 1.96.  

The test statistics for the Portfolio Strategy (0.4) and VIX Strategy (-0.3) do not exceed 

1.96 or -1.96 and therefore indicate that their annualized returns are not statistically 

different from the annualized returns of the S&P 500 Index.   

Table 5.2 includes the F-Test statistics for comparing the variances of the 

Portfolio Strategy and VIX Strategy to the variance of the S&P 500 Index.  The null 

hypothesis is equal variances (i.e., 𝐻0: 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦
2 = 𝜎𝑆&𝑃 500

2  𝑎𝑛𝑑 𝜎𝑉𝐼𝑋 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦
2 =

𝜎𝑆&𝑃 500
2 ) against a two-tailed alternative hypothesis of unequal variances.  The critical 

value at the 0.01 significance level for a two-tailed F-Test is 1.000.  The F-Test statistics 
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for both the Portfolio Strategy and VIX Strategy are less than 1.000 indicating that their 

variances are statistically different from the variance of the S&P 500 Index.   

The results shown in Table 2.3 and Table 5.2 compare to the results of Berkowitz 

and DeLisle (2018) shown in Exhibit 5.  Although the two analyses are conducted during 

different dates and using different proportions of S&P 500 Index and VIX futures 

contracts, the results from Table 2.3 and Table 5.2 can be used to compare against their 

methodology and findings.  For example, Berkowitz and DeLisle (2018) buy the new 

month VIX futures contract only when the prior month-end VIX is below 20.2.   

The results from Table 2.3 imply that Berkowitz and DeLisle (2018) should have 

bought the new month VIX futures contract when the month-end VIX was equal to or 

greater than 20.2.  In Table 2.3 I show that the average total returns for the one-, three-, 

and five-month VIX futures contracts are the greatest when VIX is equal to or greater 

than 20.6 (fifth quintile).  The results from Table 2.3 indicate that Berkowitz and DeLisle 

(2018) could have produced more appealing results if they bought the new month VIX 

futures contract when the prior month-end VIX was equal to or greater than 20.2.    

The Portfolio Strategy results in Table 5.2 compare favorably to the results of 

Berkowitz and DeLisle (2018) because of the VIX Strategy.  The VIX Strategy mitigates 

the negative roll down return of the one-month VIX futures contract by shorting three-

month VIX futures contracts while retaining an average positive level return.  While they 

don’t explicitly quantify the negative roll down returns of the VIX futures contracts, the 

results from Table 2.4 show that the roll down component is accountable for the entire 

negative total P&L (and return) of the one- and three-month VIX futures contracts.    
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Chapter VI 

Summary and Conclusion 

 

 

6.1 Summary of Findings  

 VIX futures began trading on the CBOE Futures Exchange in March 2004 and 

have since provided a means of trading forward S&P 500 Index implied volatility.  The 

popularity of trading VIX futures contracts is measured by the increase in volume and 

open interest of the one-month contract, which increased 500 times and 600 times, 

respectively from March 2004 to June 2017.  The VIX term structure is upward sloping 

most of the time, although the realized volatility of the VIX term structure is inverted.   

The performance of VIX futures contracts has garnered considerable attention in 

the finance literature.  However, most of the finance literature has focused on the total 

returns with little attention directed at the decomposition of the returns.  More 

specifically, the finance literature has noted the negative performance of VIX futures 

contracts but only a select number have tried to quantify how much of the negative return 

is due to roll down.  Therefore, my first research objective is to: determine what 

proportion the roll down return represents of the negative total return to VIX futures 

contracts.   

I develop a methodology to decompose the total returns of VIX futures contracts 

into the two return components, roll down and level.  I find that roll down accounts for 

most, if not all, of the negative returns for the one-, three-, and five-month VIX futures 

contracts.  Additionally, I derive the profit and loss (P&L) from roll down and level, 

which is unique in the context of the existing finance literature.   
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The methodology extends to each point on the VIX futures term structure 

allowing me to achieve the second research objective: to evaluate how returns, and 

return components, vary across the VIX futures term structure.  I present the time series 

regressions I use to analyze the linear relationships between VIX and the return 

components of the one-, three-, and five-month VIX futures contracts.  Additionally, I 

apply and discuss the principal component model to identify the latent factor structure of 

the VIX term structure.   

I discuss the results from my time series regression models.  Specifically, I find 

that the total return and level return beta coefficients decrease as the time to expiration 

increases, which is indicative of an inverted realized volatility term structure.  Using the 

results of the principal component model, I find that level returns account for most of the 

VIX futures variance.   

I apply a Portfolio Strategy and compare the results to the return and risk 

characteristics of the S&P 500 Index.  The Portfolio Strategy is a combination of the VIX 

Strategy and passive S&P 500 Index.  The VIX Strategy is constructed using the time 

series regression results.  This analysis relates to my third objective: to evaluate whether 

the regression results will allow me to construct a long-short VIX trading strategy using 

one-month and three-month VIX futures contracts.  I find that the Portfolio Strategy 

outperforms the S&P 500 Index and has less risk.    

 

6.2 Conclusions  

These results indicate that the negative total return of the one- and three-month 

VIX futures contracts is entirely due to the negative roll down returns.  The negative roll 
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down return accounts for approximately 98.6% of the negative total return of the five-

month VIX futures contract.  The results of the return and P&L decomposition for 

multiple points on the VIX term structure are unique and add to the existing VIX term 

structure literature.  For example, the existing literature focuses on total return 

calculations for the VIX futures contracts (Alexander and Korovilas (2013), Bekowitz 

and DeLisle (2018), Simon and Campasano (2014), Whaley (2013)).  Additionally, 

literature showing P&L by roll down and level has not yet been identified.     

Using these results, I conclude that the level return component is responsible for 

more than 90% of the standard deviation of total returns for each VIX futures contract.  

Additionally, the level return and total return standard deviations each decrease as the 

time to expiration increases.  These results are indicative of an inverted realized volatility 

term structure and they are consistent with prior findings in the literature.     

The Portfolio Strategy outperforms the S&P 500 Index with less risk.  The 

favorable results are attributable to the VIX Strategy.  Specifically, the short three-month 

VIX futures contracts offset the negative roll down of the one-month VIX futures 

contract while the level return component of the one-month VIX futures contract 

provides a hedge to a long position in the S&P 500 Index.  These results highlight the 

significance of disaggregating the total returns and P&L of the VIX futures contracts into 

the components of roll down and level.  Insight regarding the roll down and level 

components from across the VIX term structure offer the ability to construct a strategy 

that maximizes either component.    

 

 



65 
 

6.3 Future Areas of Research  

The returns of the roll down and level return components vary greatly based on 

the level of VIX.  I find that the average roll down and level returns each increase as the 

VIX level rises.  Additionally, the standard deviation of the level return component 

becomes greater as the VIX level increases.  These results indicate that estimating the 

time series regressions conditional on the VIX level would produce beta coefficient 

estimates that materially change given different levels of VIX.  For example, the 

estimated beta coefficient of the level return component may become larger (smaller) for 

higher (lower) levels of VIX.  Additionally, the change in beta coefficient estimates for 

different levels of VIX may not be linear, indicating that an element of convexity exists 

in the return components.   

A natural extension of this research is to conduct quantile regressions to estimate 

the beta coefficients of the total return and return components (roll down and level) based 

on quantile rankings of the VIX.  The results from quantile regressions could be used to 

conditionally adjust the ratio of one- and three-month VIX futures contracts used in the 

VIX Strategy.  A conditionally adjusted ratio should reduce the amount of under-hedge or 

over-hedge during different market regimes.    
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Appendix A 

VIX calculation 

 

 

 

The VIX calculation is  𝜎2 =
2

𝑇
∑

∆𝐾𝑖

𝐾𝑖
2 𝑒𝑅𝑇𝑄(𝐾𝑖) −

1

𝑇
[

𝐹

𝐾0
− 1]2 where 𝜎 =

𝑉𝐼𝑋

100
, T is the time to 

expiration where each calendar day is divided into minutes, F is the forward S&P 500 Index level 

identified by the strike price where the absolute difference between call and put price is the 

smallest, K0 is the at-the-money strike price and is the strike price that is immediately below F, Ki 

is the ith out-of-the-money strike price for the calls and puts, ∆𝐾𝑖 =
𝐾𝑖+1−𝐾𝑖−1

2
  is the interval 

between strike prices, R is the risk-free interest rate, and Q(Ki) is the midpoint of the bid-ask 

spread for each option Ki. 
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Appendix B 

Statistical Characteristics of VIX and VIX Futures

Table B.1: Statistical Characteristics of Daily Returns for VIX and VIX Futures Contracts (December 16, 2009 to December 19, 2017)ab 

 
 

 

                                                            
a The data in Table B.1 has been rounded.  
b The t-Value in Table B.1 is used to test the significance of the sample mean relative to zero at the significance level of 0.05.  Specifically, 𝐻𝑜: �̅� = 0 against 

𝐻𝑎: �̅� ≠ 0.  The critical value for the one-sided test is equal to 1.645.   
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Table B.2: VIX Futures Cumulative P&L (December 16, 2009 to December 19, 2017) 

 
 

 

 

 

 

VIX Futures Contract Roll Down Level Total 

Two-Month -$122,322 $9,677 -$112,645

Four-Month -$67,014 -$5,426 -$72,440

Six-Month -$50,164 -$5,786 -$55,950

Quintile One (VIX: 9.1-12.7)

Two-Month -$27,715 -$20,005 -$47,720

Four-Month -$16,316 -$14,844 -$31,160

Six-Month -$11,553 -$13,137 -$24,690

Quintile Five (VIX: 20.6-48.0)

Two-Month -$7,686 $62,516 $54,830

Four-Month -$4,445 $49,845 $45,400

Six-Month -$4,620 $44,920 $40,300

Cumulative P&L
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Appendix C 

Partial Autocorrelations of VIX and VIX Futures Return 

 

 

 

Figure C.1: Plot of the Partial Autocorrelations for the Daily VIX Return (December 16, 2009 to 

December 19, 2017) 
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Figure C.2: Plot of the Partial Autocorrelations for the Daily One-Month VIX Futures Roll Down 

Return (December 16, 2009 to December 19, 2017) 
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Figure C.3: Plot of the Partial Autocorrelations for the Daily One-Month VIX Futures Level Return 

(December 16, 2009 to December 19, 2017) 
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Figure C.4: Plot of the Partial Autocorrelations for the Daily One-Month VIX Futures Total Return 

(December 16, 2009 to December 19, 2017) 
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Appendix D 

Return Correlation Matrix 

 

 

Table D.1: Correlation Matrix Derived from Daily Returns (December 16, 2009 to December 19, 2017) 

VIX
One Month 

Roll Down

One Month 

Level

One Month 

Total

Three 

Month Roll 

Down

Three 

Month 

Level

Three 

Month 

Total

Five Month 

Roll Down

Five Month 

Level

Five Month 

Total

VIX 1.00

One Month Roll Down -0.10 1.00

One Month Level 0.86 -0.12 1.00

One Month Total 0.83 0.13 0.97 1.00

Three Month Roll Down -0.09 0.36 -0.13 -0.04 1.00

Three Month Level 0.81 0.01 0.91 0.91 -0.05 1.00

Three Month Total 0.81 0.04 0.90 0.91 0.02 1.00 1.00

Five Month Roll Down -0.08 0.35 -0.12 -0.03 0.61 -0.05 -0.01 1.00

Five Month Level 0.78 0.00 0.87 0.86 -0.02 0.96 0.96 -0.05 1.00

Five Month Total 0.78 0.02 0.86 0.86 0.01 0.96 0.96 0.01 1.00 1.00

Pearson Correlation Coefficients


