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Abstract
Spacecraft Relative Navigation Using Random Finite Sets

by Lauren SCHLENKER

Future space missions require that spacecraft have onboard capability to autonomously

navigate non-cooperative environments for rendezvous and proximity operations (RPO).

Current relative navigation filters can have difficulty in these situations when optical sen-

sors are used, diverging due to complications with data association, high measurement

uncertainty, and clutter, particularly when detailed a priori maps of the target object or

spacecraft do not exist. This thesis demonstrates the feasibility of random finite set (RFS)

filters for spacecraft relative navigation and pose estimation. A generalized RPO scenario

is formulated as a simultaneous localization and mapping (SLAM) problem, in which an

observer spacecraft seeks to simultaneously estimate the location of features on a target ob-

ject or spacecraft as well as its relative position, velocity and attitude. An RFS-based filter

called the Gaussian Mixture Probability Hypothesis Density (GMPHD) is used. Simulated

flash LIDAR measurements are tested, using a GMPHD filter embedded in a particle filter

to obtain a feature map of a target and a relative pose estimate between the target and

observer over time. Results show that an RFS-based filter such as the one used can suc-

cessfully perform SLAM in a spacecraft relative navigation scenario with no a priori map

of the target, and that the formulation behind RFS-based filtering is potentially well suited

to spacecraft relative navigation.
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1 Introduction

1.1 Motivation

Technology that supports relative navigation for autonomous spacecraft is in need of im-

provement and innovation in order for space exploration and servicing missions to be tech-

nically and economically feasible in the near future. According to the NASA 2017 Strategic

Technology Investment Plan, one critical potential technological advancement is the abil-

ity for autonomous robotic systems to enhance the gathering of scientific data as well as

perform complex functions that are essential to missions that must operate independently

from Earth ground systems [1]. The ability for spacecraft to autonomously explore in-

creasingly distant, unknown, or hostile environments without direct human guidance will

extend the reach of humanity far beyond current capabilities and is a major goal for NASA

in the coming decade.

Examples of the direct need for this technology include on-board terrain mapping as

well as general Guidance, Navigation, and Control (GNC) algorithms to alleviate the re-

liance on humans for missions that may be too distant for instant communication. This

development in systems-level autonomy for these functions will directly enable missions

to distant bodies such as moons, asteroids, comets, and one day a mission to Mars [2].

Autonomous relative navigation solutions also directly benefit missions which rely on pre-

cise rendezvous and docking capabilities such as the upcoming satellite servicing program

Restore-L [3]. These future goals will only be made feasible if costs and risk can be reduced

by decreasing the reliance on a human ground crew for critical navigation tasks.
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1.2 Current State of the Art

Despite the clear need for innovation in the area of spacecraft relative navigation to achieve

systems-level autonomy, much of the current research is focused on increasingly heuristic

methods that address challenges with human-guided solutions rather than finding solu-

tions which avoid these issues. Additionally, many of these methods are too computa-

tionally complex to be feasible on-board a spacecraft or require extensive guidance from

humans on the ground. In this section, we will explore these current approaches and ad-

dress why they are insufficient for the needs of future missions.

1.2.1 Simultaneous Localization and Mapping in Space

In general, relative navigation in space can be thought of as being made up of three im-

portant steps: sensing the environment, determining the spacecraft location relative to the

environment from the sensor measurements, and deciding an action once the contents of

the environment and the spacecraft location in the environment have been determined.

The focus of this thesis is primarily in the second step, i.e. we assume that sensor measure-

ments have been given, and we must determine what they mean in order for further action

to be taken. Thus, we shall formulate this aspect of relative navigation as a Simultaneous

Localization and Mapping (SLAM) problem, in which a robotic agent (e.g. the spacecraft)

seeks to localize itself in its environment at the same time as mapping the details of the

environment it is in. The goal is that the iterative improvement of the spacecraft’s relative

pose (position and attitude in the environment) will drive improvement in the estimate of

features in the environment and vice versa. With this definition, the concept of an envi-

ronment is completely general and can be a spacecraft localizing itself relative to another

spacecraft or group of spacecraft, or in orbit around a small body such as an asteroid or

comet.
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There are many different formulations of SLAM that can be used depending on the con-

text of the environment and several are widely employed with success [4, 5]. For example,

autonomous driving applications lend themselves well to methods which create detailed

3D topological maps of the environment in order to identify obstacles in the path of the

vehicle for planning purposes. For space applications, a less detailed approach is neces-

sary due to limited on-board computational power as well as generally limited sensing

and communication capabilities. For this reason, we will focus on feature-based SLAM

methods, which tend to require computationally cheaper algorithms and can accommo-

date relatively simpler sensor schemes [5, 6].

When SLAM is formulated with feature-based maps, the mapping portion of the prob-

lem can be thought of as a multi-target tracking problem. Then, the features in the envi-

ronment are the targets being tracked in order to create a model of the environment, and

the pose of the observer in the environment is simultaneously being estimated. Many esti-

mation methods in general are formulated as single-target tracking problems and heuristic

methods must be employed to alter them to be suitable for multi-target tracking. The chal-

lenges introduced by this are typically non-trivial, and a poor solution can break an algo-

rithm. For example, allowing the concept of multiple measurements and multiple targets

automatically introduces the need for data association, i.e. a method must be used to deter-

mine which measurements must have originated from which targets before a navigation

filter can be used. With a relatively low number of targets and measurements, heuristic

methods can be successful in performing data association. However, as the dimension of

the problem increases, these methods may no longer be computationally feasible, particu-

larly on-board a spacecraft [7]. Despite this, data association for multi-target tracking is a

crucially important problem, and navigation filters are likely to diverge entirely if this step

is performed incorrectly [4, 6].

Another crucial aspect of the problem which must be considered is the fact that optical
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navigation sensors can be difficult to use reliably in space environments, and an appro-

priate SLAM formulation must be able to work with potentially uncertain information

effectively. Not only can sensor measurements in space be fairly noisy, they can also be

corrupted with false detections. For example, when observing fiducials on a spacecraft,

a sensor may detect more targets than are truly in view due to lighting artifacts and the

context of the situation. This is particularly a problem when it comes to operation around

small bodies such as comets, where it is expected that the environment will be filled with

non-target objects that the sensor will inevitably detect. We shall refer to these extraneous

measurements as clutter, and assume that they are in general indistinguishable from “true”

measurements. Conversely if lighting conditions are poor, a sensor may fail to detect the

targets that are expected, giving a navigation filter very little to work with for continued

estimation.

Finally, many optical-based relative navigation methods rely on a priori knowledge of

the target or of the spacecraft pose in order to compare an estimate to a model to refine

the estimate [8–12]. Though these methods are certainly successful in situations in which

this information is available, they are nearly unusable in situations where a spacecraft

must navigate around something entirely new or is uncertain about its pose with respect

to the target. This is particularly true when it comes to navigation around non-cooperative

spacecraft or approach to and rendezvous with previously unexplored small bodies which

have yet to be mapped.

In order for a SLAM method for spacecraft relative navigation to be successful, it must

be able to correctly process measurements and produce estimates regardless of these chal-

lenges. Several studies in the past have addressed SLAM methods for spacecraft relative

navigation purposes. Work by Augenstein as well as Sonnenburg et. al. has demonstrated

that the problem can indeed be adequately handled by a SLAM formulation [13, 14]. How-

ever as expected, both studies required significant computation for feature management
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and data association prior to the navigation filter; moreover, the formulations have no in-

built concept of realistic measurement situations such as features passing in and out of the

sensor field of view, (i.e. clutter and missed detections,) despite this being a critical aspect

of a successful SLAM formulation.

One of the most popular general-use feature-based SLAM implementation is Fast-

SLAM, a SLAM algorithm in which the feature map is estimated by an Extended Kalman

Filter and the trajectory and pose of the observer is simultaneously estimated using a par-

ticle filter [15]. FastSLAM has enjoyed much success because of its lack of assumptions on

the pose probability distribution, as well as the achievement of real time implementations,

which is a crucial feature for limited computation on-board a spacecraft [16]. Though this

is arguably the most successful approach in the literature, as well as most closely aligning

with the goals of this thesis, the problem of data association must still be solved before

a method such as FastSLAM can be performed. As previously stated, this can be a ma-

jor drawback. A study by Cocaud and Kubota uses an algorithm based on an improved

particle filtering method, intended for navigation and pinpoint landing on small bodies.

[17] Their results do address issues with drift in the particle filter that is commonly seen in

FastSLAM, however their underlying approach is still heavily reliant on heuristic methods

for data association of features that are observed frame to frame.

Although solutions from these past studies exist for SLAM-based multi-target tracking

for spacecraft relative navigation, it is clear that a reliable and efficient method which does

not rely on heuristic methods for data association and map management has yet to be

achieved.

1.2.2 Random Finite Sets for SLAM

Rather than developing heuristic methods for solving the problems inherent to feature-

based SLAM in space, it may be preferable to avoid some of the issues entirely. Since

it is well established that the problem of needing to associate measurements to known
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locations in space makes up a significant portion of the computational load of most SLAM

algorithms, it makes sense to attempt to avoid this portion of the problem in particular.

Fortunately, a new family of filters has recently emerged that is formulated to specifically

deal with many of the challenges introduced by multi-target tracking. The solution to these

challenges are directly incorporated into the mathematics of the filter, negating the need

for any intermediate heuristics for data association or map management. These filters,

which are based off of Random Finite Set (RFS) statistics, use a mathematical framework

based off of sets rather than the random vector framework commonly associated with

traditional Kalman filtering methods. As shall be shown throughout this thesis, this is a

powerful way of formulating a navigation filter for these purposes because it allows for a

more natural mathematical description of the kinds of realistic dynamic and measurement

scenarios that occur in multi-target tracking problems.

The first RFS filter was proposed for multi-target tracking by Ronald Mahler in the

early 2000’s – he called it the Probability Hypothesis Density (PHD) filter [18]. Since this

initial PHD filter, several variants of other RFS filters have been used in studies that ad-

dress realistic aspects of implementing the PHD filter for ground based and underwater

robotics [19]. It is not surprising that the RFS based PHD filter has seen success in these

areas – studies by Mullane, et. al. have demonstrated that a feature-based map used for

SLAM is fundamentally a finite set, and is thus more easily represented and manipulated

with RFS methods [6]. Their most significant results show that even in the presence of

uncertain dynamics and measurements and high degrees of clutter, the PHD filter can sig-

nificantly outperform EKF-based mapping filters, as well as FastSLAM.

Several recent studies have also leveraged the ability of RFS-based tracking methods

for other space-based multi-target tracking applications. Work by McCabe and DeMars

has used RFS-based filters in feature-based robotic mapping for planetary landing, suc-

cessfully mapping the features of a lunar environment during a descent trajectory given a

known spacecraft pose [20]. Their work compares the multi-target tracking performance
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of several RFS-based filters for this purpose. Studies have also performed and evaluated

the use of RFS-based filters in the realm of space object tracking, resulting in an integrated

framework for successful identification and tracking of space objects [21, 22]. These past

works have laid the groundwork for showing that RFS-based methods such as the PHD

filter are a promising approach for fundamentally handling the challenges associated with

multi-target tracking in space.

1.3 Thesis Contribution

Despite the success that RFS-based methods have had for SLAM in other navigation ap-

plications as well as other space-based applications, very little work has been done on

applying the techniques to the challenges presented by spacecraft relative navigation. To

date, the sole example is a conference paper by the author of this thesis [23]. Thus, the

scope of this thesis is to expand upon the reasoning and background done in that initial

paper, and further demonstrate the feasibility of RFS-based Bayesian methods for space-

craft relative navigation purposes. The situation to be studied is a generalized rendezvous

and proximity operations (RPO) scenario with measurement and dynamics models based

on existing research platforms.

The outline of this thesis is as follows: Chapter 3 discusses the specific scenario to be

studied, including the measurement model, dynamics, and simplifying assumptions used

to make the problem feasible. Chapter 2 discusses the theory behind the RFS-based SLAM

methods which shall be applied to the problem. Chapter 4 details the exact implemen-

tation of the theory developed in Chapter 2. Chapter 5 then presents and analyzes the

results of the algorithm for several different test cases. Finally, Chapter 6 summarizes the

outcomes of these studies and gives suggestions for further research into the area of RFS-

SLAM for spacecraft relative navigation.



8

2 Theory

2.1 Random Finite Sets for Multi-Target Tracking

In multi-target tracking, we wish to jointly estimate the number of targets which are present

in state space, as well as their states. We are given a set of noisy, potentially cluttered mea-

surements, meaning that our sensors may be measuring artifacts that we do not wish to

track. Assume that at time step k, there exists a set of N(k) targets and M(k) measure-

ments. In general there is no specific order in which it is known that these measurements

and states are associated, thus we represent them as random finite sets given by:

Xk = {xk,1, ..., xk,N(k)} (2.1)

Zk = {zk,1, ..., zk,M(k)} (2.2)

which remain identical regardless of the order in which elements are presented. In the RFS

framework, the sets Xk and Zk are a multi-target state and multi-target observation, respec-

tively. Somewhat analogous to random vectors used for single-target tracking, Xk and Zk

are random finite sets, variables that can be characterized by a probability distribution and

a family of joint probability densities of all the elements of Xk and Zk [24]. Additionally,

the cardinality | · |, or number of elements in a random finite set becomes a variable that

can be estimated, and does not have to remain the same over time.

This formulation allows more generalized possibilities for the time evolution of the

states contained in Xk. For a given multi-target state Xk−1, each element xk−1 ∈ Xk−1
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either continues to exist at the next time step k with probability pS,k or ceases to exist with

probability 1− pS,k. Alternatively, a target which does not exist at time k− 1 may begin to

exist at time step k independently of the targets existing at time step k− 1. We say that this

target has been birthed into state space. Similarly, a new target may begin to exist at time

step k by being “spawned” from a target which existed at time step k− 1. In real physical

scenarios, both these options may occur because a target is entering the region of state

space of interest after previously being outside it, or a target that was initially estimated to

be one target becomes better resolved and is actually more likely to be several targets that

are very closely spaced. These possibilities can likely account for nearly every imaginable

physical scenario that may be encountered in multi-target tracking.

Thus at a time step k, a general target state is represented as

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ)

 ∪
 ⋃

ζ∈Xk−1

Γk|k−1(ζ)

 ∪ Bk (2.3)

where Xk is composed of a union of a set of surviving targets Sk|k−1 each with transition

density fk|k−1(xk|xk−1), a set of newly birthed targets Bk, and a set of spawned targets

Γk|k−1 . Note that Γ and B are entirely general and their forms are determined by the

specific scenario in which they are used.

Similarly, the RFS measurement model is fundamentally able to take into account prob-

abilities of detection and the possibility of clutter in the environment. A target xk ∈ Xk can

either be detected with probability pD,k, or not detected (missed) with probability 1− pD,k.

Additionally, the framework of RFS allows for the concept of clutter measurements, which

we shall represent as an additional RFS Kk of false detections which do not originate from

a target.

Thus, our set of measurements at a time step k is denoted by

Zk = Kk ∪
[ ⋃

x∈Xk

Θk(x)

]
(2.4)
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where Zk is composed of a union of sets of actual measurements Θk(x) which occur with

probability density gk(zk|xk) and clutter measurements Kk. Kk is also entirely general and

determined by the specific scenario involved.

The goal of multi-target filtering is to obtain a posterior density of the multi-target

state Xk given a multi-target observation Zk. The posterior density can be calculated using

a Bayesian recursion given by

pk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)pk−1(X|Z1:k−1)µs(dX) (2.5)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)pk|k−1(X|Z1:k−1)µs(dX)
(2.6)

where fk|k−1(·|·) is a transition density from one state to another, gk(·|·) is the observation

likelihood of a measurement given a state; µs is an appropriate reference measure on the

collection of all finite subsets of state space [25]. Unfortunately as with most Bayesian

recursions, this recursion is computationally intractable due to the set integrals required.

2.2 The Probability Hypothesis Density Filter

In order to approximate the multi-target posterior density in equations 2.5 and 2.6, we

will choose to instead propagate the posterior intensity, which is simply the first order

statistical moment of the multi-target state. This simplification forms the basis of the Prob-

ability Hypothesis Density (PHD) filter [18]. A key result of this choice is that the integral

of the intensity function over a particular region of state space is equal to the number of

targets expected to exist in that region of state space. This means that the number of ex-

pected target at each time step can be propagated jointly. In other words, we find that

N̂(k) =
∫

ν(x)dx, where the intensity function ν(x) is referred to as the probability hy-

pothesis density and is integrated over the whole RFS space. This allows for estimation of
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the cardinality of the multi-target state set.

From here, a number of additional assumptions are made in order to obtain the full

tractable PHD recursion from equations 2.5-2.6. At this point in the discussion, the rigor-

ous derivations and proof are detailed by Vo and Ma in [25] and will not be fully repro-

duced here as they do not necessarily add to the fundamental understanding needed to

work with the PHD filter. Important assumptions and key steps will however be shown.

These assumptions are summarized below:

• Each target evolves and generates observations independently of one another.

• Clutter is Poisson distributed, and independent of measurements which originate

from targets.

• The predicted multi-target RFS governed by pk|k−1 is Poisson distributed.

• Survival and detection probabilities are state independent.

Clearly, these assumptions come with varying degrees of congruence to the relevant

problem – regardless, these are common assumptions to make. With these assumptions in

place, the full PHD recursion is then as follows:

vk|k−1(x) =
∫

pS,k(ζ) fk|k−1(x|ζ)vk−1(ζ)dζ +
∫

γk|k−1(x|ζ)vk−1(ζ)dζ + βk(x) (2.7)

vk(x) = [1− pD,k(x)]vk|k−1(x) + ∑
z∈zk

pD,k(x)gk(z|x)vk|k−1(x)
κk(z) +

∫
pD,k(ξ)gk(z|ξ)vk|k−1(ξ)dξ

(2.8)

where γk|k−1 is the intensity function of the RFS of spawned states Γk|k−1, βk is the intensity

function of the birth RFS Bk, and κk is the intensity function of the clutter RFS Kk. Addition-

ally, the probability of detection pD,k has now been directly incorporated into the update

equation.

It is worth noting that the PHD recursion in equations 2.7 and 2.8 indirectly performs a

simple form of data association between measurements and targets, negating the need for
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expensive combinatorial computations in post-processing. Unfortunately, no closed-form

solution exists for the PHD recursion [18, 19, 25].

2.2.1 Gaussian Mixture PHD Filter

In order to use the PHD recursion in a tractable, closed form manner, several further as-

sumptions must be made:

• Each target follows a linear Gaussian dynamics model.

• Each sensor follows a linear Gaussian measurement model.

• The intensities of the birth and spawn sets are modeled as Gaussian mixtures.

Mathematically, this means that we assume each individual target follows a similar

model as is typically seen with a classic Kalman filter:

fk|k−1(x|ζ) = N (x; Fk−1ζ, Qk−1) (2.9)

gkz|x = N (z; Hkx, Rk) (2.10)

where in general N (·; m, P) represents a normal Gaussian distribution with mean m and

covariance P; Qk−1 is process noise covariance on the dynamics, Fk−1 is the state transition

matrix, Hk is the measurement model observation matrix, and Rk is the covariance of the

measurement noise.

Additionally, the Gaussian mixture birth and spawn intensities become:

βk(x) =
Jβ,k

∑
i=1

w(i)
β,kN (x; m(i)

β,k, P(i)
β,k) (2.11)

γk|k−1(x|ζ) =
Jγ,k

∑
j=1

w(j)
γ,kN (x; F(i)

γ,kζ + d(j)
γ,k−1, Q(j)

γ,k) (2.12)
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where J, w, P are given model parameters that determine the shape of the corresponding

intensities and can be chosen depending on the scenario, allowing for the inclusion of a

priori knowledge of the targets if desired or available.

Finally, we can reasonably assume that the posterior intensity at k− 1 is also a Gaussian

mixture, which continues to be a Gaussian mixture at the next time step:

νk−1(x) =
Jk−1

∑
i=1

w(i)
k−1N (x; m(i)

k−1, P(i)
k−1) (2.13)

The end result of the use of these assumptions is the following computationally tractable

recursion, where the predicted intensity at time k is also a Gaussian mixture consisting of

the sum of surviving, spawned, and birthed targets:

vk|k−1(x) = pS,k

Jk−1

∑
j=1

w(j)
k−1N (x; m(j)

S,k|k−1, P(j)
S,k|k−1) + vγ,k|k−1(x) + βk(x) (2.14)

m(j)
S,k|k−1 = Fk−1m(j)

k−1

P(j)
S,k|k−1 = Qk−1 + Fk−1P(j)

k−1FT
k−1

where the intensity of spawned targets depends on the set of previously existing targets:

vγ,k|k−1(x) =
Jk−1

∑
j=1

Jβ,k

∑
`

w(j)
k−1w(`)

γ,kN (x; m(j,`)
γ,k|k−1, P(j,`)

γ,k|k−1) (2.15)

m(j,`)
γ,k|k−1 = F(`)

γ,k−1m(j)
k−1 + d(`)γ,k−1

P(j,`)
γ,k|k−1 = Q(`)

γ,k−1 + F(`)
γ,k−1P(j)

γ,k−1(F(`)
γ,k−1)

T

Then, the measurement updated posterior is also a Gaussian mixture:

vk(x) = (1− pD,k)vk|k−1(x) + ∑
z∈Zk

vD,k(x; z) (2.16)
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where the intensity of detected targets is:

vD,k(x; z) =
Jk|k−1

∑
j=1

w(j)
k (z)N (x; m(j)

k|k(z), P(j)
k|k ) (2.17)

m(j)
k|k(z) = m(j)

k|k−1 + K(j)
k (z− Hkm(j)

k|k−1)

P(j)
k|k = [I − K(j)

k Hk]P
(j)
k|k−1

K(j)
k = P(j)

k|k−1HT
k (HkP(j)

k|k−1HT
k + Rk)

−1

and where the weight of each element of the Gaussian Mixture is given by:

w(j)
k (z) =

pD,kw(j)
k|k−1q(j)

k (z)

κk(z) + pD,k ∑
Jk|k−1
`=1 w(`)

k|k−1q(`)k (z)

q(j)
k (z) = N (z; Hkm(j)

k|k−1, Rk + HkP(j)
k|k−1HT

k )

Thus, equations 2.14-2.17 combined give a tractable closed-form solution for the Gaus-

sian Mixture Probability Hypothesis Density (GM-PHD) filter. This recursion takes in

noisy, cluttered measurements and extracts an intensity function which represents the lo-

cation of likely target positions in state space. The form presented here is visually and

theoretically similar to the Kalman filter, but it is more general due to the nuances intro-

duced by the RFS formulation.

2.2.2 Extended Kalman Filter Approximations

Similar to how the Kalman filter can be modified to incorporate nonlinear dynamics and

measurement models, Vo and Ma have shown that the PHD filter can also use nonlinear

dynamics and measurements by locally linearizing the state transition matrix and obser-

vation matrix. Assuming dynamics and measurement models are given in the form:

xk = φk(xk−1, νk−1) (2.18)
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zk = hk(xk, εk) (2.19)

where φk and hk are known nonlinear dynamics and measurement models respectively,

allowing for zero-mean Gaussian process noise νk and measurement noise εk, with covari-

ances Qk−1 and Rk respectively. Additionally, the state transition matrix can be calculated

as:

F(j)
k−1 =

∂φk(xk−1, 0)
∂xk−1

∣∣∣∣
xk−1=m(j)

k−1

(2.20)

Similarly, the observation model derivative matrix can be calculated as:

H(j)
k =

∂hk(xk, 0)
∂xk

∣∣∣∣
xk=m(j)

k|k−1

(2.21)

These approximations for the state transition and observation model derivative matri-

ces are used for this work, as the problem defined in Chapter 3 utilizes highly nonlinear

dynamics and measurement models.

2.3 Particle Filters

The GM-PHD filter in equations 2.14-2.17 is used primarily to perform the mapping duties

of SLAM, similar to the approach outlined by Vo and Ma [25]. Using the context of a

SLAM application, the targets tracked by the filter are thus the features which have been

identified and extracted from images of the target spacecraft taken by the observer. Thus

in order to perform the localization aspect of SLAM, a method must be used to obtain a

relative pose estimate of the observer based on the feature map multi-target state provided

by the PHD filter. Work by Mullane et. al. has successfully achieved this by using an outer

particle filter loop [6]. To fully perform SLAM with an RFS-based filter, we also employ
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the use of a particle filter (also commonly referred to as Sequential Monte Carlo filter) to

recursively obtain a maximum a posteriori pose estimate.

In this formulation, each particle of the particle filter represents an individual estimate

of the pose of the observer as well as a corresponding estimate of the map. The map

comes from the PHD filter which each particle utilizes independently, thus the feature

map belonging to each particle is conditioned on an independent estimate of the pose.

2.3.1 Importance Weighting

For this method to succeed, there needs to be a way to determine which particle has the

"best" joint estimate of feature map and observer pose. To achieve this, an importance

weight pl(Zk|X
[l]
k , Z1:k−1) must be calculated for each lth particle. In other words, a weight

can be strategically assigned to each particle based on how well the observations in Zk

match with the map conditioned pose associated with each particle. The basis of impor-

tance weighting begins by assuming that a posterior density of states x and measurements

z can generally be approximated with Np particles as

p(xk|z1:k) ≈
Np

∑
l=1

η
[l]
k δ(xk|xl

k) (2.22)

where the weight η
[l]
k from Baye’s Rule of the lth particle is calculated recursively as

η
[l]
k ∝ η

[l]
k−1

p(zk|x
[l]
k )p(x[l]k |x

[l]
k−1)

π(xk|xk−1, zk)
(2.23)

This approximation of the posterior approaches the true posterior density as Np → ∞.

Thus, the weights of the particles in equation 2.23 must be calculated in order to sequen-

tially update the weight of a particle based on newly obtained measurements at each time

step. As usual, further assumptions must be made in order to make this a tractable com-

putation. Many different methods of calculating this quantity for performing particle filter
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importance weighting have been developed, each with varying levels of applicability and

computation required [26]. For this work, Single Cluster (SC) importance weighting is

used.

Mullane et. al. have shown that a SC importance weighting method works demonstra-

bly better than an empty strategy or single-feature based method, with a modest increase

in computation required compared to these simpler methods [27]. Additionally, they show

that relative to additional methods such as multi-feature importance weighting strategies,

SC importance weighting is lower complexity with only a slight decrease in filter perfor-

mance.

The single cluster approximation leverages the fact that SLAM can be thought of as a

hierarchical cluster process, in which a daughter process is dependent on a parent process

– when the cardinality of the parent process is one, the process is referred to as “single clus-

ter." Lee argues that SLAM is fundamentally a single cluster process, where the daughter

process of the map is conditioned on the parent process of the vehicle pose. Thus by as-

suming the measurements obtained are a result of Poisson point processes, a single cluster

update for the PHD filter can be obtained. This argument and subsequent derivation of

how it affects the calculation of the multi-target likelihood is thoroughly laid out in [28]

and will not be reproduced here as it would require reproducing nearly the whole scope

of the work.

Using these arguments, the right hand side of equation 2.23 becomes computable and

the updated weight η
[l]
k of the lth particle can be calculated from the previous map PHD

ν
−[l]
k as:

η
[l]
k = exp

N(k)−[l]

∑
r=1

wr,[l]
k

× ∏
z∈Zk

κ(z) + pD

N(k)−[l]

∑
r=1

p
(

z|N r,[l]
k , x[l]0:k

)
wr,[l]

k

 η
[l]
k−1 (2.24)

where N r,[l]
k is the rth Gaussian in the intensity ν

−[l]
k of targets in the PHD filter associated



Chapter 2. Theory 18

with particle l. This is a computationally tractable form of equation 2.23, and it repre-

sents a multi-target likelihood, or how likely the measurements “agree" with each particle’s

pose-conditioned feature map. Moreover, this equation is relatively simple compared to

methods which would require further data association for computation of the multi-target

likelihood.

2.3.2 Resampling

In addition to importance weighting, a particle filter requires some amount of resampling

computation to maintain particle hypothesis in regions of the posterior that have higher

probability. The primary reasons for this are to prevent degenerate particle estimates with

unreasonably high variance and to improve the exploration of state space, enabling more

efficient filtering. Choosing a resampling method requires several considerations: a choice

of distribution from which to resample, a strategy for deciding which particles must be

resampled and how, and a decision for how often to resample the distribution of parti-

cles. Many solutions to the decisions required for resampling exist, ranging from simple

to complex, and are well surveyed [29].

For the purpose of this work, Low Variance Resampling (LVR) is chosen as the primary

resampling technique because it is relatively simple yet rigorously systematic and thus

lends itself well to applications in which the “best" sampling distribution isn’t necessarily

known or may be very complicated and difficult to resolve. Moreover, LVR schemes are

of complexity O(Np), as compared to naive approaches which are typically of complexity

O(Np log Np). In LVR, particle hypotheses have a certain probability of being deleted and

reset to be more similar to higher weighted particles, based on their original weight [30].

A qualitative summary of the properties of LVR is as follows:

• The probability that a particle gets resampled is directly proportional to its weight.

• If resampling does not take place, the particle maintains the same weight.
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• Particles may be “roughened" after being resampled, meaning that their properties

are varied slightly from the particles from which they were resampled in an attempt

to maintain particle diversity and efficient exploration of state space. The magnitude

of roughening which occurs is determined by the user.

For this work, particles are resampled at a given time step only if the “effective" num-

ber of particles, defined as ∑ η2
l , falls below a chosen threshold which is tunable by the

user. Resampling too often increases the risk that particles do not adequately explore state

space, but resampling too infrequently is inefficient and risks wasting particles in regions

of low probability, thus the user may tune the threshold such that particles are resampled

at an appropriate rate. Additionally, the weights of all particles are normalized prior to

resampling, i.e. the sum of all particles weights is set to equal 1. This is common practice

in particle filtering.

A complete workflow of how these properties are implemented in the full code of the

filter design is shown in Chapter 4.

2.3.3 Pose Estimation

The overall relative pose estimate at each time step is updated by extracting the pose of

the particle with the highest weight prior to resampling, i.e. the maximum a posteriori

estimate. Alternatively, a weighted average pose estimate could be obtained using all

available particles depending on how well distributed the particle hypotheses tend to be.

With the inclusion of a particle filter for pose estimation the overall method employed

in this thesis closely resembles that of FastSLAM, where the EKF portion for mapping has

been replaced with a GM-PHD filter. A more thorough discussion on the implementation

and interplay between the GM-PHD and particle filters is given in Chapter 4.
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3 Spacecraft Relative Navigation

Problem Setup

The methods used in this thesis have been developed to be completely general and trans-

ferable to any definable spacecraft relative navigation problem, as long as appropriate

dynamics and measurement models can be specified. This allows for flexibility in fu-

ture applications. For the purposes of narrowing the scope of this thesis, a spacecraft

rendezvous/proximity operations (RPO) scenario is discussed in order to obtain usable

dynamics and measurements models, but the methods and discussion remain largely un-

changed if the specific scenario being studied were to change. This section details how the

dynamics and measurement models for a spacecraft RPO scenario have been developed

and specified.

3.1 Discussion of Simplifying Assumptions

In an effort to be completely transparent and reproducible in regards to the method in

which dynamics and measurements are being simulated, the following is a list of assump-

tions that are being made in order to simplify the models used for this work. In general,

assumptions were made in order to focus more on the design and implementation of the

filter, rather than spending time developing a fully robust or high fidelity simulation plat-

form, as such platforms already exist. The intention is that once the filter in this work has

been developed, it can be implemented in one such platform for further testing.
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• The measurement frame (i.e. the camera frame) is the same as the observer body

fixed frame in order to avoid including another rotation from an external measure-

ment frame to the observer body frame.

• Modified Rodrigues Parameters are used to represent rotations, as they have just one

easily avoidable singularity at infinity. This is dealt with using a simple switching

procedure once the norm of the MRP vector becomes larger than a chosen threshold,

and only affects the simulation of the measurements and not the filtering as switched

vs. non-switched MRPs contain the same attitude representation.

• A spherical target was chosen to negate the need for complicated occlusion compu-

tations. This does not detract from the algorithms to be presented in later sections;

as long as a measurement model is specified, the logic on whether or not a feature is

visible at any point in time does not matter. The motion of the spherical target still

includes the general dynamics of how features will rotate in and out of view of the

observer.

• Clutter measurements are drawn from a uniform distribution in the field of view of

the sensor independently at each time step. In other words, the clutter measurements

being used are non-persistent. Persistent clutter could be used instead without loss

of generality in the algorithms used, and it has been demonstrated by past studies.

[27]

• The dynamics presented are in their simplest form, and no perturbations due to non-

spherical gravity or solar radiation pressure are added. If these terms were added to

the dynamics simulation, this would not be prohibitive as the filter to be presented

is easily modifiable to include process noise terms.

• The target spacecraft is assumed to be nadir pointing in order to constrain its attitude

dynamics in the Hill frame. Once again, this is not necessary to the functioning of
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the filter. More complicated attitude motion could be simulated and the filter to be

presented could handle it, as long as the dynamics are able to be specified in a similar

way as has been done above.

• Linear Gaussian noise on the measurements has been assumed for simplicity and

as common practice. However, it is not necessarily the case that feature extraction

algorithms such as SIFT and SURF would produce measurement noise with precisely

Gaussian measurement statistics. This would be an area of potential research in the

future if a front-end feature extractor were to be used.

• The target spacecraft is assumed to be located in the center of the image frame of

the observer spacecraft. This is a reasonable assumption given that modern control

systems could easily achieve this kind of pointing. However once again as long as

another kind of pointing model could be specified, the filter to be used in this work

would remain unchanged.

3.2 Test Case Scenario

Figure 3.1 shows a general spacecraft RPO scenario, including relevant coordinate frames

and defining vectors. The observer spacecraft (also commonly referred to as the chaser

or deputy spacecraft) is collecting measurements of features which are located on a target

spacecraft (also commonly referred to as the chief spacecraft.) The features which are being

observed are physical details which show up as "optically significant" when images are

collected, such as edges or corners of a solar panel, or craters and rocks on an asteroid.

These definitions are used throughout this thesis.

We define a body-fixed frame {B} centered on the target, which shall be defined the

same as for the relative orbital dynamics, the Hill frame, used in following sections. Simi-

larly, we define a primary body-fixed frame {P} centered on the observer. This is the frame
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FIGURE 3.1: Relationship between observer and target coordinate frames
and vector definitions.

in which measurements are to be taken. The optically significant features located on the

target are defined in the rigid body frame {B} – in this way, the ith feature located on the

target can be located by a vector from the origin of the {B} frame to the feature.

Each measurement of a feature is collected relative to the {P} frame fixed to the ob-

server. A measurement of feature i is defined as yi and is related to the relative position of

the {P} frame with respect to the {B} frame, as well as the relative orientation of the {P}

frame with respect to the {B} frame, represented by the notation [PB]. These relationships

are defined in Section 3.3.

The state we shall propagate using the system dynamics is defined as x = [rP/B, ṙP/B, σ]T,
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where rP/B denotes the relative location of {P} with respect to {B}, ṙP/B is the relative veloc-

ity of {P} with respect to {B}, and σ contains the Modified Rodrigues Parameters (MRPs)

used to describe the rotation [PB] between any vector defined in {P} to be represented as

a vector in {B}.

It is traditional to formulate navigation with respect to the target. Thus, the outcome

of the filter developed in this thesis is an estimate of the position, velocity, and orientation

of the target relative to the observer represented by rP/B, ṙP/B and a rotation matrix [BP] =

[PB]T which is calculated from the MRPs contained in σ.

3.2.1 Target Properties

For initial simulations the target is assumed to be spherical and covered with randomly

distributed features. The target has a radius of 50 meters and has 20 randomly distributed

features on its surface. This size was chosen to be a middle-ground value of size between

a typical satellite or a very small asteroid. The features are chosen from a uniform distri-

bution constrained to the surface of the sphere – however, the filter used in this thesis is

not made directly aware of this constraint.

Note that a spherical shape was chosen to significantly simplify the problem of deter-

mining whether or not a simulated feature is visible to the sensor. This is achieved by a

simple dot product between the measurement and relative position vectors – if the dot

product is positive, the feature is then known to be visible to the sensor. Though this test

would also be approximately true for any general body, it is not true in general if the body

has additional physical protuberances such as solar panels. Solving the occlusion problem

for a general simulated target shape and measurement model is a non-trivial feat, and is

thus considered outside of the scope of this thesis.
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3.3 System Dynamics

The target is assumed to be in a circular orbit about the Earth, and the observer is operating

in close proximity to the target, i.e. within less than 1km range. The dynamics of the

observer relative to the target can then be closely approximated by the linear Clohessy-

Wiltshire (CW) equations. [31] Thus in the target body-fixed Hill frame {B}, the elements

of rP/B = [x y z] are defined by the following dynamics:

ẍ = 3n2x + 2nẏ

ÿ = −2nẋ

z̈ = −n2z

(3.1)

where n is the target’s mean motion defined as n =
√

µ/a3, where µ is the central planet’s

gravitational parameter and a is the semi-major axis of the target’s orbit.

To simplify the dynamic equations, the motion is constrained such that the attitude of

the target is fixed in the Hill frame, similar to a nadir pointing spacecraft. We also assume

that the observer is perfectly tracking the target in its field of view, which is a reasonable

assumption given an appropriate control system for pointing. In other words, the center of

the target is assumed to be located in the center of the images taken by the observer. This

negates the need to estimate angular velocity, since the angular velocity of the observer

body frame with respect to the Hill body frame can then be directly calculated as:

ω =
r× ṙ
|r|2 (3.2)

The relative attitude of the observer and target are expressed using MRPs as they only

have one easily avoidable singularity, compared to multiple singularities common with

using a Euler angle or difficulties with normalization for a quaternion description of the



Chapter 3. Spacecraft Relative Navigation Problem Setup 26

attitude dynamics. The MRPs obey the following kinematic differential equation [32]:

σ̇ =
1
4

[
(1− |σ|2)[I3×3] + 2[σ̃] + σσT

]
ω (3.3)

where [σ̃] is the skew symmetric matrix composed of the elements of σ. Thus, equations

3.1 and 3.3 fully describe the system dynamics needed for basic simulation.

Though the CW equations are linear and have an analytical solution, for this work they

are integrated numerically with the MRPs, which are nonlinear and cannot be analytically

integrated, using Matlab’s ode45 integrator to generate the truth trajectory and to prop-

agate trajectories within the filter in order to easily increase the fidelity of the dynamics

model in future studies.

3.4 Measurement Model

In the scenarios studied in this thesis, the observer spacecraft collects flash LIDAR mea-

surements of the target spacecraft. These measurements are corrupted with Gaussian-

distributed noise after being simulated from the truth trajectory. Additionally, extraneous

measurements which do not originate from features on the target are appended to the

noisy measurements which did originate from features on the target. Although the algo-

rithms used in this thesis are fully capable of handling missed detections, this was not

simulated.

In order to properly narrow the scope of this thesis to the implementation of the nav-

igation filter, it is assumed that the optically significant features have been obtained and

processed from a front end feature extraction algorithm such as Scale-Invariant Feature

Transform (SIFT) or Speeded-Up Robust Features (SURF), which would provide these fea-

ture locations from image data [33, 34] or LIDAR data. [35] Thus, we define that a mea-

surement of an extracted feature consists of angular position in pixel coordinates on an

image as well as an associated range for that pixel position. It is important to note that
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the measurements have no other identifying information, i.e. the filter doesn’t receive any

information about which feature a particular measurement originated from.

The flash LIDAR measurements are simulated from the simulated feature locations

using a pinhole projection camera model for the pixel coordinates. This model is depicted

in Figure 3.2. The range measurement of a feature is determined by the Euclidean distance

from the optical center C of the camera to the feature located on the target at point P.

The camera frame is defined such that the u and v axes are aligned with the rows and

columns of the detector and the third axis points along the boresight of the optics. The

pixel coordinates of the feature image p are defined in the camera frame as {u, v, w}. The

measurements of a feature are thus defined as y = [u v ρ], where ρ is defined as:

ρ = ‖X− Xc‖ (3.4)

where X is the feature location and Xc is the camera location in the same frame, in this case

the Hill frame previously defined as {B}.

To calculate u and v a pinhole camera projection is defined with the following standard

equations:

x = w


u

v

1

 =


wu

wv

w

 (3.5)

where x is calculated as:

x =


f mu s Pu

0 f mv Pv

0 0 1

 [R][[I3×3,−Xc]

X

1

 (3.6)

Here, [R] is the rotation matrix from the Hill frame to the camera frame, f is the focal
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FIGURE 3.2: Depiction of a simplified pinhole camera model.

length of the detector or the distance between the sensor plane and image plane, s can be

used to account for any skew in the optics if desired, Pu and Pv are the location in pixels

of the optical center of the camera projected onto the image plane, and mu and mv are the

inverse sizes of the pixels in each dimension. [36] These relationships fully dictate the base

measurement model used to generate non-corrupted measurements.

Noise and nclutter uniformly distributed clutter measurements are added after truth

measurements are calculated. The noise is generated with a zero-mean Gaussian distribu-

tion with covariance [σ2
u , σ2

v , σ2
ρ ]. If a measurement with noise is outside the bounds of the

camera, then it is disregarded prior to the filter being run. The constants used to simulate

these data are included in Table 3.1. These values were chosen to produce an angle of view

of approximately 14◦, and to closely mimic the specifications of the flash LIDAR on-board

Raven, a module on the International Space Station which performs autonomous tracking

of rendezvous targets. [37].
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TABLE 3.1: Measurement model parameters.

Constant Value Units

f 25 mm
Pu, Pv 128 []

s 0 []

mu, mv 20480 m−1

ncol , nrow 256 []

σu, σv 1 []

σρ 10 m
nclutter 10 []

An example of the simulated measurements for a chosen test case is shown in Figure

3.3. At each time step, 10 clutter measurements are appended to the true measurements.

The plot on the left shows the cluttered, noisy measurements given to the filter, while the

plot on the right is of the non-corrupted measurements corresponding to the true location

of visible features on the target body.

FIGURE 3.3: A simulated example of features extracted from flash LIDAR
observations.
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4 Algorithm Setup

The full filter used to perform SLAM for this thesis is composed of two nested filters:

an inner PHD filter which performs mapping and an outer particle filter which performs

localization based on the map estimation of the interior PHD filter. This chapter explicitly

discusses the implementation of these filters, clarifying where the inputs go and where the

outputs come from for each.

4.1 Feature Birth

As seen in Algorithm 1, the full filter is run one time step at a time. At the beginning of

each time step, new features are birthed from the current set of measurements Zk. When a

feature is birthed, it is initialized with a pre-selected weight and covariance, specified by

the variables "birthWeight" and "birthCovariance" respectively. These variables are tunable

by the user – for our purposes we select a constant birth covariance, and the birth weight is

sampled from a birth distribution specified by the user. However, these could potentially

be set as a function of the measurement or pose if a priori information is available. The

position of the feature is specified by mbirth, and is a function of the measurement and

pose associated with the particle at that time step. This position is calculated from the user

specified function "invSensorModel", which is based on the measurement model described

in Chapter 2, where the equations are inverted such that the function returns a location in

physical space given a measurement and a pose as inputs.
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Algorithm 1 RB-GMPHD Filter
for k = startTime : endTime do

for ii = 1 : numParticles do . Birth new features into the map
for j = 1 : |Zk| do

m[ii]
birth,j = invSensorModel(PoseState[ii]k−1, Zk(j));

P[ii]
birth,j = birthCovariance;

w[ii]
birth,j = birthWeight; . Normal distribution or uniform distribution

end for
end for
for ii = 1 : numParticles do

RB-GMPHD Prediction . Propagate existing and birthed targets
RB-GMPHD Update . Update based on measurements
Importance Weighting . Reweight particles

end for
Resampling

PoseEstimate =
1

∑ η
[ii]
k

∑(η
[ii]
k · PoseState[ii]) . Get the EAP pose estimate

for ii = 1 : numParticles do . Prune out low-weight map features
for j = 1 : Jk do

if wk(j)[ii] <= T then . If weight is below threshold, delete feature
w[ii]

k (j) = [];

m[ii]
k (j) = [];

P[ii]
k (j) = [];

end if
end for

end for
end for

4.2 Prediction

The prediction step of the filter is fundamentally similar to the familiar EKF prediction

step, using the dynamics models outlined in Chapter 3. This step is shown in Algorithm

2. One key difference is that the weights which exist from the previous time step are aug-

mented by the probability of survival at that time step, pS,k. Additionally, newly birthed

features are appended to the sets of features which exist from the previous time step. Then,

the means and covariances of the full set of features get propagated forward in time. The
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state transition matrix F is specified by the user based on the dynamics as defined in Chap-

ter 3, as well as the linearization in Equation 2.20. The measurement covariance, R, and

process noise covariance, Q, are also specified by the user. Note that the [ii] superscripts

indicating that a parameter belongs to a specific particle have been omitted for ease of

reading after a few steps, as it is understood that this algorithm is performed individually

for each particle.

Algorithm 2 RB-GMPHD Prediction

w[ii]
k−1 = pS,kw[ii]

k . Move the time index forward for existing features

m[ii]
k−1 = m[ii]

k

P[ii]
k−1 = P[ii]

k

w[ii]
k−1 = [w[ii]

k−1, w[ii]
birth,j] . Append birthed features to existing features

m[ii]
k−1 = [m[ii]

k−1, m[ii]
birth,j]

P[ii]
k−1 = [P[ii]

k−1, P[ii]
birth,j]

for j = 1 : Jk|k−1 do . Propagate dynamics as in Equations 3.1 and 3.3
mk|k−1(j) = Fmk−1(j)
Pk|k−1(j) = Q + FPk−1(j)FT

end for

4.3 Update

The update step of the filter is also fundamentally similar to the familiar EKF update step,

but it is augmented to be able to update the Gaussian mixture weights of each feature as

well. This step is shown in Algorithm 3. In the update step, all possibilities of detection

are accounted for, including the possibility that the predicted features were not get ob-

served. In this case, the weight of the feature gets augmented by a factor of (1− pD), or

the probability that the feature does not get detected.

Additionally, all possibilities of each of the Jk|k−1 features being associated with each
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measurement in Zk is considered, because no information is given about which measure-

ment originated from which feature. For each feature, a predicted measurement ξ is cal-

culated using the measurement model, which is outlined in Chapter 3 and depends on

the pose of the current particle. The measurement Jacobian H is calculated in a similar

way, using the linearization given in Equation 2.21. Then, the Kalman gain K is computed

using the covariances and Jacobian associated with the feature. These quantities are used

for each pairing of measurement and feature to compute the weight, mean, and covari-

ance updates given in Equation 2.17. The clutter intensity κ is a tuning parameter that is

specified by the user. Once again, the [ii] superscripts indicating that a parameter belongs

to a specific particle have been omitted for ease of reading, as it is understood that this

algorithm is performed individually for each particle.

4.4 Importance Weighting

After the prediction and update steps, each particle contains a feature map estimate which

is conditioned on the pose used to calculate the predicted measurements in the update

step. Prior to resampling, each particle needs an updated weight assigned to it in order

to quantify how well the estimated feature map from the PHD update matches with the

measurements used for the update. This is achieved with the single cluster weighting

described in Chapter 2, an implementation of which is shown in Algorithm 4. The quantity

Mk|k−1 is the "mass" of the PHD intensity, which in the case of a Gaussian mixture is simply

the sum of all the feature weights.

4.5 Resampling

After all the particles have been updated and reweighted, they must be resampled in order

to maintain diversity in the exploration of state space. This is implemented in Algorithm 5,
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Algorithm 3 RB-GMPHD Update
for j = 1 : Jk|k−1 do

wk(j) = (1− pD)wk|k−1(j) . Assume features were not detected
mk(j) = mk|k−1
Pk(j) = Pk|k−1(j)

end for

for zz = 1 : |Zk| do . Assume features were detected

W(zz) = ∑Jk|k−1 wk|k−1N (Z(zz); Hmk|k−1(j), R + HPk|k−1HT)

for j = 1 : Jk|k−1 do . Calculate each measurement matched to each feature

ξ = measurementModel(PoseState[ii]k−1, mk|k−1(j)) . From Chapter 3

H(j) = Jacobian(PoseState[ii]k−1, mk|k−1(j)) . Calculate from Equation 2.19

K = Pk|k−1H(j)T(HPk|k−1H(j) + Rk)
−1 . Updates from Equations 2.17

w[jj]
k =

pDwk|k−1(j)N (Z(zz); H(j)mk|k−1(j), R + H(j)Pk|k−1H(j)T)

κ + pDW(zz)
mk(zz · Jk|k−1 + j) = mk|k−1 + K(Z(zz)− ξ)

Pk(zz · Jk|k−1 + j) = [I − KH(j)]Pk|k−1]

end for

end for

Algorithm 4 Importance Weighting

M[ii]
k|k−1 = ∑ w[ii]

k|k−1 . Mass of the PHD pre-update
γ = 1; λ = 0
for zz = 1 : |Zk| do

for j = 1 : J[ii]k|k−1 do

λ = λ +N (Z(zz); ξ(zz)), (R + H(j)Pk|k−1(j)H(j)T) ∗ wk|k−1)(j)[ii]

end for
γ = γ · (κ + pD ∗ λ)

end for
η
[ii]
k = exp(M[ii]

k|k−1) · γ · η
[ii]
k−1 . Particle weight update; Equation 2.24

using the Low Variance Resampling technique discussed in Chapter 2. Note that quantities

with an asterisk index ∗ are understood to be the post-resampling quantities. Additionally,
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particle weights are normalized at each time step, as is customary.

The quantity jitterCov is used to slightly vary the pose of the resampled particles in

order to diversify the exploration of the particles at the next time step. Thus, the final

resampled pose is drawn from a normal distribution centered at the pose to be selected,

with covariance given by jitterCov. The selection of the jitter covariance is an extremely

crucial aspect of the resampling process. If the covariance is too large, the particles do not

adequately represent the underlying probability distribution and may begin to diverge

over time. If the covariance is too small, there is no other mechanism through which the

pose distribution can be explored, and the particles will be tightly clustered around a pose

that may not be the best estimate.

The calculation of the jitter covariance here is computed by taking the Euclidean dis-

tance between the pre- and post- resampled pose state, scaled by a chosen factor (in this

case, a factor of 0.5.) This method was chosen through a large amount of trial and error.

The intuition is that if a particle is resampled such that its pose is going to change by a

large amount, there’s a chance that perhaps it is being resampled with a poor estimate of

the pose. In order to offset this possibility, the covariance should be larger to allow the

particle to have more of a chance to have a pose that is similar to the pre-resampled pose

it had before. Conversely, if the pose difference is smaller, chances are the particles are

converging on a good estimate. In other words, this method of choosing a jitter covari-

ance allows particles to not be too permanently influenced by other particles which may

be outliers, while still allowing for some exploration of the underlying distribution.

4.6 Pose Estimate

After the particles have been resampled, an estimate of the vehicle pose can be obtained.

This is shown after the Resampling step in Algorithm 1. In this case, the expected a pos-

teriori (EAP) or weighted average of all the hypothesized pose states is used as the output
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Algorithm 5 Resampling
for ii = 1 : numParticles do

α = ∑ii η
[ii]
k

η
[ii]
k =

1
α

η
[ii]
k . Normalize the particle weights prior to resampling

end for

Ne f f =
1

∑i(η
2
ki
)

. Calculate the number of effective particles

if Ne f f ≤ Na then . If the number of effective particles is low, resample
r = rand(); jj = 1; ii = 1; β = η

[1]
k ;

for m = 1 : numParticles do
U = r + (m− 1)/numParticles
while U ≥ β do . Find the particle ii which has higher weight than jj

ii = ii + 1
β = β + η

[ii]
k

end while
w∗[jj]k = w[ii]

k . Set all the map properties of particle jj to those of particle ii

m∗[jj]k = m[ii]
k

P∗[jj]k = P[ii]
k

jitterCov = 0.5(PoseState[ii] − PoseState[jj])2

PoseState∗[jj] ∼ N (PoseState[ii], jitterCov) . Resample the particle’s pose
jj = jj + 1

end for
else

Don’t resample. Move on to next step.
end if=0

estimate of the filter. Note that this estimate is not directly fed back into the filter at any

point, as the filter operates based on the individual estimates of each particle. This esti-

mate is however taken as the "answer" from the filter. This method assumes that the pose

probability distribution is not highly non-normal, and that the weighted average is thus a

reasonable representation. If this was found to not be the case, the maximum a posteriori

estimate could also be used by simply extracting the pose of the particle with the highest

weight at each time step.
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4.7 Feature Pruning

At time k, the Gaussian mixture produced by the recursion hasO(Jk−1|Zk|) terms, and this

number is able to increase without bound. A good approximation can still be obtained by

pruning out elements of the Gaussian mixture whose weight falls below a certain tunable

threshold. A simple method for performing this pruning is given by Vo and Ma, and the

same method is used for this thesis [25]. This step is simple but crucial to achieving good

filter performance, and is performed for each particle after resampling occurs, shown at

the bottom of Algorithm 1.

In this procedure, a feature is simply discarded if the weight of its Gaussian mixture

element is below a certain scalar threshold, T, after the update. This threshold is a crucial

tuning parameter, and must be carefully chosen for each case. If T is chosen to be too high,

no features will be chosen as "feasible" and the feature map will be empty. If T is chosen to

be too low, many poor features will be chosen as feasible, and will not adequately represent

the relationship between the measurements and the dynamics of the features from the

previous time step. In general, T must be chosen by eye. However, a good initial estimate

of an adequate value for T can be found by observing the typical values of the elements

in wk prior to pruning – if the filter is working well there is a clear distinction of features

which have much higher weights than other features. A cutoff value can be chosen based

on this, and iterated more tightly in order to produce desired results.

In general for this work, a conservative value of T was used, i.e. the value used was

lower than may be optimal for computational performance. This typically overestimates

the number of features and in theory helps the filter maintain a populated map estimate,

even if it is not a perfectly accurate one, in the event that measurements become very

sparse for a range of time steps. Though it was observed that the filter does in general

recover the pose and map estimate after a period of sparse measurements, the robustness

of that has not been analyzed sufficiently to justify a more tight pruning threshold.
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A better logical heuristic could in the future be used in order to avoid this conservative

thresholding. For example, the filter could be told to not update the feature map at all

if the number of measurements at a certain time step is below a certain amount, e.g. the

expected number of clutter measurements, if that quantity is known. For now, biasing

the pruning threshold and allowing more features in the map seems to accomplish the

same result with only a slight observed increase in computation required. The result of

this is that a few "clutter" features sometimes exist at each time step and are not associated

with an actual physical feature, however in general these additional "false" features do not

survive pruning for more than one time step as additional measurements do not support

their existence and their weights get decremented accordingly.

Note also that the pruning step is not performed prior to importance weighting and

particle resampling. From a theoretical standpoint, even the low weight elements of the

Gaussian mixture are a solution and thus must contribute to the weighting of the parti-

cle. The low weight features are pruned purely for computational purposes, and not as a

means towards improving the estimates of the filter. Using feature pruning as a potentially

rigorous way of improving the filter estimates has not been investigated in this thesis, nor

has it been investigated by other studies.

4.8 Full Filter

Figure 4.1 graphically depicts the relationships between the GMPHD filter and the particle

filter in a flow chart.
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FIGURE 4.1: Simplified diagram depicting the flow of data between different
parts of the filter.
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5 Results

The primary purpose of this thesis is to demonstrate that an RFS-based filter can success-

fully perform SLAM for relative spaceflight purposes. The approach to achieve this, as

discussed in previous sections, involves an inner PHD filter which is used inside a par-

ticle filter to perform both the mapping and localization aspects of SLAM. Thus in order

to understand if the RFS-based part of the overall filter is performing as expected, it is

useful to first investigate the PHD filter independently of the particle filter. This is essen-

tially equivalent to using the full filter described in the previous sections, but given perfect

knowledge of the pose and only 1 particle. By giving the filter perfect knowledge of the

pose, SLAM is not truly being performed, but a good understanding of how the PHD filter

is performing the mapping aspect of SLAM can be achieved prior to moving on to a full

SLAM implementation.

Unfortunately, it is not possible to only test the localization part of the full SLAM filter.

The relative weights of the particles, which are determined by the disparity between the

pose-conditioned map and the measurements, are what primarily drive the estimate of the

pose. Thus if the map estimate is held the same across all the particles, then the particles

will all have equal weight; essentially, no pose distribution exists. Therefore, it is impos-

sible to isolate the localization aspect of the full SLAM filter. Despite this, the following

section will demonstrate that the mapping portion of the filter is performing well, so fur-

ther sections are justified in moving on to exploring the full SLAM filter.

The methods used for evaluating the following results are a mix of qualitative and
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quantitative. The mapping results of the PHD filter are analyzed by observing how closely

the estimated map matches the actual map of visible features at each time step. This is

approached in terms of how many features are tracked and their general proximity to the

actual visible feature locations. When pose is being estimated, this can be analyzed in the

more traditional sense, as it is not a set-based quantity.

5.1 Test Case Descriptions

The measurement models and dynamics used to generate the test cases are described in

Chapters 2 and 3. The different test cases are chosen by simply varying the initial condi-

tions of the dynamics to achieve a desired orbit; features are then randomly distributed

onto the target body and measurements are simulated. Two primary test cases are used to

demonstrate the results of the filter. The initial conditions relative to the target body used

to generate these trajectories are given in Table 5.1.

TABLE 5.1: Test case initial conditions.

Test Case x (m) y (m) z (m) ẋ (m/s) ẏ (m/s) ż (m/s)

1 - Periodic Orbit -200 0 0 0 0.4241 0

2 - Walking Safety Ellipse 0 0 -500 0.1 -0.01 0.1

The orbit for the first test case is shown in Figure 5.1; the blue curve is the trajectory, the

sphere is the target body, and the red x’s on the target body are the locations of the features

to be tracked. This is a periodic orbit around the target body, mimicking the behavior

that might for example be used during an inspection phase of a servicing mission or the

mapping phase of a small body exploration mission. This orbit was chosen to investigate

the long term behavior of the filter, on the order of several hours. In this case, the observer

periodically encounters the same features as ones it has observed in the past. Currently, no

mechanism is in place to have the filter store features that have been tracked in the past;

features are simply deleted from the tracked set once they become infeasible. However
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in the future, this test case would be ideal for implementing a loop-closure method, i.e.

storing old features and identifying if they are encountered later in the trajectory.

FIGURE 5.1: Trajectory for Case 1, the periodic orbit.

It is widely established in the literature that a fundamental problem with SLAM im-

plementations is dealing with very sparse maps. Thus, a second test case has been chosen

that investigates how the filter performs in the event that very few or none of the measure-

ments originate from a true feature for a period of time, i.e. no features on the target body

are visible to the sensor. The relative orbit of the observer with respect to the target for

this case is shown in Figure 5.2 and is referred to as a walking safety ellipse. This type of

trajectory may also be used for the inspection and rendezvous phase of a servicing mission

[38].

The walking safety ellipse trajectory brings the observer to within 30m of the surface

of the target and as far away as 650m. The trajectory shown is over a time period of 15,000

seconds in order to see the behavior of the orbit, though this full time span is not used for

the results. As will be seen in the results, the sensor periodically sees no features on the

target body for at least 1 time step, leading to a sparse feature map.

In both test cases, the birth model γk(x) for the PHD filter is given to be a Gaussian
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FIGURE 5.2: Trajectory for Case 2, the walking safety ellipse.

Mixture with means located at the true feature locations and covariance of 10 meters. The

birth model could also be chosen to be a uniform distribution such that all tracked features

are birthed with the same weight, a weight which does not depend on the location in

space. This would give the filter no a priori knowledge; some work towards this is shown

in later sections. Since feature spawning is not expected to occur in this particular scenario

(though it is allowed to occur in general,) no spawn intensity function is specified.

All time steps are in units of 50 seconds. Each test case is given 10 uniformly dis-

tributed clutter measurements at each time step, in addition to the noisy measurements

which originate from true features.
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5.2 Standalone GMPHD Results

This section tests the mapping portion of the overall SLAM filter independently of the

localization aspect.

Test Case 1: Periodic Orbit

The results of the standalone GMPHD filter applied to the periodic orbit test case are

shown in Figures 5.3 and 5.4. Figure 5.3 shows the results in regards to the mapping of

the location of the features on the target body over time. The red x’s indicate the "true" lo-

cation of the features, and the blue circles indicate the estimated locations of the features.

The periodic nature of the orbit can be seen in these results.

The plot in the upper left shows that early on in the filtering, most of the visible features

have been identified by the filter. After many time steps, all the visible features are being

tracked, in addition to some extraneous features being estimated. Figure 5.4 shows the

difference in the number of visible features vs. the number of estimated features over

time. For a well-tuned filter, these two curves should be close over time. From this we

see that in general, slightly more features are being estimated than are visible. This makes

sense, as seen by the presence of a few extra features in Figure 5.3, which depicts the

results of the mapping portion of the filter for a few selected time steps over the trajectory.

Occasionally, extra features aren’t pruned out, but they were rarely observed to persist

through more than one time step; in other words, their existence was not supported by

further measurements, causing their weights to fall below the pruning threshold at later

time steps. This could be mitigated by further tuning of the pruning threshold variable,

but a conservative threshold was purposely chosen here in order to ensure that all visible

features are being tracked immediately. In general, as the observer orbits around the target

over a long period of time, the filter continues to track features as they enter and exit the

sensor field of view.
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FIGURE 5.3: Features tracked over time using the standalone GMPHD filter
for the periodic orbit trajectory.

These results show that the standalone GMPHD filter can successfully perform map-

ping in the presence of a high amount of clutter over a long period of time when given

good information about the relative pose of the observer.

Test Case 2: Walking Safety Ellipse

Figures 5.5 and 5.6 show the results of the standalone GMPHD filter for the walking safety

ellipse test case. The upper right plot in Figure 5.5 shows that after just a few time steps,

most of the features have been estimated, but not all. This is acceptable, as depending on
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FIGURE 5.4: Number of features tracked using the standalone GMPHD filter
for the periodic orbit trajectory.

the tuning of the filter, it can take time for the weight of a feature to grow from birth weight

to above the pruning threshold by successive measurement updates. By t = 900s, shown

in the upper right, it is clear that the filter is tracking all of the visible features.

FIGURE 5.5: Features tracked over time using the standalone GMPHD filter
for the walking safety ellipse trajectory.
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Based on the timeline shown in Figure 5.6, it is seen that the number of visible targets

briefly drops to zero as the observer orbits around the target body and features pass in and

out of the field of view of the sensor. The plot in the bottom of Figure 5.5 shows that shortly

after this completely sparse map, at t = 2100s, the filter is able to successfully identify the

features once more even though the currently visible features are now on a completely

different location on the sphere as compared to t = 900s. This map sparsity occurs once

more just before t = 4500s; the plot on the bottom right shows that by t = 4700s, the filter

has once again recovered the map in a different location on the sphere.

FIGURE 5.6: Number of features tracked using the standalone GMPHD filter
for the walking safety ellipse trajectory.

These results show that the standalone GMPHD filter is able to successfully perform

the mapping portion SLAM even when the set of tracked features becomes briefly very

sparse, and features move in and out of the sensor field of view.

5.3 Rao-Blackwellized GMPHD for SLAM

For the particle filter implementation, 100 particles are used. The pose hypotheses of the

particles are initially distributed slightly offset from the true pose state with a covariance

corresponding to a standard deviation of 0.1 meters in the position coordinates, 0.1 cm/s
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in the velocity coordinates, and 1e-3 in the dimensionless attitude coordinates. This co-

variance was chosen in order to allow for a relatively small initial particle dispersion on

the order of what might be given from an external estimate of the pose from other sensors.

Test Case 1: Periodic Orbit

Figure 5.7 shows the results of the full RBGMPHD filter mapping step for the first case, the

periodic orbit. This case was tuned to be slightly less strict about allowing features to be

accepted past the pruning step. From the first time step, the map is fully tracked; as time

progresses, the features continue to be observed over a long period of time.

FIGURE 5.7: Sequential snapshots of the estimated feature map for the full
RBGMPHD filter used on Case 1.
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Figure 5.8 depicts the number of true features visible to the observer compared to the

number of features obtained by the PHD filter. Additionally, the less strict pruning of

the features is seen as the filter consistently overestimates how many features are visible.

Further tuning would make it possible to improve these estimates, as well as implementing

the merging procedure specified by Vo and Ma. [25]

FIGURE 5.8: Comparison between the true number of visible features vs.
how many features the RBGMPHD filter has estimated for Case 1.

Figure 5.9 shows the position and velocity errors of the highest weight particle com-

pared to the 3σ bounds, which are calculated from the sample covariance of all the particle

poses. The black line shows the difference between the true and estimated pose, and the

red dashed line shows the 3σ bounds of the 100 pose hypotheses. Note that there is no sam-

ple covariance calculated for the Euler angles, as these have been converted from MRPs.

In the MRP formulation, the concept of an additive sample covariance is not valid. The

periodic nature of the orbit is seen in the covariance bounds, as the sample covariance pe-

riodically increases and decreases, particularly in the Z coordinate which may be slightly

less observable due to the planar nature of the orbit. In some dimensions, the filter appears

to converge on the correct pose as time progresses.

These results show that the particle filter approach in conjunction with the PHD filter

has potential for adequate and stable pose estimation over a long period of time, leading

to a successful SLAM formulation.
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FIGURE 5.9: Comparison between sample covariance 3σ bounds vs. the
estimate error for Case 1.

Test Case 2: Walking Safety Ellipse

Figure 5.10 shows the results of the PHD filter for the highest weight particle at 4 selected

time steps. From these results, it is clear that the PHD filter is not only determining the

feature map from the very first time step, but the map continues to be updated as features

move in and out of the field of view as the observer sees different sides of the target.

Moreover, when measurements become sparse such as at 1400 seconds, the filter is able to

recover and maintain a stable map estimate.

Figure 5.11 depicts the number of true features visible to the observer compared to

the number of features obtained by the PHD filter. This figure shows that the estimated

number of features roughly tracks the truth.

Figure 5.12 shows the resulting position and velocity errors compared to the sample co-

variance 3σ bounds of all the particle poses, as well as the Euler angle differences between
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FIGURE 5.10: Sequential snapshots of the estimated feature map from the
RBGMPHD filter over time for Case 2.

FIGURE 5.11: Comparison between the true number of visible features vs.
how many features the RBGMPHD filter has estimated for Case 2.

the true and estimated relative attitude. These results show that the covariance bounds

are reasonable for the amount of estimation error, and the pose is being tracked to within

a few meters in relative position and cm/s in relative velocity, and generally less than one



Chapter 5. Results 52

degree of error in relative attitude.

FIGURE 5.12: Comparison between sample covariance 3σ bounds vs. the
position and velocity errors for Case 2.

These results show that even in the presence of a sparse feature map with features

frequently moving in and out of the field of view of the sensor, the RBGMPHD formulation

can successfully perform SLAM.

5.4 Towards True Freedom From a priori Reliance

One strength of the RB-GMPHD formulation is that it has the potential to perform SLAM

in the complete absence of a priori information about the environment. Though the pre-

vious results are relatively sparse in terms of a priori knowledge given, some information

was technically given to the filter in the form of the birth distribution. The birth distribu-

tion was specified as a Gaussian mixture with means located at the true positions of the
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features on the target body, and covariance of 10 meters. This means that when a mea-

surement is mapped back to a region near a feature location, it is birthed in the filter with

a higher probability than a measurement which corresponds to a location farther away

from a true feature. Although this is still relatively sparse information compared to the

full detailed maps that are frequently used in optical navigation approaches, and a rela-

tively wide covariance was used, this information would be unavailable in situations in

which the target has never been explored, and subsequently no knowledge of the feature

locations exists.

Thus, these results explore the possibility of an RFS-based filter for SLAM which can

function with absolutely no a priori information – in other words, a uniform birth dis-

tribution such that all measurements are introduced with the same probability of being

feasible, and the strengthening or weakening of this probability must come solely from the

mechanics of the filter.

5.4.1 Standalone GMPHD

First the standalone GMPHD filter is once again tested, but with a uniform birth density.

The walking safety ellipse case is tested as it is the more difficult case in terms of mapping.

These results are shown in Figures 5.13 and 5.14.

Compared to the results in Section 5.2 for the same test case with a Gaussian Mixture

birth model, not much has changed. In general the filter tends to overestimate the number

of features; this was a purposeful tuning choice made to allow a better chance that a feature

becomes tracked, since it is more difficult for the filter to initially distinguish clutter from

real features with just one measurement update. Despite this, the mapping appears to be

comparably successful, and feature measurements which correspond to clutter in general

do not persist beyond one time step as no further measurements support their existence.

These results support the possibility that the GMPHD filter can successfully perform
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FIGURE 5.13: Sequential snapshots of the estimated feature map from the
PHD filter over time for the standalone GMPHD filter given a uniform birth

density.

mapping given no a priori knowledge about the environment, only dynamics and mea-

surement model information.
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FIGURE 5.14: Comparison between the true number of visible features vs.
how many features the standalone GMPHD filter has estimated for Case 2

given a uniform birth model.

5.4.2 Full RBGMPHD

Walking Safety Ellipse

The full RBGMPHD filter is once again tested, but with a uniform birth density. The walk-

ing safety ellipse case is again used as it is the more difficult case in terms of mapping.

These results are shown in Figures 5.15, 5.16, and 5.17.

It is clear that the filter is having a much more difficult time with weighting clutter

measurements, even when the clutter is physically very distant from the target body. In

the previous test with the standalone GMPHD filter, a few extra features were typically

estimated, however they were usually in close proximity to the target body. Thus, the

number of features tracked does not closely follow the number of features visible to the

sensor. Despite this, the real features are tracked.

Additionally, given the disparity between the expected feature map and the predicted

feature map, the filter is roughly able to estimate the pose of the observer, as seen in esti-

mate errors and sample covariances in Figure 5.17. Compared to previous results of course,

these covariances are poor. The sample covariance does not always adequately bound the

estimate error for very long. However, the filter does seem to be able to make corrections

when the estimate becomes too far off. It appears that when the estimate becomes poor,
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FIGURE 5.15: Sequential snapshots of the estimated feature map from the
PHD filter over time for the RBGMPHD filter given a uniform birth model.

FIGURE 5.16: Comparison between the true number of visible features vs.
how many features have been estimated using the RBGMPHD filter given a

uniform birth model.

the sample covariance subsequently increases, meaning that the particle pose hypotheses

are becoming more distributed in an attempt to rediscover the region where the best esti-

mate is. This is also reflected in the relative Euler angles between the truth and estimate

pose. This behavior is exactly what was intended with the resampling scheme chosen, as
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described in Chapter 4.

FIGURE 5.17: Comparison between sample covariance 3σ bounds vs. the
position and velocity errors for the RBGMPHD filter given a uniform birth

model.

These results support the assertion that the RBGMPHD filter may be able to success-

fully perform SLAM given no a priori information about the environment. Though the

mapping portion of the filter did not perform as well as previous test cases, the pose es-

timates show potential regardless. In an environment in which few clutter measurements

are likely the mapping portion would likely perform far better, therefore driving even bet-

ter pose estimation and potentially more robustness to map sparsity.

Periodic Orbit

Unfortunately, the previous walking safety ellipse test case was difficult to simulate for

longer than the time steps shown, as the sparsity of the map made it difficult for the filter

to recover a pose estimate through the resampling mechanism. Therefore, the periodic
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orbit is used to investigate if this recovery behavior is seen over a longer period of time.

These results are shown in Figures 5.18, 5.19, and 5.20.

FIGURE 5.18: Sequential snapshots of the estimated feature map from the
PHD filter over time for the RBGMPHD filter given a uniform birth model

for a periodic orbit.

In general, the mapping portion of these results do not differ much from the walking

safety ellipse results; the filter had a difficult time with clutter measurements, but the real

features are being tracked.

Figure 5.20 on the other hand is slightly more interesting than the covariance plots for

the walking safety ellipse. Though the sample covariances do not seem to reliably bound

the estimate error, the correction mechanism is clearly seen, particularly in the Y coordinate

and the relative Euler angles. Again, it appears that if the estimate error (i.e. the estimate

of the highest weight particle) becomes too high, the sample covariance opens up and the
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FIGURE 5.19: Comparison between the true number of visible features vs.
how many features have been estimated using the RBGMPHD filter given a

uniform birth model for a periodic orbit.

particles sample a larger region of state space in an attempt to recover a better estimate.

This is particularly seen in the rapid changes in relative Euler angle. Though these results

are not necessarily stable, they have not totally diverged after nearly 4 hours of tracking.

As long as the sample covariance stays in a reasonable region of state space, it is reasonable

to suspect that the filter could continue correcting the pose indefinitely.

These results support the RBGMPHD filter as a viable method for performing SLAM

in a rendezvous and proximity operations scenario in which absolutely no a priori infor-

mation about the environment is given to the filter.
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FIGURE 5.20: Comparison between sample covariance 3σ bounds vs. the
position and velocity errors for the RBGMPHD filter given a uniform birth

model for a periodic orbit.
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6 Conclusions

It is clear that innovation is needed in order to achieve autonomous, on-board relative nav-

igation for future space missions, both in orbit around the Earth and in deep space. While

traditional methods are in general too computationally complex and reliant on heuristic

methods to be seriously viable candidates for this goal, this thesis adds to the growing

number of studies that show that the emerging techniques made possible by Random Fi-

nite Set based filters offer a rigorous and promising alternative.

By formulating the general relative navigation problem as a SLAM scenario, the no-

tion of performing multi-target tracking as a means towards estimating relative position,

velocity, and attitude supports the use of RFS based filters, which are specifically formu-

lated to rigorously perform multi-target tracking. The addition of a particle filter to an RFS

filter expands the range of possible parameters which may be estimated, leveraging the

dynamics of the underlying probability distributions.

The strength of this RFS based formulation is that many of the significant problems

with traditional multi-target tracking schemes are avoided entirely, or dealt with in the

initial mathematics used to derive the filter. The primary benefit of this is the avoidance

of the need for a separate heuristic data association algorithm to determine a mapping

between measurements and features prior to filtering. With RFS based methods, this as-

sociation is automatically accounted for in the prediction and update steps of the filter;

this indirectly allows for much higher dimensional problems to be solved, moving closer

towards eventual on-board feasibility.

Additionally, the RFS framework is built from the beginning with the ability to account
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for realistic measurement possibilities which may occur with optical navigation filters in

space, such as clutter measurements, and the possibility that features can move in and out

of the field of view of a sensor over time. These characteristics together make RFS-based

filters such as the GMPHD filter a more rigorous and robust framework for performing

SLAM for relative navigation purposes.

These strengths have been demonstrated in a generalized rendezvous and proximity

operations scenario in this thesis, as well as the prior work forming the basis of this thesis,

using a RBGMPHD filter. Simplified but fundamentally realistic dynamics models were

used along with a measurement model based on an existing research platform being used

in a real space environment for a similar scenario.

In general, the test cases used to test the RBGMPHD filter strive to create a challenging

dynamics and measurement situation for the filter; namely an abnormally low signal to

noise ratio (i.e. many clutter measurements, at times a ratio of 1:10) attempting to give the

filter absolutely no a priori knowledge, or poor initial pose knowledge in the particle filter.

Realistically, the most expedient use of an RFS-based filter on-board a spacecraft may be

less harsh. For example the initial pose of the particle filter may be initialized by another

estimate of the spacecraft pose from other sensors. The results of the standalone GMPHD

filter in this scenario demonstrate that the RFS-based portion of the filter is very well suited

to the multi-target tracking formulation of SLAM for relative navigation, even when no a

priori information about the environment is given. In fact, the majority of the challenges

seen with the overall RBGMPHD filter came directly from the fact that the particle filter is

very delicate. Despite this, careful selection of a resampling method can allow the particle

filter to salvage estimates even when the estimation errors grow large.

Thus, the main conclusion of these results is that an RFS-based filter like the GMPHD

filter is robustly and rigorously suited for multi-target tracking in a spacecraft relative

navigation scenario. It would be uniquely suited to perform some of the most difficult

aspects of traditional relative navigation when used in conjunction with other methods for
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estimating pose given a map of the environment. The exact manner in which this tracking

can be used to perform SLAM may not necessarily be a particle filter, though few examples

of other solutions exist in the literature.

6.1 Suggested Future Work

This work has primarily been an initial demonstration that an RFS-based formulation is

suitable for performing SLAM for spacecraft relative navigation. Further research is nec-

essary in order to quantify the strengths and weaknesses of the approach, as well as how

to improve details of the individual parts of the approach.

First and foremost, there must be a consistent way to quantify the mapping portion

of the SLAM procedure in a rigorous way. There is a distinct lack of methodology in

the literature for properly quantifying the results of an RFS-based filter in a way that is

analogous with familiar methods (e.g. root-mean-square estimate error.) One such method

does exist called the Optimal SubPattern Assignment (OSPA) method, as introduced in [39]

and used in [25]. This method was attempted for these results, however the calculations

involve matrices of combinatorial size; when attempted for the results presented here,

the matrices required exceeded the memory capabilities of MATLAB. In other words, the

OSPA metric used in other studies has been impossible to use for these results due to the

large number of measurements used and features being tracked. In general, there are very

few other ways to efficiently compare sets of estimated features with sets of actual features

– i.e. there is no set-based equivalent to a Euclidean distance. With further time, it may be

possible to adapt the OSPA metric to be compatible with a problem of this size.

Based on the process of obtaining the results presented, the most challenging aspect of

the presented method is by far the tuning of the resampling step of the particle filter. This

is a crucial step, and many different methods exist for performing it. The most common

method, low variance resampling, was chosen, but it did not begin to perform well until
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the variable resampling covariance was used. Even then, it could be argued that while

the resampling behavior of the filter tends to be beneficial in these results for preventing

divergence, it does not necessarily facilitate convergence in the traditional sense. Thus,

further study into a stronger resampling method could potentially significantly improve

both the efficiency and robustness of the filter.

Due to the difficulties with resampling leading to a lack of structured convergence in

the pose estimate, one important aspect of the filter still remains to be studied in greater

detail. While the initial pose covariance of the particle filter pose distribution was non-

zero, the magnitude was kept near an expected covariance that might be provided by an

external estimation filter. Testing the robustness of the filter to a much more poor pose

estimate would be an important aspect for further study, as it would strengthen the notion

that the filter could truly be used with no a priori information, both from the environment

and from the observer itself. As discussed in the previous paragraph, this would likely not

be achievable until a more robust resampling method is implemented.

Finally, the GMPHD filter is just one filter in a family of filters which are based on RFS

mathematics. Given that the assumptions used to arrive at the tractable GMPHD recursion

are so similar to the assumptions upon which the original Extended Kalman Filter is based

on, it is a comfortable and easily understandable first choice for determining if the RFS-

based filtering approach is suitable for an intended application, which was the primary

purpose of this thesis. However, RFS filters which are based on other assumptions and

subsequently have better performance do exist and have been studied extensively in the

literature. For example, many of the works cited in this thesis use a variant called the

Generalized Labelled Multi-Bernoulli filter for SLAM applications, with overall positive

results. [20, 40] A Rao-Blackwellized version of this filter has been studied, similar to the

RBGMPHD filter used in this thesis. [41] Moving towards a more extensively used RFS

filter would be a wise next step to take to achieve better performance.
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