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Abstract  6 

One of the main aims in the field of structural geology is the identification and quantification of 7 

deformation or strain. This pursuit has occupied geologists since the 1800’s, but has evolved 8 

dramatically since those early studies. The quantification of strain in sedimentary lithologies was 9 

initially restricted to lithologies of known initial shape, such as fossils or reduction spots. In 1967, 10 

Ramsay presented a series of methods and calculations, which allowed populations of clasts to be 11 

used as strain markers. These methods acted as a foundation for modern strain analysis, and have 12 

influenced thousands of studies. This review highlights the significance of Ramsay’s contribution to 13 

modern strain analysis. We outline the advances in the field over the 50 years since publication of the 14 

‘Folding and Fracturing of Rocks’, review the existing limitations of strain analysis methods and look 15 

to future developments.  16 

17 

‘The analysis of the variation in amount of finite strain in a deformed zone is of the utmost importance 18 

in helping to understand the structural geometry and hence the structural history of the rocks.’  19 

John Ramsay, 1967 20 

The field of structural geology is primarily concerned with understanding the deformation of crustal 21 

rocks. This deformation or strain is caused when external forces or stresses act on a rock mass, causing 22 

a change in its shape or size (Ramsay, 1967). The concept of quantifying strain in rocks has been 23 

prevalent since the 1800’s, and has evolved dramatically since those early studies. Various methods 24 

have been used to identify and quantify strain, the earliest of which relied on objects of a known initial 25 
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shape. This approach was first taken by Phillips (1843) and Sharpe (1847) who used deformed fossils, 26 

with Sharpe (1847) noting that the most deformed fossils were present in the areas with the most 27 

intense cleavage. This led to Sorby’s seminal interpretations of cleavage development (Sorby, 1849) 28 

and correlation of cleavage to areas with high strain (Sorby, 1856). Haughton (1856) provided the first 29 

mathematical description of length changes in fossils due to strain in naturally deformed rocks, 30 

furthermore, he applied the concept of the strain ellipsoid to rock deformation, which established a 31 

framework for strain to be quantified and compared.  32 

It was not until the quantitative studies on distorted ooids by Cloos (1947) that truly numerical and 33 

methodological strategies were fully applied to strain analysis. By the early 1960’s, strain analysis 34 

methods were still largely dependent on the presence of strain markers of known initial shape, such 35 

as fossils, ooids or reduction spots (Breddin, 1954, 1957; DeSitter, 1964). In 1967, John Ramsay 36 

presented a suite of precise and mathematical procedures that allowed for the accurate 37 

determination of finite strain in deformed rocks. These methods, though significantly modified, have 38 

stood the test of time and are regularly employed. Of the many publications citing Ramsay’s Folding 39 

and Fracturing, a significant number, >1000, have focussed on strain analysis (Lisle, this issue). It is 40 

clear that these techniques are still applied to both field studies and mathematical models of rock 41 

deformation.  42 

This review starts by highlighting the importance of Ramsay’s initial contribution, then we outline the 43 

significant advances in the techniques of strain analysis made over the last 50 years. This is followed 44 

with a brief discussion on applications of strain analysis and how these techniques have advanced our 45 

understanding of natural rock deformation. There is clearly a huge body of research involving strain 46 

analysis and it is not possible to reference every application here, but we have highlighted some key 47 

developments. We then follow this by providing a discussion of some of the key unresolved problems 48 

in the field. We conclude with some ideas for future directions and hope that this will act as a 49 

springboard for those investigating strain in rocks for the first time.  50 



Strain Analysis Techniques proposed by Ramsay 51 

The significance of Ramsay’s contribution was that he set out in a systematic and mathematical 52 

manner techniques for determining strain from objects of known initial shape, and he established 53 

methods which allowed populations of objects, such as sedimentary clasts, of non-spherical and 54 

fluctuating initial shape, to be used as strain markers. These methods depend on clast orientation, 55 

repacking and intraclast deformation of clasts due to deformation. This was a key development in 56 

strain analysis, as it allowed estimates to be made from lithologies that did not have obvious or 57 

established strain markers (Fig. 1). The methods developed by Ramsay (1967) are briefly outlined 58 

below:  59 

Method 1 60 

The first method that Ramsay outlined built on existing techniques at the time, and involved direct 61 

measurement of the principal axes of elliptical strain markers and the orientation of their long axes 62 

(Ramsay, 1967, p 193). These axes are then plotted against each other (Fig. 2a) and the slope of the 63 

best-fit line that also passes through the origin provides an estimate of the strain ratio (Fig. 2b). 64 

Ramsay noted it was difficult to accurately identify ellipse lengths in high deformation regimes, and 65 

that it was difficult to identify the maximum stretching direction in low strain regimes.  66 

Method 2  67 

The second method (Ramsay, 1967, p 193-194), does not rely on direct measurement of ellipse axes, 68 

and accounts for difficulties in methods of identifying the length of maximum ellipse axes. The centre 69 

of each ellipse is identified and the lengths of chords from the centre to the edge of each ellipse along 70 

three arbitrarily directions are measured. The sum of the chord lengths for the three defined 71 

directions for a population of objects is calculated (Fig. 2c). If the objects were initially circular, the 72 

ratios of elongation can be calculated for each direction.  73 

 74 



Method 3  75 

This method, commonly referred to as the nearest-neighbour or centre-to-centre method, (Ramsay, 76 

1967, p 195-196) was developed to tackle cases where pressure solution was suspected to have 77 

occurred, and is applicable to rocks with particles equally or unequally distributed throughout the rock 78 

mass. In cases where pressure solution is a significant deformation mechanism, the elliptical shape or 79 

preferred orientation of markers is not reliable. This method is particularly useful for identifying cases 80 

where non-passive deformation is thought to have occurred (i.e. that the clasts are not deforming 81 

homogeneously with the matrix). The basic premise involves measuring the distance between object 82 

centres, and assuming that in the unstrained state these distances should be isotropic (Fig. 3a). During 83 

deformation the distance between centres should become shorter parallel to the maximum 84 

compression axis (Fig. 3b & c).  85 

Method 4 86 

The fourth method (Ramsay, 1967, p 197-199) utilised the measurements of distorted angles of radial 87 

and tangential lines in elliptical sections, such as those in spherulites. Whilst an elegant method of 88 

calculating strain, this method has had limited use due to the specific nature of the strain markers 89 

required.  90 

Rf/Ø Method 91 

In addition to the four methods above, Ramsay (1967, p 204-211) also outlined a method for 92 

specifically dealing with markers of initial elliptical, the Rf/Ø method (Fig. 4), where Rf is the deformed 93 

axial ratio of the marker ellipsoid, while Ø is the orientation of the long axis. This is slightly more 94 

complex than using initially circular objects, in that when an ellipse is deformed under homogeneous 95 

conditions, the resulting shape is another ellipse. The axial ratio (Rf) and orientation of the deformed 96 

ellipse is a result of the combination of the initial aspect ratio (Ri) and orientation (θ), and the strain 97 



ellipse, all of which are unknowns. When a population of deformed ellipses are considered, variations 98 

in their Ø values can be related to eccentricity in their orientations prior to deformation.   99 

Measuring strain after Ramsay  100 

Essentially Ramsay (1967) developed methods whereby strain estimates could be made using 101 

parameters derived from the following: strain marker orientation, strain marker shape, position of 102 

strain marker centres, distance between centres and the angle between centres. The two main types 103 

of methods that prevailed were the Rf/Ø method and the centre-to-centre. The Rf/Ø method (Fig. 4) 104 

determines finite strain from randomly oriented populations of deformed elliptical objects, while the 105 

centre-to-centre method (Fig. 3) uses the distance between centres of adjacent objects, and assumes 106 

the objects were uniformally distributed prior to deformation.  107 

Subsequent to the initial Rf/Ø method, alternative methods based on marker shape and orientation 108 

were developed (Dunnet, 1969; Elliott, 1970; Dunnet and Siddans, 1971; Matthews et al., 1974; 109 

Borradaile, 1976; Shimamoto and Ikeda, 1976; Lisle, 1977a, 1977b, 1985; Robin, 1977; Peach and Lisle, 110 

1979; Siddans, 1980; Yu and Zheng, 1984; Mulchrone and Meere, 2001; Mulchrone et al., 2003). 111 

Dunnet (1969) developed an Rf/Ø diagram method, while Elliott (1970) applied a similar graphical 112 

approach, the shape factor grid. Dunnet and Siddans (1971) took non-random initial orientations  into 113 

consideration for the Rf/Ø diagram method. A significant drawback of these methods is that they are 114 

subjective.  115 

An algebraic method that accommodated statistical analysis of any errors produced was introduced 116 

by Matthews et al. (1974). The drawback of this method was that the orientation of the principal strain 117 

axis needed to be calculated independently prior to using the method. Similarly, Robin (1977) derived 118 

a method that allowed analysis of strain markers of any shape but required prior independent 119 

knowledge of the principal strain axes. Advances in the Rf/Ø method are discussed in further detail by 120 

Lisle (1994). In order to address the issues outlined above with calculating strain from distributions of 121 

elliptical objects, Shimamoto and Ikeda (1976) developed an objective non-graphical, reproducible 122 



approach to strain analysis. This approach averaged the parameters of all of the marker ellipses to 123 

generate one marker ellipse, or if the initial distribution was isotropic, a marker circle. The Mean Radial 124 

Length (MRL) method of Mulchrone et al. (2003) took a similar approach, whereby the average shape 125 

of a population of isotropic ellipses or non-deformed sedimentary clasts equates to a circle. As this 126 

population becomes deformed by either shape change or rotation, this circle becomes an ellipse 127 

and can be directly related to the strain ellipse in the same manner that any circular marker can 128 

after deformation.    129 

The centre-to-centre family of techniques are based on using object-to-object separation and assume 130 

that the distribution of marker objects are isotropic and that after deformation the distance between 131 

any marker centre and all other clast centres has been modified. The relative change in clast centres 132 

distances can be related to the direction and magnitude of the finite strain ellipse (Ramsay, 1967). 133 

Compared to the Rf/Ø method, the centre-to-centre method involved relatively complicated 134 

calculations and was particularly labour intensive. As a result, it initially received significantly less 135 

attention than the Rf/Ø method. This changed when a relatively simple graphical approach was 136 

developed by Fry (1979; Hanna and Fry, 1979), which used all object-object separations. This was 137 

subsequently further improved as the Normalised Fry Method (Erslev, 1988) and the enhanced 138 

Normalised Fry Method (Erslev and Ge, 1990). McNaught (1994) further extended these methods by 139 

facilitating the use of non-elliptical markers by determining best-fit ellipses for these irregular shaped 140 

objects. One of the drawbacks of the centre-to-centre techniques is that they do not account for 141 

volume loss, which can be considerable when pressure solution is a dominant deformation mechanism 142 

(Onasch, 1986; Dunne et al., 1990). Furthermore, if pressure solution is significant, there are 143 

difficulties in identifying the pre-strain centres of clasts and if significant heterogeneous deformation 144 

is present at the clast scale than this can lead to further underestimates of strain.  145 

The Fry methods have been regularly incorporated into automated analysis tools (Ailleres et al., 1995; 146 

Launeau and Robin, 1996; Launeau et al., 2010). Despite popularity and ease of use, these methods 147 



are subjective, with interpreter bias being introduced at both the identification of clast centres, and 148 

the definition of the central ellipse on the Fry plot. Mulchrone (2003) used Delaunay triangulation to 149 

characterise nearest neighbour separations, and defined object centres using the centroid of the best-150 

fit ellipse. This resulted in a more objective and automated process for identifying object centres and 151 

creating the tie-lines between nearest neighbours.  152 

Calculating the strain ellipsoid  153 

Most strain analysis techniques focus on quantifying strain in a 2D plane. In order to quantify strain in 154 

3D, a strain ellipsoid needs to be defined. Typically, the strain ellipsoid is defined from strain ellipses 155 

on several planar surfaces with differing orientations. Similar to calculating the strain ellipse, 156 

calculating the strain ellipsoid is not a trivial process, and numerous attempts have been made at 157 

determining the most accurate best-fit ellipsoid. Ramsay (1967; p. 142-147) derived a series of 158 

equations to solve for the best-fit ellipsoid from three mutually perpendicular planes. Numerical 159 

algorithms were subsequently developed for three orthogonal sections (Shimamoto and Ikeda, 1976; 160 

Oertel, 1978). This was followed by methods, which allowed for non-orthogonal sections (Milton, 161 

1980; Gendzwill and Stauffer, 1981; Shao and Wang, 1984; De Paor; 1990). Owens (1984) in particular 162 

described an iterative method for the calculation of the best-fit strain ellipsoid from any number of 163 

non-perpendicular sections using a least squares approach, as well as applying a scale factor. Robin 164 

introduced an approach utilising a series of linear equations (Robin, 2002; Launeau and Robin, 2005). 165 

Shan (2008) built on the Robin method, and included added flexibility, whereby stretching lineation 166 

data could be included. The important distinction of the Robin and Shan methods from the previous 167 

methods was that they were non-iterative but separated the parameters to be calculated from the 168 

initial data. Vollmer (2017) has provided a more detailed comparison of the Robin and Shan methods, 169 

as well as applying bootstrap statistics to the results. Mookerjee and Nickleach (2011) presented a 170 

suite of methods in Mathematica, which attempts to minimise the errors between the best-fit ellipsoid 171 

and any of the measured planes used as input data.  172 



Graphical representation of the strain ellipsoid 173 

The geometries of strain ellipsoids can be represented in 2D space using a Flinn Plot (Flinn, 1956, 1962, 174 

1965). This type of plot was first used to compare the elliptical properties of clast populations in 175 

conglomerates (Zingg, 1935). The ratio of the maximum to intermediate ellipsoid axes (R X/Y) is 176 

plotted as ordinate and the ratio of the minimum to intermediate axes (R Y/Z) is plotted as abscissa 177 

on these graphs. The Flinn Plot was subsequently modified by Ramsay (1967) to include a logarithmic 178 

scale (Fig. 5; discussed further in Hobbs et al., 1976; Ramsay and Huber, 1983). The benefit of the 179 

logarithmic Flinn Plot is that it provides a more even distribution of points with increase in deformation 180 

(Ramsay and Huber, 1983), whilst in the original Flinn Plot low strains are clustered near the origin, 181 

making it difficult to interpret data.  182 

The symmetry of the strain ellipsoid can be described by the ratio K ((X/Y)/(Y/Z)). If K>1 then the 183 

ellipsoid is considered to have a prolate or axial symmetric constriction and has one long axis and two 184 

shorter axes. If K<1 the ellipsoid is considered to be oblate or axially symmetrically flattened and has 185 

two long axes and one shorter axis. Between these two fields of flattening and constriction is the field 186 

of plane strain (K=1) and which only occurs when strain is acting in the XZ plane. K represents the slope 187 

of a line from the data point to the origin at (1,1), so that K=a-1/b-1 with a=x/y  and b=y/z. K on the 188 

diagram can define a series of domains, so that when K=0 the finite strain ellipsoid is uniaxial oblate 189 

and has been flattened perpendicular to Z. As K tends towards 1 the ellipsoid moves away from being 190 

purely uniaxial, but remains in the oblate and flattened domain. For K values greater than 1 the 191 

ellipsoid lies in the prolate or constrictive domain, and for K=∞ the ellipsoid is purely uniaxial prolate 192 

and stretched along the X axis (Park, 1997). The degree of how far removed the ellipsoid is from 193 

spherical (ellipsoid eccentricity) is calculated as √((X/Y)2 + (Y/Z)2). 194 

A less-popular alternative to the Flinn Plot, the Nadai-Hsu Plot (Fig. 5; Nadai, 1950; Hsu, 1966) was 195 

first applied to geological strain analysis by Hossack (1968).  This type of plot presents strain in a polar 196 

area, and is argued to provide a less distorted representation of the deviatoric strains (Hobbs et al., 197 



1976; Brandon, 1995; Mookerjee and Peek, 2014). Another advantage of this type of polar plot is that 198 

ellipsoids with low strain ratios plot closer together regardless of the ellipsoid shape. Ramsay and 199 

Huber (1983) criticised the Nadai-Hsu plots, irrotational strain is assumed, while most natural 200 

deformation involves progressive non-coaxial rotational strains.  201 

The fundamental difference is that the Nadai-Hsu Plots use the amount of strain (εs) and Lode’s Ratio 202 

(ν), to define the ellipsoid shape (Lode, 1926). The amount of strain, is related to the octahedral shear, 203 

ϒo, and is defined by: εs = (√3 / 2) ϒo, where ϒo = (2/3) [(ε1 – ε2)² + (ε2 – ε3)² + (ε3 - ε1)²]½ and ε1, 204 

ε2 and ε3 represent the strain axes. The Lode Ratio is defined as ν = (2ε2 - ε1 – ε3) / (ε1 – ε3) and 205 

ranges from -1 to 1. Lode ratios of -1 define a prolate ellipsoid, while 1 and 0, define an oblate and 206 

plane strain ellipsoid respectively. Whereas the Flinn Plot solely relies on the aspect ratios of the strain 207 

ellipsoid (as discussed above). For a more in depth discussion of the merits of each method readers 208 

are referred to Mookerjee and Peek (2014) and Vollmer (2017). 209 

Automation  210 

Possibly one of the biggest drawbacks to most strain analysis studies is the high labour intensity 211 

required for both the identification of object boundaries, and the accurate identification of their 212 

centres for enough objects to create a statistically robust sample set. Since the late seventies, many 213 

attempts have been made at automating strain or fabric analysis to address this (e.g., Peach and Lisle, 214 

1979). Initially, the limiting steps in the automation of these strain analysis techniques was the 215 

recognition and fitting of best-fit ellipses to geological strain markers, such as sedimentary clasts (Fig. 216 

6a & b).  217 

The efficient and accurate automatic segmentation of thin section images is still a developing field and 218 

has received a lot of recent attention with numerous attempts at automated extraction using image 219 

processing or GIS-based techniques (e.g., Goodchild and Fueten, 1998; Heilbronner, 2000; van den 220 

Berg et al., 2002; Perring et al., 2004; Barraud, 2006; Choudhury et al., 2006; Li et al., 2008; Tarquini 221 

and Favalli, 2010; DeVasto et al., 2012; Gorsevski et al., 2012; Heilbronner and Barrett 2013; 222 



Mingireanov Filho et al., 2013; Jungmann et al., 2014; Asmussen et al., 2015). Although these methods 223 

produce rapid grain boundary maps, they are typically inaccurate or achieve different results 224 

depending on the nature of the image. This is highlighted by the regular use of quartz clasts as strain 225 

markers, whereby the automatic identification of their boundaries is complicated by undulose 226 

extinction, deformation bands, diffuse boundaries and colour similarities between neighbouring 227 

grains. Despite these advances, most methods follow the approach of Mukul (1998), whereby grains 228 

used as strain markers are manually traced, and then analysed using image analysis software.   229 

A number of methods for automated image analysis have been successfully utilised in the past for 230 

geological strain analysis (Ailleres et al., 1995; Erslev and Ge, 1990; Masuda et al., 1991; McNaught, 231 

1994; Heilbronner and Barrett, 2013). Panozzo (1984) utilised digitised sets of points representing 232 

linear or elliptical objects in her projection method. Mulchrone et al. (2005) developed a parameter 233 

extraction program (SAPE) that rapidly extracts the required data by using a simple region-growing 234 

algorithm to identify regions of interest. Vollmer developed a similar method, Ellipsefit (Vollmer, 2010, 235 

2011, 2017). Many of these techniques are discussed in Heilbronner and Barrett (2013), who have 236 

provided a superb overview of image analysis techniques for geological material and it is 237 

recommended as a starting point for readers interested in this field.   238 

Once grain boundaries have been identified and ellipses are fitted to clasts, the parameters required 239 

for a range of strain analysis techniques such as the aspect ratio, orientation, and the centroid of the 240 

object can now be easily extracted. For the Rf/Ø method the difficulties in calculating a strain estimate 241 

cease once ellipses have been fitted to strain markers; for the centre-to-centre methods the 242 

difficulties continue.  243 

The accuracy of centre-to-centre strain estimates can be further hampered by the ability to clearly 244 

define the vacancy field or central void of the Fry Plot (Fig. 6c), which in a strained sample should 245 

represent the strain ellipse (Crespi, 1986; Waldron and Wallace, 2007). A variety of techniques have 246 

been applied in order to accurately and objectively define this void (Erslev and Ge, 1990; McNaught, 247 



1994; Waldron and Wallace, 2007; Lisle, 2010; Shan and Xiao, 2011; Reddy and Srivastava, 2012; 248 

Mulchrone, 2013). Similar problems exist for defining the curve of the polar plot (Mulchrone, 2013). 249 

 In order to reduce the time and labour intensity required, Mulchrone et al. (2013) integrated image 250 

analysis, ellipse fitting and parameter extraction, and strain analysis routines for MRL and DTNNM in 251 

one workflow. They also included a method for bootstrapping the results in order to produce 252 

uncertainty estimates (Fig. 6 e&f). Kumar et al. (2014) carried out a detailed comparison analyses on 253 

these methods, and found that the Delaunay Triangulation Method of Mulchrone (2013) and the 254 

Continuous Function Method of Waldron and Wallace (2007) were the most accurate. Additionally 255 

they concluded that the Delaunay Triangulation Method and the image analysis technique of Reddy 256 

and Srivastava (2012) were the most time efficient.  257 

The other method that has stood out is the SURFOR method, first presented by Panozzo (1984, 1987), 258 

and discussed in detail in Heilbronner and Barrett (2013). The SURFOR method takes a slightly 259 

different approach to fabric or strain analysis compared to the Ramsay family of methods. Rather than 260 

focussing on the object orientation or the spatial relationship between objects, the SURFOR method 261 

quantifies the fabric based on the shape, size and orientation of ‘surfaces’ (Heilbronner and Barrett, 262 

2013). The ‘surfaces’ can be any linear element, such as fractures or grain boundaries. One particular 263 

advantage of the SURFOR method over the original Ramsay Rf/Ø method is that it accounts for marker 264 

size, with smaller objects having less of an impact on the final strain/anisotropy estimate. A similar 265 

approach is taken by Launeau et al. (1990, 1996, 2010), whereby linear filters are used to count 266 

intercepts along any arbitrary direction of a digital image. The intercepts technique has shown to be 267 

comparable to the MRL and the DTNNM methods in moderate strain regimes, although in low strain 268 

regimes there appears to be a discrepancy between the methods (McCarthy et al., 2015). These 269 

discrepancies are due to uncertainties in strain estimates in low strain regimes. 270 

  271 



Application of strain analysis and advances in strain theory 272 

This contribution has focussed on the significant advances made in geological strain analysis, as 273 

outlined above, which have provided a number of valuable insights into geological deformation.  274 

Unfortunately, natural deformation is rarely simple or restricted to 2D planes, yet this approach have 275 

aided with understanding of complex deformations.  276 

Strain analysis and resulting knowledge of the finite strain state of a point in a rock mass has played a 277 

fundamental part in the understanding of the development of tectonic fabrics and foliations (Ramsay 278 

and Wood, 1973, Tullis and Wood, 1975). However, nature tends to reveal more by capturing change 279 

in strain through time and space, (e.g. porphyroclasts and related structures, layers which are 280 

shortened and then stretched, and regions of intense shear where the continuum from low to high 281 

strain can be spatially traced). Often the spatial changes can be interpreted as reflecting the temporal 282 

deformation history. Ramsay (1967) applied the concept of infinitesimal strain together with that of 283 

finite strain to understand deformation history, with the difference between what happens in a short 284 

time step compared to that over long time periods helped develop the ideas of progressive strain. This 285 

infinitesimal approach was followed by the seminal work of Means et al. (1980) who considered the 286 

velocity gradient tensor to conceptualise progressive deformation, and used vorticity to quantify 287 

rotational deformation. A detailed discussion of vorticity is beyond the scope of this contribution, and 288 

interested readers should consult the work of Fossen and Tikoff (Fossen and Tikoff, 1993; Tikoff and 289 

Fossen, 1993; Tikoff and Fossen, 1995; Tikoff and Fossen, 1999; Passchier and Trouw, 2005). 290 

Many of the 2D finite strain methods discussed in previous sections have a natural extension to 3D, 291 

but there is still a dearth of 3D strain studies. Methods based on shape (e.g. Shimamoto and Ikeda, 292 

1976; Mulchrone et al., 2003) and inter-object relationships (e.g. Fry, 1979; Mulchrone, 2013) can be 293 

readily developed into 3D methods. However, in many cases the primary difficulty rests with acquiring 294 

suitable data in 3D in order to apply the methods. Recent technological advances have seen the 295 

application of tomography to the acquisition of high quality images of 3D markers in rocks (Louis et al, 296 



2006; Adam et al, 2013; Robin and Charles, 2015). This is certain to be an area of future development 297 

and will inform finite strain studies and their interpretation in the context of 3D deformation history 298 

(Tikoff and Fossen, 1999). 299 

Important comparisons have been made between clast-based strain analyses and other methods of 300 

quantifying deformation. A number of studies in the seventies and eighties highlighted a close 301 

relationship between finite strain estimates and quartz crystallographic fabrics (Marjoribanks, 1976; 302 

Miller and Christie, 1981; Lisle, 1985; Law, 1986). Rapid developments in techniques such as Electron 303 

Back Scatter Diffraction (EBSD) have largely confirmed this relationship, but also provided insights into 304 

deformation at subgrain scales one of the most prominent methods for the determination of preferred 305 

orientation of minerals in thin sections (Passchier and Trouw, 2005; Prior et al., 2009).  306 

Similar advances in rock deformation studies have been made in the field of Anisotropy of Magnetic 307 

Susceptibility (AMS), with Graham (1954) first suggesting that magnetic fabrics could be a valuable 308 

tool in petrofabric analysis and establishing a link between layer parallel shortening and AMS. Since 309 

this pioneering study there has been a huge volume of work confirming the ability of AMS to 310 

determine the orientation-distribution of all minerals and all subfabrics in a specimen, with 311 

comprehensive reviews provided by Borradaile and Henry (1997) and Borradaile and Jackson (2010). 312 

In direct comparisons of AMS to strain analysis techniques, AMS has been shown to be a highly 313 

sensitive and rapid method for quantifying tectonic fabrics (Burmeister et al., 2009; Weil and Yonkee, 314 

2009; McCarthy et al., 2015).  315 

Other significant contributions of strain analysis includes providing accurate information for structural 316 

restorations. Compaction and stratigraphic thickening due to deformation can be estimated and 317 

incorporated in the construction of balanced cross sections (Woodward et al., 1986; Protzman and 318 

Mitra, 1990; Mitra, 1994). Despite Layer Parallel Shortening (LPS) or internal deformation 319 

(compaction, collapse of pore space, dissolution or cleavage formation) being shown to accommodate 320 

significant shortening in balanced cross sections from carbonate duplexes (27%; Cooper et al., 1983), 321 



gravity driven thrust systems (18-25%; Butler and Paton, 2010), and analogue models (15-30%; Koyi 322 

et al., 2004; Burberry, 2015; Lathrop and Burberry, 2017), strain analysis techniques are rarely applied 323 

to balancing cross sections.  324 

Unresolved issues in strain analysis 325 

Hobbs and Talbot (1966) highlighted a few of the limitations of strain analysis a year before Ramsay 326 

published his seminal text, and the majority of these seem to prevail today: the initial shapes of many 327 

strain markers cannot be measured accurately enough to yield highly accurate estimates; and 328 

homogeneous strain is typically assumed. Although these assumptions still prevail, they have largely 329 

been accepted to be unresolved. In addition to this, a number of factors add further uncertainty to 330 

any strain estimate including: strength and influence of the primary or pre-strain fabric; effects of non-331 

passive strain; and the effects of volume-change, these are discussed below.   332 

Primary fabrics 333 

The largest problem for strain analysis methods is the uncertainty regarding the strength and 334 

orientation of an initial primary fabric. Most strain analysis methods, particularly the Rf/Ø family of 335 

techniques, rely on the assumption that the strain markers have a random initial orientation. Certainly 336 

in the case of sedimentary rocks this is rarely true, as most sediments develop a preferred orientation 337 

either due to depositional processes or diagenesis (Elliott, 1970; Dunnet and Siddans, 1971; Boulter, 338 

1976; Seymour and Boulter, 1979; De Paor, 1980; Holst, 1982; Paterson and Yu, 1994; Maffione and 339 

Morris, 2017).  340 

In a study of undeformed lithologies Holst (1982) found that sections not parallel with bedding had a 341 

preferred orientation of clasts along the trace of the bedding plane, while sections parallel to bedding 342 

typically had no preferred orientation of clasts. Even if an isotropic or random depositional fabric 343 

existed, a preferred orientation typically develops during diagenesis and compaction through active 344 

or partly rigid body rotation (Borradaile, 1987). Several efforts have been made to remove the effects 345 



of primary fabrics on strain estimates (Elliott, 1970; Dunnet and Siddans, 1971; Matthews et al., 1974; 346 

Shimamoto and Ikeda, 1976; Lisle, 1977a; Seymour and Boulter, 1979; Holst, 1982; Wheeler, 1986; 347 

DePaor, 1988). Unfortunately, most of these methods utilise one or more of the above assumptions 348 

and/or assume the existence of independent information concerning the strain ellipsoid. Some of 349 

these assumptions regarding the primary fabrics of sedimentary rocks were highlighted by Patterson 350 

and Yu (1994) and include the following:  individual grains are spherical prior to straining; orientations 351 

and shapes of grain populations define spherical, pre-strain fabric ellipsoids (i.e. grains have an initial 352 

uniform distribution); pre-strain fabric ellipsoids are symmetric around bedding; and initial fabrics are 353 

recognisable even after straining.  354 

Failing to account for any of these factors can lead to considerable errors in strain estimates, 355 

particularly in domains with relatively low strains (R <1.5). To account for these errors Patterson and 356 

Yu (1994) suggested that a correction should be applied by multiplying the estimated strain ellipsoid 357 

by an average pre-strain ellipsoid. Unfortunately, information regarding the magnitude and 358 

orientation of the pre-strain ellipsoid is rarely available. Paterson and Yu (1994) compiled XYZ averages 359 

for a range of rock types, but this is a limited data set and should be expanded. Regarding the 360 

orientation, the estimated strain ellipsoid can be multiplied by the reciprocal pre-strain ellipsoid 361 

multiple times in numerous orientations to create an error bracket. Ramsay (1967) showed that all 362 

possible combinations of two ellipsoids result in an approximate triangular region on a Flinn plot. 363 

Following the methodology of Paterson and Yu (1994), this triangular region is then representative of 364 

the error bars of the strain estimate.  365 

 366 

Non-passive deformation 367 

A key assumption of most current strain analysis techniques is that strain is homogenous and that 368 

markers behave in a wholly passive manner in relation to their host material. This breaks down in most 369 

natural materials especially when sedimentary clasts are used for strain analysis. 370 



Clearly, the most ideal strain markers are those that were originally spherical, which were then 371 

deformed passively with no competency contrast between the marker and the host rock. If this holds 372 

true then the final shape of the marker will reflect that of the finite strain ellipsoid (Ramsay, 1967). 373 

The fundamental assumption of most strain analysis methods is that there is no competency or 374 

ductility contrast between the markers and their matrix/host rock, so that the marker and surrounding 375 

rock matrix responded to deformation identically. Unfortunately, clasts and their surrounding matrix 376 

rarely deform in a passive manner, due to competency or ductility contrasts between the marker and 377 

the host rock. This competency contrast is inherently linked to the viscosity contrast between different 378 

clast types and the matrix (Ramsay, 1967; Gay, 1968a,b, 1969; Lisle, 1985b; Freeman, 1987; Freeman 379 

and Lisle, 1987; Treagus, 2002; Mulchrone and Walsh, 2006; Czeck et al., 2009). Gay (1968a) pointed 380 

out that clasts with a low viscosity deform faster than the bulk rock strain ellipse, while clasts with 381 

high viscosities resisted deformation and deformed slower than the bulk rock strain ellipse. Gay 382 

(1968a) also noted that the viscosity ratio between a clast and the matrix is dependent on the relative 383 

proportion of clasts and matrix. Freeman and Lisle (1987) confirmed that the errors in strain estimates 384 

are higher when the clasts represent a small fraction of the bulk rock. This is driven by the high ductility 385 

contrast, whereby the majority of strain is accommodated by the weaker matrix. As the clast-to-matrix 386 

ratio increases the ductility contrast reduces, potentially caused by the reduced ability of the matrix 387 

to flow due to the increase in clast on clast interaction. This separation of strain behaviour between 388 

the matrix and clasts is typically termed strain partitioning. This type of behaviour is largely controlled 389 

by object concentration and the degree of packing and clast interaction, due to the effect these have 390 

on the viscosity contrasts (Gay, 1968a; Lisle et al., 1983; Mandal et al., 2003; Vitale and Mazzoli, 2005). 391 

Generally, lithologies with higher object concentrations display reduced effects of strain partitioning, 392 

leading to more accurate strain estimates (Mandal et al., 2003; Vitale and Mazzoli, 2005).  393 

While reviewing problems arising from these competency contrasts, Treagus and Treagus (2002) 394 

concluded that conglomerates as a whole deformed at an approximately constant viscosity in a 395 

linearly viscous manner, but also found that Rf/Ø style methods characterised clast strain whereas the 396 



centre-to-centre methods were more effective at characterising bulk rock strain. This is in part due to 397 

two factors: clasts typically only represent 50-70% of the bulk rock (Leeder, 1982); and the Rf/Ø 398 

methods only consider clast shape and orientation, while centre-to-centre techniques account for 399 

distances between the clasts.  400 

This non-passive deformation can be accounted for by utilising centre-to-centre methods, which 401 

include spatial information in the estimates of strain, and provide bulk-rock strain estimates that are 402 

closer to true strain values. This has been illustrated in a range of natural settings (Meere et al., 2008, 403 

Soares and Dias, 2015). Meere et al. (2008) attributed non-passive deformation to the presence of a 404 

relatively incompetent clay-rich matrix, which effectively cushioned clasts from internal deformation. 405 

This type of behaviour allows for high degrees of competent clast long-axis alignment achieved by a 406 

combination of rigid body rotation, layer boundary slip and particle–particle interactions, with 407 

minimal evidence of penetrative deformation, despite evidence from traditional strain markers such 408 

as reduction spots and deformed burrows (Meere et al., 2008). In these situations, using the Rf/Ø 409 

methods leads to a significant underestimate of strain. More recently, Meere et al. (2016) highlighted 410 

the importance of identifying passive clast behaviour and the potential for deformation prior to 411 

lithification in understanding the deformation history of a region.   412 

  413 



Volume change 414 

Most studies applying the strain analysis techniques discussed, do not account for any potential 415 

volume change of the markers. Although Ramsay (1967) had already presented a modified Flinn 416 

diagram, which was capable of including some aspect of volume loss, this aspect of strain analysis is 417 

typically ignored. Clearly natural deformation rarely occurs in a closed system, and many attempts 418 

have been made at estimating volume reduction during deformation, as opposed to diagenetic 419 

volume loss. For example, there has been considerable debate regarding the amount of volume loss 420 

in slate belts. Sorby (1856) initially suggested that a 50% volume reduction could occur in slates, but 421 

settled on ~11% (1908). Wright and Platt (1982) suggested a volume loss of 50% in the Martinsburg 422 

Shale of West Virginia. Similar volume reductions were suggested in the Taconic Slate Belt (Goldstein 423 

et al., 1995, 1998). Onasch (1994) suggested a range of volume loss of 14-35% in deformed quartz 424 

arenites. Similarly, Markley and Wojtal (1996) suggested 10-15% volume loss in an Appalachian mixed 425 

siliciclastic sequence. Mosher (1987) analysed the variation in sizes of cobbles in the Purgatory 426 

Conglomerate, Rhode Island, and suggested that there could be a volume loss of 23-55% of the original 427 

cobble volumes in the areas of most intense deformation.   428 

Despite these reports of significant volume reduction, these large volumes are rarely confirmed by 429 

geochemical analyses (Wintsch et al., 1991; Erslev and Ward, 1994; Tan et al., 1995). Similarly, Ramsay 430 

and Wood (1973) considered that a 10-20% volume reduction could occur based on density 431 

differences between lithified mudstones and slates, and argued that greater volume losses were likely 432 

to only occur in the deformation of incompletely consolidated sediments. As discussed earlier 433 

shortening values of this magnitude have been identified by in a range of settings (e.g., Cooper et al., 434 

1983; Butler and Paton, 2010; Lathrop & Burberry, 2017).  435 

While volume change has been mathematically incorporated into strain analysis (Gratier, 1983; 436 

Onasch and Davis, 1988; Baird and Hudleston, 2007), most rocks lack the necessary strain markers for 437 

this type of analysis. Some success has been made using isocon diagrams (Grant, 1986), but these are 438 



typically restricted to discrete shear zones (Srivastava et al., 1995; Bhattacharyya and Hudleston, 439 

2001; Baird and Hudleston, 2007). Other successes in identifying volume loss has come from gravity 440 

driven fold and thrust belts, where the amount of extension high on the slope can be compared to the 441 

amount of compression towards the toe of the slope (Butler and Paton, 2010). 442 

Conclusions 443 

Determining finite strain has seen significant developments since the seminal contribution of John 444 

Ramsay. Through advances in imaging and software, it is easier than ever before to collect large data 445 

sets and apply multiple strain analysis techniques rapidly, and there are a number of methods which 446 

can incorporate statistical handling of the results. Strain analysis is regularly incorporated into 447 

structural studies employing anisotropy of magnetic susceptibility, electron backscatter diffraction, x-448 

ray tomography, microstructural analysis etc., which have not only led to advances in our knowedge 449 

of rock deformation processes, but also regional scale understanding. It should be obvious that 450 

detailed strain analysis studies are required to understand the spatial variations of strain in deformed 451 

terranes, but also the significance of those variations.  452 

Of the many advances outlined here, most of them have been driven by developments in computing, 453 

automation and statistical methods, whilst the basis for these strain analysis techniques have by in 454 

large remained the same, which is a testament to the initial contribution of Ramsay. We anticipate 455 

that the next significant advances in this field will again be largely technologically driven. In particular, 456 

3D imaging of strain markers and 3D strain analysis should become more widespread, and perhaps 457 

developed into 4D. Although, there have been advances in applying micro-tomography to geological 458 

materials, these techniques are yet to be applied to strain analysis. There is also scope for advances 459 

to be made in the extraction of high quality data from images with minimum human intervention e.g., 460 

grain boundary identification, and machine learning techniques could be applied to this.  The natural 461 

optical heterogeneity of geological materials, even in single mineral phases such as quartz due to 462 

impurities, inclusions and microstructural features, will always makes the automation of grain 463 



identification challenging. Increasingly the use of non-destructive chemical mapping techniques, for 464 

example using electron microscope energy-dispersive X-Ray spectroscopy (QEMSCAN) or Raman 465 

spectroscopy, produces outputs that allow the user to filter this heterogeneity thereby making the 466 

process of grain boundary identification more manageable. This, coupled with new machine learning 467 

techniques, will likely develop into a fully automated process for data acquisition, with strain analysis 468 

studies becoming fully automated and significantly more efficient.  469 

Regardless of any future developments, it should be clear that the strain analysis techniques of 470 

Ramsay and their modernised equivalents should have a place in every structural geologist’s toolbox.   471 
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Figure Captions 825 

Fig. 1 Identifying strain in rocks. A. A highly idealised rock outcrop with three exposed mutually 826 

perpendicular surfaces, with appropriate strain markers on each surface. The strain ellipsoid illustrates 827 

the relationship between the tectonic stretching axes XYZ and sigma 1, 2 & 3. B. A real outcrop from 828 

the Dingle Peninsula, which presents a more challenging problem for identifying and quantifying 829 

strain.   830 

Fig. 2 A. Measuring the long (M) and short (m) axes of elliptical strain markers.  B. Plot of the long and 831 

short axes from A. The slope of a best-fit line that passes through the points and the origin provides 832 

an estimate of the strain ratio. C. Measuring chords along three defined directions for a population of 833 

ellipses.  834 

Fig. 3 Nearest-neighbour and or centre-to-centre methodology. A. Centre to centre techniques are 835 

based on the assumption that the tie-lines between nearest neighbours have a uniformly random 836 

distribution in the unstrained state. The lengths, d, and orientations, α, of tie lines joining object 837 

centres are marked. The Polar plot of the unstrained state is illustrated below, showing d vs α. 838 

Interestingly, this unstrained sample has a weak preferred distribution, in that the clasts are closer 839 

together in the vertical direction than the horizontal direction. B. Initial strained state, the distances 840 

between clasts become shorter in the tectonic shortening direction. The polar plot indicates higher 841 

strain estimates. The apex of the curve shows the orientation of the longest direction and the nadir 842 

shows the orientation of the shortest direction. C. The final strain state with pressure solution and a 843 

higher strain estimate.  844 

Fig. 4 The Rf/Ø method. A. After fitting ellipses to strain markers, the ratio of the long axis to short 845 

axis is calculated and the orientation relative to a reference angle is recorded. B. These ratios are then 846 

plotted against the orientation of the long axis. This limited data set suggests that preferred 847 

orientation is between 45 degrees and 75 degrees. Clearly more data is required to more accurately 848 

estimate strain.  849 



Fig. 5. Flinn and Nadai-Hsu plots. A. Flinn plots represent all possible ellipsoid geometries in a 2D space. 850 

The standard convention is to use a logarithmic plot, where the ratio of the maximum to intermediate 851 

ellipsoid axes (Ln X/Y) is plotted as ordinate and the ratio of the minimum to intermediate axes (Ln 852 

Y/Z) is plotted as abscissa. Prolate spheroids plot along the vertical axis and oblate spheroids plot along 853 

the horizontal. As these ellipsoids become less spherical, they plot further away from the origin. B. 854 

Nadai-Hsu plots show similar information to the Flinn Plots, but have an advantage that less deformed 855 

ellipsoids plot closer together regardless of shape.   856 

Fig. 6.  Typical strain analysis methodology. A. Selection of a suitable oriented thin section. B. Fitting 857 

ellipses to the clasts shown in A. C. Fitting the central void of the Fry Plot. D. The same data is 858 

presented in a polar plot. E. Strain estimate from the DTNNM method represented by the black star. 859 

The shaded ellipses represent the Bootstrapped confidence intervals. F. Strain estimate from the MRL 860 

method represented by the black star. The shaded ellipses represent the Bootstrapped confidence 861 

intervals. Note the underestimate compared to the DTNNM method. 862 
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