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Direct observation of a uniaxial stress-driven Lifshitz
transition in Sr2RuO4
Veronika Sunko1,2, Edgar Abarca Morales1,2, Igor Marković 1,2, Mark E. Barber1, Dijana Milosavljević1, Federico Mazzola2,
Dmitry A. Sokolov 1, Naoki Kikugawa3, Cephise Cacho4, Pavel Dudin 4, Helge Rosner1, Clifford W. Hicks1, Philip D. C. King2 and
Andrew P. Mackenzie 1,2

Pressure represents a clean tuning parameter for traversing the complex phase diagrams of interacting electron systems, and as
such has proved of key importance in the study of quantum materials. Application of controlled uniaxial pressure has recently been
shown to more than double the transition temperature of the unconventional superconductor Sr2RuO4, leading to a pronounced
peak in Tc versus strain whose origin is still under active debate. Here we develop a simple and compact method to passively apply
large uniaxial pressures in restricted sample environments, and utilise this to study the evolution of the electronic structure of
Sr2RuO4 using angle-resolved photoemission. We directly visualise how uniaxial stress drives a Lifshitz transition of the γ-band
Fermi surface, pointing to the key role of strain-tuning its associated van Hove singularity to the Fermi level in mediating the peak
in Tc. Our measurements provide stringent constraints for theoretical models of the strain-tuned electronic structure evolution of
Sr2RuO4. More generally, our experimental approach opens the door to future studies of strain-tuned phase transitions not only
using photoemission but also other experimental techniques where large pressure cells or piezoelectric-based devices may be
difficult to implement.
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INTRODUCTION
The layered perovskite Sr2RuO4 has been extensively studied both
because of its celebrated unconventional superconductivity,1–6

and the accuracy with which its normal state properties can be
measured,7–11 and analysed.12–15 Its metallic state is strongly
correlated, with mass renormalisations in the range 3–5, and it is
proving to be a benchmark material for the development of
correlated electron theory.11,16 In spite of the understanding of the
metallic state, and a quarter of a century of research, there is still
no consensus on its superconducting order parameter symmetry
or the mechanism by which the superconductivity condenses.6

Indeed, a recent nuclear magnetic resonance Knight shift
measurement has ruled out the previously most-favoured triplet
order parameter and opened a host of alternative possibilities.17

This is a major unsolved problem because the electronic structure
of Sr2RuO4 is relatively simple compared with that of many other
unconventional superconductors, and its metallic state, though
strongly correlated, is firmly established to be a Fermi liquid below
~30 K.8 Furthermore, its superconductivity is closer to the weak-
coupling limit than in any other unconventional superconductor,
as evidenced by its mean-field-like heat capacity anomaly.18–20 In
short, the Sr2RuO4 problem is one that should be soluble, and
understanding it fully is therefore a benchmark for the progress of
the fields of strongly interacting systems and unconventional
superconductivity.
Recent years have seen the development of uniaxial pressure as

a new probe of the physics of Sr2RuO4.
21–24 Unlike most

unconventional superconductors, Sr2RuO4 has a long

superconducting coherence length of over 70 nm, a further
consequence of its weak-coupling superconductivity. This in turn
renders the superconducting condensate the most sensitive to
disorder of any known superconductor; the mean free path must
be ~1 μm or larger for the superconductivity to be studied in the
clean limit.25 Any external tuning of the superconducting state
must therefore preserve this extremely long mean free path, a
constraint that has led to the failure of attempts to study the
superconductivity while tuning the density of states at the Fermi
level by chemical doping26 or the application of biaxial epitaxial
strain to thin films.27 These issues can be overcome by the
application of uniaxial pressure to high purity single crystals,21,23,24

which has been shown to raise Tc from 1.5 to 3.5 K, and explain
observations of inhomogeneous traces of 3 K superconductivity as
being due to strain gradients, either externally imposed strain
inhomogeneneity28 or around Ru inclusions in eutectic crystalline
Ru–Sr2RuO4 mixtures.29

If the Fermi level of a material sits near a so-called van Hove
singularity in which the dispersion has a saddle point and the
density of states diverges, it is possible in principle to tune across
that saddle point, changing the Fermi surface topology in what is
often referred to as a Lifshitz transition.30 Based on density-
functional calculations,23 as well as previous spectroscopic work
which has identified the position of a van Hove singularity 14 meV
above the Fermi level at the M point of the Brillouin zone,26,27 a
working hypothesis has been that uniaxial pressure is driving the
so-called γ Fermi surface sheet of Sr2RuO4 through such a Lifshitz
transition.23,24,31 In this picture, the superconductivity is enhanced
primarily by the resulting maximum in the density of states.
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However, it remains unclear if the intuitions based on single
particle calculations really represent a good starting point for
considering strain-dependent changes to a Hund’s metal system
where orbital-dependent correlations are known to be highly
important.11,32 Indeed, it has been predicted that strain may
alternatively trigger an intervening phase, such as a spin-density
wave, which cuts off an increase in Tc before the Lifshitz transition
is reached.33 It is thus crucial to obtain direct, k-resolved
spectroscopic evidence for the electronic structure evolution that
is taking place over a comparable strain range for which Tc is
known to peak.
In principle, angle-resolved photoemission spectroscopy

(ARPES) is an ideal tool for this purpose, but this kind of
experiment presents severe experimental challenges. Using
piezoelectric-driven uniaxial pressure cells, as in,21–24 would
require major re-engineering of conventional ARPES manipulators
and careful shielding. For compatibility with present facilities, our
goal here was to develop a sample stage that fits onto standard
sample carriers, implying maximum dimensions of ca. 12 × 12 ×
3mm3. In addition, to study single crystals it must be possible to
cleave samples mounted on the apparatus. For ARPES measure-
ments, large strains have been applied to low-elastic-modulus
materials,34 and spring- and piezo-based devices have been used
for detwinning.35–38 In ref. 39 a bending mechanism was employed
to apply large adjustments to the strain of a sample placed under
strong uniaxial compression by its unusual thermal contraction.
However, it has proved difficult to realise large strains in high-
elastic-modulus materials in a general way. Indeed, in our first
attempt using a spring-based rig driven by an adjustment screw
actuated ex-situ (described in the Supplementary Information, Fig.
S1), we could not achieve a uniaxial stress in Sr2RuO4 larger than
its room-temperature elastic limit of ~0.2 GPa, well below the
value required to reach the peak in Tc.

40 In this paper, we report a
new experimental design that uses differential thermal contrac-
tion41 to apply uniaxial stress gradually as the sample is cooled,
and use it to successfully obtain ARPES data on Sr2RuO4 driven
across its Lifshitz transition. In doing so we clarify the physics of
this important correlated metal and superconductor, and demon-
strate a technology that we believe will prove extremely useful for
the study of a wide range of other materials.

RESULTS
Our custom strain rig is illustrated in Fig. 1a. Details of its design
and operation are given in Methods; here we state the key point
which is that differential thermal contraction of the Ti and Al
support blocks delivers, upon cooling from room temperature to
below ~40 K, a uniaxial compression of 0.6% (see Methods) to a
sample platform in which there is excellent strain field homo-
geneity. Taking into account the Poisson’s ratio of titanium, this
yields an anisotropic strain εxx–εyy of −0.8%, where εxx is the
longitudinal strain in the platform, εyy the transverse strain, and
negative values denote compression. We have confirmed that
such an anisotropic strain is achieved through comparison of
optical micrographs measured at room temperature and ~10 K
(Supplemental Fig. S2). The whole assembly fits comfortably on a
standard flag-style sample plate (Fig. 1b), of the form commonly
found in ultra-high vacuum-based techniques such as ARPES or
scanning probe methods. The sample, mounted on top of the
platform, remains fully accessible for e.g. sample cleaving and
subsequent measurement.
In Fig. 2 we show two example data sets, from the extremes of

strain reached in the experiment. For an unstrained sample
mounted on a conventional sample plate (Fig. 2b), the three-
known bulk bands of Sr2RuO4 are clearly seen, with no signs of
surface states (see ‘Methods' section). The large, nearly circular γ
sheet closes around Γ as an electron pocket, in agreement with a
large number of previous measurements.9–11,27 The data shown in
Fig. 2d are from a sample for which an anisotropic strain of εxx−
εyy=−0.7 ± 0.1% was achieved, as determined by optical
characterisation (see Fig. S2 of the Supplementary Information).
In sharp contrast to the unstrained case, the γ sheet is no longer a
circle but an open sheet along the y axis. This is in agreement with
the calculations of how the Fermi surface of Sr2RuO4 would look
after traversal of its van Hove singularity (vHs) located at (0,
±π).23,33,42

Confirmation that the vHs has indeed been traversed comes
from inspection of the dispersions measured along the Γ-M1 and
Γ-M2 directions (in the strained sample, we distinguish between
the M points located at (±π,0) and (0, ± π), denoting these as M1

and M2, respectively). For Γ-M1 (Fig. 3a) the Fermi surface crossings
of both the β and γ sheets are clearly visible, but along Γ-M2 (Fig.
3b) the top of the γ-band lies below the Fermi level. As seen in Fig.
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Fig. 1 Differential thermal contraction strain rig. a An illustration of the strain rig. The thermal contraction of aluminium exceeds that of
titanium, leading to uniaxial compression of the sample platform during cooling. There is a copy of this platform on the underside, to
maintain symmetry and avoid bending under the thermal stresses. Different parts of the device are joined by Stycast 2850. b A photograph of
the strain rig mounted on a standard flag-style sample plate

V. Sunko et al.

2

npj Quantum Materials (2019)    46 Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;



3c, the combined Γ-M2− X cut reveals that this band displays the
basic topography of the simple zone edge vHs predicted by band
theory and sketched in Fig. 3d: the dispersion rises along Γ-M2, then
flattens at the saddle point and then rises slightly along M2− X
before the data are cut off by the Fermi function.
The data in Figs. 2 and 3 firmly establish the qualitative result

that we have been able to achieve a high enough uniaxial
pressure to drive Sr2RuO4 through its Lifshitz transition at the M2

point of the Brillouin zone. Moreover, the anisotropic strain for
which we achieve this is in agreement within experimental error
with that required24,40 to reach a peak in the superconducting Tc,
and at which the low-temperature resistivity deviates from a T2

temperature-dependence (for details see Supplementary Fig. S2).
This therefore provides compelling evidence that both are directly
driven by tuning of the γ-band vHS to the Fermi level, a scenario
also supported by analysis of the superconducting critical field,23

and NMR Knight shift31 data.
It is desirable to track the strain evolution of the Fermi surface

approaching this van Hove singularity. Although our strain device
based on thermal contraction is not inherently tuneable without
changing the temperature, it is in fact possible to achieve a range

of sample strains at low temperature by varying the sample
thickness (see ‘Methods' section). It is thus highly beneficial to
have an internal measure of the strain achieved in every sample.
Analysis of the β sheet provides such a metric. The band
topography makes its distortion much smaller than that of the γ
sheet; indeed it is hardly visible simply by looking at Fig. 2d.
However, it exists, and can be traced by fitting momentum
distribution curves extracted radially around the Fermi surface
(dots in Fig. 4a). As shown in Fig. 4b, this analysis reveals how the
β sheet kF along the Γ-M1 and Γ-M2 directions differ by 0.025Å

−1 in
the highly strained sample (Fig. 2d, reproduced with fits in Fig. 4a).
This difference corresponds to an asymmetry, (kF(Γ-M2)− kF(Γ-
M1))/(kF(Γ-M2)+ kF(Γ-M1)), of ~2%. This small change means that
the β sheet distortion is likely in the linear response regime to a
good approximation, so that the measured anisotropy can be
used as a linear scale of the microscopic strain in every sample.
The much larger γ sheet anisotropy is shown in an equivalent plot
in Fig. 4c.
Making use of the above-described β-band asymmetry, we

show in Fig. 5a the strain dependence of the γ sheet M point
anisotropy for five samples subjected to varying uniaxial stress

Fig. 2 Strain-driven Lifshitz transition in Sr2RuO4. a Schematic of the RuO2 plane of Sr2RuO4, in its unstrained tetragonal phase. b ARPES
measurements of the corresponding Fermi surface show the expected C4 symmetry, with clear observation of the square hole pockets (α)
located at the Brillouin zone corners and large nearly square (β) and circular (γ) electron-like pockets located at the zone centre. c Exaggerated
(by a factor of 30) distortion of the RuO2 plane by application of a uniaxial stress along [100], leading to an anisotropic strain of 0.7%. d A large
distortion of the γ Fermi surface is immediately apparent, causing it to become open along ky, consistent with having traversed a van Hove
singularity at M2
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(see Supplementary Fig. S3), including one pressurised with our
original spring-based rig (see Supplementary Fig. S1). We
parameterise the γ sheet distortions via the momentum separa-
tion of the γ Fermi surfaces in neighbouring Brillouin zones or,
when its Fermi contour becomes open, by the momentum
separation between the two branches along the Brillouin zone
boundary. We define the latter as negative, to reflect its distinct
topology. At M1, ΔkF,M1 grows monotonically with increasing
strain, reflecting an upwards shift of the vHs at this point, and
hence reduction in kF of the γ-barrel along Γ-M1. This is driven by
the greater overlap of dxy orbitals along this compressively
strained direction. Along Γ-M2, a tensile strain is induced due to
the positive Poisson’s ratio of the sample platform, and the γ-band
bandwidth consequently narrows, causing the vHs to drop below
EF along this direction. ΔkF,M2 therefore reduces, and changes sign
as the vHs is traversed.

This behaviour is qualitatively reproduced in the Fermi surface
topology as calculated by relativistic density functional theory
(DFT) (Fig. 5b, c). However, to investigate whether this single
particle calculation correctly captures the strain-dependent Fermi
surface evolution, a more quantitative comparison is needed. Here
we again make use of the β-band asymmetry as an internal
reference of the anisotropic strain. Indeed, our calculations
(Supplementary Fig. S4a) confirm that the β-band asymmetry is
linearly proportional to the asymmetric strain. Moreover, they
show that this metric is independent of the Poisson’s ratio used in
the calculation, providing an elegant way to compare results for
samples mounted on platforms with freestanding samples, as, for
example, investigated in refs. 21,23,24,40

Our calculations provide an excellent match to the measured
strain evolution of the γ Fermi surface in the vicinity of the M1

point (Fig. 5a). Close to M2, however, the agreement becomes
much poorer as the Lifshitz transition is approached. The

Fig. 3 Strain-tuning to the van Hove singularity. a, b Dispersions of Sr2RuO4 under anisotropic strain in the vicinity of the Brillouin zone
boundary, measured along the a Γ-M1 and b Γ-M2 directions (see inset). The γ-band is clearly located above EF at the M1 point, intersecting the
Fermi level away from M1 along the Γ-M1 direction. In contrast, the γ-band is pushed below the Fermi level at M2, with a fully-occupied
parabolic band visible along Γ-M2. cMeasurements along the orthogonal directions away from M2 (see inset) reveal the saddle point nature of
the band dispersion at the M points, with a barely-occupied upward dispersing band visible along M2-X before it is cut off by the Fermi
function. The saddle point is shown schematically in d

Fig. 4 Quantitative analysis of Fermi surface anisotropy. a Fermi surface of uniaxially-pressured Sr2RuO4 (image plot) with Fermi momenta
(points) extracted from fitting MDCs. b, c Corresponding kF of the b β- and c γ-band Fermi surfaces as a function of radial angle, φ (see a) A
small C2 distortion of the β-sheet Fermi surface is evident, while the γ-sheet develops open contours
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discrepancy between the DFT and the experiment is larger than
the uncertainties associated with either (see also Supplementary
Fig. S4b), likely reflecting a many-body contribution (see also
ref. 31,43). At the single particle level, our DFT calculations
downfolded on a Wannier tight-binding basis (see ‘Methods'
section) predict a linear scaling of the hopping parameters with
strain (Fig. 5d), with orbital-dependent pre-factors.

DISCUSSION
It is an interesting open question whether the discrepancies
between the strain evolution of the Fermi surface predicted by the
linear scaling described above and that found in our measure-
ments can be understood on the basis of local self-energies, as in
unstrained Sr2RuO4,

11 or may in fact imply that correlations
become momentum-dependent in the vicinity of the Lifshitz
transition. Spectroscopic study in this range of strains is
particularly desirable because of the potential consequences of
van Hove singularities in producing transport and susceptibility
power laws that do not conform with the expectations for a
standard Fermi liquid.24,31,44–47 This is an area of strong and
growing interest, and one in which the tunability of Sr2RuO4 will
play an important role.
Our findings therefore motivate future theoretical work study-

ing the strain evolution of electronic correlations in Sr2RuO4, as
well as providing important constraints for such studies. For
example, we find that the Luttinger counts of each of the α-, β-
and γ-band Fermi surfaces (Fig. 5e) is, within our experimental
uncertainty, independent of strain and consistent with the values
known from de Haas van Alphen measurements in unstrained
Sr2RuO4.

8 This is in contrast to the case of biaxial epitaxial strain,27

for which approaching the vHs in Sr2RuO4 relies on a redistribu-
tion of charge carrier density between the α-, β- and γ-bands. The
data in Fig. 5e indicate that uniaxial pressure tuning to the van
Hove singularity instead results essentially entirely from distortion
of the γ-band.
The results presented in this paper represent the first k-resolved

spectroscopic evidence for the uniaxial stress-driven changes in
the electronic structure of Sr2RuO4. Within experimental error, the
strain at which ARPES shows that the van Hove singularity in the γ
sheet is reached is the same as the narrow range of strains at
which there are strong peaks in Tc, the normal state NMR Knight
shift and normal state resistivity. Our findings therefore provide
strong evidence that, as previously postulated but not proven, all
of these phenomena are associated with the Lifshitz transition
caused by traversing this van Hove singularity. This has important
implications for understanding the normal state and super-
conducting physics of Sr2RuO4, and offers the prospect of testing
modern theories of its electronic structure and superconducting
instability. Crucially, such investigations are made experimentally
feasible by our basic passive platform design, which can easily be
incorporated in laser-based systems, yielding the best energy and
momentum resolution available to modern angle-resolved photo-
emission. What is more, the minimalistic and compact design of
our device will allow it to be used in other extreme environments,
without the need to construct a bespoke instrument for every
application. This simple approach is ideal for exploration of the
large parameter space that can be used for tuning of quantum
materials, and we believe could lead to discoveries of novel
phases and effects in a wide range of compounds.

Fig. 5 Strain evolution of Fermi surface anisotropy. a Parametrization of the γ-sheet anisotropy, encoded via the momentum separation of γ
Fermi surfaces in neighbouring Brillouin zones (ΔkF > 0) or by the momentum separation between the two branches along the Brillouin zone
boundary once the Fermi contour becomes open (ΔkF < 0). These are plotted as a function of anisotropic strain encoded via the β-sheet
asymmetry. The square symbols are from a sample mounted on the spring-based rig described in the Supplementary Information (Fig. S1).
The measured Fermi surfaces and dispersions from all of the samples included here are shown in Supplementary Fig. S3. Calculated Fermi
surfaces for unstrained (b) and strained (c) Sr2RuO4. The line thickness encodes the degree of out-of-plane dispersion. d Downfolding the
calculations onto a basis of Ru-centered Wannier functions representing the Ru 4d xy, xz and yz orbitals, we find that the hopping terms,
shown here for nearest neighbours, vary linearly with strain with orbital-dependent prefactors. e Strain-dependent measurements of the
Luttinger counts of the three Fermi surfaces, showing no resolvable changes as a function of strain
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METHODS
Differential thermal contraction strain rig
We describe here the design and operation of our uniaxial stress apparatus
shown in Fig. 1. This stage uses the differential thermal contraction
between aluminium and titanium to uniaxially compress a sample
platform. Aluminium contracts by 0.42% between room temperature and
the measurement temperature, and titanium by 0.15%. This differential
contraction is applied over a length of 6 mm, producing a thermal
displacement of 16 µm. By necking the sample platform, its spring
constant can be kept low relative to those of the other components, so
that the resulting elastic deformation is concentrated into the neck. The
spring constant of the two platforms together (there is a mirror of the
sample platform on the bottom, to keep the device symmetric) is ≈8 N/µm.
That of the remaining parts of the device, meaning the aluminium struts
and titanium bars that generate the thermal displacement, is ≈20 N/µm, so
20/(20+ 8) ≈ 70% of the thermal displacement goes into the platforms.
This compresses them uniaxially by ~0.6% between room temperature and
below ~40 K, resulting in an anisotropic strain in the platform of |εxx−
εyy| ≈ 0.8%. This value is confirmed by comparison of optical micrographs
taken at room temperature and 10 K (Supplementary Fig. S2). Crucially, this
strain is applied gradually as the sample is cooled: the elastic limit of
single-crystal Sr2RuO4 is as low as 0.15% at room temperature but at least
1% at 5 K,40 and by making use of differential thermal contraction in this
way strain is applied to the sample as its elastic limit increases with
cooling.
The sample is affixed to the necked portion of this platform using silver

epoxy; this is the conventional sample mounting approach for ARPES
measurements. Although this stage is not intrinsically tunable, the strain
achieved in the sample varies with sample thickness, allowing different
strains to be realised from different cleaves. This was most likely achieved
through a combination of elastic and nonelastic deformation of the epoxy.
The samples were in a size range permitting, even with fully elastic epoxy
deformation, partial strain transmission. The datasheet for Epotek H21D
silver epoxy indicates a room-temperature storage modulus, equivalent to
the Young’s modulus for elastic materials, of 5.5 GPa, while the Young’s
modulus for stress along a Ru–Ru bond direction in Sr2RuO4 is ~176 GPa.

48

This large difference in Young’s moduli means that the strain in the sample
locks to that in the platform over a length scale λ that increases as the
sample is made thicker. For epoxy and sample thicknesses both on the
order of 10 µm, this length scale λ= ~100 µm. Our samples were typically
~600 µm across, larger but not drastically larger than λ, allowing
meaningful variation in the achieved sample strain through varying
sample thickness. Epoxy creep at higher temperatures is likely to have
provided an additional mechanism to relax strain,49 which would also be
more effective for thicker samples. Samples were cleaved at room
temperature, so for cooling the sample stage from the epoxy curing
temperature of 120 °C to room temperature the samples were thicker—
generally 50–150 µm thick—and so also mechanically stronger than during
cooling from room temperature.

Angle-resolved photoemission
High-quality single-crystal Sr2RuO4 samples were grown in a floating zone
furnace (Canon Machinery) using techniques refined over many years to
those described recently in ref. 50 These were cut into square platelets of
dimensions ca. 600 × 600 µm2 with the square edge oriented along [100]
and, except where stated, were mounted on the custom sample stage
shown in Fig. 1, with the [100] direction aligned to the uniaxial
compression direction of the strain cell. The samples had varying thickness
down to ca. 15 µm (Supplementary Fig. S2), enabling different strains to be
achieved as discussed above. ARPES measurements were performed at the
I05 beamline of Diamond Light Source,51 at a manipulator temperature of
~10 K. We used 68 eV linear horizontal (LH, p-polarised) photons for Fermi
surface maps, 40 eV LH photons for measurements of the Γ-M dispersions,
and 40 eV linear vertical (s-pol) light for measurement of the M–X
dispersion, all chosen to ensure the most favourable transition matrix
elements.
In situ cleaved Sr2RuO4 is known to support surface states which

substantially complicate the measured spectra in unstrained Sr2RuO4.
9 It

would be difficult to separate the strain-induced changes of the bulk
electronic structure from the surface contributions. We therefore cleaved
our samples in air immediately prior to loading them into the vacuum
chamber. The resulting ARPES measurements of an unstrained reference
sample mounted on a standard sample plate (Fig. 2(a)) reveal only the
three well-known bulk Fermi surfaces of Sr2RuO4,

2 with no observable

trace of surface-derived features. We therefore proceeded with this
method for all of our measurements of strained Sr2RuO4.

Density-functional theory
DFT electronic structure calculations were performed using the full-
potential local orbital FPLO code,52,53 version fplo18.00-52 (http://www.
fplo.de). For the exchange-correlation potential, within the local density
approximation the parametrizations of Perdew–Wang54 was chosen. The
spin–orbit (SO) coupling was treated non-perturbatively solving the four
component Kohn–Sham–Dirac equation.55 To obtain precise band
structure and Fermi surface information, the final calculations were carried
out on a well-converged mesh of 64.000 k-points (40 × 40 × 40 mesh, 8631
points in the irreducible wedge of the Brillouin zone). As starting point, for
the unstrained crystal structure the structural parameters from ref. 56 at
15K have been used. Except where stated, the room-temperature
experimental Poisson ratio was used for the calculations at finite strain
with the free internal structural parameters optimised, minimising forces
below 1 meV/Å. A three band tight-binding model was constructed from
Ru-centered Wannier functions for the 4d xy, xz and yz orbitals.

DATA AVAILABILITY
The research data supporting this publication can be accessed at https://doi.org/
10.17630/3e6129ea-441a-486c-be5c-23a812c93cd2.
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