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Key Points: 

 Tide-by-tide analysis of an entire 76-day post-storm recovery of a sandy berm and 
beachface reveals four key modes of profile behaviour.  

 Rates of beachface volume change per tidal cycle show losses and gains on the 
order of several m3/m/day with intermittent berm deposition.   

 Criteria found to govern behavioural modes include dimensionless fall velocity, 
swash exceedance of the berm crest and ocean water levels.  
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Abstract:  

Following the rapid and destructive impacts of storm erosion, beach recovery is a key natural 

process of restoration, returning eroded sediment to the subaerial beach and rebuilding 

coastal morphology. While the effects of storm erosion have commonly been investigated, 

detailed studies into post-storm recovery are currently lacking. This study investigates wave-

driven recovery processes of the berm and beachface on a microtidal, swash-aligned sandy 

beach. Following complete removal of the berm by a significant storm event, the entire 76-

day rebuilding of a swash berm is analysed at the timescale of every semi-diurnal tidal cycle, 

utilising high resolution (5 Hz) swash and subaerial beach profile measurements from a 

continuously scanning fixed lidar. Tide-by-tide rates of subaerial volume change during berm 

recovery were most frequently observed between 1 - 2 m3/m/day, including losses and gains 

on the order of several m3/m/day, substantially larger in magnitude than the more gradual 

rate of net gain (0.7 m3/m/day) observed for the entire recovery period. Patterns of berm 

crest formation and vertical growth were found to be primarily governed by the neap-spring 

tide variations in total water levels. Tide-by-tide beachface and berm volume changes were 

used to classify four principal behavioural modes of subaerial profile variability during 

recovery. Using decision tree classification, modes were differentiated according to 

nearshore dimensionless fall velocity, swash exceedance of the berm crest and ocean water 

levels. The findings provide novel behavioural and parametric insight into the tide-by-tide 

rebuilding of the beachface and berm by swash throughout a complete post-storm recovery 

period.  

1. Introduction 

Understanding the dynamic nature of beaches is critical to managing densely populated and 

asset-rich coastal regions (Bascom, 1954). Counter-acting the destructive impact of storms 

is the onshore return of eroded sediment and associated post-storm rebuilding of the 

subaerial beach (i.e., the beachface, berm and dunes) due to the action of waves and wind. 

This post-storm rebuilding process is often referred to in the literature as ‘beach recovery’ 

(e.g., Morton et al., 1994; Corbella & Stretch, 2012). As a beach recovers, the depleted post-

storm buffer provided by the subaerial beach that protects adjacent coastal settlement and 

infrastructure from coastal inundation is progressively restored in width, volume and height 

(CERC, 1984). Additionally, during recovery the “usable” width of a beach is restored to 

satisfy beach goers (Frampton, 2010) and impacted beach ecology returns to its former state 

of health (Revell et al., 2011). While studies have developed empirical and process-based 

understanding of storm erosion (e.g., Larson & Kraus, 1989; Roelvink et al., 2009), insight 
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into beach recovery and the physical parameters governing the rebuilding of subaerial beach 

profile are less well observed and understood (e.g., Jensen et al., 2009; Corbella & Stretch, 

2012; Burvingt et al., 2018; Dodet et al., 2018).  

After wave action has transported sediment from the nearshore to the shoreline during post-

storm beach recovery (Phillips et al., 2017), swash processes then rework inter-tidal zone 

sediment up onto the subaerial beach to rebuild the berm. The sandy beach berm is 

characterised by a near-planar region of the subaerial beach, extending seaward of the 

foredune toe and separated from the steeper beachface often by a distinctive change in 

gradient, known as the berm crest (Masselink & Hughes, 2003). The rebuilding of the berm 

and beachface by swash processes marks the most landward extent of wave-driven 

processes during beach recovery, beyond which more gradual aeolian processes rebuild 

eroded morphology in the backshore and dunes (Morton et al., 1994). The majority of 

previous investigations of swash-driven beachface (i.e., seawards of the berm crest and 

extending to mean sea level, MSL) and berm (i.e., landwards of the berm crest and 

seawards of the foredune toe) morphodynamics during recovery are limited by the temporal 

resolution of post-storm morphology datasets which typically capture morphological and 

volumetric changes during recovery at monthly to yearly timescales (e.g., Morton et al., 

1994; Corbella & Stretch, 2012; Kobayashi & Jung, 2012; Yu et al., 2013; Houser et al., 

2015; Scott et al., 2016; Castelle et al., 2017; Burvingt et al., 2018).  

Fewer studies have observed post-storm recovery at finer temporal resolutions (i.e. sub-

daily), spanning weeks to months to examine beachface and berm morphodynamics 

associated with wave, swash and ocean water level hydrodynamics (e.g., Dubois, 1988; 

Katoh & Yanagishima, 1992; Austin & Masselink, 2006). Using daily beach profile 

measurements during the initial four months following a storm, Dubois (1988) observed two 

main behavioural modes in profile variability, namely the progradation (seaward growth) of 

the beachface and aggradation (vertical growth) of the berm. Though the reported study did 

not include simultaneous swash measurements, swash exceedance of the berm crest was 

inferred to be a likely primary factor distinguishing these two modes. Similar findings were 

later observed by swash measurement campaigns of berm regrowth following coastal lagoon 

openings, demonstrating the importance of swash exceedance above the elevation of the 

berm crest (Weir et al., 2006; Baldock et al., 2008). These and additional studies have 

provided valuable insight into smaller-scale (swash-by-swash to tide cycle) swash zone 

processes and morphodynamics over relatively shorter monitoring durations of days to a few 

weeks (e.g., Austin & Masselink, 2006; Jensen et al., 2009; Russell et al., 2009; Blenkinsopp 

et al., 2011). However, there remains a knowledge gap to better understand the role of 
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swash zone processes in the longer-term context of complete berm recovery following 

significant storm events (Puleo & Torres-Freyermuth, 2016).  

The aim of this study is to classify and evaluate parameters governing berm and beachface 

morphodynamics at the timescale of individual tides throughout the complete recovery of a 

berm, following a significant storm event in which the berm was completely ‘reset’ (i.e., 

removed of all previous berm morphology). To do so, this study uses a continuously 

scanning lidar, mounted on the rooftop of a beachside building to obtain continuous and high 

frequency (5Hz) subaerial beach profile and swash measurements throughout the entire 2.5-

month recovery period of the berm from its reset form to pre-storm state. Methodology 

including lidar monitoring setup and data processing is described in Section 2. Patterns of 

berm crest growth, rates of subaerial volume change and behavioural modes of subaerial 

profile variability are analysed at timesteps of each and every tidal cycle throughout berm 

recovery with results presented in Section 3. Using a decision tree classification, behavioural 

modes of berm and beachface recovery following storm reset are characterised, presented 

and discussed in Section 4. Key findings and conclusions are summarised in Section 5. 

2. Methodology 

2.1. Study site 

Narrabeen-Collaroy Beach, shown in Figure 1a, is a 3.6 km-long embayed, swash-aligned, 

sandy beach situated on the wave-dominated SE Australian coastline. Beaches in the region 

were deposited during the mid-Holocene, approximately 6500 years ago, as rising sea levels 

began to stabilise to present-day level (Roy et al., 1980; Thom, 1984). During this period, 

continental shelf marine sands were transported onshore and deposited in embayments 

between rocky protrusions of headlands and cliffs. Many of these deposits formed barrier 

beaches backed by estuaries that have progressively infilled with fluvial sediments. Offshore, 

the coastline has a steep and narrow (20 - 70 km) continental shelf (Short & Trenaman, 

1992). Waves are predominantly from the SSE direction with an average deepwater 

significant wave height (Hs) of 1.6 m and peak wave period (Tp) of 10 s. Semi-diurnal tides in 

the region are characterised by mean spring and neap ranges of 1.3 m and 0.8 m, 

respectively (Couriel et al., 2012).  

Continuous lidar monitoring was undertaken at a single beach transect approximately 700 m 

north of the southern (Collaroy) extremity of the embayment. The monitoring location is 

partially sheltered from the predominant SSE wave energy, with nearshore Hs averaging 0.8 

m at the 10 m depth contour and an average breaker wave direction of ~2.9° relative to the 
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shoreline orientation. Beach morphology in this region of the embayment is typically of the 

Low Tide Terrace (LTT) beach state (Wright and Short, 1984). The analyses presented here 

focus on wave-driven sediment exchanges between the subaerial and subaqueous beach 

(i.e. swash zone). These sediment exchanges are predominately controlled by cross-shore 

processes at this swash-aligned embayed beach, which have been shown at this site to be 

the dominant mode of shoreline variability at timescales of days to months as is the focus of 

this study (Davidson et al., 2013; Harley et al., 2015). For a more detailed site description of 

Narrabeen-Collaroy Beach the reader is referred to Turner et al. (2016).   

2.2. Fixed lidar monitoring setup 

Since May 2014 a near-infrared, extended-range lidar (SICK LD-LRS 2110) has been 

continuously operating from the rooftop of a beachside building at Narrabeen-Collaroy, with 

the instrument located approximately 44 m above mean sea level (MSL) as shown in Figure 

1b. This fixed lidar deployment at Narrabeen-Collaroy operates by emitting a pulse of light 

that is reflected from the surface of the beach, swash and surf zone, and returned to the 

instrument to be recorded as a distance based on travel time. Measurements are recorded 

at 0.25º angular increments along a cross-shore transect, resulting in cross-shore 

resolutions of approximately 0.2 - 0.5 m on the subaerial beach, and 0.5 - 2 m within the surf 

zone. The lidar swath extends from the base of the building to the offshore limit of signal 

return (Figure 1b). This offshore limit is observed to vary with the degree of surf zone 

aeration required to obtain sufficient signal reflection from the water surface (Blenkinsopp et 

al., 2010). The typical scanning range of the instrument in this setting is between 70 - 110 m 

with a maximum range of the order of 130 m (~120 m cross-shore) during high surf zone 

aeration. Continuous scanning is undertaken at a frequency of 5 Hz, with brief and 

infrequent outages of up to a few days due to local computer issues at the field site. The 

fixed lidar system enables continuous 24 hours per day monitoring, with uninterrupted and 

identical data collection during both day and night (see Figure 3). The system is designed as 

shown in Figure 1b to allow remote user operation of the lidar, scan scheduling and 

automated online data transfer. Lower-elevation and shorter-term (days) lidar deployments 

for the measurement of swash and subaerial morphology are also reported in the literature 

(e.g., Blenkinsopp et al., 2010; Brodie et al., 2012). 

Co-located with the fixed lidar is an Argus coastal imaging system (Holman and Stanley, 

2007) that has been recording oblique images of the southern end of the embayment every 

daylight hour since August 2004 (Splinter et al., 2018). These images are used in this study 

to relate subaerial observations from the lidar to subaqueous changes identified in the Argus 

plan view timex images (Phillips et al., 2017). 
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2.3. April 2015 storm and post-storm recovery analysis 

The purpose of this contribution is to document the complete recovery of the subaerial berm 

and beachface following a storm reset event. Over the 4-year period that the lidar has been 

continuously scanning, one such event has occurred. Between April 20 and 22, 2015, the 

study region was impacted by an intense extratropical cyclone referred to in this region as an 

‘East Coast Low’ (ECL). Hourly deepwater wave buoy data acquired 11 km offshore of the 

study site (Figure 1a) recorded a peak significant wave height (Hs) of 8.1 m during the storm, 

corresponding to a 20-year deepwater Hs annual recurrence interval (Shand et al., 2010). 

The storm approached the coast from an average SSE (161 °TN) direction and coincided 

with spring high tides (maximum ocean water level = 1.22 m above mean sea level). The 

impact of the storm was significant, identified as the fourth most erosive storm event on 

record in the last 40 years of routine monitoring (1976 - 2016) at Narrabeen-Collaroy Beach 

(Harley et al., 2016; Harley et al., 2017).  Data from the continuously scanning lidar captured 

both the impact of this significant erosion event, including the full erosion of the subaerial 

berm, as well as the complete recovery of the subaerial beach to pre-storm conditions in the 

2.5 months following.   

2.4. Subaerial beach profile data extraction 

Subaerial beach profile variability at the lidar transect was analysed at tidal intervals (i.e., low 

tide to low tide) throughout the entire recovery of berm morphology following the April 2015 

ECL storm event. For each low-tide, subaerial beach profiles were calculated using a 30-

minute subsample of the continuous lidar dataset (5 Hz) centred about each low tide, as 

shown in Figure 2. Pre-processing of the raw data to obtain detailed subaerial profile (and 

swash zone) information required several steps. First, raw distance data relative to the fixed 

location of the lidar were transformed from polar to Cartesian (cross-shore distance and 

elevation) coordinates. Based on RTK-GPS ground control surveys of the measured 

transect, elevations were then converted to the local Australian Height Datum (m AHD, 

equivalent to mean sea level) and cross-shore distance (m) relative to a fixed landward 

benchmark. Elevation data were then linearly interpolated to regular 0.5 m cross-shore 

intervals. For every 30-minute subsample at semi-diurnal low tides, the beach profile was 

determined by the minimum elevation at each cross-shore interval in order to extract the 

sand surface extending down into the swash zone as shown in Figure 2.  As the final step to 

distinguish the seaward limit of the measured beachface from the lower swash zone water 

surface, the seaward limit of the profile was defined as the minimum run down of the swash 

edge (refer Section 2.5 for details) that was then checked and verified by manual inspection. 

Comparisons with RTK-GPS profile surveys undertaken approximately each month 
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throughout 2015 (12 surveys in total) found that the vertical root-mean-square error of the 

lidar-measured profiles was 0.04 m relative to (and within the accuracy of) the RTK-GPS-

measured profiles.  

Using these profile data obtained at every low tide, subaerial sand volume (m3/m) was 

calculated as the integrated profile area above the elevation of mean sea level (0 m above 

MSL), extending landward to the fixed cross-shore origin. Rates of subaerial volume change, 

dv/dt (m3/m/day), between consecutive low tides measurements, i, were calculated as,  

𝒅𝒗

𝒅𝒕
=  

𝑉𝑜𝑙𝑢𝑚𝑒𝑖+1 − 𝑉𝑜𝑙𝑢𝑚𝑒𝑖 

𝑇𝑖𝑚𝑒𝑖+1 − 𝑇𝑖𝑚𝑒𝑖
 (1) 

The position (cross-shore and elevation) of berm crests on the beach profile as shown in 

Figure 2 were extracted in a two-step process. First, potential berm crests were manually 

identified via visual inspection of the beach profile. Second, within a specified cross-shore 

region (±3 m) of each manually identified berm crest, the point of maximum change in the 

profile gradient was calculated where a flattening occurred in the landward direction. Where 

the corresponding change in profile gradient exceeded a threshold of 0.05, the point of 

maximum change in profile gradient was recorded as the position of the berm crest. As 

shown in Figures 2 and 3, where two or more berm crests were present, the most seaward 

of these features was identified as the ‘primary crest’, to distinguish this from the more 

landward ‘secondary crest’. The beachface is specifically defined in this study as the region 

between the primary berm crest and MSL, whereas the berm is defined as the region 

landward of the primary berm crest. Rates of volume change in cross-shore subsections 

seaward (i.e. beachface, dvbf/dt) and landward of the primary berm crest (i.e. berm, dvbm/dt) 

were also calculated.  

2.5. Swash and total water level data extraction 

Swash water surface elevation data throughout the analysed recovery period were also 

obtained by the fixed lidar monitoring system. The time-varying leading edge of the swash, 

as shown in Figure 3, was extracted by applying a threshold technique as described by 

Turner et al. (2008), to the rate of change between two successive lidar scans. First, the 

dataset was smoothed using a running median filter (2 seconds) to reduce inherent noise 

(±0.03 m) in individual lidar cross-shore point measurements. Second, the rate of change of 

the detected lidar surface (water or bed) was calculated at each cross-shore interval 

between successive lidar scans. A threshold gradient of 0.02 m/s was found to effectively 

distinguish the stationary bed measurements (≤ 0.02 m/s) from non-stationary water surface 

measurements (> 0.02 m/s). The leading edge of the swash for each scan was then defined 

as the point of transition between bed and water surface measurements, sampled at 5 Hz. 
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The time series of the swash edge was referenced to the measured ocean water levels 

(OWL) to give the wave runup time series throughout the recovery period.  

Swash statistics were analysed for each semi-diurnal (approx. 12.4 hours) tidal cycle 

between consecutive low tides. The time series of the swash edge was used to calculate the 

percentage of wave runup events exceeding the primary berm crest elevation (i.e., ‘swash 

exceedance’) for each tidal cycle. Additionally, the 2% exceedance elevation of wave runup 

events R2% for each tidal cycle was calculated.  

The total water level (TWL) for each tidal cycle is then given by,  

𝑇𝑊𝐿 =  𝑅2% + 𝑂𝑊𝐿𝑚𝑎𝑥 (2) 

where OWLmax was the maximum measured ocean water level (OWL) for each tidal cycle. 

Ocean water levels were measured every 15 minutes at the HMAS Penguin tide gauge in 

Port Jackson, Sydney, approximately 12 km south of the study site.  

Hourly deepwater wave data Hs, Tp and θ, were acquired from the Sydney waverider buoy 

(Figure 1a) during the April 2015 storm and subsequent recovery. These measurements 

were transformed using a MIKE21 spectral wave model (DHI, 2014) to the 10 m depth 

contour in the nearshore directly offshore of the fixed lidar monitoring system (Mortlock & 

Goodwin, 2016).  

The dimensionless fall velocity, Ω (Gourlay, 1968; Dean, 1973) is a common parameter used 

to empirically classify sediment transport direction (Larson & Kraus, 1989) and beach 

morphological states (Wright & Short, 1984). Dimensionless fall velocity in this study was 

quantified at the 10 m depth contour as,  

 

P

S

wT

H
  

 

(3) 

where w is the fall velocity (m/s) of the beach sediment. Other nearshore wave parameters 

were explored in Phillips et al. (2017), including wave steepness (H/L), and disequilibrium 

dimensionless fall velocity (Davidson et al., 2013). Dimensionless fall velocity was shown to 

be significantly correlated to shoreline dynamics when the bar was semi-attached and 

attached to the beachface, the two phases of recovery that elicit landward sediment 

transport from the surf zone to the beachface, as is the focus of this study.  
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3. Results 

3.1. Lidar observations: April 2015 storm and post-storm recovery 

During the April 2015 storm, modelled nearshore Hs at the 10 m depth contour of the lidar 

monitoring profile is shown in Figure 4a to have peaked at 3.7 m. This is equivalent to 46% 

of the peak deepwater significant wave height recorded during this storm, highlighting the 

sheltering effect of SSE waves at this section of the embayment. The arrival of the storm 

coincided with spring high tides and resulted in lidar-recorded total water levels (Eq. 2) of up 

to 3.7 m above MSL (Figure 6a). The resulting impact on pre-storm berm and convex 

morphology at the lidar profile is shown in Figure 4d. Unique in the 4-year monitoring period, 

during the storm, the berm was completely removed, leaving a dissipative, concave post-

storm subaerial profile, with minimal observed change in the foredune. This corresponded to 

rapid subaerial volume erosion of 55 m3/m at the lidar profile (Figure 4b). Approximately 56% 

of this erosion (31 m3/m) was observed during the first tidal cycle (approximately first 12 

hours) following the onset of storm wave conditions. Similar subaerial erosion observations 

within the broader embayment during the event were reported by Harley et al. (2016), noting 

an alongshore-averaged loss of 58 m3/m, of which over 90% was primarily from the berm 

and beachface below the 3 m elevation contour. 

In the 2.5 months following the storm, wave conditions shown in Figure 4a were 

predominantly mild, with 70% of nearshore Hs below the 12-year site mean of ~0.8 m, 

intermittently punctuated with moderate wave events (Hs > 1 m) typically spanning a few 

days. The mean Hs for this entire recovery period was 0.7 m. Nearshore Ω was also 

predominantly mild during this period, with approximately 80% of observations less than the 

12-year site mean (�̅� ≈ 2.0), indicative of generally mild wave energy and accretionary 

beach conditions. Additional wave refraction between the 10 m depth contour (Figure 4a) 

and the breakpoint was modelled using the nearshore wave model described in Harley et al. 

(2011). These results (not shown) found that the incident wave angle at the breakpoint 

relative to the shoreline orientation (~74° TN) over the recovery period was only 2.7° 

northwards on average, highlighting the overwhelmingly swash-aligned nature of the study 

site.   

By July 7, 2015, 76 days after the storm, berm and convex profile morphology closely 

matching pre-storm conditions were observed (Figure 4d), and virtually all (51 m3/m) of the 

eroded sand volume had returned to the subaerial beach (Figure 4b). Tide-by-tide subaerial 

volume and beach profile evolution captured by the lidar during this recovery period are 

shown in Figures 4b and 4c, respectively. Spanning the full 76-day recovery period, 

subaerial volume returned at a net rate of ~0.7 m3/m/day, with moderate wave events 
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causing minor intermittent erosion as the beach progressively recovered. The images in 

Figure 5 show onshore sandbar migration that occurred concurrently throughout the 76-day 

berm recovery period. For the first 1.5 months (days 0 to 45 of the recovery period) the net 

rate of subaerial volume recovery was more gradual (~0.4 m3/m/day) as sand predominately 

migrated onshore in the form of nearshore sandbars (Figure 5). In the final month (days 45 

to 76), recovery of the beachface and berm progressed more rapidly (net rate of ~1.1 

m3/m/day) as nearshore sandbar morphology attached and welded to the beachface (Figure 

5, discussed later in Section 3.4). Using approximately 10 years of daily image-derived 

shoreline data from the Narrabeen coastal imaging station, Phillips et al. (2017) found similar 

temporal variability and rates in shoreline recovery/beach face accretion following historical 

storm activity and linked these rates to the proximity of sandbars with respect to the 

shoreline.  

3.2. Berm crest formation and growth during recovery  

The time series of ocean water level (OWL), total water level (TWL) and berm crest elevation 

throughout the recovery period are shown in Figure 6a. A close relationship is observed 

between the formation and vertical growth of the primary berm crest during recovery with 

neap-spring variations in total water level. This was particularly apparent in the later stages 

of the recovery period (days 30 and onwards). The formation of a new berm crest on lower 

regions of the beach profile was observed during neap tides, i.e., a neap berm (e.g., days 33 

to 35, Figure 6a). During subsequent 7-day periods of neap to spring tides (that occur 

approximately twice per month) and rising TWL, the berm crest underwent vertical growth 

(e.g., days 35 to 42). For these time periods, the increasing berm crest elevation significantly 

correlated to the rising TWL (R = 0.94, P<0.0001), as the TWL extended higher up the 

beachface. Rates of vertical berm crest growth during these periods were found to be 

similarly significantly correlated (R = 0.82, P<0.0001) to the swash exceedance of the berm 

crest per tidal cycle (Figure 6b). The observed vertical growth of the berm crest then ceased 

during spring tides (e.g., days 42 to 43) at the maximum TWL. The TWL then decreased in 

elevation during spring to neap tides (e.g., days 43 to 50), stranding the berm crest and 

confining swash deposition to the beachface. At the subsequent neap tide, this deposition 

was typically observed to form a new primary berm crest, seaward of the prior and now 

secondary berm crest; with this cycle reoccurring throughout the remainder of the recovery 

period. 

3.3. Rates of subaerial volume change during recovery  

Figure 7a summarises the frequency distribution of observed rates of tide-by-tide (i.e., 

approximately every ~12 hours) subaerial volume change throughout the entire 76-day 
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recovery period. The distribution is found to be unimodal with a positive peak at 1 - 2 

m3/m/day and slightly negatively skewed. Considerable variability is revealed in these rates 

of subaerial volume change observed at tidal intervals (s.d. = 3.1 m3/m/day), including the 

occurrence of gains (positive) and losses (negative) of sand of the order of several 

m3/m/day, with magnitudes up to several orders larger than the observed and more gradual 

net rate of underlying recovery (approximately 0.7 m3/m/day). This indicates that during 

beach recovery and predominantly mild wave conditions, significant fluctuations (positive 

and negative) in rates of subaerial beach volume change can take place at the timescale of 

individual tides.  

Figures 6b and 6c separate the respective distributions of beachface and berm volume 

changes during the same recovery period. The similarity of distributions in Figures 6a and 6b 

indicate that observed variability in measured rates of subaerial volume changes occurred 

predominantly on the beachface (s.d. 3.0 m3/m/day). In comparison, more uniform and 

gradual deposition (s.d. = 0.71 m3/m/day, most commonly 0 - 1 m3/m/day,) was observed on 

the berm with periods of no volume change when the TWL was below the primary berm 

crest (Figure 7c). Figure 7d shows the cumulative volume changes for the beachface and 

berm over the recovery period. Berm deposition in Figure 7d occurred intermittently 

throughout the 76-day recovery period, when swash exceeded the berm crest. By the end of 

this full recovery period, beachface and berm deposition accounted for 59% and 41%, 

respectively, of the volume returned to the subaerial beach. 

3.4. Modes of profile variability during berm and beachface recovery  

To begin to synthesize and characterise the observations and analyses presented above, 

Figure 8 compares rates of daily beachface volume change to the corresponding berm 

volume change, spanning the entire 76-day recovery period. This figure reveals that the 

observations can be usefully separated into four different behavioural modes of berm and 

beachface recovery. To assist the interpretation of these four distinct recovery modes, 

example phases when each was dominant are shown in Figure 8b. These four modes are 

separately described and interpreted below. 

Mode 1: Beachface progradation 

Beachface progradation (Mode 1, shown in green in Figure 8) was the most frequently 

observed mode during the recovery period, accounting for nearly half (47%) of the 

observations. During this mode, sediment is transported from the inner surf zone to the lower 

beachface, causing a seaward growth of the beachface with no berm deposition. In some 

cases (e.g. days 45 to 53), this coincided with the welding of sandbars to the lower 
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beachface, leading to rapid shoreline advancement (as shown in Figure 8b, green and 

Figure 5). Tide-by-tide rates of subaerial volume change during beachface progradation 

averaged 2.0 m3/m/day (s.d. = 1.3 m3/m/day) and reached up to 6.9 m3/m/day on day 32 

following minor beachface erosion that was observed to rapidly return onshore. Beachface 

progradation often led to the formation of a new neap berm crest as seen during days 59 to 

65 of recovery in Figure 9.  

Mode 2: Beachface progradation with berm aggradation 

The second most frequent (22% of observations) mode of profile change during recovery 

was beachface progradation with berm aggradation (Mode 2, red in Figure 8). This mode 

involves the seaward growth of the upper beachface and vertical growth of the berm (Figure 

8b, red), with sediment transport from the inner surf zone and lower beachface. Daily rates 

of subaerial volume change averaged 2.3 m3/m/day (s.d. = 1.6 m3/m/day). For Mode 2, the 

deposition was observed higher up the beach profile than for mode 1 and led to the vertical 

growth of the berm crest with rates averaging 0.10 m/day (s.d. = 0.15 m/day). When this 

second mode was observed to persist over several days, the beachface steepened about a 

nodal-point on the lower profile, as seen in Figure 9. In the final weeks of recovery from day 

65 onwards (Figure 9), mode 2 was particularly prevalent. This led to a significant vertical 

growth by 1.5 m of a newly formed berm crest due to overwash deposition. During this 

aggradation of the berm, the intertidal zone gradually steepened by a factor of three, 

reinforcing higher wave runup and overwash deposition. This rapid steepening indicates an 

exhausting of intertidal sandbar welding capacity and reduction in sediment feed from the 

inner nearshore toward the completion of the post-storm recovery period. 

Mode 3: Berm aggradation with beachface erosion 

Observed slightly less frequently (15% of observations) throughout the total recovery period 

was berm aggradation coinciding with beachface erosion (Mode 3, light blue in Figure 8). 

During Mode 3, sediment is transported from the beachface and deposited on the berm and 

lower intertidal zone. This third mode of beachface/berm behaviour was found to lead to 

beachface concavity (Figure 8b, light blue) and typically resulted in a net loss of sediment 

from the subaerial beach, with rates averaging -1.8 m3/m/day (s.d. = 2.3 m3/m/day). Rapid 

vertical berm growth was also observed, averaging 0.29 m/day (s.d. = 0.18 m/day) and 

reaching up to 0.58 m/day. In Figure 8a, the growth of the berm was almost only observed 

with some degree of change to the beachface, whether progradation (Mode 2) or erosion 

(Mode 3). This is not surprising considering sediment must first be transported across the 

beachface prior to deposition on the berm and some degree of beachface deposition or 

erosion is likely in this active region of the profile.  
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Mode 4: Beachface erosion without berm aggradation 

Beachface erosion without berm aggradation (Mode 4, dark blue in Figure 8) was also 

observed (15% of observations). This involves the offshore transport of sediment from the 

subaerial beach to the inner surf zone, here observed at an average rate of -1.9 m3/m/day 

(s.d. = 2.0 m3/m/day).  

Though not shown in Figure 8, an additional and less common mode of profile change was 

also observed, accounting for less than 1% of all observations (day 11 only) during the 

recovery period. This corresponded to the removal of a neap-tide berm deposit, temporarily 

resetting morphology to prior post-storm conditions. Though infrequent, this mode led to 

rapid changes with an observed rate of subaerial volume change 

of -15 m3/m/day; -10 m3/m/day on the beachface and -4.6 m3/m/day on the berm, 

respectively.  

4. Discussion  

Following the complete resetting of the berm and beachface morphology by a significant 

storm event, the present findings provide detailed observations and insight into the nature 

and characteristics of subaerial beach recovery, through the use of a fixed and continuous 

scanning lidar to quantify at high spatial and temporal resolution the complete return of the 

subaerial profile to its pre-storm configuration. When observed at the timescale of each and 

every semi-diurnal tide, a high degree of variability is revealed in rates of subaerial volume 

change throughout the observed 76-day recovery period (Figure 7a), including losses and 

gains of the order of several m3/m/day, substantially larger in magnitude than the more 

gradual rate of net gain for the entire recovery period (here observed at 0.7 m3/m/day). 

Importantly, this shows that during beach recovery following a storm (most often considered 

a period characterised by gradual accumulation of sand volume), significant fluctuations 

(positive and negative) in rates of subaerial beach volume change can take place. These 

new data obtained at high temporal resolution show that erosion, as well as deposition, may 

occur on the timescale of individual tides during berm and beachface recovery, and that 

these rates can be several orders of magnitude larger than the observed and more gradual 

net rate (observed here to be approximately 0.7 m3/m/day) of underlying recovery. 

Similar results were observed by Phillips et al. (2017), highlighting fortnightly and weekly 

variability in rates of shoreline recovery, related to different sandbar and nearshore wave 

conditions. Specifically, the highest rates of shoreline recovery were linked to bar-welding 

events, whereby sand in the surf zone was transport landward by swash processes onto the 

lower beachface. The new tide-by-tide observations presented in this study are also 
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comparable to previous studies that have measured similar distributions of beachface/berm 

variability at sub-tidal (Russell et al., 2009) and swash-by-swash (Turner et al., 2008; 

Blenkinsopp et al., 2011) timescales, though for much shorter durations than the entire 76-

day recovery period presented here. The variability of the subaerial beach is noted when 

observed at finer (sub-daily) temporal resolutions; constantly changing and being reshaped 

by swash activity. It is the integrated effect of this shorter-term variability characterised by 

rates of significant magnitude in both directions, which underlies the overall and much more 

gradual net recovery of the subaerial beach with time.  

Figures 6b-c show that the majority of variability in rates of subaerial volume change occur at 

the beachface in the lower swash, with more gradual and intermittent growth on the berm in 

the upper swash zone. These results are consistent with detailed studies of swash zone 

sediment flux distributions (Baldock et al., 2006; Blenkinsopp et al., 2011), which show that 

the largest cross-shore sediment fluxes are typically observed in the low to mid swash zone, 

leading to greater morphological variability. In the upper swash zone where the berm forms, 

cross-shore sediment fluxes are generally smaller and favour the deposition of suspended 

sediment due to small/decelerating uprush velocities and low backwash velocities 

(Blenkinsopp et al., 2011). This effect is enhanced by the planar or slightly landward slope of 

the berm in the upper swash that with swash exceedance of the berm crest, acts as a region 

of infiltration and deposition with low backwash acceleration. In the present study, the 

intermittent growth of the berm was found to involve a repeated cycle of berm crest 

formation and vertical growth in conjunction with neap-spring tide variations in total water 

levels. Similar neap-spring tide patterns of berm crest formation and growth were also 

observed by Hine (1979) along a migrating barrier spit at Nauset Beach, United States.  

4.1. Behavioural modes of berm recovery 

Behavioural modes describing the recovery of berm and beachface morphology following 

removal by a storm have previously been reported by Dubois (1988). This earlier study 

identified two modes of beach recovery: beachface progradation (seaward) and berm 

aggradation (vertical) with upper beachface deposition, corresponding to Modes 1 and 2 

identified in the present study (Figure 8a). Dubois (1988) reported these two more general 

modes of beachface and berm response to occur in sequential stages, where berm 

aggradation (vertical growth) was predominant in the initial months following a storm and 

later followed by beachface progradation (seaward growth) once swash no longer exceeded 

an established berm crest. Following a lagoon entrance opening, Weir et al. (2006) also 

noted similar modes of berm growth, particularly during spring (neap) tides when swash 

exceedance conditions were present (absent). 
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The new and detailed tide-by-tide observations presented here of the entire recovery of a 

berm following complete removal by a significant storm, extends this prior work by 

distinguishing and characterising in greater detail the morphodynamics and related forcing of 

berm recovery. This includes the identification of four distinct modes of berm recovery 

including two modes of berm aggradation with differing beachface responses (Modes 2 and 

3) as well as the observation of beachface erosion without berm aggradation (Mode 4) 

during recovery. Figure 10a shows the time series of the four behavioural modes identified in 

this study, overlayed on the return of subaerial volume throughout the entire 76-day recovery 

period examined here. This figure shows phases when certain modes are prevalent (e.g., 

Mode 1 on day 45 - 53 and Mode 2 on day 33 - 38), as well as phases of high tide-by-tide 

variability between modes (e.g., day 53 - 60).   

An extensive range of nearshore wave, swash, ocean water level and morphological forcing 

parameters were explored for their ability to distinguish conditions associated with these 

different modes. Based on the decision tree classification presented graphically in Figure 

10e, differentiation of each of the four recovery modes is best achieved based on the 

dimensionless fall velocity 𝛺  (Figure 10b), swash exceedance of the berm crest (Figure 10c) 

and ocean water level (Figure 10d).  

Referring to Figure 10b, the value of �̅� (≈ 2.0) is defined as the long-term (12-year) site 

mean dimensionless fall velocity. The primary differentiator was dimensionless fall velocity 

𝛺, with branches for mild (𝛺 < �̅�), moderate (𝛺 > �̅� and non-storm conditions) and high 

(storm conditions where Hs was above the 5% exceedance level for a minimum duration of 

one tidal cycle.  During these conditions 𝛺 in excess of 4 was observed).  

Following down the branch of mild wave conditions (𝛺 < �̅�) in Figure 10e, the next defining 

condition was the presence/absence of swash exceedance of the berm crest. With no swash 

exceedance of the berm crest (Figure 10c) beachface progradation (Mode 1) was most 

frequently observed (86%). Phases of several days of Mode 1 beachface/berm behaviour 

and no swash exceedance are seen in Figures 9a and 9c, respectively. This mode of 

recovery typically occurred as the tide range declined from spring to neap (Figure 10d) 

resulting in the TWL generally not reaching the elevation of the berm crest (Figure 6a). 

Under these conditions, deposition in the upper swash zone was concentrated on the 

beachface, while surf/swash boundary processes acting lower on the beach profile likely 

enhanced suspended sediment transport from the inner surf zone (Blenkinsopp et al., 2011). 

Berm crest formation, often observed following Mode 1 (as in Figure 9), may perhaps be 

initiated by reduced tidal shifting of swash zone processes across the beachface at neap 

tides, concentrating deposition at a constant elevation in the upper swash. 
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The left-hand branches of the decision tree in Figure 10e show conditions of mild waves 

(𝛺 < �̅�) and swash exceedance of the berm crest, for which berm aggradation Modes 2 and 

3 were most frequently observed. In particular, during lower ocean water levels (OWL < 

MHWS) on the far-left branch of the decision tree, 77% of observations were berm 

aggradation with beachface progradation (Mode 2). In Figure 10a, phases of several days of 

Mode 2 are observed (e.g., days 34 -38, 65 - 69), coinciding with neap-spring tides and 

rising total water levels after new berm crest formation (Figure 10d). With these conditions, 

upper swash zone deposition was observed to move slightly up the beachface and onto the 

berm, while lower swash zone processes are seen to remove sediment from the lower 

beachface (Figure 10e). This also explains the observed steepening of the beachface about 

a null-point on the lower profile during this mode (Figure 9), also noted by Dubois (1988). In 

Figure 10a, the occurrence of Mode 2 was observed to become more intermittent with the 

onset of spring tides (e.g., day 69 - 73), when occurring during the smaller semi-diurnal high 

tide. 

On the left-hand branch shown in Figure 10e, with mild wave conditions (𝛺 < �̅�), swash 

exceedance of the berm crest and spring tide ocean water levels (OWL > MHWS), 

beachface erosion with berm aggradation (Mode 3) was the predominant response observed 

(66% of observations). Interestingly, subaerial volume changes during this response 

indicated net offshore sediment transport, even with mild waves. This is perhaps due to 

more energetic lower swash zone processes shifting higher up the beachface with spring 

high tides, such that the majority of the beachface becomes a source of sediment. Some of 

this sediment is observed to be deposited on the berm via swash exceedance of the berm 

crest, however is predominantly transported offshore to the inner-surf zone. Reduced wave-

breaking during larger high tides due to increased surf zone water depths may enhance this 

effect, increasing incident wave energy and sediment transport at the beachface (Guedes et 

al., 2011).   

The middle branches of Figure 10e decision tree show the most prevalent modes with 

moderate wave conditions (𝛺 > �̅� and non-storm) during recovery. In particular, with 

moderate waves and lower ocean water levels (OWL< MHWS), beachface progradation 

(Mode 1) was again observed to be the predominant response (77% of observations). 

However, with moderate waves and higher ocean water levels (OWL > MHWS), beachface 

erosion without berm aggradation (Mode 4) was most frequently observed (58% of 

observations). Similar to conditions with mild waves and swash exceedance, ocean water 

levels are again observed to be a key factor differentiating modes associated with beachface 

progradation and erosion at the timescale of individual tides. These results suggest the 
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importance of tidal variations in ocean water levels shifting inner surf zone and swash zone 

processes to drive variability in tide-by-tide rates of volume change and profile configuration 

at the beachface throughout recovery.  

Finally, the far-right branch of the decision tree in Figure 10e indicates the temporary 

resetting of the berm when intermediate storm wave conditions occurred during the recovery 

period on day 11. The occurrence of intermediate storm erosion during recovery is a 

common observation on high-energy coastlines (e.g., Corbella & Stretch, 2012; Scott et al., 

2016; Phillips et al., 2017). Though not observed in the present recovery period, it is noted 

that minor storms can also result in the formation of a higher and narrower storm berm in the 

beach profile (Psuty, 1965; Morton et al., 1994). While intermediate storms may lead to 

temporary erosion of the subaerial beach during recovery, further research is warranted into 

the effect of higher wave energy on the subaqueous beach during recovery, potentially 

transporting storm deposits in deeper waters onshore (Scott et al., 2016; Castelle et al., 

2017; Burvingt et al., 2018). 

5. Conclusion  

Tide-by-tide swash and subaerial beach profile observations obtained from a continuously 

scanning lidar at Narrabeen-Collaroy Beach, Australia, were used to analyse beachface and 

berm morphodynamics throughout a complete (~2.5 month) recovery of berm morphology 

following removal by a significant storm event. Tide-by-tide rates of subaerial volume change 

during berm recovery were most frequently between 1 - 2 m3/m/day, including losses and 

gains on the order of several m3/m/day, substantially larger in magnitude than the more 

gradual rate of net gain (0.7 m3/m/day) observed for the entire recovery period. 

Patterns of berm crest formation and vertical growth were observed to be primarily governed 

by the neap-spring tide variations in total water levels. In particular, rates of volume change 

were most variable on the beachface but were more gradual and intermittent on the berm. 

Beachface and berm volume changes observed at every semi-diurnal tide reveal four 

principal behavioural modes of subaerial profile variability during berm recovery; beachface 

progradation (Mode 1), beachface progradation with berm aggradation (Mode 2), beachface 

erosion with berm aggradation (Mode 3) and beachface erosion without berm aggradation 

(Mode 4). Based on a decision tree classification, these primary modes of beach and berm 

adjustment can be differentiated by nearshore dimensionless fall velocity, swash 

exceedance of the berm crest and ocean water level. These findings provide new 

behavioural and parametric insight into the tide-by-tide rebuilding of the subaerial beach 

profile by swash activity throughout berm recovery. 
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Figure 1: a) Study site location Narrabeen-Collaroy Beach situated on SE Australian coastline near 
Sydney. b) Schematic and photograph of fixed lidar monitoring system setup with instrument mounted 
on rooftop of beachside apartment building.  
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Figure 2: Example of profile, swash and surf zone water surface lidar measurements during a 30 min 
scan at low tide (10:47 - 11:17, 29

th
 May 2015). Also noted are positions of the primary (most 

seaward) and secondary (landward) berm crests as well as the TWL.  
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Figure 3: Example time series of subaerial beach profile and water surface lidar measurements 
collected over a 10-minute period on 16

th
 June 2015. The positions of the extracted swash edge and 

berm crests are shown. Note the capability of the lidar to collect profile, swash and inner surf zone 
data outside of daylight hours, providing continuous, high temporal resolution monitoring over 
extending periods of time.  
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Figure 4: Beach recovery following 20 - 22 April 2015 storm. Time series during the storm and 
subsequent recovery period are shown for a) hourly measured nearshore significant wave height (Hs) 
peak wave period (Tp) and wave direction at the 10 m depth contour, b) tide-by-tide measurements of 
subaerial beach sediment volume, and c) tide-by-tide beach profile evolution. d) Beach profiles 
immediately before the storm (pre-storm), immediately after the storm (post-storm) and at the end of 
the recovery period (post-recovery). No data was collected between days 23 and 28 due to a 
technical issue with the field site computer.  
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Figure 5. Sequence of mid-tide planview timex images from the Narrabeen-Collaroy coastal imaging 
station (dash line indicates cross-shore profile of the lidar) showing the temporal evolution of the 
nearshore bathymetry and beach during this recovery period. Nearshore wave breaking patterns 
show examples of 2DH bathymetry (e.g. +34 days), alongshore uniform bars (+45; +59 days) and 
reflective conditions (+53, +78, +98 days). Beach cusps are present in the subaerial beach at +2, +7, 
+53 and +78 days. Bar-welding events occur between days +45 to +53 and +59 to +78. (m) measured 
beach width from the fixed lidar during this recovery period. (n) post-storm surveys at the lidar profile 
undertaken at +7 and +99 days using RTK-GPS and jetski echosounder. 
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Figure 6: a) Elevation time series of ocean water levels (OWL), total water level (TWL), primary (most 
seaward) berm crest and secondary (landward, inactive) berm crests throughout the recovery period. 
Patterns of berm crest formation and vertical growth are noted with neap-spring variations in total 
water levels. b) The percentage of wave runup events exceeding the berm crest for each tidal cycle 
(approx. 12 h period) throughout recovery. 
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Figure 7: Histograms showing the distribution of tide-by-tide rates of volume change for regions of the 
a) total subaerial beach, b) beachface (seaward of the primary berm crest) and c) berm (landward of 
the primary berm crest). Note change in y-axis scaling d) Cumulative volume changes on the 
beachface and berm during post-storm recovery.  
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Figure 8: a) Classification of four principal modes of subaerial beach profile variability throughout 
berm recovery based on tide-by-tide lidar measurements. Corresponding profile changes are 
illustrated and labelled with the dashed profile indicating initial conditions. Percentages of 
observations for each mode are also shown. b) Example phases during recovery showing profile 
development for each mode.  
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Figure 9: Tide-by-tide beach profile changes during the final 17 days of berm recovery. Beachface 
progradation (mode 1) is shown in green from day 59 to 65 leading to the formation of a neap berm. 
This is followed by significant berm aggradation (predominantly mode 2 with some mode 3) shown in 
red from day 65 to 76. 
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Figure 10: Time series (12-hourly) throughout recovery of a) principal modes of berm recovery, b) 
nearshore Ω, c) swash exceedance of the berm crest per tidal cycle and d) ocean water levels. The 

decision tree in e) shows hydrodynamic conditions distinguishing the occurrence of each mode. �̅� 
refers to the 12-year site mean nearshore dimensionless fall velocity (≈ 2.0). Storm conditions refer to 
significant wave heights above the 5% exceedance level for a minimum duration of one tidal cycle 
(≈12h period), during which Ω was observed to exceed the value of 4. MHWS refers to mean high 
water springs (≈ 0.7 m above MSL). The total number of observed responses for each tidal cycle 
during the recovery period is given by n.  


