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Abstract

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular
method for scalable Bayesian inference. These methods are based on sampling a
discrete-time approximation to a continuous time process, such as the Langevin
diffusion. When applied to distributions defined on a constrained space, such
as the simplex, the time-discretisation error can dominate when we are near the
boundary of the space. We demonstrate that while current SGMCMC methods for
the simplex perform well in certain cases, they struggle with sparse simplex spaces;
when many of the components are close to zero. However, most popular large-scale
applications of Bayesian inference on simplex spaces, such as network or topic
models, are sparse. We argue that this poor performance is due to the biases of
SGMCMC caused by the discretization error. To get around this, we propose the
stochastic CIR process, which removes all discretization error and we prove that
samples from the stochastic CIR process are asymptotically unbiased. Use of the
stochastic CIR process within a SGMCMC algorithm is shown to give substantially
better performance for a topic model and a Dirichlet process mixture model than
existing SGMCMC approaches.

1 Introduction

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for
scalable Bayesian inference (Welling and Teh, 2011; Chen et al., 2014; Ding et al., 2014; Ma et al.,
2015). The foundation of SGMCMC methods are a class of continuous processes that explore a target
distribution—e.g., the posterior—using gradient information; these processes converge to a Markov
chain which samples from the posterior distribution exactly. SGMCMC methods replace the costly
full-data gradients with minibatch-based stochastic gradients, which provides one source of error.
Another source of error arises from the fact that the continuous processes are almost never tractable
to simulate; instead, discretizations are relied upon. In the non-SG scenario, the discretization errors
are corrected for using Metropolis-Hastings corrections. However, this is not (generically) feasible
in the SG setting. The result of these two sources of error is that SGMCMC targets an approximate
posterior (Welling and Teh, 2011; Teh et al., 2016; Vollmer et al., 2016).
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Another significant limitation of SGMCMC methods is that they struggle to sample from constrained
spaces. Naively applying SGMCMC can lead to invalid, or inaccurate values being proposed. The
result is large errors near the boundary of the space (Patterson and Teh, 2013; Ma et al., 2015;
Wenzhe Li, 2016). A particularly important constrained space is the simplex space, which is used
to model discrete probability distributions. A parameter ω of dimension d lies in the simplex if it
satisfies the following conditions: ωj ≥ 0 for all j = 1, . . . , d and

∑d
j=1 ωj = 1. Many popular

models contain simplex parameters. For example, latent Dirichlet allocation (LDA) is defined by a set
of topic-specific distributions on words and document-specific distributions on topics. Probabilistic
network models often define a link probability between nodes. More generally, mixture and mixed
membership models have simplex-constrained mixture weights; even the hidden Markov model
can be cast in this framework with simplex-constrained transition distributions. As models become
large-scale, these vectors ω often become sparse–i.e., many ωj are close to zero—pushing them to
the boundaries of the simplex. All the models mentioned have this tendency. For example in network
data, nodes often have relatively few links compared to the size of the network, e.g., the number of
friends the average social network user has will be small compared with the size of the whole social
network. In these cases the problem of sampling from the simplex space becomes even harder; since
many values will be very close to the boundary of the space.

Patterson and Teh (2013) develop an improved SGMCMC method for sampling from the probability
simplex: stochastic gradient Riemannian Langevin dynamics (SGRLD). The improvements achieved
are through an astute transformation of the simplex parameters, as well as developing a Riemannian
(see Girolami and Calderhead, 2011) variant of SGMCMC. This method achieved state-of-the-art
results on an LDA model. However, we show despite the improvements over standard SGMCMC,
the discretization error of this method still causes problems on the simplex. In particular, it leads to
asymptotic biases which dominate at the boundary of the space and causes significant inaccuracy.

To counteract this, we design an SGMCMC method based on the Cox-Ingersoll-Ross (CIR) process.
The resulting process, which we refer to as the stochastic Cox-Ingersoll-Ross process (SCIR), has no
discretization error. This process can be used to simulate from gamma random variables directly,
which can then be moved into the simplex space using a well known, standard transformation. The
CIR process has a lot of nice properties. One is that the transition equation is known exactly, which
is what allows us to simulate from the process without discretization error. We are also able to
characterize important theoretical properties of the SCIR algorithm, such as the non-asymptotic
moment generating function, and thus its mean and variance.

We demonstrate the impact of this SCIR method on a broad class of models. Included in these
experiments is the development of a scalable sampler for Dirichlet processes, based on the slice
sampler of Walker (2007); Papaspiliopoulos (2008); Kalli et al. (2011). To our knowledge the
application of SGMCMC methods to Bayesian nonparametric models has not been explored, and
we consider this a further contribution of the article. All proofs in this article are relegated to the
Supplementary Material. All code for the experiments will be made available online, and full details
of hyperparameter and tuning constant choices has been detailed in the Supplementary Material.

2 Stochastic Gradient MCMC on the Probability Simplex

2.1 Stochastic Gradient MCMC

Consider Bayesian inference for continuous parameters θ ∈ Rd based on data x = {xi}Ni=1. Denote
the density of xi as p(xi|θ) and assign a prior on θ with density p(θ). The posterior is then defined,
up to a constant of proportionality, as p(θ|x) ∝ p(θ)

∏N
i=1 p(xi|θ), and has distribution π. We define

f(θ) := − log p(θ|x). Whilst MCMC can be used to sample from π, such algorithms require access
to the full data set at each iteration. Stochastic gradient MCMC (SGMCMC) is an approximate
MCMC algorithm that reduces this per-iteration computational and memory cost by using only a
small subset of data points at each step.

The most common SGMCMC algorithm is stochastic gradient Langevin dynamics (SGLD), first
introduced by Welling and Teh (2011). This sampler uses the Langevin diffusion, defined as the
solution to the stochastic differential equation

dθt = −∇f(θt)dt+
√

2dWt, (2.1)
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where Wt is a d-dimensional Wiener process. Similar to MCMC, the Langevin diffusion defines a
Markov chain whose stationary distribution is π.

Unfortunately, simulating from (2.1) is rarely possible, and the cost of calculating ∇f is O(N) since
it involves a sum over all data points. The idea of SGLD is to introduce two approximations to
circumvent these issues. First, the continuous dynamics are approximated by discretizing them, in
a similar way to Euler’s method for ODEs. This approximation is known as the Euler-Maruyama
method. Next, in order to reduce the cost of calculating ∇f , it is replaced with a cheap, unbiased
estimate. This leads to the following update equation, with user chosen stepsize h

θm+1 = θm − h∇f̂(θ) +
√

2hηm, ηm ∼ N(0, 1). (2.2)

Here,∇f̂ is an unbiased estimate of∇f whose computational cost is O(n) where n� N . Typically,
we set∇f̂(θ) := −∇ log p(θ)−N/n

∑
i∈Sm

∇ log p(xi|θ), where Sm ⊂ {1, . . . , N} resampled at
each iteration with |Sm| = n. Applying (2.2) repeatedly defines a Markov chain that approximately
targets π (Welling and Teh, 2011). There are a number of alternative SGMCMC algorithms to SGLD
(Chen et al., 2014; Ding et al., 2014; Ma et al., 2015), based on approximations to other diffusions
that also target the posterior distribution.

Recent work has investigated reducing the error introduced by approximating the gradient using
minibatches (Dubey et al., 2016; Nagapetyan et al., 2017; Baker et al., 2017; Chatterji et al., 2018).
While, by comparison, the discretization error is generally smaller, in this work we investigate an
important situation where it degrades performance considerably.

2.2 SGMCMC on the Probability Simplex

We aim to make inference on the simplex parameter ω of dimension d, where ωj ≥ 0 for all
j = 1, . . . , d and

∑d
j=1 ωj = 1. We assume we have categorical data zi of dimension d for

i = 1, . . . , N , so zij will be 1 if data point i belongs to category j and zik will be zero for all
k 6= j. We assume a Dirichlet prior Dir(α) on ω, with density p(ω) ∝

∏d
j=1 ω

αj

d , and that the

data is drawn from zi |ω ∼ Categorical(ω) leading to a Dir(α+
∑N
i=1 zi) posterior. An important

transformation we will use repeatedly throughout this article, is that if we have d random gamma
variables Xj ∼ Gamma(αj , 1). Then (X1, . . . , Xd)/

∑
j Xj will have Dir(α) distribution, where

α = (α1, . . . , αd).

In this simple case the posterior of ω can be exactly calculated. However, in the applications we
consider the zi are latent variables, and they are also simulated as part of a larger Gibbs sampler. Thus
the zi will change at each iteration of our algorithm. We are interested in the situation where this is
the case, and N is large, so that standard MCMC runs prohibitively slowly. The idea of SGMCMC in
this situation is to use sub-samples of the zis to propose appropriate local-moves to ω.

Applying SGMCMC to models which contain simplex parameters is challenging due to their con-
straints. Naively applying SGMCMC can lead to invalid values being proposed. The first work to
introduce an SGMCMC algorithm specifically for the probability simplex was Patterson and Teh
(2013), the algorithm is a variant of SGLD known as stochastic gradient Riemannian Langevin
dynamics (SGRLD). Patterson and Teh (2013) try a variety of transformations for ω which will
move the problem onto a space in Rd, where standard SGMCMC can be applied. They also build
upon standard SGLD by developing a Riemannian variant (see Girolami and Calderhead, 2011).
Riemannian MCMC takes into account the geometry of the space, which assisted with errors at the
boundary of the space. The parameterisation Patterson and Teh (2013) find numerically performs
the best is ωj = |θj |/

∑d
j=1 |θj |. They use a mirrored gamma prior for θj , which has density

p(θj) ∝ |θj |αj−1e−|θj |. This means the prior for ω remains the required Dirichlet distribution. They
calculate the density of zi given θ using a change of variables and use an SGLD update to calculate θ.

2.3 SGRLD on Sparse Simplex Spaces

Patterson and Teh (2013) suggested that the boundary of the space is where most problems occur
using these kind of samplers. In many popular applications, such as LDA and modeling sparse
networks, some of the components ωj will be close to 0, referred to as a sparse space. In other words,
there will be many j for which

∑N
i=1 zij = 0. In fact, this is their main motivation for introducing the
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Figure 1: Boxplots of a 1000 iteration sample from SGRLD and SCIR fit to a sparse Dirichlet
posterior, compared to 1000 exact independent samples. On the log scale.

Riemannian ideas to their SGLD algorithm. In order to demonstrate the problems with using SGRLD
in this case, we provide a similar experiment to Patterson and Teh (2013). We use SGRLD to simulate
from a sparse simplex parameter ω of dimension ten with N = 1000. We set

∑N
i=1 zi1 = 800,∑N

i=1 zi2 =
∑N
i=1 zi3 = 100, and

∑N
i=1 zij = 0, for 3 < j ≤ 10. The prior parameter α was set to

0.1 for all components. Leading to a highly sparse Dirichlet posterior. We will refer back to this
experiment as the running experiment. In Figure 1 we provide boxplots from a sample of the fifth
component of ω using SGRLD after 1000 iterations with 1000 iterations of burn-in, compared with
boxplots from an exact sample. The method SCIR will be introduced later. We can see from Figure 1
that SGRLD rarely proposes small values of ω. This becomes a significant issue for sparse Dirichlet
distributions, since the lack of small values leads to a poor approximation to the posterior; as we can
see from the boxplots.

We hypothesize that the reason SGRLD struggles when ωj is near the boundary is due to the
discretization by h, and we now try to diagnose this issue in detail. The problem relates to the bias of
SGLD, caused by the discretization of the algorithm. We use the results of Vollmer et al. (2016) to
characterize this bias for a fixed stepsize h. For similar results when the stepsize scheme is decreasing,
we refer the reader to Teh et al. (2016). Proposition 2.1 is a simple application of Vollmer et al.
(2016, Theorem 3.3), so we refer the reader to that article for full details of the assumptions. For
simplicity of the statement, we assume that θ is 1-dimensional, but the results are easily adapted to
the d-dimensional case.

Proposition 2.1. (Vollmer et al., 2016) Under Vollmer et al. (2016, Assumptions 3.1 and 3.2), assume
θ is 1-dimensional. Let θm be iteration m of an SGLD algorithm for m = 1, . . . ,M , then the
asymptotic bias defined by limM→∞

∣∣∣1/M∑M
m=1 E[θm]− Eπ[θ]

∣∣∣ has leading term O(h).

While ordinarily this asymptotic bias will be hard to disentangle from other sources of error, as Eπ[θ]
gets close to zero, h will have to be set prohibitively small to give a good approximation to θ. The
crux of the issue is that, while the absolute error remains the same, at the boundary of the space
the relative error is large since θ is small, and biased upwards due to the positivity constraint. To
counteract this, in the next section we introduce a method which has no discretization error. This
allows us to prove that the asymptotic bias, as defined in Proposition 2.1, will be zero for any choice
of stepsize h.

3 The Stochastic Cox-Ingersoll-Ross Algorithm

We now wish to counteract the problems with SGRLD on sparse simplex spaces. First, we make the
following observation: rather than applying a reparameterization of the prior for ω; we can model the
posterior for θj directly and independently as θj | z ∼ Gamma(αj +

∑N
i=1 zij , 1). Then using the

gamma reparameterization ω = θ/
∑
j θj still leads to the desired Dirichlet posterior. This leaves the

θj in a much simpler form, and this simpler form enables us to remove all discretization error. We do
this by using an alternative underlying process to the Langevin diffusion. The diffusion we use is
known as the Cox-Ingersoll-Ross (CIR) process, commonly used in mathematical finance. A CIR
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process θt with parameter a and stationary distribution Gamma(a, 1) has the following form

dθt = (a− θt)dt+
√

2θtdWt. (3.1)

The standard CIR process has more parameters, but we found changing these made no difference
to the properties of our proposed scalable sampler and so we omit them (for exact details see the
Supplementary Material).

The CIR process has many nice properties. One that is particularly useful for us is that the transition
density is known exactly. Define χ2(ν, µ) to be the non-central chi-squared distribution with ν
degrees of freedom and non-centrality parameter µ. If at time t we are at state ϑt, then the probability
distribution of θt+h is given by

θt+h | θt = ϑt ∼
1− e−h

2
W, W ∼ χ2

(
2a, 2ϑt

e−h

1− e−h

)
. (3.2)

This transition density allows us to simulate directly from the CIR process with no discretization error.
Furthermore, it has been proved that the CIR process is negative with probability zero (Cox et al.,
1985), meaning we will not need to take absolute values as is required for the SGRLD algorithm.

3.1 Adapting for Large Datasets

The next issue we need to address is how to sample from this process when the dataset is large.
Suppose that zi is data for i = 1, . . . , N , for some large N , and that our target distribution is
Gamma(a, 1), where a = α+

∑N
i=1 zi. We want to approximate the target by simulating from the

CIR process using only a subset of z at each iteration. A natural thing to do would be at each iteration
to replace a in the transition density equation (3.2) with an unbiased estimate â = α+N/n

∑
i∈S zi,

where S ⊂ {1, . . . , N}, similar to SGLD. We will refer to a CIR process using unbiased estimates
in this way as the stochastic CIR process (SCIR). Fix some stepsize h, which now determines how
often â is resampled rather than the granularity of the discretization. Suppose θ̂m follows the SCIR
process, then it will have the following update

θ̂m+1 | θ̂m = ϑm ∼
1− e−h

2
W, W ∼ χ2

(
2âm, 2ϑm

e−h

1− e−h

)
, (3.3)

where âm = α+N/n
∑
i∈Sm

zi.

We can show that this algorithm will approximately target the true posterior distribution in the same
sense as SGLD. To do this, we draw a connection between the SCIR process and an SGLD algorithm,
which allows us to use the arguments of SGLD to show that the SCIR process will target the desired
distribution. More formally, we have the following relationship:

Theorem 3.1. Let θt be a CIR process with transition 3.2. Then Ut := g(θt) = 2
√
θt follows the

Langevin diffusion for a generalized gamma distribution.

Theorem 3.1, allows us to show that applying the transformation g(·) to the approximate SCIR
process, leads to a discretization free SGLD algorithm for a generalized gamma distribution. Similarly,
applying g−1(·) to the approximate target of this SGLD algorithm leads to the desired Gamma(a, 1)
distribution. Full details are given after the proof of Theorem 3.1. The result means that similar to
SGLD, we can replace the CIR parameter a with an unbiased estimate â created from a minibatch
of data. Provided we re-estimate a from one iteration to the next using different minibatches, the
approximate target distribution will still be Gamma(a, 1). As in SGLD, there will be added error
based on the noise in the estimate â. However, from the desirable properties of the CIR process we
are able to quantify this error more easily than for the SGLD algorithm, and we do this in Section 4.
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Figure 2: Kolmogorov-Smirnov distance for SGRLD and SCIR at different minibatch sizes when
used to sample from (a), a sparse Dirichlet posterior and (b) a dense Dirichlet posterior.

Algorithm 1 below summarizes how SCIR can be used to sample from the simplex parameter
ω | z ∼ Dir(α+

∑N
i=1 zi). This can be done in a similar way to SGRLD, with the same per-iteration

computational cost, so the improvements we demonstrate later are essentially for free.

Algorithm 1: Stochastic Cox-Ingersoll-Ross (SCIR) for sampling from the probability simplex.
Input: Starting points θ0, stepsize h, minibatch size n.
Result: Approximate sample from ω | z.
for m = 1 to M do

Sample minibatch Sm from {1, . . . , N}
for j = 1 to d do

Set âj ← α+N/n
∑
i∈Sm

zij .
Sample θ̂mj | θ̂(m−1)j using (3.3) with parameter âj and stepsize h.

end
Set ωm ← θm/

∑
j θmj .

end

3.2 SCIR on Sparse Data

We test the SCIR process on two synthetic experiments. The first experiment is the running experiment
on the sparse Dirichlet posterior of Section 2.3. The second experiment allocates 1000 datapoints
equally to each component, leading to a highly dense Dirichlet posterior. For both experiments, we
run 1000 iterations of optimally tuned SGRLD and SCIR algorithms and compare to an exact sample.
For the sparse experiment, Figure 1 shows boxplots of samples from the fifth component of ω, which
is sparse. For both experiments, Figure 2 plots the Kolmogorov-Smirnov distance (dKS) between
the approximate samples and the true posterior (full details of the distance measure are given in the
Supplementary Material). For the boxplots, a minibatch of size 10 is used; for the dKS plots the
proportion of data in the minibatch is varied from 0.001 to 0.5. The dKS plots show the runs of five
different seeds, which gives some idea of variability.

The boxplots of Figure 1 demonstrate that the SCIR process is able to handle smaller values of ω
much more readily than SGRLD. The impact of this is demonstrated in Figure 2a, the sparse dKS
plot. Here the SCIR process is achieving much better results than SGRLD, and converging towards
the exact sample at larger minibatch sizes. The dense dKS plot of Figure 2b shows that as we move
to the dense setting the samplers have similar properties. The conclusion is that the SCIR algorithm
is a good choice of simplex sampler for either the dense or sparse case.

4 Theoretical Analysis

In the following theoretical analysis we wish to target a Gamma(a, 1) distribution, where a =

α+
∑N
i=1 zi for some data z. We run an SCIR algorithm with stepsize h for M iterations, yielding

the sample θ̂m for m = 1, . . . ,M . We compare this to an exact CIR process with stationary
distribution Gamma(a, 1), defined by the transition equation in (3.2). We do this by deriving the
moment generating function (MGF) of θ̂m in terms of the MGF of the exact CIR process. This allows
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us to quantify the moments of θ̂m in the analysis to follow. For simplicity, we fix a stepsize h and,
abusing notation slightly, set θm to be a CIR process that has been run for time mh.

Theorem 4.1. Let θ̂M be the SCIR process defined in (3.3) starting from θ0 after M steps with
stepsize h. Let θM be the corresponding exact CIR process, also starting from θ0, run for time Mh,
and with coupled noise. Then the MGF of θ̂M is given by

Mθ̂M
(s) = MθM (s)

M∏
m=1

[
1− s(1− e−mh)

1− s(1− e−(m−1)h)

]−(âm−a)
, (4.1)

where we have

MθM (s) =
[
1− s(1− e−Mh)

]−a
exp

[
θ0

se−Mh

1− s(1− e−Mh)

]
.

The proof of this result follows by induction from the properties of the non-central chi-squared
distribution. The result shows that the MGF of the SCIR can be written as the MGF of the exact
underlying CIR process, as well as an error term in the form of a product. Deriving the MGF enables
us to find the non-asymptotic bias and variance of the SCIR process, which is more interpretable than
the MGF itself. The results are stated formally in the following Corollary.
Corollary 4.2. Given the setup of Theorem 4.1,

E[θ̂M ] = E[θM ] = θ0e
−Mh + a(1− eMh),

so that, since Eπ[θ] = a, then limM→∞ | 1M
∑M
m=1 E[θ̂m]− Eπ[θ]| = 0 and SCIR is asymptotically

unbiased. Similarly,

Var[θ̂M ] = Var[θM ] + (1− e−2Mh)
1− e−h

1 + e−h
Var[â],

where Var[â] = Var[âm] for m = 1, . . . ,M and

Var[θM ] = 2θ0(e−Mh − e−2Mh) + a(1− e−Mh)2.

The results show that the approximate process is asymptotically unbiased. We believe this explains
the improvements the method has over SGRLD in the experiments of Sections 3.2 and 5. We also
obtain the non-asymptotic variance as a simple sum of the variance of the exact underlying CIR
process, and a quantity involving the variance of the estimate â. This is of a similar form to the strong
error of SGLD (Sato and Nakagawa, 2014), though without the contribution from the discretization.
The variance of the SCIR is somewhat inflated over the variance of the CIR process. Reducing this
variance would improve the properties of the SCIR process and would be an interesting avenue for
further work. Control variate ideas could be applied for this purpose (Nagapetyan et al., 2017; Baker
et al., 2017; Chatterji et al., 2018) and they may prove especially effective since the mode of a gamma
distribution is known exactly.

5 Experiments

5.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA, see Blei et al., 2003) is a popular model used to summarize a
collection of documents by clustering them based on underlying topics. The data for the model is a
matrix of word frequencies, with a row for each document. LDA is based on a generative procedure.
For each document l, a discrete distribution over the K potential topics, θl, is drawn as θl ∼ Dir(α)
for some suitably chosen hyperparameter α. Each topic k is associated with a discrete distribution
φk over all the words in a corpus, meant to represent the common words associated with particular
topics. This is drawn as φk ∼ Dir(β), for some suitable β. Finally, each word in document l is drawn
a topic k from θl and then the word itself is drawn from φk.

LDA is a good example for this method because φk is likely to be very sparse, there are many words
which will not be associated with a given topic at all. The code is an adaption of the code released by
Patterson and Teh (2013), which we apply to a dataset of scraped Wikipedia documents. At each

7
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Figure 3: (a) plots the perplexity of SGRLD and SCIR when used to sample from the LDA model of
Section 5.1 applied to Wikipedia documents; (b) plots the log predictive on a test set of the anonymous
Microsoft user dataset, sampling the mixture model defined in Section 5.2 using SCIR and SGRLD.

iteration a minibatch of 50 documents is sampled in an online manner. We use the same vocabulary
set as in Patterson and Teh (2013) which consists of approximately 8000 words. The exponential
of the average log-predictive on a held out set of 1000 documents is calculated every 5 iterations
to evaluate the model. This quantity is known as the perplexity, and use a document completion
approach to calculate it (Wallach et al., 2009). The perplexity is plotted for five runs using different
seeds, which gives an idea of variability. Similar to Patterson and Teh (2013), for both methods we
use a decreasing stepsize scheme of the form hm = h[1 +m/τ ]−κ. The results are plotted in Figure
3a. While the initial convergence rate is similar, SCIR keeps descending past where SGRLD begins to
converge. This experiment serves as a good example for the impact that removing the discretization
error has for this problem. Further impact would probably be seen if a larger vocabulary size is
used, leading to sparser topic vectors. In real-world applications of LDA, it is quite common to use
vocabulary sizes above 8000.

5.2 Bayesian Nonparametric Mixture Model

We apply SCIR to sample from a Bayesian nonparametric mixture model of categorical data, based
on Dunson and Xing (2009). To the best of our knowledge, the development of SGMCMC methods
for Bayesian nonparametric models has not been considered before, so we deem this to be another
contribution of the work. In particular, we develop a truncation free, scalable sampler based on
SGMCMC for Dirichlet processes (DP, see Ferguson, 1973). For more thorough details of DPs and
the stochastic sampler developed, the reader is referred to the Supplementary Material. The model
can be expressed as follows

xi | θ, zi ∼ Multi(ni, θzi), θ, zi ∼ DP(Dir(a), α). (5.1)

Here Multi(m,φ) is a multinomial distribution with m trials and associated discrete probability
distribution φ; DP(G0, α) is a DP with base distribution G0 and concentration parameter α. The DP
component parameters and allocations are denoted by θ and zi respectively. We define the number
of observations N by N :=

∑
i ni, and let L be the number of instances of xi, i = 1, . . . , L. This

type of mixture model is commonly used to model the dependence structure of categorical data, such
as for genetic or natural language data (Dunson and Xing, 2009). The use of DPs (Ferguson, 1973)
means we can account for the fact that we do not know the true dependence structure. DPs allow us
to learn the number of mixture components in a penalized way during the inference procedure itself.

We apply this model to the anonymous Microsoft user dataset (Breese et al., 1998). This dataset
consists of approximately N = 105 instances of L = 30000 anonymized users. Each instance details
part of the website the user visits, which is one of d = 294 categories (here d denotes the dimension of
xi). We use the model to try and characterize the typical usage patterns of the website. Since there are
a lot of categories and only an average of three observations for any one user, these data are expected
to be sparse. To infer the model, we use an novel algorithm, which is a minibatched version of the
slice sampler (Walker, 2007; Papaspiliopoulos, 2008; Kalli et al., 2011). We assign an uninformative
gamma prior on α, and this is inferred similarly to Escobar and West (1995). We minibatch the users
at each iteration using n = 1000. For multimodal mixture models such as this, SGMCMC methods
are known to get stuck in local modes (Baker et al., 2017), so we use a fixed stepsize for both SGRLD
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and SCIR. Once again, we plot runs over 5 seeds to give an idea of variability. The results are plotted
in Figure 3b. They show that SCIR consistently converges to a lower log predictive test score, and
appears to have lower variance than SGRLD. SGRLD also appears to be producing worse scores as
the number of iterations increases. We found that SGRLD had a tendency to propose many more
clusters than were required. This is probably due to the asymptotic bias of Proposition 2.1, since this
would lead to an inferred model that has a higher α parameter than is set, meaning more clusters
would be proposed than are needed. In fact, setting a higher α parameter appeared to alleviate this
problem, but led to a worse fit, which is more evidence that this is the case.

6 Discussion

We presented an SGMCMC method, the SCIR algorithm, for simplex spaces. We show that the
method has no discretization error and is asymptotically unbiased. Our experiments demonstrate that
these properties give the sampler improved performance over other SGMCMC methods for sampling
from sparse simplex spaces. Many important large-scale models are sparse, so this is an important
contribution. A number of useful theoretical properties for the sampler were derived, including the
non-asymptotic variance and moment generating function. Finally, we demonstrate the impact of the
sampler on a variety of interesting problems including a novel scalable Dirichlet process sampler. An
interesting line of further work would be reducing the non-asymptotic variance, which could be done
by means of control variates.
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A Proofs

A.1 Proof of Proposition 2.1

Proof. Define the local weak error of SGLD, starting from θ0 and with stepsize h, with test function
φ by

E
∣∣φ(θ1)− φ(θ̄h)

∣∣ ,
where θ̄h is the true underlying Langevin diffusion (2.1), run for time h with starting point θ0. Then
it is shown by Vollmer et al. (2016) that if φ : Rd → R is a smooth test function, and that SGLD
applied with test function φ has local weak error O(h), then

E

∣∣∣∣∣ lim
M→∞

1/M

M∑
m=1

φ(θm)− Eπ[φ(θ)]

∣∣∣∣∣
is also O(h). What remains to be checked is that using such a simple function for φ (the identity),
does not cause things to disappear such that the local weak error of SGLD is no longer O(h). The
identity function is infinitely differentiable, thus is sufficiently smooth. For SGLD, we find that

E[θ1|θ0] = θ0 + hf ′(θ0).

For the Langevin diffusion, we define the one step expectation using the weak Taylor expansion
of Zygalakis (2011), which is valid since we have made Assumptions 3.1 and 3.2 of Vollmer et al.
(2016). Define the infinitesimal operator L of the Langevin diffusion (2.1) by

Lφ = f ′(θ) · ∂θφ(θ) + ∂2θφ(θ).

Then Zygalakis (2011) shows that the weak Taylor expansion of Langevin diffusion (2.1) has the
form

E[θ̄h|θ0] = θ0 + hLφ(θ0) +
h2

2
L2φ(θ0) +O(h3).

This means when φ is the identity then

E[θ̄h|θ0] = θ0 + hf ′(θ0) +
h2

2
[f(θ)f ′(θ) + f ′′(θ)] +O(h3).

Since the terms agree up to O(h) then it follows that even when φ is the identity, SGLD still has local
weak error of O(h). This completes the proof.

A.2 Proof of Theorem 3.1

Proof. Suppose we have a random variable U∞ following a generalized gamma posterior with data z
and the following density

f(u) ∝ u2(α+
∑N

i=1 zi)−1e−u
2/4.

Set a := 2(α+
∑N
i=1 zi), Then ∂ log f(u) = (2a− 1)/u− u/2, so that the Langevin diffusion for

U∞ will have the following integral form

Ut+h |Ut = Ut +

∫ t+h

t

[
2a− 1

Us
− Us

2

]
ds+

√
2

∫ t+h

t

dWt.

Applying Ito’s lemma to Ut to transform to θt = g−1(Ut) = U2
t /4 (here g(·) has been stated in the

proof), we find that

θt+h | θt = θt +

∫ t+h

t

[a− θs] ds+

∫ t+h

t

√
2θtdWt.

This is exactly the integral form for the CIR process. This completes the proof.

Now we give more details of the connection between SGLD and SCIR. Let us define an SGLD
algorithm that approximately targets U∞, but without the Euler discretization by

U(m+1)h |Umh = Umh +

∫ (m+1)h

mh

[
2âm − 1

Us
− Us

2

]
ds+

√
2

∫ (m+1)h

mh

dWt, (A.1)
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where âm is an unbiased estimate of a; for example, the standard SGLD estimate âm = α +
N/n

∑
i∈Sm

zi; also h is a tuning constant which determines how much time is simulated before
resampling âm.

Again applying Ito’s lemma to Umh to transform to θmh = g(Umh) = U2
mh/4, we find that

θ(m+1)h = θmh +

∫ (m+1)h

mh

[âm − θs] ds+

∫ (m+1)h

mh

√
2θtdWt.

This is exactly the integral form for the update equation of an SCIR process.

Finally, to show SCIR has the desired approximate target, we use some properties of the gamma
distribution. Firstly if θ∞ ∼ Gamma(a, 1) then 4θ∞ ∼ Gamma(a, 14 ), so that U∞ = 2

√
θ∞ will

have a generalized gamma distribution with density proportional to h(u) ∝ u2a−1e−u
2/4. This is

exactly the approximate target of the discretization free SGLD algorithm (A.1) we derived earlier.

A.3 Proof of Theorem 4.1

First let us define the following quantities

r(s) =
se−h

1− s(1− e−h)
, r(n)(s) = r ◦ · · · ◦ r︸ ︷︷ ︸

n

(s).

Then we will make use of the following Lemmas:
Lemma A.1. For all n ∈ N and s ∈ R

r(n)(s) =
se−nh

1− s(1− e−nh)
.

Lemma A.2. For all n ∈ N, s ∈ R, set r(0)(s) := s, then

n−1∏
i=0

[
1− r(i)(s)(1− e−h)

]
=
[
1− s(1− e−nh)

]
.

Both can be proved by induction, which is shown in Section B.

Suppose that θ1|θ0 is a CIR process, starting at θ0 and run for time h. Then we can immediately write
down the MGF of θ1, Mθ1(s), using the MGF of a non-central chi-squared distribution

Mθ1(s) = E
[
esθ1 |θ0

]
=
[
1− s(1− e−h)

]−a
exp

[
sθ0e

−h

1− s(1− e−h)

]
.

We can use this to find E
[
esθM | θM−1

]
, and then take expectations of this with respect to

θM−2, i.e. E
[
E
[
esθM | θM−1

]
| θM−2

]
. This is possible because E

[
esθM |θM−1

]
has the form

C(s) exp[θM−1r(s)], where C(s) is a function only involving s, and r(s) is as defined earlier.
Thus repeatedly applying this and using Lemmas A.1 and A.2 we find

MθM (s) =
[
1− s(1− e−Mh)

]−a
exp

[
sθ0e

−Mh

1− s(1− e−Mh)

]
. (A.2)

Although this was already known, we can use the same idea to find the MGF of the SCIR process.

The MGF of SCIR immediately follows using the same logic as before, as well as using the form of
MθM (s) and Lemmas A.1 and A.2. Leading to

Mθ̂M
(s) =

M∏
m=1

[
1− r(m−1)(s)(1− e−h)

]−âm
exp

[
θ0r

(M)(s)
]

= MθM (s)

M∏
m=1

[
1− s(1− e−mh)

1− s(1− e−(m−1)h)

]−(âm−a)
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A.4 Proof of Theorem 4.2

Proof. From Theorem 4.1, we have

Mθ̂M
(s) = MθM (s)

M∏
m=1

[
1− s(1− e−mh)

]−(âm−a)
︸ ︷︷ ︸

e0(s)

M∏
m=1

[
1− s(1− e−(m−1)h)

]−(a−âm)

︸ ︷︷ ︸
e1(s)

.

We clearly have MθM (0) = e0(0) = e1(0) = 1. Differentiating we find

e′0(s) =

M∑
i=1

(âi − a)(1− e−ih)
[
1− s(1− e−ih)

]−1
e0(s),

similarly

e′1(s) =
M∑
i=1

(a− âi)(1− e−(i−1)h)
[
1− s(1− e−(i−1)h)

]−1
e1(s).

It follows that, labeling the minibatch noise up to iteration M by BM , and using the fact that Eâi = a
for all i = 1, . . . ,M we have

Ê̂θM = E
[
E
(
θ̂M |BM

)]
= E

[
M ′
θ̂M

(0)
]

= E
[
M ′θM (0)e0(0)e1(0) +MθM (0)e′0(0)e1(0) +MθM (0)e0(0)e′1(0)

]
= EθM .

Now taking second derivatives we find

e′′0(s) =

M∑
i=1

(âi − a)(âi − a− 1)(1− e−ih)2
[
1− s(1− e−ih)

]−2
e0(s)

+
∑
i 6=j

(âi − a)(âj − a)(1− e−ih)(1− e−jh)
[
1− s(1− e−ih)

]−1 [
1− s(1− e−jh)

]−1
e0(s).

Now taking expectations with respect to the minibatch noise, noting independence of âi and âj for
i 6= j,

E [e′′0(0)] =

M∑
i=1

(1− e−ih)2Var(âi).

By symmetry

E [e′′1(0)] =

M∑
i=1

(1− e−(i−1)h)2Var(âi).

We also have

E [e′0(0)e′1(0)] = −
M∑
i=1

(1− e−ih)(1− e−(i−1)h)Var(âi).
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Now we can calculate the second moment using the MGF as follows, note that E(e′0(0)) =
E(e′1(0)) = 0,

Eθ̂2M = E
[
M ′′
θ̂M

(0)
]

= E
[
M ′′θM (0)e0(0)e1(0) +MθM (0)e′′0(0)e1(0) +MθM (0)e0(0)e′′1(0) + 2MθM (0)e′0(0)e′1(0)

]
= Eθ2M +

M∑
i=1

(1− e−ih)2Var(âi) +

M∑
i=1

(1− e−(i−1)h)2Var(âi)− 2

M∑
i=1

(1− e−ih)(1− e−(i−1)h)Var(âi)

= Eθ2M + Var(â)

[
e−2Mh − 1 + 2

M∑
i=1

(
e−2(i−1)h − e−(2i−1)h

)]

= Eθ2M + Var(â)

[
e−2Mh − 1 + 2

2M−1∑
i=0

(−1)ie−ih

]

= Eθ2M + Var(â)

[
e−2Mh − 1 +

2− 2e−2Mh

1 + e−h

]
= Eθ2M + Var(â)(1− e−2Mh)

[
1− e−h

1 + e−h

]

B Proofs of Lemmas

B.1 Proof of Lemma A.1

Proof. We proceed by induction. Clearly the result holds for n = 1. Now assume the result holds for
all n ≤ k, we prove the result for n = k + 1 as follows

r(k+1)(s) = r ◦ r(k)(s)

= r

(
se−kh

1− s(1− e−kh)

)
=

se−kh

1− s(1− e−kh)
· e−h(1− s(1− e−kh))

1− s(1− e−kh)− se−kh(1− e−h)

=
se−(k+1)h

1− s(1− e−(k+1)h)
.

Thus the result holds for all n ∈ N by induction.

B.2 Proof of Lemma A.2

Proof. Once again we proceed by induction. Clearly the result holds for n = 1. Now assume the
result holds for all n ≤ k. Using Lemma A.1, we prove the result for n = k + 1 as follows

k∏
i=0

[
1− r(i)(s)(1− e−h)

]
=
[
1− s(1− e−kh)

] [
1− se−kh(1− e−h)

1− s(1− e−kh)

]
=
[
1− s(1− e−kh)

] [1− s(1− e−(k+1)h)

1− s(1− e−kh)

]
=
[
1− s(1− e−(k+1)h)

]
Thus the result holds for all n ∈ N by induction.
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C CIR Parameter Choice

As mentioned in Section 3, the standard CIR process has more parameters than those presented. The
full form for the CIR process is as follows

dθt = b(a− θt)dt+ σ
√
θtdWt, (C.1)

where a, b and σ are parameters to be chosen. This leads to a Gamma(2ab/σ2, 2b/σ2) stationary
distribution. For our purposes, the second parameter of the gamma stationary distribution can be set
arbitrarily, thus it is natural to set 2b = σ2 which leads to a Gamma(a, 1) stationary distribution and
a process of the following form

dθt = b(a− θt)dt+
√

2bθtdWt.

Fix the stepsize h, and use the slight abuse of notation that θm = θmh. The process has the following
transition density

θm+1 | θm = ϑm ∼
1− e−bh

2
W, W ∼ χ2

(
2a, 2ϑm

e−bh

1− e−bh

)
.

Using the MGF of a non-central chi-square distribution we find

MθM (s) =
[
1− s(1− e−Mbh)

]−a
exp

[
sθ0e

−Mbh

1− s(1− e−Mbh)

]
.

Clearly b and h are unidentifiable. Thus we arbitrarily set b = 1.

D Stochastic Slice Sampler for Dirichlet Processes

D.1 Dirichlet Processes

The Dirichlet process (DP) (Ferguson, 1973) is parameterised by a scale parameter α ∈ R>0 and a
base distribution G0 and is denotedDP (G0, α). A formal definition is that G is distributed according
to DP (G0, α) if for all k ∈ N and k-partitions {B1, . . . , Bk} of the space of interest Ω

(G(B1), . . . , G(Bk)) ∼ Dir(αG0(B1), . . . , αG0(Bk)).

More intuitively, suppose we simulate θ1, . . . θN from G. Then integrating out G (Blackwell and
MacQueen, 1973) we can represent θN conditional on θ−N as

θN | θ1, . . . , θN−1 ∼
1

N − 1 + α

N−1∑
i=1

δθi +
α

N − 1 + α
G0,

where δθ is the distribution concentrated at θ.

An explicit construction of a DP exists due to Sethuraman (1994), known as the stick-breaking
construction. The slice sampler we develop in this section is based on this construction. For
j = 1, 2, . . . , set Vj ∼ Beta(1, α) and θj ∼ G0. Then the stick breaking construction is given by

ωj := Vj

j−1∏
k=1

(1− Vk) (D.1)

G ∼
∞∑
j=1

ωjδθj , (D.2)

and we have G ∼ DP (G0, α).

D.2 Slice sampling Dirichlet process mixtures

We focus on sampling from Dirichlet process mixture models defined by

Xi | θi ∼ F (θi)

θi | G ∼ G
G | G0, α ∼ DP (G0, α).
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A popular MCMC algorithm for sampling from this model is the slice sampler, originally developed
by Walker (2007) and further developed by Papaspiliopoulos (2008); Kalli et al. (2011). The slice
sampler is based directly on the stick-breaking construction (D.2), rather than the sequential (Pólya
urn) formulation of (D.1). This makes it a more natural approach to develop a stochastic sampler
from; since the stochastic sampler relies on conditional independence assumptions. The slice sampler
can be extended to other Bayesian nonparametric models quite naturally, from their corresponding
stick breaking construction.

We want to make inference on a Dirichlet process using the stick breaking construction directly.
Suppose the mixture distribution F , and the base distributionG0 admit densities f and g0. Introducing
the variable z, which determines which component x is currently allocated to, we can write the
density as follows

p(x|ω, θ, z) ∝ ωzf(x|θz).
Theoretically we could now use a Gibbs sampler to sample conditionally from z, θ and ω. However
this requires updating an infinite number of weights, similarly z is drawn from a categorical distribu-
tion with an infinite number of categories. To get around this Walker (2007) introduces another latent
variable u, such that the density is now

p(x|ω, θ, z, u) ∝ 1(u < ωz)f(x|θz),

so that the full likelihood is given by

p(x|ω, θ, z,u) ∝
N∏
i=1

1(ui < ωzi)f(xi|θzi). (D.3)

Walker (2007) shows that in order for a standard Gibbs sampler to be valid given (D.3), the number
of weights ωj that needs to be sampled given this new latent variable is now finite, and given by k∗,
where k∗ is the smallest value such that

∑k∗

j=1 ωj > 1− ui.

The Gibbs algorithm can now be stated as follows, note we have included an improvement suggested
by Papaspiliopoulos (2008), in how to sample vj .

• Sample the slice variables u, given by ui | ω, z ∼ U(0, ωzi) for i = 1, . . . , N . Calculate
u∗ = minu.

• Delete or add components until the number of current components k∗ is the smallest value
such that u∗ < 1−

∑k∗

j=1 ωj .

• Draw new component allocations zi for i = 1, . . . , N , using
p(zi = j|xi, ui, ω, θ) ∝ 1(ωj > ui)f(xi|θ).

• For j ≤ k∗, sample new component parameters θj from
p(θj |x, z) ∝ g0(θj)

∏
i : zi=j

f(xi|θj)
• For j ≤ k∗ calculate simulate new stick breaks v from
vj | z, α ∼ Beta

(
1 +mj , α+

∑k∗

l=j+1ml

)
. Here mj :=

∑N
i=1 1zi=j .

• Update ω using the new v: ωj = vj
∏
l<j(1− vj).

D.3 Stochastic Sampler

The conditional independence of each update of the slice sampler introduced in Section D.2 makes
it possible to adapt it to a stochastic variant. Suppose we update θ and v given a minibatch of the
z and u parameters. Then since the z and u parameters are just updated from the marginal of the
posterior, only updating a minibatch of these parameters at a time would leave the posterior as the
invariant distribution. Our exact MCMC procedure is similar to that in the R package PReMiuM
(Liverani et al., 2015), though they do not use a stochastic sampler. First define the following:
Z∗ = max z; S ⊂ {1, . . . , N} is the current minibatch; u∗ = minuS ; k∗ is the smallest value such
that

∑k∗

j=1 ωj > 1− u∗. Then our updates proceed as follows:

• Recalculate Z∗ and S (note this can be done in O(n) time since only n z values changed).
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• For j = 1, . . . , Z∗ sample vj stochastically with SCIR from
vj | z, α ∼ Beta(1 + m̂j , α+

∑k∗

l=j+1 m̂l). Here m̂j = N/n
∑
i∈S 1zi=j .

• Update ωj using the new v: ωj = vj
∏
l<j(1− vj).

• For j = 1, . . . , Z∗ sample θj stochastically with SGMCMC from
p(θj |x, z) ∝ g0(θj)

∏
Sj
f(xi|θj). Here Sj = {i : zi = j and i ∈ S}.

• For i ∈ S sample the slice variables ui |ω, z ∼ U(0, ωzi).
• Sample α if required. Using Escobar and West (1995), for our example we assume a

Gamma(b1, b2) prior so that α | v1:Z∗ ∼ Gamma(b1 + Z∗, b2 −
∑K∗

j=1 log(1− vj)).

• Recalculate u∗. Sample additional ωj from the prior, until k∗ is reached. For j = (Z∗ +
1), . . . , k∗ sample additional θj from the prior.
• For i ∈ S, sample zi, where P(zi = j|ui, ω, θ,x) ∝ 1(ωj > ui)f(xi|θj).

Note that for our particular example, we have the following conditional update for θ (ignoring
minibatching for simplicity):

θj | zj ,x ∼ Dirichlet

a+
∑
i∈Sj

xi1, . . . , a+
∑
i∈Sj

xid

 .

E Experiments

E.1 Synthetic

We now fully explain the distance measure used in the synthetic experiments. Suppose we have
random variables X taking values in R with cumulative density function (CDF) F . We also have
an approximate sample from X , X̂ with empirical density function F̂ . The Kolmogorov-Smirnov
distance dKS between X and X̂ is defined by dKS(X, X̂) = supx∈R

∥∥∥F̂ (x)− F (x)
∥∥∥ . However the

Dirichlet distribution is multi-dimensional, so we measure the average Kolmogorov-Smirnov distance
across dimensions by using the Rosenblatt transform (Rosenblatt, 1952).

Suppose now that X takes values in Rd. Define the conditional CDF of Xk = xk|Xk−1 =
xk−1, . . . , X1 = x1 to be F (xk|x1:(k−1)). Suppose we have an approximate sample from X ,
which we denote x(m), for m = 1, . . .M . Define F̂j to be the empirical CDF defined by the sam-
ples F (x

(m)
j |x(m)

1:(j−1)). Then Rosenblatt (1952) showed that if X̂ is a true sample from X then F̂j
should be the uniform distribution and independent of F̂k for k 6= j. This allows us to define a
Kolmogorov-Smirnov distance measure across multiple dimensions as follows

dKS(X, X̂) =
1

K

K∑
j=1

sup
x∈R

∥∥∥F̂j(x)− Fj(x)
∥∥∥ .

Where here applying Rosenblatt (1952), Fj(X) is just the uniform distribution.

The full posterior distributions for the sparse and dense experiments are as follows:

ωsparse | z ∼ Dir [800.1, 100.1, 100.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] ,

ωdense | z ∼ Dir [112.1, 119.1, 92.1, 98.1, 95.1, 96.1, 102.1, 92.1, 91.1, 103.1] .

For each of the five random seeds, we pick the stepsize giving the best dKS for SGRLD and SCIR
from the following options:

Method h
SCIR 1.0 5e-1 1e-1 5e-2 1e-2 5e-3 1e-3
SGRLD 5e-1 1e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4

Table 1: Stepsizes for the synthetic experiment
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E.2 Latent Dirichlet Allocation

As mentioned in the main body, we use a decreasing stepsize scheme of the form hm = h(1+m/τ)−κ.
We do this to be fair to SGRLD, where the best performance is found by using this decreasing scheme
(Patterson and Teh, 2013; Ma et al., 2015); and this will probably reduce some of the bias due to the
stepsize h. We find a decreasing stepsize scheme of this form also benefits SCIR, so we use it as well.
Notice that we find similar optimal hyperparameters for SGRLD to Patterson and Teh (2013). Table
2 fully details the hyperparameter settings we use for the LDA experiment.

Method h τ κ α β K n Gibbs Samples
CIR 0.5 10. .33 0.1 0.5 100 50 200
SGRLD 0.01 1000. .6 0.01 0.0001 100 50 200

Table 2: Hyperparameters for the LDA experiment

E.3 Bayesian Nonparametric Mixture

For details of the stochastic slice sampler we use, please refer to Section D. Figure 3 details full hy-
perparameter settings for the Bayesian nonparametric mixture experiment. Note that hθ corresponds
to the stepsizes assigned for sampling the θ parameters; while hDP corresponds to the stepsizes
assigned for sampling from the weights ω for the Dirichlet process.

Method hθ hDP a K n
CIR 0.1 0.1 0.5 20 1000
SGRLD 0.001 0.005 0.001 30 1000

Table 3: Hyperparameters for the Bayesian nonparametric mixture experiment
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