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Abstract—Recently, multi-label classification algorithms 

have been increasingly required by a diversity of applications, 

such as text categorization, web, and social media mining. In 

particular, these applications often have streams of data coming 

continuously, and require learning and predicting done on-the-

fly. In this paper, we introduce a scalable online variational 

inference based ensemble method for classifying multi-label 

data, where random projections are used to create the ensemble 

system. As a second-order generative method, the proposed 

classifier can effectively exploit the underlying structure of the 

data during learning. Experiments on several real-world 

datasets demonstrate the superior performance of our new 

method over several well-known methods in the literature. 
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I. INTRODUCTION

Recently, multi-label classification (MLC) algorithms 
have been increasingly required by a diversity of applications, 
such as text categorization, web, and social media mining [1]. 
It naturally emerged from the multiple meanings of many real-
world objects and can be treated as the generalization of multi-
class classification (also known as single-label classification), 
where an instance may have a set of relevant labels instead of 
only one label. In this paper, we adapt one of our recently 
published online multiclass classifier (named Online 
Variational Inference for multivariate Gaussians (VIGO)) [2] 
to multi-label classification due to its demonstrated superior 
performance over several well-known methods in the 
literature. Although many batch MLC algorithms have been 
proposed in the literature, there is relatively little work being 
done on online (incremental) MLC [3]. In particular, the 
demand for effective incremental methods is growing quickly 
in our big data era, where it is becoming increasingly 
impractical to store the entire training set in the main memory 
for batch learning. Moreover, offline methods cannot update 
its model on-the-fly and must be rebuilt whenever new data 
arrive, leading to costly operation in real-time applications 
with streaming data. On the other hand, online methods offer 
the essential ability of predictive models which can be trained 
on-the-fly after the arrival of every new data point and be 
ready to give predictions at any time if requested, by making 
use of a single/set of observations and then discarding them 
permanently before the next observations are used. 

Our proposed VIGO [2] employs variational inference 
(VI) to approximate the distribution of data in each class by a
multivariate Gaussian. It is a second-order generative method,
which not only gives a point estimate of parameters, but also
the distribution of possible solutions. To adapt VIGO to multi-
label learning, several difficulties need to be overcome. First,
most multi-label datasets are high-dimensional, this can
reduce the performance of the VI framework. Second, it is not
straightforward to estimate the performance of an online
multi-label classifier as an instance can be associated with
several labels. Existing performance measures can be
inconsistent [4], which leads to the difficulty of building an
MLC method that performs well on all performance measures.
We propose to use random projections to reduce the
dimension of the data before applying VIGO. Since the
random projection is data-independent, it is suitable to work
with stream data. Moreover, data schemes generated by
different random projections are significantly different from
each other as well as the original data [5]. This motivated us
to construct an ensemble of incremental Bayesian classifiers
learned on data schemes generated by randomly projecting the
original stream data into a subspace of low dimension. The
ensemble scheme further improves the effectiveness of the
prediction since an ensemble of classifiers can obtain a better
solution than a single classifier. The main contributions of this
paper are:

• A flexible generative framework based on variational
inference to learn multi-label streaming data proposed

• An ensemble system using random projection
proposed to make the online variational inference
framework more scalable and efficient

• An empirical demonstration that our method achieves
superior performance over many well-known
benchmark algorithms.

II. RELATED WORK

Generalizing from single-label methods, offline multi-
label classifiers can be grouped into 2 main types of 
approaches: problem transformation and algorithm adaptation 
[1]. While the former adapts multi-label data to off-the-shell 
single-label classifiers, the latter adapts a single-label 
algorithm to produce multi-label outputs. Many multi-label 
classifiers involve a mix of both approaches. 



Regarding the problem transformation group, Binary 
Relevance (BR) method is used the most. It transforms the 
multi-label problem to multiple separate binary classification 
problems, one for each label [7]. As BR does not take into 
account label correlations explicitly, several methods have 
been introduced to ease its shortcoming by addressing the 
correlation between labels in their learning models. The best-
known one is Classifier Chains (CC) [8], which is also trained 
as many binary models as in BR but chooses them in a random 
order. After the first classifier is trained with only the original 
input features, the first output label is then appended to the 
original instances as a new input feature, and the second 
classifier is trained on the new input space, and so on. By this 
way, the chained classifiers attempt to take account of the 
possible label dependencies. Label Powerset (LP) [7] is 
another popular approach in this group, where each 
combination of class labels can be treated as a new label and 
a single multiclass classifier is needed to obtain the 
predictions. However, in the LP’s framework, the number of 
class label combinations increase exponentially and the 
prediction for underrepresented label combinations is very 
uncertain. To overcome these disadvantages, the sets of labels 
can be pruned as in Pruned Sets method (PS) [9] so that the 
learner focuses only on the set of labels with the most 
important correlations. 

For algorithm adaptation group, some well-known 
approaches are k-nearest neighbor based multi-label 
classification [10], kernel-based Rank-SVM adapting 
methods [11], and tree-based hierarchical multi-label 
classification [12]. Recently, Rank and Threshold method 
(RT) [13] replicates multi-label instances into single-label 
instances, then train a multi-class classifier and uses a 
threshold to give multi-label outputs. It can be considered as 
both problem transformation and method adaptation. 

To deal with big or stream data, several online MLC have 
been presented. In [3], Read et al. showed how to use problem 
transformation methods as the building block and combine 
them with off-the-shelf online single-label classifiers to create 
streaming multi-label learners. The same authors also adapt 
incremental multiclass Hoeffding tree [14] to the multi-label 
scenario [3]. Furthermore, the multi-label Hoeffding tree [3] 
is combined with the Pruned Set classifier [9] to prune the 
label combination at each leaf node. These well-known 
incremental multi-label learners will be used as the benchmark 
algorithms in our experiments.  

III. BACKGROUND 

A. VI for multivariate Gaussian 

Let a vector � = ���, ��, … �	
 ∈ ℝ	  be a sample to be 

classified, and  = {1,2, ⋯ , �} be the set of all labels. In a 
Bayesian framework, a multiclass classifier gives a prediction �� to � as: 

 ��~ argmax�∈{�,�,⋯,�} ���� . ���|��  (1) 

where ����  is the prior probability of class #, and ���|��  is 
the class conditional probability. 

����  is often approximated by: 

 ���� ≈  &'&  ~  (� (2) 

which is the proportion of samples from class # in the set of 
samples received so far, (� =#samples having label # to date and ( = ∑ (�.  
���|��  is approximated by a multivariate Gaussian 7��|8, 9:; . Here we temporarily ignore the sub-index # of 7��|8�, 9�:�  for simplicity. In our variational inference 
framework, the parameters �8, 9  are treated as random 
variables. We look for the posterior distribution ��8, 9|< ≈=�8, 9  after giving the model a suitable conjugate prior. Here 

we assume that the training set < = >�?|@ = 1, … , AB is drawn 

independently from 7��|8, 9:; . Below are the resulted 
distributions of 8 and 9 (see [15] for details). 

The parameter 8  has a Gaussian distribution 8~7�8|C, D:�  with: 

 

 C = EFCFGH�I
EFGH  (3) 

 D = �JK + M NO9P (4) 

The parameter 9 has a Wishart distribution 9~Q�9|R, S  
with: 

 S = ST + U + 1 (5) 

 R:; = RT:� + �VT + U D:� + W + EFH
EFGH X (6) 

Here 

 �I = �
H ∑ �YHYZ�  (7) 

 W = ∑ ��Y − �I ��Y − �I \HYZ�  (8) 

 �I = �
H ∑ �YHYZ�  (9) 

are the sufficient statistics. VT, CT, ST, RT  are the prior 
information. 

Thus, we have Algorithm 1 for multivariate Gaussian 
distribution estimation based on variational inference (VIG) 
[15]. The stop condition of the iterative re-estimation 
procedure is the minor change (<]) of the lower bound value ℒ�= = ln ��< − _��=‖�  [15].  

Algorithm 1. VIG �<, CT, VT, ST, RT  

Input: Dataset <, ], CT, VT, ST, RT, NO9P = STRT 
Output: C, D, R, S 
for a = 1 to 2 do 

Calculate C, D as in (3), (4) 
Calculate S, R as in (5), (6) 

while ℒb�= − ℒb:��= < ] do 
Calculate C, D as in (3), (4) 
Calculate S, R as in (5), (6) a ≔ a + 1 

 

The default setting for Algorithm 1 is as follows: ] =1e − 10 ; g -dimension vector  CT�? = �0, … ,0 \ ; VT�? =0; ST�? = g; g × g dimension matrix RT�? = j (an identity 
matrix), @ = 1, … �. When the point estimate of a parameter is 
needed, we often pick the mean of their distribution. For 
example, NO8P = C and NO9P = SR can be used as the point 
estimate of 8, and 9 , respectively. 



Based on VIG, we built the online classifier VIGO [2]. 
When a small batch of size A of new observations ∈ class # 
comes, they can be used as dataset <. From the present state 
of the model, we extract the prior CT, VT, ST, RT. After that, 
VIGO update the predictive model 7��|8, 9:;  for class # 
and assign new values for CT, VT, ST, RT. While CT, ST, RT 
can take the value of updated C, S, R, the new value for VT 
is set as 

 VT ≔ VT + |<| = VT + A (10) 

where | ∙ | denotes the cardinality of a set. This is to weigh the 
number of past instances in (3). Furthermore, the sufficient 
statistics �I, W, X can be calculated in a sequential manner [2], 
hence there is no need of storing data in the VIGO framework. 
When a new instance �l arrives, it can be used for updating �I, W, X of its related class, after that it is discarded permanently. 
VIGO will use the sufficient statistics to update the predictive 
model 7��|8, 9:;  for the related class when needed (for 
example, when a wrong prediction is made). After the 
sufficient statistics are used, they will be reset to store fresh 
information from the incoming data. 

B. Random projection (RP) 

When applying VIGO to multilabel classification, the 
high-dimensional data which is very common in multi-label 
problems can make the approximation process in variational 
inference less effective, resulting in the degradation of the 
system performance. Therefore, it is helpful to reduce the data 
dimension beforehand. We propose to use random projection 
for the dimensionality reduction as its projection matrix is 
generated randomly without requiring a validation set, which 
is often not available in the stream context. It is also 
inexpensive to generate and is data-independent. Another 
motivation for using random projection is to make discrete 
(e.g. binary) attributes become continuous, which is beneficial 
for VIGO. 

In this work, we generate a random projection m ∈  n -
dimensional space ℝo (called down-space) of a vector � ∈ g-
dimensional space (called up-space) as   

 p: ℝ	 → ℝo:  m = p�� = �
so �t (11) 

where t = >ub?B is a g × n  random matrix, the expectation 

of each entry N�ub?
 = 0, and its variance var�ub?
 = 1, and n ≪ g  [16-20]. As in [20], we choose Gaussian RP: ub?~7 (0; 1), and n = 2log��g . This kind of randomized 

mapping has been shown to perturb the original data 
introducing only bounded distortions, approximately 
preserving their metric structure [16-18]. 

As opposed to other sampling methods like bootstrapping, 
the datasets generated by different random matrices can be 
quite different (diverse) [21]. We, therefore, employ an 
ensemble system based on a set of _ random projections to 
benefit from this diversity. 

IV. PROPOSED METHOD 

We build an online multi-label classifier based on 
variational inference and random projections. First, _ VIGO 
classifiers wx, y = 1, … , _ are initialized. Each wx contains � 

sub-models w��,x , # = 1, … , � , where w��,x  is a VIG to 
approximate the multivariate Gaussian distribution for class  #. Then, we generate _ random matrices >t�x BxZ�,…,z. 

When the sample �l arrives, we project it to the y{| down-

space to obtain its projection ml�x 
:  

 ml�x = �
so �lt�x  , y = 1, … , _ (12) 

The related classifier wx  processes ml�x 
 and give the 

confidence {�x���|�l } that �l  belongs to class label #  (# =1, … , �): 

 �x���|�l ∈ O0,1P and ∑ �x���|�l ��Z� = 1 (13) 

We combine the outputs of _ base learners 

 }�����|�l ⋯ �����|�l ⋮ ⋱ ⋮�z���|�l ⋯ �z���|�l � (14) 

using Sum rule to obtain the final hypothesis. 

 �l = �# ∈ ������l = �
z ∑ �x���|�l zxZ� ≥ �� (15) 

where �l is the predicted label set of �l, ����l ∈ O0; 1P is the 
confidence score for the label # , � ∈ O0; 1P  is a predefined 
threshold. It is easy to see that ∑ ����l ��Z� = 1. As in [3], we 
update the threshold �  in the predictive equation (15) by 
windows of the same size �. Initially, � is set = 0.5 for the 
first window �T. Subsequently, the threshold on window �b 
is the one best approximating the true label cardinality of 
window �b:�. In detail, we calculate |�| – the total number 
of true labels of all instances in �b:� and store the confidence 
scores given for each label of the label set of all instances in �b:�  (this is an array of length � × � ). We then sort the 
confidence scores and select the |�|l�  greatest confidence 
score as the threshold for window �b. 

Finally, we use the projected datum ml�x 
 for training wx . 

Since the dimension of ml�x 
 is much smaller than that of  �l, 

the learning process will be more time-efficient. 

Another concern is that in MLC problems, we have a lot 
of different measures, and it is not trivial to decide whether the 
predictive models need to be updated when a multi-label 
classifier makes wrong or right prediction, unlike in VIGO [2]. 

To overcome this, a “batch” ���,x  will be used to update the 

sub-model w��,x  if it collects information from enough |�| 
instances and is cleared totally after that to make space for new 
incoming instances. It is worth mentioning that for each 

“batch” ���,x , we only maintain its sufficient statistics, every 
coming instance is handled on-the-fly and discarded right after 
that. The default value for |�|  is 200, which is equal the 
default grace period of the state-of-the-art Hoeffding tree [14] 
(i.e. the number of instances a leaf should observe between 
split attempts). Additionally, to build a stable model and make 
the base classifiers more diverse, before updating in batches 

of size |�|, each sub-model w��,x  will be updated in batches 
of size |��| = 30  until it has collected at least |����{| + y 
instances (building step). 

Clearly, our proposed MVI is an RT type method [13] 
which transforms a multi-class classifier into a multi-label 
classifier using rank and threshold. Although this type of 
transformation is simple, we believe that the superior 
performance of the VI framework, which is boosted further 
under an ensemble based framework, will make MVI highly 
efficient and competitive. Similar to VIGO, MVI is expected 
to work well on all range of data: from rare data to big data. 
Although outputting high-order information, variational 



inference for multivariate Gaussian has been demonstrated to 
quickly converge to the approximate solution, taking a low 
time cost [2]. The pseudo-code of MVI is given in Algorithm 
2. 

 

Algorithm 2. MVI 

Input: ensemble size _ , down-space dimension n , 
threshold ], |�|, |��|, |����{| 
// VIGO initialization wx = >w��,x B 

Initialize: CT��,x , VT��,x , ST��,x , RT��,x , (� = 1, # = 1, … , �,  y = 1, … , _;  
// Random matrix generation 

Generate t�x = �ub?�x �, y = 1, … , _; 

for � = 1,2, … 

Instance �l arrives; ml�x = �
so �ltx , y = 1, … , _; 

// Label pediction  ���� ~(�;  # = 1, … , � 
for y = 1, … , _ 

Apply w��,x  on ml�x 
 to output �x�ml�x |��
, # = 1, … , �; �x���|�l  ~ ���� �x�ml�x |��
; 

end for 

Normalize {�x���|�l } as in (13); 
Predict label set of �l using combining rule (15); 
// Update base classifiers 
Reveal the true label set of �l from the environment: l;  

for # ∈ l (� = (� + 1; 

for y = 1, … , _ 

Update sufficient statistics mI��,x , W��,x , X��,x   
of w��,x ; ����,x � = ����,x � + 1; 

if VT��,x 
<|����{| + y 

Update �w��,x , |��|
; 
else 

Update �w��,x , |�|
; 
end if 

end for 

end for 
end for 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

procedure Update �w��,x , �a�e
; 
if ����,x � = �a�e 

Run VIG ����,x , CT��,x , VT��,x , ST��,x , RT��,x 
 to update C��,x , D��,x , ���,x , R��,x  for w��,x ; CT��,x = C��,x ; ST��,x = ���,x ; RT��,x = R��,x ; VT��,x = VT��,x + �a�e; 

Reset mI��,x , W��,x , X��,x ; ����,x � = 0; 
end if 

end procedure 

 

 

V. EXPERIMENTS 

A. Experimental design 

We use the prequential (test then train) methodology [22] 
to evaluate the performance of our proposed methods in 
stationary and dynamic environments. In our experiment, each 
algorithm runs on each dataset one time. Samples from a 
dataset come in a sequential manner to simulate a data stream. 
An arriving data point is tested to give a set of predicted 
relevant labels, then it is used to update the learner’s model. 
Based on the prediction results on the whole stream, different 
performance measures are calculated. Our proposed method 
and benchmark algorithms are compared in these performance 
measures and time cost. 

In our experiments, we use the subset of the common real-
world multi-label datasets listed in [3] (see TABLE I). MVI is 
compared with several well-known online multi-label 
methods which are available in MEKA: a recent prevalent 
library of multi-label classifiers [13]. They are binary 
relevance BR (Binary Relevance) [7], CC (Classifier Chains) 
[8], label combination methods PS (Prune Sets) [9], ML 
(Majority Labelset) [13], rank and RT (Rank + Threshold) 
[13]. All these methods use the state-of-the-art incremental 
Hoeffding trees [14] as the base classifiers except ML, which 
always predicts the most common labelset. Parameters are set 
as default in MEKA. Default parameters of MVI are _ =50, |�bYbl| = 1000, |�| = 200, and |��| = 30. 

Compared with the traditional single-label learning, 
performance evaluation in multi-label learning is much more 
complicated as each sample can have several relevant labels 
at the same time. Therefore, a number of performance 
measures focusing on different aspects have been proposed in 
the literature. To ensure a fair and honest evaluation, we use a 
set of well-known measures, which are used in recent papers 
about multi-label methods [3, 4]. They are Example-based 
F1/Accuracy, label-based Micro F1/Macro F1, and ranking-
based Average Precision/Ranking Loss. The ↑ (or ↓) symbol 
next to the measure means that the greater/smaller its value the 
better. 

B. Results 

The summarized result in Fig. 1 shows that MVI has the 
best average rank for all measures except Macro F1. For this 
performance metric, the proposed method ranks second after 
BR. The more detailed result can be found in TABLE II, 
where the value of performance measures is supplied together 
with its per-dataset ranking in parenthesis. 

For all 6 measures, MVI, BR and RT are the top 3 methods 
regarding their average ranks. MVI learns well on 3 datasets: 
small ENRON, SLASHDOT, and big IMDB. Especially, on 
SLASHDOT, the performance of MVI is far better than that 
of all other benchmark methods. BR do well on TMC and 
OHSUMED. 

Overall, our proposed method performs well on all 6 
mentioned measure. BR and RT achieve quite competitive 
results, meanwhile CC, PS have a big variation in 
performance. Clearly, the simplest method ML performs 
weakly. 

The time cost of all the mentioned algorithms is depicted 
in TABLE III. MVI has a moderate average time cost (201.86 
seconds), which is much smaller than that of BR (534.88 
seconds), CC (542.58 seconds). In particular, the proposed 



method is quicker than the two competitive methods BR and 
RT. Although MVI are slower than ML and PS, compared to 
these methods, MVI’s classification performance is much 
better.  

VI. CONCLUSIONS 

We have presented an online multi-label classification 
algorithm based on variational inference and random 
projection. Besides achieving superior performance over 
several well-known benchmark algorithms, MVI has a 
moderate time cost which can be further reduced by 
parallelization. As the proposed method is a flexible second-
order generative framework which gives not just a point 
estimate but a distribution of solutions, our future work will 
be to investigate its application in other advanced tasks of 
multi-label learning such as cost-sensitive learning, 
imbalanced learning and adaptive learning. 
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TABLE I.  INFORMATION OF DATASETS USED IN EVALUATION 

Dataset N L A ϕLC 

ENRON 1702 53 1001b 2.0 

IMDB 120919 28 1001b 2.0 

OHSUMED 13929 23 1002n 1.7 

SLASHDOT 3728 22 1079b 1.2 

TMC 28596 22 500b 2.2 

N: number of instances, L: number of labels, A: number of attributes, ϕLC: label cardinality 

n indicates numeric attributes, and b – binary attributes 

 

 

Fig. 1. Average ranks of MVI and benchmark methods 

 

TABLE II.  PERFORMANCE MEASURES OF MVI AND BENCHMARK ALGORITHMS 

 ENRON IMDB OHSUMED SLASHDOT TMC Avg. Rank↓ 

(a) Ex. F1↑       
MVI 0.4790 (1) 0.3132 (1) 0.2835 (3) 0.3552 (1) 0.6153 (2) 1.60 

BR 0.4566 (2) 0.2332 (5) 0.3225 (2) 0.1652 (2) 0.6256 (1) 2.40 
CC 0.3933 (4) 0.0915 (6) 0.2425 (4) 0.0278 (6) 0.6146 (3) 4.60 
ML 0.2021 (6) 0.2483 (3) 0.1432 (6) 0.1484 (4) 0.2166 (6) 5.00 
PS 0.2778 (5) 0.2420 (4) 0.3316 (1) 0.1438 (5) 0.5696 (4) 3.80 
RT 0.4422 (3) 0.3095 (2) 0.1986 (5) 0.1628 (3) 0.5378 (5) 3.60 

(b) Ex.Accuracy↑      
MVI 0.3625 (1) 0.2342 (1) 0.2175 (3) 0.3218 (1) 0.5048 (3) 1.80 

BR 0.3417 (2) 0.1710 (5) 0.2579 (2) 0.1451 (4) 0.5199 (1) 2.80 
CC 0.2979 (4) 0.0710 (6) 0.2110 (4) 0.0263 (6) 0.5185 (2) 4.40 
ML 0.1680 (6) 0.2081 (3) 0.1270 (6) 0.1458 (2) 0.1786 (6) 4.60 
PS 0.2246 (5) 0.2032 (4) 0.2902 (1) 0.1407 (5) 0.4804 (4) 3.80 
RT 0.3239 (3) 0.2272 (2) 0.1548 (5) 0.1452 (3) 0.4220 (5) 3.60 

(c) Micro F1↑       
MVI 0.4773 (1) 0.3240 (2) 0.3196 (4) 0.3774 (1) 0.6372 (2) 2.00 

BR 0.4443 (3) 0.2580 (3) 0.3770 (1) 0.1811 (2) 0.6384 (1) 2.00 

CC 0.3990 (4) 0.1263 (6) 0.3206 (3) 0.0509 (6) 0.6346 (3) 4.40 
ML 0.1427 (6) 0.2379 (4) 0.1374 (6) 0.1411 (4) 0.1988 (6) 5.20 
PS 0.2547 (5) 0.2309 (5) 0.3297 (2) 0.1379 (5) 0.5731 (4) 4.20 
RT 0.4723 (2) 0.3267 (1) 0.2251 (5) 0.1611 (3) 0.5340 (5) 3.20 

(d) Macro F1↑       
MVI 0.1048 (1) 0.0551 (3) 0.0914 (4) 0.1652 (1) 0.3494 (4) 2.60 
BR 0.0650 (2) 0.0859 (1) 0.2980 (1) 0.0840 (2) 0.4612 (2) 1.60 

CC 0.0440 (5) 0.0452 (4) 0.2589 (2) 0.0468 (4) 0.4456 (3) 3.60 
ML 0.0090 (6) 0.0245 (6) 0.0135 (6) 0.0133 (6) 0.0232 (6) 6.00 
PS 0.0464 (4) 0.0277 (5) 0.1478 (3) 0.0397 (5) 0.1905 (5) 4.40 
RT 0.0474 (3) 0.0561 (2) 0.0345 (5) 0.0562 (3) 0.5173 (1) 2.80 

(e) Avg. Precision↑      
MVI 0.5656 (1) 0.4695 (2) 0.4643 (2) 0.5281 (1) 0.7669 (1) 1.40 

BR 0.5265 (3) 0.4153 (3) 0.5170 (1) 0.3763 (2) 0.7468 (2) 2.20 
CC 0.3709 (4) 0.1841 (6) 0.3684 (5) 0.2547 (6) 0.6423 (4) 5.00 
ML 0.2409 (6) 0.3003 (4) 0.2700 (6) 0.2986 (4) 0.2860 (6) 5.20 
PS 0.2934 (5) 0.2959 (5) 0.4220 (3) 0.2919 (5) 0.5953 (5) 4.60 
RT 0.5438 (2) 0.4754 (1) 0.3809 (4) 0.3442 (3) 0.7122 (3) 2.60 

(f) Ranking Loss↓      
MVI 0.1694 (2) 0.1777 (2) 0.2083 (1) 0.1779 (1) 0.0660 (1) 1.40 

BR 0.1922 (3) 0.2185 (3) 0.2135 (2) 0.2346 (2) 0.1040 (2) 2.40 
CC 0.3803 (4) 0.4934 (6) 0.3652 (5) 0.4048 (6) 0.2254 (4) 5.00 
ML 0.5095 (6) 0.4514 (4) 0.4376 (6) 0.3705 (4) 0.5848 (6) 5.20 
PS 0.4594 (5) 0.4532 (5) 0.3350 (4) 0.3757 (5) 0.2826 (5) 4.80 
RT 0.1196 (1) 0.1719 (1) 0.2566 (3) 0.2655 (3) 0.1118 (3) 2.20 

 

TABLE III.  TIME COST↓ (IN SECONDS) OF MVI AND BENCHMARK ALGORITHMS 

 ENRON IMDB OHSUMED SLASHDOT TMC Average 

MVI 24.69 765.91 73.08 16.69 128.94 201.86 

BR 58.33 2246.40 184.11 50.54 135.01 534.88 

CC 58.58 2257.23 193.73 48.43 154.94 542.58 

ML 0.19 1.85 0.36 0.15 0.52 0.62 

PS 2.68 57.40 28.64 8.69 15.78 22.64 

RT 68.82 1184.84 84.08 26.74 86.32 290.16 
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