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ABSTRACT   

This paper discusses the various millimeter-wave radar micro-Doppler features of consumer drones and birds which can 

be fed to a classifier for target discrimination. The proposed feature extraction methods have been developed by 

considering the micro-Doppler signature characteristics of in-flight targets obtained with a frequency modulated 

continuous wave (FMCW) radar. Three different drones (DJI Phantom 3 Standard, DJI Inspire 1 and DJI S900) and four 

birds of different sizes (Northern Hawk Owl, Harris Hawk, Indian Eagle Owl and Tawny Eagle) have been used for the 

feature extraction and classification. The data for all the targets was obtained with a fixed beam W-band (94 GHz) 

FMCW radar. The extracted features have been fed to two different classifiers for training (linear discriminant and 

support vector machine (SVM)). It is shown that the classifiers using these features can clearly distinguish between a 

drone and a bird with 100% prediction accuracy and are able to differentiate between various sizes of drones with more 

than 90% accuracy. The results demonstrate that the proposed algorithm is a very suitable candidate as an automatic 

target recognition technique for a practical FMCW radar based drone detection system.    

Keywords: Micro-Doppler, Radar, FMCW, Millimeter-wave, classification, drones, birds, support vector machine, 

linear discriminant 

1. INTRODUCTION  

Rotary wing drones and birds produce distinctive micro-Doppler signatures in their radar signal returns
1,2

. These 

signatures can be used for target discrimination, which is a very critical feature for a drone surveillance radar. As these 

targets have relatively low bulk radar cross section (RCS)
3
 of around -20 dBsm, with the propeller RCS being 20-30 dB 

below that, obtaining high fidelity micro-Doppler signatures is not always guaranteed. To increase micro-Doppler 

sensitivity, millimeter-wave radar can be used which offers larger micro-Doppler spread and better Doppler resolution 

for a given integration time than lower frequency radar
4,5

. Still, a robust feature extraction method is needed for accurate 

classification due to the presence of clutter in the signal as the targets may fly with relatively low altitude. 

In recent years, a number of research works have proposed different feature extraction methods for drone and bird 

classification
6–8

. The classification algorithms in those reports are mainly based on micro-Doppler, along with bulk 

Doppler shift and target RCS. The feature extraction methods usually use singular value decomposition (SVD) to extract 

the frequency and time axis information from a spectrogram separately. In
7
, Doppler bandwidth and centroid based 

feature extraction is reported, illustrating more than 90% accurate classification, mainly for hovering targets. In
6
, 

alignment of bulk velocity is performed but the overall classification process is developed for continuous wave (CW) 

radar data, which has a higher Doppler sampling rate hence can unambiguously sample the fast rotation of drone 

propeller blades, unlike FMCW radar. However, it is vital to consider the micro-Doppler signatures using FMCW radar 

data, as FMCW radar is a more realistic candidate for drone detection radar sensor, due to its ability to locate targets. 

In this paper, we propose an automated target recognition system addressing the issues mentioned above and based on 

staring mode FMCW radar. Even though a scanning radar covers more area, a fixed beam system can provide very high-

fidelity classification performance by utilizing longer Doppler integration. As the RCS of drones and birds are 

comparable
3
, the feature extraction approach is entirely micro-Doppler based. Having said that, RCS values are used in 

the extraction of one of the micro-Doppler features. It will be shown that even though RCS alone cannot be a reliable 

feature, absolute RCS values obtained from a well-calibrated radar can be useful to filter out clutter from micro-Doppler 

components within the spectrogram. The whole feature extraction method is described in detail in this paper. The method 

is then used on real data obtained from different types of drones and birds. Finally, the high accuracy performance of the 

features used for classification is demonstrated. 
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2. PROPOSED MICRO-DOPPLER BASED FEATURE EXTRACTION 

For the proposed method, spectrograms obtained by Short Time Fourier Transform (STFT) are used, as these are easily 

produced and visually intuitive. The first step is the Doppler alignment after which the following four features are 

extracted from the spectrogram plots:- 

 Micro-Doppler spread (width) 

 Micro-Doppler spread (weight) 

 Micro-Doppler strength 

 Micro-Doppler periodicity 

2.1 Doppler alignment 

As the bulk velocity of drones and birds can be quite similar
9
, the strong bulk Doppler signature becomes redundant from 

the feature extraction point of view. Also, the presence of strong zero Doppler (corresponding to clutter and/or hovering 

targets) can be removed as our focus is only on the micro-Doppler. To enhance the micro-Doppler components, the bulk 

Doppler is aligned with the zero Doppler. To achieve that, zero Doppler suppression is done first. Then for each time 

slice of the spectrogram, the maximum signal location is found which will typically correspond to the bulk Doppler. The 

whole time slice is then circular shifted according to the measured offset of the bulk from the zero Doppler. To filter out 

further clutter, the dynamic range of the spectrogram is reduced to eliminate low level signals. It is known that the micro-

Doppler is typically around 20 - 30 dB lower than the bulk but to provide some margin we have chosen to limit the 

dynamic range to 60 dB below the maximum value.  Fig. 1 shows example 94 GHz spectrograms for a drone and a bird 

before and after zero Doppler suppression and bulk Doppler alignment, with a dynamic range of 60 dB. 

 

 
Figure 1. Example 94 GHz spectrograms of a DJI Inspire (top) and a Northern Hawk Owl (bottom) showing the effect of 

zero Doppler suppression and bulk doppler alignment. Images on the left show the spectrograms without these 

compensations and on the right show after the processes have been applied. 

This Doppler alignment makes the feature extraction procedure much easier, as anything beyond the zero Doppler can be 

regarded as micro-Doppler return. Also, it allows one to calculate the Doppler periodicity more accurately as a Doppler 

slice from the spectrogram now mainly consists of drone blade flashes or bird wing beats (if present). 
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2.2 Feature extraction 

The first three features mainly correspond to the Doppler axis of the spectrogram, whereas the last one corresponds to the 

time axis. The idea is to quantify the extent of the micro-Doppler frequency content and its change with time. 

2.2.1  Micro Doppler Spread (Width) 

To calculate the weighted spread of the micro-Doppler information in a spectrogram, a widely used decomposition 

method like SVD can be used
6
. The problem with conventional SVD is that a reliable micro-Doppler spread can only be 

obtained if the dynamic range of the spectrogram is quite large, excluding the bulk component. This means, the micro-

Doppler signal-to-noise ratio needs to be quite high. In practice, the micro-Doppler signal strength from the plastic blade 

of a commercial drone may be very small and close to the noise floor. This means that the values obtained from SVD 

corresponding to the micro-Doppler are very small, and hence it is hard to define a clear threshold to separate them from 

noise. For this reason, we proposed an algorithm which calculates the spread based on the number of micro-Doppler 

occupancies within a spectrogram. This feature extraction process creates a one-dimensional array of the Doppler axis in 

which each array element value quantifies the presence of a micro-Doppler signal above a given threshold. The threshold 

value is a hard threshold set to be some dB above the noise floor to avoid false counts. The calculation is performed as:- 

𝑆𝑤𝑖𝑑𝑡ℎ(𝑖) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑖𝑚𝑒 𝑠𝑙𝑖𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑖𝑚𝑒 𝑠𝑙𝑖𝑐𝑒
 

Here, Swidth(i) is the micro-Doppler spectral width for the ith Doppler point of the spectrogram, which is normalized to 

maximum value of 1. It should be noted that using the SVD method can also provide this spread information (from the 

decomposed matrix corresponding to the Doppler axis), but not with high accuracy due to the low signal return from the 

propellers. Fig. 2 compares micro-Doppler spread plots for a drone and a bird obtained with conventional SVD and the 

method proposed above (using a threshold of -50 dBm). 

   

 

Figure 2. Example of micro-Doppler spread plots. The top left one shows the spread plot of the Inspire obtained by SVD 

matrix and the top right is the same plot for the Northern Hawk Owl. The bottom left is obtained by using the proposed 

method showing larger spread. The bottom right is the same plot obtained for the Northern Hawk Owl 

It can be seen from Fig. 2 that the proposed method performs better than the conventional SVD. The variation between 

the plots for the Inspire and the Northern Hawk Owl obtained with SVD is minimal. In contrast, the difference in spread 

can be easily visualized from the plots obtained by the proposed method. For the classifier feed, a single value for the 
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whole spectrogram is required. It is obtained by having another threshold on the plots and simply calculating the number 

of data points above the threshold. From Fig. 2 (lower plots), if the threshold is set to 0.5, all the data points are then 

above the threshold for the Inspire which is 512 points in this case. For the Northern Hawk Owl, the value is 86. The 

difference confirms the validity of the feature in a FMCW radar spectrogram, since the micro-Doppler spread for a drone 

is usually quite large compared to that obtained from birds. 

2.2.2  Micro-Doppler Spread (Weight)  

From Fig. 2 (lower plots), it is also observed that most of the individual data point values are lower for the bird than the 

drone. This is expected since when taking a time slice from a bird spectrogram there are fewer points without any 

Doppler information, hence a lower total value. This property can also be used as a feature and can be very easily 

extracted from the plots. This is achieved simply by calculating the area under the micro-Doppler spread (width) curve to 

give a single value corresponding to the micro-Doppler spread weight, 𝑆𝑤𝑒𝑖𝑔ℎ𝑡 = ∑ 𝑆𝑤𝑖𝑑𝑡ℎ(𝑖)𝑀
𝑖=1 , where M is the 

number of data points in the Doppler axis. 

2.2.3 Micro-Doppler Strength 

This feature calculates the overall strength of the micro-Doppler in the spectrogram. The preceding two features mainly 

measure the number of occurrences of the micro-Doppler signal in a spectrogram. On the other hand, this feature 

measures the micro-Doppler intensity in terms of the received signal power. It should be noted that this feature can only 

be reliably used when absolute RCS values are available. This is because to calculate micro-Doppler strength, a range 

scaling factor must be used for spectrograms collected at different ranges. The straightforward scaling factor is to convert 

the received power to the corresponding RCS value, which requires the radar to be calibrated. As it is quite trivial to plot 

the predicted radar return from different ranges for a given RCS if the link budget of the radar system is known, this 

criterion is not a limiting factor. Ultimately, it increases the feature reliability, hence improving the classification 

performance. For a spectrogram obtained from multiple range bins, the median range value can be selected which is a 

good approximation for determining the final value. We define the single value for the micro-Doppler strength as 

𝐷𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = ∑ ∑ 𝑆(𝑖, 𝑗)𝑁
𝑗=1

𝑀
𝑖=1 , where S(i,j) is the signal strength of the ith element of the Doppler axis and jth element 

of the time axis. M and N are the total number of data points on the Doppler and time axes, respectively. In practice, the 

elements corresponding to the zero Doppler and its close vicinity are omitted, to exclude the contributions from the bulk. 

2.2.4 Micro-Doppler Periodicity 

It is very hard to extract the rotor rotation rate of a drone from FMCW radar data due to the hardware constraints of 

requiring a very high chirp repetition frequency (CRF) in order to sample the Doppler at a sufficiently high rate. Also, 

such high CRF increases the computational load as more data points then need to be processed. Nonetheless, wing beat 

rates of birds can be extracted easily from FMCW data with practical CRFs which then can be a very useful feature to 

discriminate the drone from the bird. The unitary matrix corresponding to the time axis obtained from SVD is used in 

this case. From the matrix, the first row vector is then selected as this contains the maximum information almost all the 

time. This vector can be regarded as a one-dimensional representation of the periodicity observed in the spectrogram (i.e. 

bird wing beats). As the vector is still in the time domain, Fourier transformation of this is then performed and the first 

peak is then selected as the single value for the classifier. 

For better illustration of the process, 94 GHz continuous wave (CW) radar data of a tethered quadcopter (DJI Phantom 3 

Standard) with only one propeller is used. The sampling rate was 100 kHz to ensure unambiguous sampling of the 

Doppler frequency. The rotor blade flashes are now clearly observed in the spectrogram plot shown in Fig. 3. The time 

difference between the two peaks is measured to be 0.011 s, corresponding to 90.91 Hz. As can be seen from the 

frequency spectrum plot at the top right of Fig. 3, the periodicity is measured as 90.01 Hz, in very close agreement with 

the time domain value. This value of the fundamental frequency is then directly fed to the classifier. It should be noted 

that as the rotor has two blades, the actual rotation rate of the rotor is 90.91/2 = 45.45 Hz. The bottom left plot is an 

equivalent one for a DJI Inspire 1 derived from the FMCW spectrogram (12.4 kHz CRF) in Fig. 1 and the lack of distinct 

periodic features is evident. The bottom right plot is the corresponding one obtained for the Northern Hawk Owl FMCW 

spectrogram in Fig. 1. From that image, the wing beat rate can be roughly determined to be 9-10 Hz. Again, it is seen 

that the processed value (8.698 Hz) is very close to the time domain value.  
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Figure 3. Example of micro-Doppler periodicity calculation. The 94 GHz CW spectrogram at the top left illustrates the rotor 

blade flashes of a single rotor of a tethered DJI Phantom Standard 3; the inset plot reveals the full detail of two flashes 

when magnified. Top right plot shows the rotor blade flash frequency is obtained from this CW spectrogram by Fourier 

transforming the first row vector of the SVD unitary matrix, providing the periodicity value for the classifier. Bottom 

left plot shows the periodicity value obtained for DJI Inspire FMCW spectrogram shown in Fig. 1.  Bottom right is the 

corresponding plot obtained for the Northern Hawk Owl FMCW spectrogram shown in Fig. 1. 

One problem with this feature extraction method for FMCW radar drone data is that it produces some unexpected low 

level peaks at low frequencies on the periodicity plot. One might expect that the periodicity value would be zero as there 

is no significant periodicity present in the spectrogram (as seen in Inspire spectrogram in Fig. 1) since the Doppler 

spectrum was under-sampled and the propellers rotate at slightly different speeds. It would be risky to filter the low 

frequency components out as they are often comparable to bird wing beat frequencies. Instead, adjusting the amplitude 

threshold for first peak detection can be used to minimize this problem. As can be seen in Fig. 3, if the threshold is set to 

10, the periodicity value for the Northern Hawk Owl is 8.698 Hz and for the DJI Inspire it becomes zero (the large DC 

response is discarded). Still, there is no guarantee that this threshold will consistently reject frequencies corresponding to 

drones while allowing the ones that relate to birds. Nonetheless, this feature is still very useful as it provides actual bird 

wing beat frequency values from FMCW spectrogram data and actual drone propeller rotation rates from CW 

spectrogram data. It could obtain propeller rotation rate from FMCW data, but that would require a very high CRF.  

3. TARGET DISCRIMINATION RESULTS 

The relevant details of the targets used as classes are given below- 

Drones: 

 DJI Phantom Standard 3 (weight 1.216 kg, width 35 cm, blade length 13 cm) 

 DJI Inspire 1 (weight 2.845 kg, width 58 cm, blade length 34.5 cm)  

 DJI S900 (weight 3.3 kg, width 90 cm, blade length 38.1 cm) 

Birds: 

 Northern Hawk Owl (weight 0.26 kg, length 40 cm, wingspan 45 cm) 

 Harris Hawk (weight 0.71 kg, length 55 cm, wingspan 115 cm) 

 Indian Eagle Owl (weight 0.97 kg, length 52 cm, wingspan 135 cm) 

 Tawny Eagle (weight 1.84 kg, length 65 cm, wingspan 175 cm)  
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All the data was collected using a coherent 94 GHz FMCW radar named T-220, which has a very low phase noise
10

. The 

radar has a homodyne architecture with dual fan beam antenna (0.9° azimuth and 3° elevation beamwidths, 40.5 dBi 

gain, circular polarization) and with transmit power of +18 dBm. The chirp period is set at 80.5 μs with a CRF of 12.4 

kHz so the maximum unambiguous velocity range is ± 9.93 ms
-1

. It should be mentioned that the CW result shown in 

Fig. 3 is also produced by running the T-220 radar in CW mode.  

A total of 28 spectrogram plots (4 for each class) have been processed to extract the four feature values. The dwell time 

varied between 3 – 3.5 s, long enough for good Doppler integration but not too long to degrade the classification update 

rate. STFT operation is performed to obtain the spectrograms with the sliding window length being 512 samples (41.2 

ms). A Gaussian window (with α = 4, where α is inversely proportional to the standard deviation) is used for the 

optimum simultaneous time and frequency resolution, a variant of STFT also known as the Gabor transform
2
. The 

window sliding is done with 95% overlap. 

The Classification Learner App in MATLAB® was used to feed the data to the classifier and to train the model. The 

Linear Discriminant and SVM classifiers were chosen to test the reliability of the features, as both are very widely used. 

All four features described above (micro-Doppler spread (width), micro-Doppler spread (weight), micro-Doppler 

strength and micro-Doppler periodicity) are used in each case. At first, the classification training results are analyzed for 

only two classes, where all the drones are of one class (Drone) and all the birds are part of the other (Bird). Then, the 

training is performed by having all the targets as individual classes to observe the capability of distinguishing between 

different types of drones and birds. During training and confusion matrix generation, 5-fold cross validation is used all 

the time. 

Fig. 4 shows a screenshot taken during the training of the classifiers. It is seen that both Linear Discriminant and SVM 

have successfully predicted the classes with 100% accuracy. The example scatter plot seen in the figure provides a visual 

example of the target separation showing only the micro-Doppler spread (width) and micro-Doppler strength values for 

all the classes. The blue dots representing the birds are clustered together and are clearly separated from the red dots 

(drones). This demonstrates that the proposed method can be used to discriminate between a drone and a bird with very 

high level of confidence. 

 
Figure 4. Screenshot of the Classification Learner App in MATLAB while performing the training for 2 classes, showing 

100% accuracy with both classifiers 

Next, the classifiers are trained only with the drone data. As seen in Fig. 5, the prediction accuracy for the Linear 

Discriminant is 100% whereas for SVM, it is 91.7%. This shows that the target discrimination algorithm has the 

potential to separate between various types of drones. From the scatter plot, it is observed that the Phantom and the S900 

are quite widely spaced and the Inspire feature values are roughly in the middle. This separation is directly correlated to 

the micro-Doppler signal return, which is much higher for the S900 than the Phantom, corresponding to larger values for 

all the features except periodicity. 
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Figure 5. Scatter plot (left) generated by SVM for 3 classes corresponding to three types of drones, showing the target 

distribution in terms of micro-Doppler spread (width) and micro-Doppler strength. Confusion matrix (right) is 

generated after training the classifier with all four features  

On the other hand, when trained with all four classes of bird, the classifiers are not at all able to distinguish between 

them. From the example scatter plot in Fig. 6, the reason can be understood: the micro-Doppler periodicity values of the 

four birds are too similar for the classifiers to isolate.  

             
Figure 6. Scatter plot (left) generated by SVM for 4 classes corresponding to four types of birds, showing the target 

distribution in terms of micro-Doppler strength and micro-Doppler periodicity. Confusion matrix (right) is generated 

after training the classifier with all four features 

In this case, to discriminate effectively, the physical sizes of the birds would need to be significantly different which 

would create more variation in the other three features. To test this hypothesis, classifiers were trained only with the 

smallest bird (Northern Hawk Owl) and the largest bird (Tawny Eagle). Fig. 7 shows that in this case, the Linear 

Discriminant is able to predict with 87.5% accuracy, whereas SVM predicts with 100% accuracy. This confirms the idea 

that Doppler strength and Doppler spread (weight) are related to bird size and may be used to classify different types of 

birds. 
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Figure 7. Scatter plot (left) generated by linear discriminant for 2 classes corresponding to the Northern Hawk Owl and the 

Tawny Eagle, showing the target distribution in terms of micro-Doppler spread (weight) and micro-Doppler strength. 

Confusion matrix (right) is generated after training the classifier with all four features 

From all the combinations of scatter plot shown above, it has been observed that the micro-Doppler spread (weight & 

width) and the micro-Doppler strength are the dominant features that improve the accuracy of classification as selection 

of these two features provide the best separation in the scatter plots. This again points to the importance of high micro-

Doppler sensitivity in the radar system for achieving better classification. For a given sampling rate, higher operating 

frequencies will produce a higher Doppler frequency and increasing the Doppler frequency range improves the chance of 

greater feature separation. 

4. CONCLUSION AND FUTURE WORKS 

The main objective of this study was to develop an algorithm for automatic drone classification in realistic in-flight 

scenarios, with a practical sensor such as an FMCW radar. As birds are the main confusers, the ability to distinguish 

between a drone and a bird was the primary requirement. Four different micro-Doppler based feature extraction methods 

have been discussed. The proposed discrimination method also incorporates pre modification of the data by aligning the 

spectrogram plot with respect to zero Doppler. The method is then used on real data obtained for three different drones 

and four different birds. To verify the performance, the feature values are then used to train two well-known classifiers, 

Linear Discriminant and SVM. It was clearly shown that the features are very distinctive, enabling identification of the 

targets, with both the classifiers showing 100% prediction accuracy during training. It was also shown that the proposed 

method can recognize different types of drones, especially when they vary in size. More than 90% accuracy was obtained 

by both the classifiers. Much lower accuracy was observed with the birds as their features overlapped with each other 

when all four birds were considered. However, the prediction performance improved significantly by picking two birds 

of significantly different size, while omitting the other two. Overall, it has been demonstrated that the proposed 

algorithm has very good potential to be used in a drone detection FMCW radar system, to classify drones and birds in a 

dynamic environment. The method described in this paper uses thresholds very close to the noise floor to extract the 

micro-Doppler information which requires high fidelity Doppler measurements, best achieved by using a very low phase 

noise radar with excellent spectral purity. 

In the future, the intention is to put the algorithm to more rigorous test by increasing the dataset for the classifier training. 

This can be achieved by processing more data relating to the classes used in this paper for feature extraction. Also, new 

classes can be added by taking data from other types of drones and birds to expand the database. Finally, data from other 

locations with surrounding clutter different from the current one will be quite useful. This will provide the opportunity to 

optimize the feature extraction algorithms as they use threshold values at various points. 
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