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Ihe Simulation of a PRT System Operating
Under Quasi-Synchronous Control

by

Harold L. York*

Intreduction

The routing and scheduling of vehicles i1s an important
problem in any demand-activated transit system. Vehicles
should be dlspatched and routed to their destinations over
paths which minimize travel time but do not create conges-
tion problems in the network. Empty vehicles must be
shuttled 1in a manner which provides a vehicle within a
reasonable time after a demand for service has been made, and
the movements of these empty vehicles should be optimized to
reduce fleet requirements and operating costs.

Some of these operatlional problems can be studied
successfully with analytical metheds. Using stochastic models,
useful informatlon can be obtained concerning the operation of
an individual ctation or interchange. (1), (2) However, the
performance of an operational strategy in a network composed
of many statlons and interchanges, in which demands for service
occur in a random menner, can only be studied adequately by
computer simulation,

Several operational strategies for PRT systems have been
proposed., These schemes, especially when the routing of vehi-
cles 1s considered, depend on whether the system 1s operating
under synchronous, quasi-synchronous, or asynchronous control.
Early studles indicated that systems operating under fully-
synchronous control would have low capacity under most circum-
stances, and that computer logic and memory requirements would
be extensive. Mcre recently, several investigators have shown
that the synchronous system can be modified to significantly
improve performance (3), (4). In this modification, groups
of moving slots are combined into units called cycles. Vehicle
mensuvers within a cycle are permitted., This relaxation of
the fully-synchronous concept significantly increases the
capaclty of the systemn,

Under quasl-synchronous or asynchronous control, the vehicle
path through the network 1s not precisely predetermined.
Future swltching states are not reserved for the vehicle, and
the possibility of merging conflicts at interchanges exists.
These confllcts are normally resolved by permitting the vehicles
- at or near the interchange to mansuver for an open position on
the main line. Occasionally, it may be necessary to deny a
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vehicle access to the turn ramp. In this case, the vehicle

must be rerouted to i1ts destination. The probability of a
vehicle being rerouted at any lnterchange in the network must
be very small if the system is to perform well. Operational
strategles for systems under quasi-synchronous control have
been developed and simulated by severdal research groups (5),(6).

System Description

The purpose of thls paper 1s to describe an operational
strategy for a PRT system operating under quasi-synchronous
control, and to demonstrate by the use of computer simulation
the feasibility and limitations of thls strategy in a very
high-demand situation. The computer simulation was developed
to model the detalled operation of a small-vehicle transit
network, and to determine the effects of random passenger
demands on system performance, The slimulation includes a
dynamic minimum-path routing scheme and an optimal procedure
for shuttling empty vehicles in the system, Slot slipping 1is
performed on interchange and station ramps. With minor exceptions,
all other links in the system are assumed to operate in a
synchronous manner,

The network i1s modeled by dividing each section of the
guideway Iinto slots of one headway length. Every slot on the
wain network lines as well as those on the station and interchange
ramps 1s asslgned a storage location in the computer, and each
station in the system 1s assligned a number, Each storage
locatlon which represents a guldeway slot will contain the
destination-station number of the vehicle which occupiles the
corresponding slot in the network at that time. If the slot
1s unoccupied, a zero is asslgned to the location. At time
increments of one headway time,. the whole system is updated,

The updating involves shifting or otherwise modifying the
contents of the storage locations representing the guildeway
Slots to simulate the movements of vehicles through the system.
At each time-step, demands for vehicles at stations are also
generated using a Monte Carloc method. In the network example
described later, a headway and update time of one second is used.

The updating of vehicle positions on the main lines of
the network is performed by the following sequence of logic
operations:

(1) If the vehlcle 1s in a slot which does not contain a
demerge switch, it 1s advanced one slot on the main line,

(2) If an interchange demerge switch 1s occupled, the
vehlcle's destination 1s interrogated. The destination number
1s then checked with a minimum-path table to determine
whether the vehicle should proceed on the main line or be
placed on the interchange ramp.

(3) If the vehicle 13 located in & station demerge switch
Sslot, 1ts destination is interrogated. If that destination
corresponds to the appropriate statlion number, the vehicle is
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placed on the station entrance ramp. Otherwlse, the vehicle
1s moved one slot forward on the mailn line.

In a quasli-synchronous control scheme, vehicle

meneuvering takes place on statlon and interchange ramps.
Interchange ramps may be divided into three sectlons consisting
of a deceleration ramp, a maneuvering section, and an acceleration
ramp. On both the acceleration and deceleratlion ramps, the
vehicle operates in a synchronous manner. In the maneuvering

.section, the vehicle may adhere to a constant-speed profile,
which is normally lower than the malin-line speed, or 1t may
"slip" slots by a comblnation of acceleration and deceleration
maneuvers. The logic operatlons by which the interchanges are
updated at each time step can be enumerated as follows:

(1) If the lead slot of the maneuvering section is un-
occupied, all vehicles 1n this sectlion are advanced one slot.
(2) If the lead slot 1s occupled and an open slot on the
mein line is avallable for this vehicle, the vehlcle 1s
placed 1n the first slot of the synchronous acceleratlion
ramp, and all vehlcles behind it are advanced cne slot,
(3) If the lead slot 1s occuplied but an opéen slot on the
mein-line is not available, the vehicle must slip a slot,
and all vehicles behind the lead vehicle, up to the first
vacant slot, must also slip a slot.

(4) A vehicle is permitted onto the interchange ramp 1f
there is room for the vehicle in the maneuvering section,

In the simulation, only a specifled number of vehleles are
allowed to sllp slots simultaneously on the maneuvering section.
In the example described later, up to ten vehicles are permlitted
to slip slots at any time. There will be space for a vehicle
on the maneuvering section if fewer than the specified maximum
number of vehicles are simultaneously slipping slots there.

If no vacant slots are avallable, the vehicle desiring to
demerge is instead advanced forward on the main line. The
vehicle will then be rerouted to its destinatinnvia the best
route from its current position downstream of the demerge
switch. A vehicle denled access to an interchange ramp 1s sald
to have been aborted. Each abort 1is recorded by the computer.

- In the case of T-intersections, such as ramp 15 in the network
of Figure 1, the line from statlon 8 to station 10 1s run
synchronously. Slot slipping 1is permitted downstream of the
merge from station 9. If all slots on the line downstream of
station 9 are filled, only vehlcles going to station 9 are
allowed to enter the line upstream of statlion 9. All other
vehicles are rerouted at the interchange upstream from station 9.

Nominal vehicle routing and the rerouting of aborted
vehicles 1s managed on the basis of a minimum-path table. At
each intersection, the destination of the vehicle 1s interrogated,
and the appropriate entry in the minumum-path table is examined.
The minumum-path table is an NXN array, where N is the number of
stations in the network. The element located in row 1 and
column j of the indexed array 1s the nunmber of the next statlon
which should be passed on the best path from station 1 to statlion j.
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This "best path" 1s derived from the expected average origin-
destination demend matrix using a minimum-path algorithm with

a link capacity constraint. This table 1s updated periodically.
Each interchange 1s assoclated with the station just upstream
from it, so that the best path 1s determined directly from the
vehlcles present location and its destination.

At each update, demands for service are also generated,
These demands, while random in nature, have a mean which
corresponds to the specified input data. The actial demand
arrivals are generated by & Monte Carlo process. Because of
the nature of PRT, passenger demands wlll probably not occur as
a Polsson distribution. Passengers wlll arrive at stations in
small groups with the intention of riding together. Each group,
however, represents a vehicle demand, and it is reasonable to
assume that the arrival of each group representing a vehicle
demand 1s a Polsson process. A table of average vehicle demands
per hour from each origin station to every destination station
1s specified apriorl as an input to the simulation pregram.
The actual demand arrivel pattern is a Poisson distribution with
a mean equal to the glven average demand.

Separate subprograms also provide data for the simulation
program. One of these subprograms 1s an optimal empty-vehicle
shuttling algorithm which minimizes the average total empty-
vehlicle-trip mileage per hour, while ensuring that the average
walting time at each station in the network is less than a
specified value. This subprogram uses the gilven demand data to
compute an empty-vehicle flow matrix, e, s, which represents the
average flow of empty vehicles from sta%gon 1 to station j per
hour. A description of this algorithm is given in Appendix A
of this paper. An estimate of the required fleet size can be
computed with this information. The fleet size is determined
from the formula:

~ Fleet Size = J;tl i% tij(dij + eij)

where tj 4 1s the minimum-path travel time between stations 1

and j, and 4 i and eij are the full and empty vehlcle demands

per hour from“station*l to station j, respectively. Vehicle
shuttling requirements, and in turn the fleet size, are
influenced by two station parameters, the number of berths in

the statlon, and the upper bound on the average passenger walting
time, Fleet requirements will increase for a fixed vehicle
demand matrix if the specified average walting time at stations
1s decreased, since this will require an increase in empty~
vehlcle shuttling activity. In the present computer model,
"walting time" includes only the time spent walting for a vehicle.
Passenger boarding times and intra-station vehicle movement

times have not been included. A more detailed model of station
operations 1is being inccrporated into the simulatbn program

at the present time.
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Vehicle demands are generated at each statlon by a
two-stage Monte Carlo process, The flrst stage of the process
determines whether a vehicle demand has occurred at the
station during the update time interval. The second stage
of the Monte Carlo process determines the destinatlon of the
full or empty vehicle departing from the station. Vehlcle
dispatching from a statlion proceeds in the following way at each
update time:

(1) If there is a vehicle-demand queue and an empty vehicle
in the station, that vehicle is dlspatched to a destination
chosen at random on the basls of the origin-destination
matrix.

(2) If there 1s no demand queue, and there 1s an eXcess
empty vehlcle 1n the station, the vehicle 1s dispatched at
rendom according to the empty-vehlcle demand matrix.

The simulation was written in FORTRAN and was designed
to run on the CDC 6400 time sharing facllity at the University
of Mimnesota. Running time and storage requirements were
significantly reduced by using word-packlng on an extenslve
seale. Each slot on the guldeway was represented by six bits
of & sixty-blt computer word. Thus, one computer word
represents ten slots of guldeway. At each time step, the
sixty-bit word 1s shifted six bits to the right, with the
right-hand six bits transferred to the left end of the next
word. Several indicators of system performance are listed at
the end of each run. These 1nclude:

(1) The number of passergers wWaiting at each station
at the end of a given tlime perlod. :
(2) The average passenger waltlng tlme at each station
over a glven perlod.
(3) The number of aborts encountered at each interchange
and station in the network.
(4) The total vehicle flows on all the links 1n the network,
(5) The average time delay per vehlcle at each interchange
in the systemn.
These are some of the more important measures of system
performance, Information on maximum walts and delays, as well
as the distribution of walting times may also be obtained.

A Numerical Example

A network of 23 stations and 17 interchanges was set up
to examine some of the command and control problems assoclated
with a high-capacity small-vehicle automated transit system,
A scale drawing of the network is shown in Figure 1. The empty-
vehicle shuttling algorithm described in Appendix A was also
inplemented here so that its effectlveness could be determined
in an operating situation with random passenger demands.

In order to test a high-demand situation, a vehicle-demand
level which would require about fifty-percent of the total
slots on the main lines to be occuplied was considered. At one-
second headway, this represented a fleet size of about 1100
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vehicles operating on the network of Figure 1., The origin-
destination demand matrix was constructed by first postulating
a set of productions and attractions for each station in the
network. Care was taken to chose values which might reasonably
correspond to an actual non-symmstric denand distribution.

The values used for these productions and attractions are
presented in the bar-graph at the bottom of Figure 2. The
demand distribution is clearly non-uniform in nature; some
stations, such as statlions 2, 5, and 10, will require a large
influx of empty vehicles to satisfy passenger demand, while
others, such as stations 6, 15, and 23, will have a large
outflow of empty vehicles, The complete origin-destination
matrix was obtalned from the data on productions and attractions
by using a gravity model with the gravity constant set to zero.
Average flow calculations based on this data predicted a

fleet requlirement of about 1070 vehicles for the network of
Flgure 1, assuming a one-minute average wait and three-berth
stations. (Station configurations in the system actually
ranged from two to five berths depending on demand level.)

Link flows for this demend level, based on average flow
calculations along minimum paths, are given in Table 1. Several
of the link flows in this table are in the range of eighty
percent of the theoretical line capacity of 3600 vehicles per
hour, assuming one-second headways. The average empty-vehicle
demand matrix was computed from the origin-destination demand
matrix using an upper bound of one minute for the average
walting time at each station. The optimization procedures
used to compute this matrix are described in Appendix A,

This matrix 1s required as data for the simulation program;
other inputs to the program include the minimum-path table and
various network-description arrays.

The network of Figure 1 was first initialized by loading
every other slot on the main line with a vehicle whose destination
was chosen at random. The simulation was then run for 10,000
time steps and the system state at the end of the run was
saved for later retreival. The purpose of this run was to
remove the transient effects due to the particular initial
conditions used. After this initial run, several 6000-second
runs were made, each run using the final state of the previous
run as the inltial state. The same origin-destination demend
matrix was used as the input for each run.

The results of three of these runs are shown in Figure 3.
The average walting times recorded here were taken at real-
time intervals 6000 seconds apart. In each case, the average
was taken over a 6000-second interval. No parameters were changed
- in the intervals; all variations in average walting times
between intervals are due solely to the random nature of the
passenger demands. The bar-graph of Figure 3 shows & considerable
fluctuation of walting time zround the one-minute average
valt specified at each station. By comparing the three data

samples, i1t 1s apparent that long waiting times are not associated



with any one particular station. A station with a high

average walt 1ln one time Interval may have a low average

walt over the next interval., It should be noted here that the
very low walts consistently found at some of the stations in
the system are not due to random effects. For example, stations
6, 7, and 23 each have average walts below 15 seconds for each
time interval. At these stations, the arrival of full vehicles
1s slgnificantly higher than the vehicle demand rate at the
statlorn. The vehicle-shuttling procedure is designed to

assure that no station will have a theoretical average wait,
under steady-state conditions, which will exceed one minute.
Lower average walts are possible at stations where passenger
arrivals exceed service demards.

The large fluctuations in average wailt at some of the
stations in the system, as demonstrated in Figure 3, can be .
partially explalined by an analysis of an individual station.
The theoretical walting-time distribution curve for a typlcal
statlon (three berths, 300 vehicle demands per hour, one
minute average) 1s shown in the graph at the bottom of Figure 3.
Thls curve represents the probability that a walt will exceed
a glven time interval., The varlance of such a distribution
is large; in fact, except for a one-berth station, the variance
wlll exceed the mean. This would indicate that the average
of a dlscrete sample size could deviate significantly from the
mean of the distribution. To test thls hypothesis, a single-
station simulation was performed. Results show that for a
vehlcle supply which would theoretically preoduce an average
- walt of one minute, five percent of the sample averages of
walting time were more than twice as large as the theoretical
mean, the averages belng taken over a 6000-second interval.

Whille open-loop vehicle shuttling policies can do
little to change thils variance in walting time, a "maximum"
walting time can be guaranteed with high probabllity. For
example, 1f vehlcle shuttling is determined so that the
probabllity of a person wailting more than T seconds is less
than .001, the passenger's actual walting time may vary
considerably, tut Lis maximum wait is closely controlled.
The use of such a policy is described in Appendix A. For
the range of passenger demands considered in this example, with
an upper bound on the walting time of one minute, calculations
show that the probability that the wailt will exceed five minutes
ls less than .001. Closed-loop vehlcle~shuttling policies, in
which the destination of an empty vehicle is determined by the
present state of the system, may be advantageous in reducing
the variance in waiting times at a station.

The distributlion of waiting times for a typlcal station
in the system is shown in Figure 4., 1In this figure, passenger
walting time is divided into ten-second intervals. Each bar
represents the percentage of passengers whose waltirg times are
withlin ten seconds of the value represented on the abscissa,
The two bar-graphs represent data for a single station collected
over two consecutive 6000-second intervels. In the first
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interval, the average walt at the statlon was found to be
about 40 seconds. In the second interval the average walt
was 85 seconds. In nelther case did the peximum walt for any
passenger exceed 3.5 minutes; the longer walting time 1s
caused by a correspcriingly larger number of passenger walts
in the two-to=three minute range. Date on passenger queues
at this station shows that a small but significant passenger
queue developed early in the tlme interval which corresponded
to the larger average walt.

The table at the top of Flgure 2 demonstrates that the
prescribed open-loop vehlcle shuttling policy 1is being carried
out by the system. A close agreement between predicted and
actual empty-vehlicle flows 1is achleved at each station. In fact,
& slight over-supply of vehlcles 1is indicated here, since 1in
most instances the actual empty-vehicle flow exceeds the
predicted value based on steady-state calculations. Thils
close agreement tends to support the conclusion that the
variance in walting times shown in Figure 3 1s a local effect
due to random fluctuations in vehicle supply and demand at
individual stations, and not some peculiarity of the operating
strategy.

Figure 5 shows curves of cumulative vehicle and passenger
arrivals at various stations. The stations were selected to
glve a cross-section of demand patterns, but all represent
demand situations where some vehicle shuttling ls necessary.

At station L4, for example, there are about 400 passenger
departures and 200 arrivals per hour. The deficit 1s made
up by empty-vehicle shuttling from station 7. In all cases,
the total vehicle supply to each station exceeds the vehicle
demand. This must always occur for steady-state operation.

Vehicle rerouting due to interchange conflicts was kept
to very low values but not entirely eliminated. Some conflicts
occurred at interchanges 7 and 8, which can be explained by
examining the values of average llnk flows in Table 1. The
total flow downstream of interchange 8 was about 75 percent of
capaclty, and the flow downstream of interchange 7 was about
65 percent of capacity. Interchanges 7 and 8 averaged one and
three aborts per hour, respectively. The average delays
experienced at interchanges were quite small in all cases. The
largest delay, occurring at interchange 4, was an average of
3,5 seconds. In order to insure that no unresolvable conflict
would occur at the T-intersections 15 and 4, up to 20 vehicles
were permitted to slip slots simultaneously on the links
downstream of statlons 9 and 4. A provision was also avallable
for rerouting vehlcles away from these links 1f the queues
became too long. In this case, reroutlng was performed at
successive interchanges upstream of the T-intersectlons. This
provision was never required at any tlime durlng the simulation,
even though flow through the T-intersection 4 was running at
85 percent of capaclty. '



Conclusion

A slmple menagement strategy using a quasi-synchronous

control scheme has been shown by computer simulation to

operate well under a high-demand situation. By managing

average line flows in the system, conflicts at interchanges

can be reduced to very low values. The empty-vehicle

shuttli=ng algori*hm employed here 1s shown to redistribute
vehicles efficiently in the network and provide for low

average walting times at stations. Numerical results indicate,
however, that the variance in weiting time can be significant
due to the nature of the stochastic processes involved., Closed-
loop vehicle shuttling policies may be required to significantly
reduce thils variance,
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Table 1 TIink Flows Derived From Average Flow Calculations

Orig Term Flow Orig Term Flow Orig Term Flow

Stat Stat Stat Stat Stat Stat
1 2 3025 18 17 2299 9 10 1126
2 8 1501 17 19 986 11 12 1230
3 6 1304 18 15 1112 12 9 214
5 1 1316 19 20 990 14 16 897
6 22 1114 20 5 1316 15 7 1327
7 4 1485 21 23 785 17 18 1312
8 10 1502 23 14 698 18 14 199
10 11 2629 2 3 1524 20 21 1161
11 13 1400 3 L 221 21 22 375
12 7 1016 4 1 1706 22 20 1489
13 16 1401 6 23 1045 23 15 1130

15 9 912 7 6 857

T [a}
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Appendix A
An Empty-Vehicle Shuttling Algorithm

Consider a station with X wvehicle storage berths, a
demand rate of p vehicle demands per second, and a vehicle
arrival rate of q vehicles per second, If the average waliing
time for a passenger 1s to be less than T seconds, then an
analysis based on queuing theory requlres that

X
qT 2 A /(1 =A) (A =pll-g)/q(1-p) ) (1)

This result is obtailned by modeling the vehicle demand and
vehicle arrival probabllities as Polsson distributions. Analysis
is simplified by assuming that vehlcle dispatching from a _
station is instantaneous, and thus a passenger quzue and an
empty-vehicle queue cannot exist simultaneously. It 1is also
assumed here that the probability of two passenger demands
occurring in a one-second interval 1s very small, The same
analysls shows that a passengers walt wlll exceed T# seconds

with probability € or less 1if

X
€2 A exp( -q(1 =A)T*) (2)

Depending on the station operating policy which 1s chosen,
relations (1) or (2) will provide a lower bound on the vehlcle
flow requirements into the station to satisfy that polley.
The constraint on vehicle inflow may be written as

a2 F(p,X,T) , (3)
where T is the average walting time if (1) is used, or the
"maximum" wait if (2) is used. If the full vehicle flow into
the station 1s not sufficlent to satisfy (3), then empty vehlcles
must be dispatched to the station to meet thls constralnt.
If eig represents the flow of empty vehlcles from station 1 to

n

stat J per hour, then
F(pi.X.T) - a, for F(pi.X.T) a,
g @, = (3600)% }
=1 ! 0 | Otherutse 0"
p, - Flpy.X,T for F(p,y ,.X,T a
S ey = (3600)*{ L ' . 1}
J=1 Py - 24 otherwlse

where F(p,,X,T) 1s defined by relations (1) or (2) and p, and
a; are thé arrival rates per second of vehicle demands aﬁd
full vehicles respectively. The relations of (4) consist of
2N equations and NXN unknowns, and may be therefore considered
as the constraints of an optimization problem for N 2. The
objective function chosen for minimization in this paper was
the total empty-vehlcle mileage traveled per hour. The problem
can be posed in the followlng way:

Under the constralnts of (4) and eijz 0,

Minlmlze 2 = S E c1J e1J
J=1 Jj=1

where ¢ 1s the distance between statlon 1 and statlion J. A
number %é efficient methods are aveilable for the soluticn
of this problem (7).
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Design of Optimal Feedback Systems for

Longitudinal Control of Automated Transit Vehiclesg*

W. L. Garrard and A. L. Kornhauser

ABSTRACT

Optimization theory is applied to the design of feedback con-
trol systems for high~capacity automated transit systems. The
" resulting controllers are shown to keep headway and velocity errors
small without causing passenger discomfort. Excellent dynamic re-
sponse is achieved during normal mainline operation, merging and
demerging, manuevering and emergency stopping. Useful design
charts are presented and the effects of the dynamics of the pro-
pulsion system are considered. It is concluded that optimization

theory is a useful tool in the design of longitudinal control systems

for automated transit systems.



Design of Optimal Feedback Systems for

Longitudinal Control of Automated Transit Vehicles
W. L. Garrard and A. L. Kornhauser**

1. INTR(SDUCTION

Almost all new urban transportation systems involve the use of
automatically controlled vehicles. Although physical character-
istics vary from system to systém, the control problems encountered
are similar. In many systems, such as personal rapid transit (PRT),
dual-mode, and automated freeways, the number of passengers per
vehicle is small, thereby short headway are necessary for high capacity.
This reguires a versatilé and efficient control system which must
maintain the proper spacing between vehicles without causing passen-
. ger discomfort. The control system must be reasonably economicai
to implement, adaptable to merging and demergihg from off-line
stations and maneuvering at interchanges, simple enough to insure
reliability, and suitable for use in emergency situations (Hajdu,
et al, 1968). |

Two control philosophies for automated transit systems have
evolved. The first is the moving-reference or vehicle—following
concept (Athans et al, 1966, Fenton '9_1;_ al, 1971, Brown, 1971, Garrard,
et al, 1972, Hesse, 1972). 1In systems based on this concept, eéch

vehicle receives information directly from other vehicles on the
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guideway or merging ramps. Control decisions are based on this inform-
ation. The second control philosophy is the fixed-reference or moving-
slot concept (Boyd and Lukas, 1972, Munson, -1972, Wilkie, 1970, Whitney
and Tomizuka, 1972). In systems based on this concept, vehicles do
not communicate directly with one another, but instead follow .
a hypothetical slot moving along the guideway at the nominal line
velocity. Fixed-reference systems differ from the moving-re-
ference systeﬁs in that the position of the vehicle is determined
with_resPect to the guideway rather than with respect to the
other vehicles within the system.
A number of investigators have concluded that fixed-reference
_ systems are supefior to moving~feference systems in high—capaéity
transit systems in which vehicleé must merge and demerge from
off-line stations and maneuver at interchanges. (Boyd"and Lukas, 1972,
Munson, 1972, Wilkie, 1970, Whitney and Tomizuka, 1972) Fixed-
reference systems appear to be superior for the following reasons:
1. Communication problems are reduced since intervehicular
communication is not necessary.
2. Merging strategies.are easily imﬁlemenfed;
3. Possible "shock~wave" type instabilities-due to maneuvering ' -

are avoided.
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In the present study optimization theory is applied to the
design of fixed-reference feedback control systems for high

capacity transit systems such as PRT and dual-mode. The resulting

optimal controllers are shown to keep headway and velocity

errors small without causing passenger discomfort. Excellent

dynamic response is achieved during normal mainline operation,

. merging and demerging, maneuvering, and emergency stopping.. The

effects of the dynamics of the propulsion system on the response of

the vehicle are considered. Useful design charts are presented and

applied to the design of a longitudinal control system for a high~

capacity PRT system.

2. VEHiCLE DYNAMICS AND THE CONTROL SYSTEM MODEL

2.1 Eguation of Motion

The differential equation describing the longitudinal

motion of the transit vehicle is

av _ _ _ . C- : - E e
Mg = FD(V‘,VW) + F bqg sin 8 -'F, @)

where:

mass of the wvehicle ' ) o

= velobity of the wvehicle

velocity of the wind (positive for a heéd wind)

= propulsive force

= gravitational acceleration

< =
@ v o Eﬁ

= slope of the guideway

Frj
)
i

aerodynamic drag

bz
i

M mechanical resistance



The aerodynamic drag is

. 2 ) ,
Fp, = Cp(V + V) (2)

where C5 is a drag 'coefficient." Furthermore, the propulsive
‘ .
force is assumed to be governed by

ar _ ,1 . ' . ,
ac = (T)F + Gl ‘ ‘ . {(3)
where:
T = time constant of the propulsion system -

i = control input to the propulsion system
G = gain constant of the propulsionm system .,

That is, the propulsion system is modeled as a first-order lag.

The error, e, is defined as

- e:__-;x_xc : . (4)

where

X the actual position of the Vehiclé
X

c. the Aesired or command position of the vehicle
El-2{-;(1)--can be re-written in terms of the error as

dt

2 C S - .2 F
de _ "D.Jde . dXc 2 F _ . 4% _ M
32 W GE*r*ac "V tyg-9gsin® M

Since V

2.2 Nondimensional Formulation

For purposes of generality, the system equations will be non-

dimensionalized. The following non-dimensional variables will be

used:



N

v o= Ele, non-dimensional control input to the propulsion
N
system
w o= %ﬂ , non-dimensional headwind velocity
N
e . .
Y =g’ non-dimensional error
XC R . PR
Yo = T 7 non-dimensional command position
c = %, non-dimensional time
_ TF . . .
£ = AR non—-dimensional propulsive force
N .
v = %E’ derivative with respect to non-dimensional time
- where: ’
Vg T nominal velocity of the vehicles on the main guideway
H = nominal nose to nose distance between vehicles on the main guideway
X H '
T = nominal time headway between vehicles, T = — .
N
The resulting system equations are
C . : . BT
.- D o v - _ Tg sin 8 _ -, _ "M
§=-(z) Hly + y, +w)" + £ 7 I
. : N N
F= - g-f + v ' i (7) )

During normal ' mainline operation the vehicle will operate at
near nominal velocity, and linearization of (6) and (7) is
legitimate. Furthermore ?c, the commanded acceleration, will

be zero, and §c' the commanded velocity, will be unity. The



resulting linearized equations of motion are

2C
B o= - (oD

_ﬁ—)H(1+w)'§r+f~d

Bt
I

(8)

. R P c u
g=2gsin® M Dy + l?, the non-dimensional
VN VNM M

disturbance force .

The velocity of the headwind is not known a priori; however,
its average value will in generél be zero. Thus the coefficient
2. |

D
M L]
will be.shown siubsequently, a feedback cohtroller designed on the

of § in (8) will be approximated by its average value As
basis of the above assumptions provides excellent dynamic response
for-.mainline operation with headwinds three times the nominal
vehicle velocity; for merging and demerging from off-line stations;

for maneuvering at interchanges; and for emergency control.

2. SYNTHESIS OF THE.OPTIMAL FEEDBACK CONTROL SYSTEM
3.1l State Variables

The vehicle ‘and propulsion system have béen modeled by a
set of linear differential equations with constant coefficients.
If the state variables are selected properly, it is possible to
‘use optimization theory to design a feedback controi system
which will keep headwa& and velocity errors small without causing
passenger discomfort (Athans, 1971), The appropriate state

variables for this problem are Headway error, velocity error,



acceleration error, and rate of change of propulsive force.
Headway ‘and. velocity error are obvious choices ~
for state variables; however, aécele;ation error and rate of '
change of propulsive force are less obvious candidates. The
reasons for selecting these two qﬁantities as'state variables
will be discussed iﬁ detail below. |
The state variables are Xy =¥y the non—dimensiqnal head-
way error; X, = §, the non-dimensional velocity error; Xy = Vs
the non-dimensional acceleration error; and x, = f, the rate

4
of change of the non-dimensional propulsive force. The control

_kvariable'is u = 6{ the réte of change of Fhe non-dimensional

input to the propulsion system. For purposes of control system design,
the non-dimensional disturbance force, d, is assumed constant (the
headwind is constant or the wvehicle ‘is ascending or descending a

constant slope). Using these definitions and assumptions, the equations

of. motion of the vehicle can be written in vector-matrix form as

% = Ax + bu ' - | (9)
where N
X = [x 1
2T Xy Ry X3 Kyply
0 1 0 0
0 0 1 0
A =1 o -%Cp 4 1
M
T
0 0 0 -]
and
b = [0 0 0 1].



The control u:will be selected in such a manner as to drive
the state variables to zero. 'The state variables Xy and Xy
represent the position and velocity errors and.the necessity of
driving these quantities to zero is clear. The séate variables
Xq and x, represént'the acceleration error and the rate of change
of propulsive force. The'acceleration error must be zero
if the position and velocity errors are to remain zero;
furthermore, in order to achieve zero acceleration . R
erxror, the propulsive force must equal the disturbance force.
gsince the disturbance force is assumed to be constant, the

propulsive force must also approach a constant value, and the

_derivative of the propulsive force, Xy must approach zero.

3.2 The Performance Index

The érror equations have been formulated in the standard
notation of optimal control theory; however, in order to apply
this theory a mathematical criterion for the measurement of

system performance is necessary. A quadratic performance index
is proposed. This index is

]

2 2 2 2 2
I (qlx1 + Q%5 +q3:j:3 + qux, + ru }y dt. {(10)

bof

o

The optimal feedback control problem is to determine the control,
u, as a function of the state variables in such'a'manner as to
minimize J. It can easily be shown that the control which

minimizes J drives the state variables to zero (Lee and Markus, 1567),
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The performance index J 'is the integral of the
weighted sum of the position error, velocity error, acceleration
error, derivative of the propulsive force, and the control
effort. Since the drag coefficient is small, the derivative of
the propulsive force is very nearly equal-to the jerk. The
performance index penalizes large position and velocity errors

and the control which minimizes J shoulé result in a system in
which these errors are kept small. The performance index also
penalizes large acceleration efrors and Jerks. These two
vafiables affect passenger comfort and the control which
ﬁinimizes J should also result in a system in which passenger
‘discomfort is minimized._ The rate of éhange of the control
input to the propulsion system ; u, mhst be included in the
performance index in order to obtain the optimal control in
feedback form.

It is of course possible to formulate many other performance
indices which include system error and passenger comfort;
howevef, use of a quaarafic performance index as given in (10)
permlts determlnatlon of the optimal control in feedback form.
This is one of the few classes of optlmlzatlon problems in
which the optimal feedback control can be found (Lee and Markus,
19675a In addition the optimal feedback control ié linear with
constant gains. Such a controller is easy to implement.

The feedback control which minimizes J is

w = -r 7t pTkx : (11)
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where K, the optimal gain matrix, is.the symmetric, positive-

definite solution of the matrix Ricatti equation

KA + 37K - Kb r 'bK + = 0 (12)

where qu ¢ '0 0™

[o o o qf.
Iterative methods for the solution of (12) allow rapid determin-

ation gf the optimal gain matrix by use of a high-speed digital

computer (Kleinman, 1968)

From (12) the optimal control in terms of the actual error

variables is

- - F {13)
H VN' VN MV

wheré thé K;j's.are the elements of the bptimal gain matrix X.
A block diagram‘of the vehicle and control system is shown®in Figuve
1. it can be seen that the input to the propulsion system is

- proportional to £he headway error, the derivative of the headway
efrof} the iﬁtegral of the headway error, énd tlie propulsive force.
Tﬁé optimal control.(l3) is similar to tﬁe control derived by
Whitney'and Tomizuka (1972) using classical techniques and by
Wilkie (1970) using optimization theory,: However, in neither of

these studies was the dynamics of propulsion system considered.

It should he noted that in all of these systems,

% The symbol "s" denotes the Laplace operator.
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steady-state errors due to constant biases in the measurements

of velocity errors, acceleration errors, and the rate”of'changar

of propulsive force are zero.

*

3.3 Determination of Weighting Matrix O.- ‘

The weighting factors 9y 9y 93+ 9, and r affect the.values
of the elements of K, the gain matrix.* 7The values of the
elements of the gain matrix in turn affect the dynamic response
of the system. The relationship between the weighting factors
and the dynamic response of the vehicle cannot be analytically
determined. If the weighting factors on headway and velocity
‘error are chosen to be large relative to the weighting factors on the
- acceleration errors and jerk (rate of change of propulsive force) a
system which zeros errors rapidly: but gives an uncomfortable ride
will“result, On..the other -hand, if the weighting factors on acceleratic
éréor and jerk are chosen to be large relative to the weighting factors
on headway and velocity error, the.ride will be comfortable but the sys-.
tem will be rather slugglsh in reducing the headway error to zero. Thu:
the de51gner must determine how the weighting factors affect -
the‘dynamlc response in order to obtain the proper trade-off -
between ride quality and adequate control of headway error.

Figs. 2-11 illustrate various system performance character—

istics as functions of the weighting factors.

.

Preliminary

* It can be shown that Kiy = Y9, ; the other gains must be

determined numerically, however,



computations indicated tﬂat the velocity error should be weighted about
ten times the position error (q2 = qul). This resulted in

tighter headway control as well as a more ctomfortable ride than

could be obtained by weighting the position error the Same as or
greater than the veldcity error. Since the performance index

- can be multiplied by a constant without changing the value of

"the optimal gain matrix, any one of the weighting factors can

be arbitrarily set equal to unity. Thus tﬁe weighting factor

on the control, r, was chosen to be one. The weighting factor on

acceleration error, q3, was set at tenJand the values of the other

. state-variable weighting factors were varied with respect to g .
. 2C _H

The coefficient’ was set at .025, a value typical of vehicles

in many:PRT and—dﬁal-mode systems (Whitney and Tomizuka, 1972, Wilkie, 1¢
| The headway error, acceleration, jerk, maximum power, and
the time to reduce the headway error to ten percent of.its
initial value were plotted versus the ratio of 94 to qq- The
maximum acceleration and jerk were determined for an initial

headway error, e, = 0.1 H and zero headwind. The maximum

headway error and maximum power were determined for e, = 0

and a headwind three times the nominal velocity of the

vehicle. The information presented in Figs. 2 - 11 is applicable

to a wide variety of systems since the guantities plotted are

non-dimensional. An example using specific values of V and H is

presented in Section 4. In Figs. 2 ~ 6 the time constant of the
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propulsion system was assumed to be one-tenth of the minimum

headway "time and weighting factors of 10, 1,000 and 10,000 were

placed on the jerk.

It is interesting to note in Fig. 2 that in order to obtain
maximum headway‘érrOrs of less than fifty percent, it is necessary
to weight the headway error at least ten times the acceleration
error. In Fig. 5, it can be seen that for values of the
weighting factor on headway error greater that ten, the time to
reduce a headway error to ten percent of its initial value ie, for all
practical purposes, constant and does not depend on the weighting
factor associated with the jerk. As would be expected, Figs. 3
and 4 indicate that acceleration and jerk increase as the ratio
of headway error to acceleration error increases. Furthermore,
the jerk increases at a faster rate than the acceleration and
has larger numerical values than the acceleration. Thus jerk
rather than accelerationlis the limiting factor in obtaining'

tight.control. Fig. 6 illustrates the maximum'power requirements

for various values of the weighting factors. The maximum power
required is smaller fo£ larxge values of the weighting factor
on the headway error than for small values and is sensitive to
the value of the weighting factor on jerk. It can be seen that
acceptable performance is obtained for rafios of 94 to dq
between one and ten thousand. Unacceptably large headway
errors result if ql/q3 islless than one and excessive jerk

results if ql/q3 is greatér than ten thousand. BAlso peak power

- requirements are not excessive for ql/q3 between one and ten

thousand.
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headway time, one-tenth the minimum headway time, and ten times the

minimum headway time. .

r

The response Characteristics of the vehicle for T = T andg

T = 10T are almost indistinguishable. This can be explained by ¢
referring to Tabje I. $he gains for position, velocity, and accel-
eration errors are almost identical for both values of the pro-
pPulsion systenm time constant. The gains for the derivative of

propulsive force are different, However, if the natural coefficient

of the Propulsive force, 23 is added to the gain for the derivative

tighter headway control was maintained with large propulsion system

time constants than with small. However, the accelerations, jerks
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and peak power were also larger.‘ The time reguired to reduce a
headway error to ten percent of its initial value did not vary
a great deal with the various values of the propulsive system
time constant.

Figs. 2 -.11 and Table I should be of considerable use in
the design of optimal feedback dontrol sjstems for automated ve-
hicles as the proper values of the weighting. factors for a given
set of specifications can be easily selected from the figures.
Once the weighting factors have been selected, the proper non-
dimensional gains can be found in Table I, and the dimensionalized
gains can then be determined from (13). Thus a systematic pro--
cedure is presented for the design a longitudinal control system
which maintains tight‘headway control wi;hout causing passenger

discomfort.
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Propulsion System Time Constants

2-17

T = .1lT, gy = 10q1, q, = 10, qq = 10

q1/d3 K14 Koy, | K3y Kag
10”2 0.316 2,469 7.776 1.205
1071 1.000 | 5.823 11.665 1.547
1 3.162 14.866 18.824 2.151
10 10. 000 40,664 32.340 3,217
10° 31.624 117.204 58.687 5.079
10 100, 000 349.970 111.879 8.270
10% 316.243 | 1068.284 222,545 13.563
10° 1000.000 | 3304.09 | * 457.215 22.012
10° 3162.434 | 10299.756 959.351 35.050

Table I - NonhDimenSional Gains for Various Values of




T = 10T, 99 = qul, 9y = 10, qq = 10

11/45 K14 Koy K4 A
1072 0.316 2.090 5.214 4.42¢
1071 1. 000 5.030 7.534 4.908
1 3.162 13.458 12.674 5.846
10 10.000 38.474 23.816 7.493
102 31.624 -|  114.159 47.669 10.165
10° 100. 000 346,134 98.628 14.300
10* 316.243 1063, 84 207.650 20.529
10° 1000.000 | 3299.276 441,348 29.787
10° 3162.434 | 10294.722 |- 942.977 43.457

T =T, qy = qul, q, = 10, qq = 10

41/44 K4 Kog K3y Kes,
1072 0.316 2.098 5:265 3,640
107t 1.000 5.049 7.617 4.122
1 3.162 13.486 12.792 5.049
10 10,000 38.512 23,960 6.670
102 31.624 114.203 47.827 9.329
107 100.000 346.182 98,794 13.446
10* 316.243 1063.896 207,825 19.661
10° 1000. 000 3299.327 441,516 28.909
106 3162.434 | 10294.773 | 943.164 42.572
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4. DESIGN OF AN OPTIMAL LONGITUDINAL FEEDBACK CONTROL SYSTEM

FOR A HIGH-CAPACITY PRT SYSTEM

4.1 System Specifications

A longitudinal control system was designed for a PRT system

with the following specifications:

Nominal Mainline Velocity = 50 ft/sec

Minimum Headway Time = 1 sec

Vehicle weight = 3200 lbs

Véhicle.Length = 10 ft

Maximum Acceleration in Mainline Operation = 4 ft/sec2
Maximum Acceleration for Merging ang Manuevering = 8 ft/sec2
Maximum Emérgency Deceleration = 25 ft/se02

Maximum Jerk in Mainline Operation = 4 ft/sec3

Maximum Jerk in Merging and Manuevering = 8 ft/sec3

Maximum Headway Error = 10 ft

Propulsion System Time Constant = 0.1 sec

The above specifications are typical of many proposed high-capacity

PRT systems and result in a system with a mainline capacity of 3600

vehicles/hr.

4.2 Selection of the Optimal Feedback Gains

The minimum headway for the svstem is 50 feeﬁ, thus a
maximum headway error of twenty feet is allowed. From F:j. 2,
it cah be seen that the following values of the weighting factors

+ . o S . - * - - 4
will result in a control system which satisfies this criterion
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d; . d5/9,
10 10 or greater
1000 100 or greater
10000 - 1000 or greater
Table II -~ Values of weighting factors which

satisfy maximum headway error requirement

However the maximum allowable jerk in mainline operation is
®
4 ft/sec3 and from Fig. 4 the following values of the weighting
factors will result in a control system which satisfies this

criterion.

qy , d3/d,
10 10 or less
- - : 1000 ‘ 100 or less
10000 1000 or less

Pable III - Values of weighting factors which

satisfy maximum jerk requirements

* Non~dimensional jerk is obtained by multiplying dimensional
jerk by T2/V and non-dimensional acceleration is obtained by

multiplying dimensional acceleration by T/V.



From Fig. 3 it can be seen that the acceleration criterion of

4 ft/sec2 is satisfied by the weighting factors given in Table III.

Thus the trade-off between passenger comfort and tight headway

control glves the follow1ng alloWable values for the weilghting factors.

q q; /45

10 10
1000 100
10,000 . 1000

. Table IV - Values of weighting factors which

satisfy maximum headway error and maximum

jerk requirements

Thus a choice of three sets of weighting factors is available.

From Figs. 5 and 6 it can be seen that the response time and peak

Power requirements are nearly the same for all three sets of gains.
Slmulatlons of merging and mainline operations revealed no im-

portant dlfferences 1n dynamlc response characteristics for the three

sets of weighting factors: consequently, graphical results are-only

Presented for the case in which the welghtlng factors are g,

and ql/q3 = 10.

= 10
The non-dimensional feedback galns for this case

. are given in Table I,
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1.3 Simulatién Resﬁlts

The nonlinear vehicle dynamics (6) and the dynamics 6f the cogf '
;rol=system(§) were simulated on a digitél computer, and the fol-
1owing sitﬁétions were studied:

1. Mainline'operation with a suddenly applied headwind of

150 ft/sec (Fig 12).

2. Mainline operation with an initial headway error of 5 ft

3. An emergency stop with a constant deceleration of

25 f£t/sec® (Fig 14).

4, Merging from an off-line station following a trap-

ezoidal acceleration profile (Fig 15). and

5. Manuevering or slot slipping fdllowing a trapezoidal

acceleration profile (Fig 16),

’ ) .

It can be seen that the maximumlheadway error due to a sudd-
nly applied wind gugt of 150 ft/sec is 6 ft and the maximum vel-
city error is 5.5 ft/sec. The maximum jerk for an initial
xxrror of 5 feet is 2.5 ft/se03 and the‘maximum acceleration is 1
‘t/sec”, thus.the resulting ride is véry comfortable. These results
:ixre to be exéected since the aeéign was based on mainline operating
sonditions. | .

Duriné merging, emergency stopping, and slotAslipping the
ehicle is not operating at mainline conditions. For example,
Zuring merging the vehicle starts with zero velocity and accelerates

=0 line velocity following a commgnded acceleration profile as

2-22



shown in Fig. 15. The differential equations describing the state

of the system during merging, emergency stopping and slot slipping,
are nonlinear with time varying coefficients. Our control system

was designed on the basis of state equations which were linear with
constant coefficients. However, as can be sesn from an examination
of Figs. 14-16, éhe resulting controller follows the desired profiles
very well even though the conditions are vastly different from those
. encountered during mainline operation. The results of the merging

and slot slipping operations are summarized in Table IV.

At end of manuever |Maximum

At end of manuever Headway Error Velocity Error Jerk

per cent | ft per cent ft/sec ft/sec3

Merging .28 0.14 3.90 - 1.95 10.13

Slot Slipping -1.03 -.50 .32 0.16 10.64

Table IV - Final Headway and Velocity Errors for Merging and
Manuevering.

Thus a controller designed for mainline oéeration can also be used

for other operations such as emergency stopping, merging, and
manuévering. This is important since it shows that a linear controller
with fixed gains is sufficient for all control operations and thus the -

complexity of the control system is minimal.

It should be kept in mind that the emergency deceleration simula-
tion does’not consider the effect of slippage between the'vehicle and
the guideway nor the effects ©f discrete data sampling and noisy-reasurew
ments. Such effects can significantlyhdegrade the vehicles stopping -
ability. The simulation does indicate that the controller does
follow even the most severly different acceleration profiles from

that of mainline operation (zero acceleration). This implies that
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the sensitivity of the computed Kj values to changes in mainline
acceleration conditions is very sméll. The sensitivity of Kij to
variations in the other assumed nondimensional nominal conditions
was not investigated.

5. CONCLUSION )

From the results presented above, it appéars that optimal con-
trol theory can be usefully applied to the design of longitudinal
‘control systems for automated transit systems with a wide variety
of characteristics. The resulting control systems keep headway and
velocity errors small without causing passenger discomfort, and
excellent dynamic response is achieved during mainline operation,
merging and demerging, maneuvering.and emérgency stopping. The con-
xtrollers.are linear with constant gains and should be relatively
economical to implement and simple enough to insure reliability.

Since the data presented in Figs. 2-11 and Table I are non-
dimensional, the results are applicable to a wide variety of systems.
The designer should find these data useful in selecting the appro-
priate feedback gains for various system specifications.

In the present study perfect information sensing has been
assumed. In practice of course this is never the case; consequently,
the problems associated with nqisy sensors, incomplete information
and sampled data should be investigated. . It is felt that optimal
filtering theory (Jazwinski, 1970) can be profitable applied to the
problem of noisy and incomplete da£a. Specific difficulty in imple-
mentation is expected resulting from problems in measuring e
(acceleration error) and f (rate of change of propulsive force).

If such measurements are available, they will be quite noisy and a
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degradation ‘and possible instability in the controller performance may
result. Efforts are being made to design an observer for these state
variables in an attempt to eliminate the requirement of measﬁring‘g
and E. Also the sénsitivity of the response of the optimally controlled
vehicle to parameter variations such as changes in vehicle weight due

to passengers lodding or unloading needs further study.
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Fig. 1 Block Diagram of Vehicle, Propulsion System,
and Feedback Controller
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Fig. 2

Maximum Percentage Headway Error vs,
qy/q3 for a Headwind Three Times
Nominal Velocity: qy = 1Oq1,

q3 = 10 apd T = 1T
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Fig. 3 Maximum Non-dimensional Acceleration

Error vs. q1/q3 for a Ten Percent
Initial Headway Error: q, = 10qq,
qq = 10 and T = 1T
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Fig. &4 Maximum Non-dimensional Jerk vs.
q1/q3 for a Ten Percent Initial
Headway Error: -q, = 10q1,
qq =10 and 1 .1T
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Fig. 5

" Non-dimensional Time Required to

Reduce Headway Error to Ten Per-
cent of Initial Value vs. ql/q3:
q, = qul, q; = 10 and t = .17
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Non-Dimensional Peak Power Required
for a Headwind Three Times Vehicle
Nominal Velocity vs, ql/q3:

q, = 10q1, q5 = 10 and T = 1T
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Fig. 7

Maximum Percentage Headway Error
for Various Propulsion System
Time Constants for a Headwind
Three Times Vehicle Nominal Velocity:
qy = 10q1, qg = 10, and q = 10
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Fig. 8

Maximum Non-dimensional Acceleration
Error for Various Propulsion System
Time Constants for Ten Percent

- Initial Headway Error: a, = 10q4,

q3 = 10, and q = 10
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Fig. 9

Maximum Non-dimensional Jerk for-
Various Propulsion System Time
Constants for a Ten Percent
Initial Headway Error: 4y = 10qq,
q3 = 10, and q = 10
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Fig. 10

Non-dimensional Time Required to
Reduce Headway Error to Ten
Percent of Initial Value for
Various Propulsion System Time
Constants: ¢, = 10q1, qq = 10,
and q = 10
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Fig. 11

Pl

Non-dimensional Peak Power Required
for a Headwind Three Times Vehicle
Nominal Velocity for Various
Propulsion System Time Constants:
qy = 10q1, 95 = 10 gnd q = 10
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Fig. 12 Response of Vehicle to a Suddenly
Applied Headwind of 150 ft/sec

" 249



fol8

10°

1072

| 1 !
< O

24 _,..=.W_”_==‘

o

16}~

ANTVA TIVILINI 40 % Ol Ol ¥o¥u3 AVMAVYEH 30N03y OL Iwil

2-50



Fig. 13 Response of Vehicle to a 5 ft
‘ (10%) Initial Headway Error

2-51



b 'b
o] ol Ol ¢Ol 201 Ol | -0l 2-0l
I | ! ] I I 7

100

I'O

0’

AH3Ir WNNIXYIA

2=52



Fig. 14 Vehicle Velocity During Emergency
Stopping (Emergency Deceleration
25 ft/secz)
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- Fig. 15 Vehicle Acceleration During Merging
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Fig. 16 Vehicle Acceleration During
Maneuvering (Slipping One
Headway Slot)
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d - Use of Staté ‘Observers in the

Optimal Feedback Control of Automated Transit Vehicles

W. L. Garrard and A. L. Kornhauser

Abstract

The theory of optimal control and the theory of observers
is applied to the design'of feedback systems for Tongitudinal
control of vehicles in automgted, high-capacity transit systems.:
The résu]fing controllers require only measurement of position
ahd velocity errors and excellent dynamic response is achieved
For mainline operation, for meﬁging and demerging from stations,

for manuevering at intersections and for emergency stopping.
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Use of State Observers in .the
_Optimal;Feedback Control of Automated Transit Vehicles

% e
W. L. Garrard and A. L. Kornhauser

1. INTRODUCTION

Almost all new urban transportation systems involve the use
of automatically controlled vehicles. In many systems, such
as personal rapid transit (PRT), dual-mode, and autohated
freeways, the number of passengers per véhic]e is small and short
headways are necessary fo} high capacity. This requires a
versatile and efficient control system which must maintain
the proper spacing between vehicles without causing passenger
discomfort. The control system must be reasonably economical
to implement, adaptable to merging and demerging from off-
line stations and maneuvering at interchanges, simple enough to
insure reliability, and suitable for use in emergency situationstl];.
In a previous study optimization theory was applied to the
design of feedback control systems for hfgh éapacity transit
systems such as PRT or dua]~modet21r3 The resulting optimal

controllers were shown to keep headway and velocity errors small

. ,
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without causing passenger discomfort. Computer simulations in-
dicated that excellent djnamic }esponse could be achieved fd}

normal mainline operation with headwinds three times the

nohinal mainline vehicle ve]ocity,“for merging and demerging, for man-
euvering, and for Emergency'stopping.

The appropriate state variables for the Tongitudinal control
problem were determined to be the position error, velocity error,
acceleration error, and rate of change of propulsive force.
Implementation of the optimal controller necessitated measurement
of all of these variabTeé. In actual practice, it is inconvenient
and expensive to measure accurately the acceleration error and
rate of change of propulsive force. In this paper, the theory
of observers is appiied to the estimation of all of the state
variables from measurements of only position ard velocity errorszT
The dynamic response resu1fing from use of a controller in which
acceleration error and rate of changes of propulsive force are
estimated is shown to compare favorably 'with that achieved when
all state Qariab]es are measured. Also the effects on system

performance of sampling of position error are considered.

¢. VEHICLE DYNAMICS AND CONTROL SYSTEMS MODEL
2.1 System Operating Philosophy

This study focuses on the design of longitudinal controllers
for vehicles operating transit systems which function in a synchronous
or quasi-~synchronous manner. In both synchronous and quasi-synchronous
oﬁeration, vehicles follow hypothetical sTots moving along
the guideway at nominal Tine ve]ocity. The sTot lengths are

uniform and are equal to the length of the vehicle plus the
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minimum allowable nose to tail separation between adjacent vehicles.
Vehicles do not communicate directly with one another and the posi-
tion of a vehicle is determined with respect to the guideway
rather than with respect to other vehicles in the system 4-71.
Vehic]es'may be maneuvered from one slot to another in order to
resolve conflicts at intersections and merge points. The vehicles
communicate with wayside computers which manage traffic on the
mainline and at stations and intersections. These computers
command the maneuvers necessary to avoid conflicts and also
institute emergency procédures in case of a vehicle failure,

The longitudinal control system must be capable of holding
a vehicle within its alloted slot under the action of headwinds
and other disturbances without causing passenger discomfort. In
addition, it must be capable of closely following one of a set
of acceleration-deceleration profiles as commanded by the wayside
computers during merging and demerging, maneuvering to avoid con-
flicts at intersections or to push a failing vehicle, or stopping
for emergencies. The remainder of %his paper is concerned with

the design of such a control system.

2.2 Equation of Motion
The differential equation describing the longitudinal

motion of the transit vehicle is

ndy

I% = "FD(V’VN) + F - Mg sin 8 - Fuy (1)




vhere:

M = mass of the vehicle

V = velocity of the vehicle

Vyy = velocity of the wind (positive for a head vind)
F = propulsive force

g = gravi*tational acceleration

= slape of the guideway
FD = aerodynamic drag

FM = mechanical resistance
The aerodynamic drag is

_ 2
F —CD(V+V)

D (2)

W

where CD is a drag coefficient. Furthermore, the propulsive

force is assumed to be governed by

ar - ~(hF + @i (3)

where:
T = time constant of the propulsion system
i = control input to the propulsion system
G = gain constant of the propulsion system.
That is, the propulsion system as modeled as a Tirst-order lag.

The error, e, is defined as

e = X - X, (4)
where
X = the actual position of the vehicle
X, = the desired or command position of the vehicle.
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2.3 Nondimensional Formulation
For purposes of generality, the system equations will be non-

dimensijonalized. The following non-dimensional variables will be

used:
1261 L _ >
VooE Ry non-dimensional control input to the propulsion
N system
w o= %ﬂ- non-dimensional headwind velocity
N
y = %, non-dimensional error
. Xd”
Yo & g non-dimensional command position
o = %3 non-dimensional time
f = I%— non-dimensional propulsive force
s = %E’ derivative with respect to non-dimensional time
where:
VN = nominal velocity of the vehicles on the main guideway
H = nominal nose to nose distance between vehicles on the main
guideway
T = nominal time headway between vehicles, T = %w
N

The resulting system equations are
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During normal mainline operation the vehicle will operate at
near noﬁina] velocity, and linearization of (6) and (7) is

legitimate. Furthermore ;C, the commanded acceleration, will
be zero, and &C, the commanded velocity, wi]] be unity. The

resulting linéarized equations of motion are

as 2CD -
y = _(mmu) H(1 +wy + f - d
(8)

-F:-I-f‘l‘v

T

FT C.H

q Tg sin 8 . M o+ | D Y w + 1)2, the non-dimensional

VN VNM' M

disturbance force.
The velocity of the headwind is not-known a priori; howaver,

its average value will in general be zero. Thus the'coefficient

ZCDH

M-
has been shown that a feedback controller designed on the basis

of y in (8) will be approximated by its average value It

of the above assumptions provides excellent dynamic response

for mainline operation with headwinds three times the nominal
vehicle velocity; for merging and demerging frem off-line stations;

for maneuvering at interchanges; and for emergency control {27.



3. SYNTHESIS OF THE OPTIMAL FEEDBACK CONTROL SYSTEM

3.7 State Variables

The yehic]e and propulsion system have been modeled by a
set of Tinear differential equations with constant coefficients.
If the state variab]es are selected properly, it is possible to
use optimization theory to design‘a feedback contrﬁ] system
which will keep headway and velocity errors small without causing
passenger discomfort. As shown previously [2], the appropriate
state variables for this problem are headway error, velocity error,
acceleration error, and Eate of change of propu]sive'force.
Headway and velocity error are obvious choiées for state variables;
however, acce]erqtion error and rate of change of propuisive force
are less obvious candidates. The reasons for selecting these
two quantities as state variables will be discussed below.

The state varjables are Xy = Y, the non-dimensional head-
way error; X, = 9, the non-dimensional velocity error; Xq = ;,
the non-dimensional acceleration error; and Xg = f, the rate
of change of the non-dimensional propulsive force. The control
varjable is u = Q, the rate of change of the non-dimensional
input to the propulsion system. For purposes of control system
design, the non-dimensjonal disturbance force, d, s assumed con-
stant (the headﬁind is constant or the vehicle is ascending or
descending a constant sTope). Using these definitions and asgumpu
tions, the equations of motion of the vehicie can be written in |

vector-matrix form as

X = Ax + bu (9)



where

T _
R
0
A= lo o -2CpH g}
o o o L
and
bl = fo o o 13.

The control will be selected in such a manner as to drive
the state variables to zero. The state variables Xy and Xo
represent the position and velocity errors and the necessity of
driving these quantities to zero is clear. The state variables
X and Xy represent the acceleration error and the rate of change
of propulsive force. The acceleration error must be zero
if the position and velocity errors.are to remain zero; further-
more, in order to achieve zero acceleration error, the propulsive
force must equal the disturbance force. Since the disturbance
force is assumed to be constant, the propulsive force must also

approach a constant value, and the derivative of the propulsive

force, Xq > must approach zero.

3.2 The Performance Index
The error equations have been formulated in the standard

notation of optimal control theory; however, in order to apply



this theory a mathematical criterion for the measurement of
system performance is necessary. A quadratic performance index

is proposed. This index is

V=g Lagxy Fapxy +oagxgotoqgxg +oru®) dt. (10)

The optimal feedback control problem is to determine the control,
u, as 3 function of the state variables in such a manner as to
minimize J. It is well known that the control which minimizes
J drives the state variabies to zero;{8].

The performance index J is the integral of the weighted
sum of the position error, velocity error, acceleration error,
derivative of the propulsive force, and the control effort.
Since the drag coefficient is small, the derivative of the pro-
pulsive force is very nearly equal to the jerk. The performance
index penalizes large position and velocity errors and the con-
trol which minimizes J should result in a system in which these
errors are kept small. The performancé index also penalizes
large acceleration errors and jerks. These two variables affect
passenger comfort and the control which minimizes J should also
result in a sygtem in which passenger discomfort is minimized.
The rate of change of the control input to the propulsion system,
u, must be included in the performance 1ndéx in order to obtain
the optimal control in feedback form.

It is of course possible to formulate many other performance

indices which include system error and passenger comfort;
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however, use of a quadratic pgrformance index as given in (10}
permits determination of the optimal control in feedback form.
This is one of the few classes of optimization problems in

which the optimal feedback control can be found [8]. In addition
the optimal feedback control is Tinear with constant gains. Such
a controller is easy to implement.

The feedback control which minimizes J is

= -r~h bTkx (11)

where K, the optimal gain matrix, is the symmetric, positive-

definite solution of the matrix Ricatti equation

KA + ATK - Kb r"'bK + Q = 0 (12)
where _ -
a4 0 0 0 -
0 q, ¢ ¢
Q =
0 ¢ 95 0
{P 0 0 9

Iterative methods for the solution of (12) allow rapid determin-
ation of the optimal gain matrix by use of a high-speed diéital
computer [917.

From (12) the optima] control in terms of the actual error

~variables 1is

K]‘lé K24é K34Té~ K44T
U = - - - -
H VN VN MVN

"Tle

(13)
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vhere the Kij's

The optimal control (13) is similar to the control derived by

are the elements of the optimal gain matrix K.

Whitney and Tomisuka [6] using classical techniques and'by
Wilkie [7] using optimization theory. However, in nejther of

these studies was the dynamics of propulsion system considered.

3.3 Determination of Weighting Matrix Q.

The weighting factors 915 Gps 93> Gy and r affect the values
of the elements of K, the gain matrix.* The.va1ues of the elements
of the gain matrix in turn affect the dynamic response of the
system. The relationship between the weighting factors and the
dynamic response of the vehicle cannot be analytically determined.
If the weighting factors on headway and velocity error are
chosen to be large relative to the weighting factors on the
acceleration errors and jerk (rate of change of propulsive force)
a system which zeros errors rapidly buf which gives an uncomfort-
able ride will result. On the other hand, if the weighting
factors on acceleration error and jerk are chosen to be large re-
lative to the weighting factors on headway and velocity error,
the ride will be comfortable but the system will be rather sluggish
in reducing the headway error to zero. Thus the designer must
determine how the weighting factors affect the dynamic response
in order to obtain the proper trade-off between ride quality and

adequate control of headway error. The relationship between the

* It can be shown that K14 = /E] ; the other gains must he

determined numerically, however.
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weighting factors and the dynamic response of the optimally
controlled vehicle was studied in detail by Garrard and
Kornhauser [2] for several values of the propulsion system time

constant.

4. IMPLEMENTATION OF THE OPTIMAL CONTROLLER

4.1 Development of the Observer

Implementation of the optimal feedback,contfa]]er necessitates
measurement of all state varjables -~ the position error, velocity
error, acceleration error, and rate of change of propulsive
force. In actual practice,.it is inconvenient and expensive to
measure accurately the acceleration error and rate of change of
propulsive force. However it is possible, to estimate or re-
construct the values of these variables from measurements of
the position and velocity errors. This estimation can be accurately
- performed by using the theory of observers [3].
For design purposes, the vehicle and propulsion system 1s

modeled by (9), and the optimal control is

Al

u= -k'x (14)

Where from (11), ET = r"]bTK. The measurable output of the

system 1s defined as a vector, y, of dimensionality p < 4.

—

This vector is given by
y = Cx {15)

where C is a matrix of dimensionality p x 4.
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In order to implement the optimal control, x must be
reconstructed from y. This 15 ﬁossib]e if and only if the system
is observable [3}. It can easily be shown that the position
error of the vehicle must be measured in order to guarantee
observability. The velocity error, acceleration error, and
derivative of propulsive force can be reconstructed from the
position error alone. However, it is relatively simple to

measure velocity error; therefore, the matrix C is assumed

‘0 I 0 0 '

~That is, both position and velocity errors are measured.

to be

The theory of observers can be used to synthesize a network
the output of which is a suitable approximation'pf the state of
the vehicle. An observer is a dynamical system which operates
on the output of another dynamical system in order to provide an
estimate of the state of that system [3]. The estimate of the
state of the original system is denoted as g, and‘thé state

of the observer is defined as z where

A

z = Tx | (17)
‘and

é_= Fz + Gy + Thu (18)
with

TA - FT = GC (19)
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In the longitudinal control probiem as formulated in this study,

z 1s of dimensionality two, and

FIE:

The matrices F and G are 2 x 2 and the matrix T 1s 2 x 4. Thus

I >
o

—
N

sixteen matrix elements have been introduced. Matrix equation (19)
represents eight algebraic equations relating the elements of F,

G and_T, thus eight of the matrix elements can be chosen arbij-
trarily. These.e1ements'wi1] be selected in such a manner as to
result in a simp]e,:efficient observer.

First the matrix F is selected as

F = (21)

The reasons for selecting F in this form will be given Tater.

Substitution of (21) into (19) yields

My - Bty = oegyg | (22a)

et =9y (22b)
199147 957 =0, ty,.= t,, = 0 and the structure of the observer
is simplified with no apparent degradation of performance. After
making this simplification, the remaining equations resulting

from the substitution of (27) into {(19) are
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Aty - By, = gy, (23a)
“Aatay T 9y, (23b)
ty, * (z-AI)t]3 - Bt,; =0 (23c)
ty, + (zuxz)tz3 = 0 (23d)
tyg + (m-)\!)t]2 - Bt24 = 0 (23e)
thy + km~12)t24 = 0 (23f)
-2 H -
where g = m and m = T
Now
1-1 ] 0 0 0
T 0 ] 0 0
, ' (24)
0 tyot1atatsy Loy “t1g
R T i
. f12t23 %20t tpg Y13
B A A A

where A = Btg4 . Obviously 8 # 0. It can alss be shown that

t24 = 0 1f‘922 = 03 thergforg,(gzz # 0. A block diagram of the
observer, vehicle and propulsion system is shown in Fig. 1.

It can be shown that an observer does not change the eigen--
values of the ariginal system but simply adjoins its eigenvalues

to those of the ariginal system [31. Thus if the original system
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is stable and the eigenvalues of the observer are chosen to

have negative real parts, the resulting system will also be

stable. If the eigenvalues of the observer are chosen to be large,
the estimate of the state will approach the actual value of

the state extremely rapidly; however, the resulting system is
extremely sensitive to Highnfrequency disturhances. O0n the

other hand, if the eigenvalues of the observer are small, the
estimate of the state approaches the actual value of the state

very slowly and the overall performance of the system is sub-
stantially degraded. In.practice the eigenvalues of the observer
are selected to be sTightly larger than the largest ejgenvalues

of the original system. From {21), the eigenvalues of the observer
are A] and A,. There appears to be no reason for having A] differ
from 12; therefore, A] and Azrwere set equal to one another and
were made siightly Targer than the lTargest eigenvalue of the
ariginal system. The values of the constants B, 990> and 995,
appear have no appreciable affect on the dynamic response of

the vehicle and hence were set equal to one.

4.2 Effects of the Observer on Dynamic Response

The response of the vehicle with the observer was determined
as a function of q]/q3 for zero initia! headway error and a
headwind three times the véhic]e’nominaT velocity and for an
initial headway error of ten percent and zero headwind. The
propulsion system time constant was assumed to be one tenth the

headway time; however, Garrard and Kornhauser [2] have demonstrated
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that the dynamic response of the optimally controlled vehicle is

relatively insensitive to this parameter. The parameter

2C_.H
—ﬁg— was set at .025, a value typical of small automated transit

vehicles [6,7]). The values of the non-dimensional gains are
given in Table I.

The headway error, acceleration, jerk, maximum pfower, and
the time to reduce the headway error to ten percent of its
initial value were plotted versus the ratio of 4y to 95 for the ‘
case in which all states‘were sensed and for the case in which only
position and velocity were sensed. The maximum acceleration and
jerk were determined for an initial headway error of ten percent
and zero headwind. The maximum headway error and maximum power
were determined for zero jnitial headway and a headwind three
times thé nominal velocity of the vehicle. The responses ob-
tained for an initial headway error were graphically indistinguish-
able [Figs. 3-5] and only small increases in maximum headway
error and peak power resu1ted from use of the observer to

estimate the acceleration and rate of change of propulsive force.

5. EXAMPLE: DESIGN OF A LONGITUDINAL FEEDBACK CONTROL SYSTEM
FOR A HIGH-CAPACITY PRT SYSTEM )
A Tongitudinal control system was designed for a PRT system
with the following specifications:
Nominal Mainline Velocity = 50 ft/sec
Minimum Headway Time = 0.5 sec

Vehicle and Passenger Weight = 3200 1bs
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Vehicle Length = 10 ft

Maximum Acceleration in Mainline Operation = 4 ft/sec2

Maximum Acceleration for Merging and Manuevering = 8 ft/sec2

Maximum Emergency Deceleration = 25 ft/sec2

Maximum Jerk in Mainline Operation = 4 ft/sec3

Maximum Jerk in Merging and Manuevering = 8§ ft/sec3

Maximum Headway Error = 7.5 ft

Propulsion System Time Constant = 0.05 sec
The above specifications are typical of many proposed high-
capacity PRT systems and'resu]t in a system with a mainline capacity
of 7200 vehicles/hr. The minimum nominal spearation between
adjacent vehicles is 15 feet, thus even in the case in which
the leading vehicle encounters. a sudden gust of 150 ft/sec,
the minimum separation between the leading and following vehicle
is 7.5 feet. |

The nominal headway for the system is 25 ft., thus a maximum
headway error of thirty percent is allowed. From Fig. 2
it can be seen that this criterion will be satisfied for q1/q3
greater than one. The maximum allowable jerk in mainline
operation is 4 ft/sec3 and from Fig. 4? q]/q3 must be less than or equal
to one. Thus passenger, comfort and headway control requirements
are satfsfjed for q]/q3-equa] to one, The non-dimensional feed-
back géins for fhis case are givem in Tabie 1. The most negative
eigenvalue for this system is F10.48; therefore, the eigenvalues

‘of the observers were set at -12.

Non-dimensional jerk is obtained by multiplying dimensional
jerk by T2/V and non-dimensional acceleration is obtained by
multiplying dimensional acceleration by T/V.
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ay/a3 Kyg Kog K3q Kag

1072 0.316 2.469 7.776 1.205
107! 1.000 5.823 11.665 1.547
1 3.162 14.866 18.824 2.151
10 110.000 40.664 32.340 3.217
102 31.624 117.204 58.687 5.079
103 100.000 349.970 | 111.879 8.270
10% 316.243 1068.284 222 .545 13.563
10° 1000.000 3304.094 457.215 22.012
10° 3162.434 10299.756 959,357 35,050
Table I ~ Non-Dimensional Gains for Various Values of

Gy/a5, T =

T, 9, =

109y, a5 =

3-20
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The nonlinear vehicle dynqmics (6) the dynamics of the
Propulsion system {7), and the observer (18) were simulated on
a digital computer. The following situations are illustrated:
1. Mainline operation with a suddenly applied headwind of
50 ft/sec (Figs 7 and 8)

2. Mainline operation with an initial headway error of
2.5 ft {Fig. 9)

3. An emergency stop with a constant deceleration of
25 ft/sec (Figs 10 and 11) |

4. Merging frqm‘aﬁ'off~]ine station following a trap-
ezoidal acceleratjon profile (Fig 12)

In Fig. 7 it can be seen .that the maximum headway error due
to a suddenly applied wind gust of 50 ft/sec is 1.5 ft and the
maximum velocity error is 1.8 ft/sec. The response of the vehicle
with only position and velocity measured is Very near the response
with all states sensed. The rapidity with which the estimated
acceleration approaches the actual acceleration is iTlustrated
in Fig. 8. As shown Yn Fig. 9, the‘maximum Jerk for an initial
error of 2.5 ft is 4 ft/sec3, and the maximum acceleration is 0.75
ft/secz, thus the resulting ride is not uncomfortable.  In this
case the difference between the response of the vehicle with alj
states sensed and the response with only position and velocity sensed
are indistinguishabie.

During merging, emergency stopping, and maneuvering the
‘vehicle is not operating at mainline conditions. For example,

during merging the vehicle starts with zero velocity and accelerates
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to line velocity following a commanded acceleration profile as
shown in Fig. 12. The differential equations describing the
state of the system during merging, emergency stopping, and man-
uevering are nonlinear with time-varying coefficients. The control
system in this study was designed on the basis of state equations
whicH were linear with constant coefficients. However as can be
seen from an examination of Figs. 10-12, the resulting controller
follows the desired profiles very well even though the conditions
are vastly different from those encountered during mainline
operation. There is 1it£]e difference in the dynamic response

for the system with the observer and the system in which all states
are sensed. Thus a controller designed for mainline operation

can also be used for other operations such as emergency stopping,
merging, and manuevering. This is important since it shows that

a linear controller with fixed gains is sufficient for all con-
trol operations and -thus the complexity of the contro] system

is minimal.

A conventional filter was also tested as a means of im-
plementing the optimal control without sensing the acceleration
and rate of change of propulsive force. The non-dimensionalized
velocity measurement was fed into a filter with the following
transfer function

; : (s + 1) (1,5 + 1)
B (TZS + 1)(r4s + 1)

vhere TTq = K44, Ty + Ty = K34, T, = .]T], and Ty = .]T3.

* .
The notation "s*® denotes the Laplace operator.
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The output of the filter was used as part of the control input.

The resulting approximation of the optimal control was
u = ‘K'|4y - (K24 - ]).y - 8 . (26)

In this example, use of this_fi]ter yielded a controller which
approximated the optimal control fairly closely. A typical

result is shown 1in Fig.‘Q. However, for values of the ratio

q]/q3 greater than ten, stability problems resulted from use of the
filter described above.

The velocity of thervehic]e can easily be measured con-
tinuously by use of a tachometer; however, it appears that posj-
tion can only be determined at discrete intervals by means of
sensors jnbedded in the guideway [6]. The effects of sampling
of position on the dynamic respoense of the system was determined
for sensors placed at five-foot intervals on the glhideway. At
a.ﬁominal Tine ve]oéity of 50 feet/sec, this corresponds to a
sampling time of one-tenth of a second. Of course when the vehicle
is traveling at less than line velocity, for example during merging
or emergency stopping, the sampling rate decreases,

A typical ekamp]e'of vehicle response with sensors placed
at five-foot intervals is shown in Figs. 13-16. It can be seen
th&t sampling does not significantly degrade performance. Emerg-
ency stopping and response to sudden]& applied headwinds were also
considered and the vehicle response did not differ significantly
“from that obtained with continuous position measurement. The
results for merging and emergency stopping are summarized in

Table II.

3-23



Emergency

Table II

Conculsion

From-the results presented above

Merging Stop
: Final Velocity] Maximum Final
Final Headway Error Error Jerk Headway Error
per ft. per ft/sec ft/sec3 ft.
cent cent
A1l States 1.70 0.425 | 2.69 1.35 10.40 4.25
Sensed
Positon and
Velocity Only 1.91 0.475 2.95 1.45 10.66 4.70
Sensed
Position and
Velocity Only 2.00 0.500 3.00 1.50 10.48 4.80
Sensed-Position '
Sampled
Comparison of System Errors for A11 States

Sensed, Position and Velocity Only Sensed, and

Position and Velocity Only Sensed-Position

- Sampled.

» 1t appears that optimal

control theory can be usefully applied to the design of longity-

dinal control systems for automated transit vehicles with a

wide variety of characteristics.

The resulting control systems

keep headway and velocity errors small without causing passenger

discomfort, and excellent dynamic response

mainline operation

is achieved during

» merging and demerging, maneuvering and
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emergency stopping. The controllers are Tinear with constant
gains and should be re]ative]y‘economica1 to implement and simple
enough to insure reliability. It is shown that Tittle de-
gradation in dynamic response results if only position and
velocity errors are measured and system performance is litt]e
effected by reasonably frequent sampling of position error.

The effects of propulsion system noniinearties, uncertain know-
ledge of vehicle parameters, random sensor errors, and random
disturbances are currently being investigated.

Also the dynamics 6f slippage between the wheels and
guideway has not been included ih the current simulation and
the effects of sensor spacings and sensor errors has not been
fully investigated. These effects can be significant during
emergency stopping situations when high decelerations are

commended and rubber-tired vehicles are used.
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Fig. 1 Block Diagram of Optimal

System with Observer
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Fig. 2 Maximum Percentage Headway Errer vs.
q]/q3 for a Headwind Three Times
~~~~~ Nominal Velocity: Gp = ]Oq], 94 = 10
93 = 10 and T = 1T
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Maximum Non-dimensionai Acceleration

Error vs. q]/q3 for a Ten Percent
Initial Headway Evror: qz = 109;, q, = 10
5 = and 10 and T = 1T
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Fig.

Maximum Non-dimensional Jerk vs.
q]/q3 for a Ten Percent Initial
Headway Error: G, = 10q], G = 10
q3 = 10 and t = .17
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Fig.

Non-dimensional Time Required to
Reduce Headway Error to Ten Per-~
cent of Initial Value vs. q1/q3:

q, = IOq], Gy = 10 and T = .17
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Fig. 6

Peak Dimensionless Power vs.
qT/q3 for a Headwind Three Times
Nominal Mainline Velocity, G, =

10, G, = 10, G4, = 10q1 and T = T
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Fig. 7 Position and Velocity Error for
a 50 ft/sec Headwind-Mainline

Operation
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Fig. 8 Actual and Estimated Acceleration
for a 50 ft/sec Headwind-Mainline

Operation
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Fig.

Position Error, Velocity Error,
Acceleration, and Jerk for a
2.5 ft Initial Headway Error-

Mainline Operation
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Fig. 10 Velocity - Emergency .Stopping
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Fig. 11 Position - Emergency Stopping
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Fig. 12 Acceleration - Merging from Off-

Line Station
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Fig.

13

Position and Velocity Errors
for a 2.5 Foot Initial Position
Error - Sampled and Continuous

Data
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Fig. 14 Acceleration for a 2.5 Foot
Initial Position Error - Sampled

and Continuous Data
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Fig. 15 Jerk for a 2.5 Foot Initial
Position Error - Sampled and

Continuous Data
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Fig. 16 Acceleration - Merging from Off-Line

Station - Sampled and Continuous Data
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