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Abstract 

The Wilshire equation is a recent addition to the literature on safe life prediction. Whilst the 

effect of temperature on creep life is reasonably understood, the effect of stress isn’t. The 

Wilshire equation deals with this by partitioning over sub ranges of stress, but this 

approximation can lead to poor life time predictions. This paper introduces a semi-parametric 

procedure that allows the data itself to identify the stress relationship. When applied to 2.25Cr-

1Mo steel it was found that the stress relationship is non-linear, and this  semi-parametric 

version of the Wilshire model had better predictive performance compared to any partitioned 

Wilshire model. This approach contains a limit to valid extrapolation and the isothermal 

predictions for creep life have a more realistic pattern of behaviour. 
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Introduction 

For many years now, fully parametric models have been the mainstream for obtaining 

predictions of safe operating life for existing high temperature materials designed for use in 

aero engines and power plants. These parametric models get their name from the fact that they 

relate life times to stress and temperature through a specific equation and that these equations 

contain parameters whose values are unknown and so need to be estimated from experimental 

data sets. In the absence of a non-thermal applied stress, the Arrhenius equation explains the 

effect of temperature (T) on a rate constant k 

k = 𝐴exp(-Qc/RT)                                                                                                            (1a) 

where A is a model parameter, R the universal gas constant (8.314 J⋅mol−1⋅K−1) and Qc the 

activation energy (Jmol-1) for self-diffusion. This relationship was defined from empirical 

evidence to describe the chemical process of diffusion1. The modified Arrhenius equation2 

makes explicit the temperature dependence of a pre-exponential factor and is usually written 

as 

k = 𝐴Tαexp(-𝑄𝑐/RT)                                                                                                  (1b)                                                                                                        

The original Arrhenius expression above corresponds to  = 0 but fitted rate constants 

typically lie in the range −1 <   < 1, depending as it does on the specifics of the reaction 

dynamics. Thus, Boccaletti et al.3 used  = 0 in their study on microelectronics, Klinger4 used 

 = 0.5 in his study of plastic packaged electronic devices, whilst Nelson5 used  = 1 in his 

study of fatigue curves. Theoretical analyses on the other hand yields various predictions for 

 where for example, the Eyring6 equation, derived from transition state theory for a second 

order reaction, implies  = 1 as it has the form 

k =(kBT/ch) exp(-𝐺/RT)                                                                                         (1c)                                                                                

where G is the Gibbs activation free enthalpy, kB is Boltzmann’s constant, c is the reference 

concentration of the reaction and h is Planck’s constant (implying A = kB/ch). Replacing the 

rate constant k with the minimum or secondary creep rate ε̇m reveals the main building block 

behind parametric creep models which, to varying degrees, model the effect of temperature on 

the minimum creep rate reasonably well  

ε̇m  = 𝐴Tαexp{-
𝐺

𝑅𝑇
}                                                                                                    (2a)                                                                             

The main difficulty then comes with modelling creep rates in the presence of an 

additionally applied non-thermal stress. Eyring presented a modified version of his equation to 

describe this environment that took the form 

ε̇m  = 𝐴Tαexp{-
𝐺

𝑅𝑇
+Bf(σ)+D

f(σ)
𝑇

}                                                                                (2b)                                                                             

where B and D are additional model parameters. The problem however is that the stress 

relationship is unknown and so the modified Eyring equation contains an unspecified stress 

function, f().  An equation for the time to failure, tf can then be obtained by making use of the 

empirical Monkman – Grant7 relation that contains the constants M and  (where  is close to 

unity in value for many metal alloys): 

ε̇m  =  (M/tf)
ρ                                                                                                (2c) 



so that equation (2b) can be rewritten as 

ln(tf) = a0 + a1f(σ) + a2ln(T) + a3
1

T
 + a4

f(σ)

𝑇
                                                        (2d) 

where a0 = {-ln(A)/ +ln(), a1 = -B/ a = − a3 = G/(R) and a4 = -D/. 

Many parametric creep models have equation (2d) as their basis. Thus, the so called 

first Soviet model8 is very similar to equation (2d) in that f() = ln() for the expression in 

front of parameter a1, but f() =  in the expression in front of a4. The model proposed by  

Larson-Miller9 did not explicitly propose a specific stress function but applications of this 

model have made use of various forms including  f() = , f() = ln() or with f() being a 

polynomial (of varying orders) in stress or log stress (all usually with the additional restriction 

that a1 = a2 = 0). The Orr-Sherby-Dorn10 model has a2 = a4 = 0 with f() = ln(), the Wilshire11 

model has a2 = a4 = 0 with  f() = ln[-ln(σ/σTS)] and the model by Yang et al.12 has a2 = a4 = 

0 with f() = ln(σ/(σTS − σ)), where TS is the tensile strength. The minimum commitment 

method13 has a4 = 0 and uses T instead of ln(T) with f() = ln() + b1 + b2, where b1 and b2 

are additional model parameters. Finally, Manson  and Haferd14 set  a2 = a3 = 0 and replace 

a4f()/T with a4f()[T-a5], whilst Manson and Brown15 further generalise using a4f()[T-a5]
a6, 

where a5 and a6 are additional model parameters (with f() being some polynomial function of 

stress). Table 1 summarises these competing models expressing rupture life as an algebraic 

function of stress and temperature. 

All these models mainly differ from each other because of the uncertainty surrounding 

the role of stress in determining creep life and in fact all of the models contained within Table 

1 suffer from an inability to adequately model the relationship between stress and creep life. 

That is, when creep life is adjusted for the effect of temperature in the way implied by the 

chosen parametric model, and when this temperature compensated creep life is plotted against 

the stress transformation implied by that model, the resulting plot never displays the functional 

relationship implied by the model. This deficiency is worse for some models, some materials 

and when larger ranges of stress are used.  

Table 1 Summary of some popular parametric creep models for predicting time to failure 

 

One potential solution to this problem is to remove the effect of temperature on creep 

life in the way suggested by a chosen creep model and then to leave the functional relationship 

of this temperature compensated failure time with stress unspecified. Then a non-parametric or 

semi-parametric procedure can be used to identify a smooth curve that adequately describes 

the relationship between stress and the temperature compensated failure time. Non-parametric 

procedures are capable of quantifying smooth curves of many varied shapes and forms and so 

can be applied to a great variety of creep data sets. Such a smooth curve can then be 

extrapolated out to all temperatures and because it does not rely on a particular equation to 

describe the stress relationship, it has the potential to provide more accurate predictions of 

creep life at stresses approaching operating conditions. The structure of the P-NID models put 

forward by Bolton16 are particularly useful for the application of these non-parametric 

procedures. However, the non-parametric technique proposed by Bolton, namely the use of 

cubic spline functions,  relies on the researcher having to make value judgements on what data 

to include and what data to exclude in order to obtain a smooth curve that describes the stress 

relationship that is also capable of extrapolation. On a plot of stress versus temperature 

compensated failure times this involves selecting either artificial coordinates or a sub set of 

actual data points that visually produces a smooth curve that appears to go through the middle 



of all the data on such a plot. Data fitting by eye in this way is subjective and will result in 

different analysts obtaining different life time predictions using the same data. Provided these 

different predictions are not statistically significantly different from each other, then such 

subjectivity is not an issue (which is likely to be the case at the hands of experienced 

practitioners). Inexperienced users of these models may however encounter problems. An 

additional issue with such subjectivity is that it presents complications in producing algorithms 

that can be easily used by such practitioners. Objective criteria for curve fitting allows the 

construction of user friendly algorithms that can be used without having to have a detailed 

understanding of either the creep prediction model or the properties of the material being 

studied. 

This paper therefore aims to i. propose objective non-parametric and semi-parametric 

procedures that remove the need for such value judgements to be made and ii. to assess the 

potential of these procedures for accurate creep life prediction by using data on 2.25-1Cr steel 

and the Wilshire model as a test bed. To this end the paper is structured as follows. The next 

section describes in more detail the data to be used in this paper and this is followed by a section 

that applies the Wilshire model to this data set as a basis for comparison to other approaches. 

This is followed by two sections applying the Wilshire model in partitioned form, as an 

illustration of how to approximate an unknown stress function using a series of segmented 

lines. The penultimate section outlines a new semi – parametric Wilshire model which is then 

applied to the creep data set. The conclusions section then identifies the better performing 

model and suggests some future areas of research. 

The Data 

The NIMS Matnavi website17 in which Creep Data Sheet 3B resides, provides extensive rupture 

data for twelve batches of 2.25Cr - 1Mo steel and each batch has a different chemical 

composition that underwent one of four different heat treatments. The most comprehensive set 

of test conditions exists for the MAF batch and the chemical composition and heat treatment 

undergone by this batch can be found in Creep Data Sheet 3B 18. This paper uses this batch that 

is made up of 102 specimens that were tested at seven different temperatures (723K, 748K, 

773K, 798K, 823K, 873K and 923K) and stresses ranging from 333MPa to 14MPa. The 

resulting shortest failure time was 123,840 seconds and the largest was 512,694,360 seconds 

(or approximately sixteen and a quarter years). The data set is also made up of a number of 

censored times (length of an incomplete test at the time of publication of data sheet 3B). These 

times are shown as arrows in all subsequent figures. Figure 1 plots this data set and it is clear 

that the relationship between stress and time to failure is only log linear over a narrow range of 

stresses (this is most apparent at a temperature of 873K). For the purpose of assessing the 

accuracy of life time predictions made by various versions of the Wilshire model, the short-

term data is restricted to 10,000 h, and failure times above this are represented in all figures as 

open symbols, with failure times less than 10,000 h as filled symbols. All model parameters 

are estimated with this short-term data only and their suitability assessed by seeing how well 

they predict the remaining longer-term data. 

 

1   Plot of time to failure against stress at various temperatures for the MAF batch of 2.25Cr-

1Mo steel taken from the NIMS creep data base 

The Wilshire model with no partitioning (W) 

The Wilshire equation for failure times has traditionally been written as  



σ σTS⁄ =exp{-k1[tfexp(Qc RT⁄ )]u}                                                      (3a) 

and k1 and u are model parameters that require estimation. This can be linearized as 

 ln[tf] = a0 + a1ln[- ln( σ σTS⁄ )]+a3[1 T⁄ ]                                        (3b)            

where u = 1/a1, k1 = exp(-a0/a1) and Qc/R= a3. The Wilshire model therefore implies that at 

some fixed datum temperature Td, (e.g. Td = 773K), there is a linear relationship between the 

log time to failure at that temperature, ln[td
f], and the transformed normalised stress ln[-

ln( σ σTS⁄ )] 

ln[tf
d] = {a0+a3[1 Td⁄ ]} + a1ln[- ln( σ σTS⁄ )]                                                              (3c) 

so that the effect of temperature is to shift this linear relationship in a parallel fashion – i.e. 

change the intercept parameter a0. Using equations (3b,c) it is possible to convert a failure time 

recorded at this datum temperature (and also some value for the normalised stress) to what that 

failure time would have been if the test had been conducted at a temperature different to Td  

(but the same normalised stress) 

ln[tf] = ln[tf
d] + a3[1 T - 1 Td⁄⁄ ]                   (3d) 

Put differently, ln[tf
d] can be thought of as a temperature compensated (log) failure time 

that according to equation (3c) varies linearly with variations in ln[- ln( σ σTS⁄ )] and with any 

additional variation being purely random in nature  

ln[tf
d] =ln[tf] - a3[1 T - 1 Td⁄⁄ ]                                                                                  (3e) 

Estimation of the unknown parameters in equation (3b) can done using the linear least 

squares procedure that choses values for the parameter so that e2 is minimised, where  

e = ln[tf] -{ a0 + a1ln[- ln( σ σTS⁄ )]+a3[1 T⁄ ]}                                                                  (4a) 

is the random component of creep failure times and the summation is carried out over the N 

test conditions leading to failure within 10,000 h. 

The results of this estimation procedure, when applied to all failure times less than 

10,000 h, was 

                 ln[tf] =
−9.798 +  4.594ln [− ln ( σ σTS⁄ )]  +  21,294[1 T⁄ ]

  {−3.14}    {10.13}                                      {8.30}          

R2 = 69.10%                                                                 

                                 (4b) 

where student t values associated with parameters a1 to a3 are shown in squiggly brackets. 

These t values have a student t distribution with N-3 = 99 degrees of freedom under the null 

hypothesis that the population value for a parameter of the model equals zero. Consequently, 

all the parameters are statistically significantly different from zero at the 5% significance level 

and the value for a3 implies an activation energy of approximately 177 kJmol-1 (as Qc  = Ra3 = 

8.314[21,294]). The temperature compensated failure times are therefore given by 

ln[tf
d] =ln[tf] - 21,294[1 T - 1 Td⁄⁄ ] and Figure 2a plots these adjusted values against  ln[-



ln( σ σTS⁄ )]  using Td = 773K.  The percentage variation in ln[tf] that can be explained by 

variations in 1/T and ln[- ln( σ σTS⁄ )] is given by the R2 value and is just under 70%. 

2   Variation of the temperature compensated failure time with ln[- ln( σ σTS⁄ )] using Qc = 177 

kJmol-1                                                                      

Figure 2 reveals a problem with the Wilshire model in its simplest form, which is also 

true for all the parametric models summarised in Table 1. Namely, that the data on this plot 

should define a straight line given by equation (3c) (scatter aside), but it is clear from Figure 2 

that ln(td
f) is not varying in a linear fashion with ln[- ln( σ σTS⁄ )].  

The Wilshire model with one partition (W1p) 

The traditional solution to this problem is to hypothesis that over the test conditions shown, 

there are multiple creep mechanisms in operation, and it is this that leads to the observed non-

linearity19-21. This solution is illustrated in Figure 3a where it is hypothesised that there is a 

different mechanism at work above and below a normalised stress of 0.49. This critical 

normalised stress was the one which gave the smallest value for e2 over both creep regimes. 

Then equation (3b) applies above and below this critical point, but the values for a0 to a3 above 

this normalised stress will be different to those below it. Figure 3a shows the resulting kinked 

linear relationship based on:  

If /TS > 0.49 

                  ln[tf] =   
−18.207 +  2.515ln [− ln ( σ σTS⁄ )]  +  26,520[1 T⁄ ]

  {−8.98}       {7.29}                                      {16.59}          
                                                              

                                    

If /TS ≤ 0.49 

              ln[tf] = 
−16.457 +  7.543ln [− ln ( σ σTS⁄ )]  +  26,520[1 T⁄ ]

  {−8.08}      {11.89}                                   {16.56}          
                                                                 

                                   (5) 

The estimated parameters shown in equation (5) are based only on the data points where 

tf  < 10,000 h. The implied activation energy for both creep mechanisms is 220 kJmol-1 and the 

overall R2 value is 89.64%, which is higher than the model without a break and the statistical 

significance of this non-linearity is further confirmed by the student t values associated with a0 

and a1. It should be stressed that this abrupt break is just a simplification and in reality there is 

likely to be a gradual transition from one creep mechanism to another around the normalised 

stress of 0.49 and hence the true relationship in Figure 3a is a smooth non-linear one. 

Equation (5) can be used to predict both the failure times used to estimate the 

parameters of this model (interpolation) and the failure times not used in such estimation 

(extrapolation).  Figure 3b plots these predictions and the W1p column of Table 2 shows the 

mean absolute percentage error made in interpolation and extrapolation at each temperature. 

Quite a complicated picture emerges. There is tendency at all temperatures (except at 748K) 

for the prediction errors to be the same or much larger in extrapolation compared to 

interpolation. This clearly suggest the model is not correctly specified in terms of stress – as 

the stress gets smaller the models prediction errors are getting bigger. Secondly, the model 



extrapolates with smaller errors at intermediate temperatures. This implies the model is also 

incorrectly specified in terms of temperature.  

3     (a) Variation of ln(tf) - Qc(1/RT) and the W1p model predictions thereof with ln[-ln(/TS)], 

(b) Predicted times to failure at different stresses and temperatures for the W1p model 

Table 2 The mean absolute percentage prediction error made over all stresses at different 

temperature using various models for creep life 

 

The Wilshire model with two partitions (W2p) 

Figure 3a suggests one possible reason for this poor predictive capability – namely that for this 

data there is a second partition, with each partition having a separate creep mechanism or 

regime. This idea is supported by previous work carried out by Wilshire and Whittaker22. For 

this material, these authors suggest dislocation creep processes are rate controlling at all stress 

levels, even though the detailed dislocation processes vary in different stress regimes. When  

> Y, creep is controlled by the generation and movement of dislocations within the grains. In 

contrast, when  < Y, new dislocations are not generated within the grains. Instead, creep 

occurs within the grain boundary zones, i.e. by grain boundary sliding or diffusion along 

existing dislocations and grain boundaries with associated deformation in the grain regions 

adjacent to the boundaries. Another change in creep and creep rupture behaviour occurs when  

approximately equals 0.2TS. With this material, the original ferrite/bainite microstructure 

degrades to ferrite and molybdenum carbide particles in long term tests at the highest creep 

temperatures, with very coarse carbide particles forming along the grain boundaries. This 

carbide coarsening reduces creep strength in the matrix allowing diffusion to occur within the 

grains once again. These authors have provided similar explanations for the observed breaks 

in other power generating materials as well. 

These critical normalised stresses given in equation (6) were the ones which gave the 

smallest value for e2 over all creep regimes. Then equation (3b) applies either side of these 

critical points, but the values for a0 to a3 either side of these normalised stresses will be 

different. Figure 4a shows the resulting multi kinked linear relationship based on:  

If /TS > 0.47 

                  ln[tf] =   
−18.658 +  2.581ln [− ln ( σ σTS⁄ )]  +  26,905[1 T⁄ ]

  {−9.99}       {8.40}                                      {18.19}          
                                                              

                                    

If  0.47≥ /TS > 0.20 

                  ln[tf] =   
−16.886 +  8.642ln [− ln ( σ σTS⁄ )]  +  26,905[1 T⁄ ]

  {−9.00}       {12.97}                                      {18.19}          
                                                              

                                    

If /TS ≤ 0.20 

              ln[tf] = 
−14.379 +  3.212ln [− ln ( σ σTS⁄ )]  +  26,905[1 T⁄ ]

  {−7.11}      {1.81}                                   {18.19}          
                                                                 

                                   (6) 



The estimated parameters shown in equation (6) are based only on the data points where 

tf < 10,000 h. The implied activation energy for all creep mechanisms is 224 kJmol-1 and the 

overall R2 value is 91.50%, which is a little higher than the model with a single partition and 

the statistical significance of this additional partition is further confirmed by the student t values 

associated with a0 and a1 (for example, the t statistic on a2 when /TS ≤ 0.20 suggests this 

parameter is not significantly different for zero, but is statistically significant over the other 

stress ranges). Again, it should be stressed that these abrupt breaks are just a simplification and 

in reality there is likely to be a gradual transition in creep mechanism around the critical 

normalised stresses of 0.2 and 0.47 and hence the true relationship in Figure 4a is a smooth 

non-linear one. 

Equation (6) can be used for interpolation and extrapolation. Fig. 4b plots these 

predictions and Table 2 shows the mean absolute percentage error made in interpolation and 

extrapolation at each temperature. At temperatures of 798K or less the W1p and W2p have 

similar errors in interpolation, but at temperatures of 873K or more, the W2p model has much 

better performance in interpolation.  But the main benefit accruing from the W2p model is in 

extrapolation where at temperatures of 773K and above, this model predicts times to failure 

with very much reduced errors (whilst at lower temperatures the W2p is not worse than the W1p 

model).  

4    (a) Variation of ln(tf) - Qc(1/RT) and the W2p model predictions thereof with ln[-ln(/TS)], 

(b) Predicted times to failure at different stresses and temperatures for the W2p model 

Semi -Parametric Wilshire model Wsp-nw: Nadaraya & Watson   

The problem with the above models is that they are approximations to the true relationship 

between the temperature compensated times to failure and ln[-ln(/TS)] and so there could be 

gains in predictive accuracy in overcoming the need for such an approximation. For example, 

it is not clear how many critical normalized stresses (i.e. creep regimes) are needed for the 

approximation to correctly depict how the data actually behave. One solution to this problem 

is to pursue a non-parametric estimation procedure, and the technique proposed by Nadaraya23 

(and also independently by Watson) is a very early example on non-parametric estimation. 

Method 

In this model it is assumed that the relationship between the log time to failure and temperature 

is well represented by the W model described in the introduction, but that the stress relationship 

is not as described by this model. So instead of trying to approximate the unknown functional 

form of the non-linear relationship between ln[td
f] and ln [− ln ( σ σTS⁄ )] as seen in Figure 4a  

by segmented linear lines (where the correct number of required segments is not known), a 

smoothed curve can be used instead. When using non-parametric techniques this smoothed 

curve needs no equation to define its shape but instead the data itself determines the shape of 

the stress relationship and so should provide better interpolations/extrapolations.  

To reflect the unknown relationship in Figure 4a, the right hand side of equation (3c) is set 

equal to f(x) which then enables equation (3e) to be written as 

ln[tf
d] =ln[tf] - a3[1 T - 1 Td⁄⁄ ] = f(x)                                                                          (7a)                                                                               

where x = ln [− ln ( σ σTS⁄ )]. The functional form of f(x) is unknown but one non-parametric 

approach to finding f(x) is to calculate a weighted average of the i = 1 to N values for ln[td
f], 



where the weights are given by a Kernel functions. This is the basis of the Nadaraya-Watson23 

Kernel estimator 

y0=f(x0) =  
∑ K(xi−x0)yi

N
i=1

∑ K(xi−x0)N
i=1

                                                                                           (7b)                                                              

where y0 is the value for ln[td
f] obtained when x =  x0 and where there are i  = 1 to N values for 

x and y. A number of different functional forms for the Kernel K() have been proposed, but the 

most commonly used one is based on the Gaussian function given by 

K(xi − x0) = 𝑒−(xi−x0)2/2𝛿2
                                                                                        (7c) 

where  is termed the band width. This band width essentially determines the degree of 

smoothing, such that larger values for  lead to a smoother curve for f(x). An optimal value for 

 in the sense that it minimises the mean integrated squared  error (e0) has been proposed by 

Silverman24 that is given by 

 = 0.7(Q3-Q1)/N
0.2                                                                                                   (7d) 

where Q3 and Q1 are the upper and lower quartile values respectively for the N values for x 

(Silverman points out that this optimality is not universal and requires log failure times to 

follow a normal distribution). Given a value for the parameter a3, equation (7b) is fully non-

parametric in nature in that no parameters require estimation as  is given by equation (7d). 

More recently, Hall and Turlach25 have proposed a weighted version of this Kernel estimator 

y0=f(x0) + e0 =  
∑ wi(x0)K(xi−x0)yi

N
i=1

∑ wi(x0)K(xi−x0)N
i=1

+ e0                                                                                    (8)                                                              

where e0 is a random error term to capture the scatter around the smooth curve f(x0) and the N 

weights at each value for x0, wi(x0), sum to unity. These weights are chosen so that e0
2 is 

minimised subject to this unity constraint. Equation (8) is strictly speaking a semi-parametric 

regression because its application requires the joint estimation of the parameter a3 in equation 

(7a) and all the weights. 

One characteristic of this approach is that for a given temperature, creep life predictions 

can only be made within the limits of the smallest and largest values for ln [− ln ( σ σTS⁄ )]. 
Because parameter estimation was restricted to data associated with failure times below 10,000 

h these limits correspond to -1.22 to 0.75 for ln [− ln ( σ σTS⁄ )] or 0.12 to 0.74 for σ σTS⁄ . This 

prediction boundary depends on temperature through the temperature dependency of the tensile 

strength of 2.25Cr - 1Mo steel. Over the range of temperatures within the NIMS data sheet 3B 

this relationship is approximately linear, so that the prediction boundary associated with the 

lowest stresses is given by  

     Lower stress prediction boundary ≈ 0.12(c0-c1T) where c0 = 1360.6 K and c1 = 1.2312 

Application 

Figure 5(a) shows the optimal weights for equation (8) at each and every value for x0 = 

ln [− ln ( σ σTS⁄ )], where based on equation (7d),  = 0.5. It can be seen that the most important 



Kernels in determining ln[tf
d] occur at x0 = 0.75 and x0 = -1.14, i.e. K(xi − 0.75) and 

𝐾(xi + 1.14). Figure 5b plots out these two Kernels together with the weighted average of 

these two Kernels based on their weights of 0.23 and 0.18 as shown in Figure 5a (this weighted 

average assumed all the other Kernels equal zero and the weights sum to 0.41). This weighted 

average Kernel is very different in shape to its constituent parts and it is this that enables very 

complex and flexible shapes to be derived for f(x) based on this non-parametric technique. 

5   (a) Variation of the Kernel weights wi(x0) with ln[-ln(/TS)], (b) the Kernels associated with 

the largest two weights together with their weighted average 

Taken into account all the Kernels associated with each value for x0 and their 

corresponding weights, gave an estimated value for a3 of 28,718 K implying an activation 

energy of 239 kJmol-1 

ln[tf
d] =ln[tf] - 28,718[1 T - 1 773⁄⁄ ] = f(x)                                                               (9a)                                                          

and where the resulting function f(x) is shown by the dashed curve in Figure 6a.This curve fits 

the failure times below 10,000 h very well (above the lower stress prediction boundary) without 

the need to quantify the number of, and then estimate the number of, segmented lines to 

approximate this curve. The dashed curve in Figure 6a  (i.e. f(x)) in combination with equation 

(9a) enables predictions to be made for ln[tf
d] - but only for those values of x = 

ln [− ln ( σ σTS⁄ )] within the prediction boundary – namely x = -1.215 to x = 0.750. Then 

predictions for ln[tf] at these x values but at any temperature can be made using 

     ln[tf] = ln[tf
d] +28,718[1 T - 1 773⁄⁄ ])      ;   for x = -1.215   to   x = 0.750 only           (9b) 

These predictions are shown in Figure 6b by the dashed curves, the end points of which 

define the lower stress prediction boundary. Thus, at 873K it is not possible to predict the 

failure times associated with specimens tested at 29, 22 and 14 MPa. That aside, the predictions 

look visibly superior to those obtain using the W2p model in Figure 4b. This is confirmed in the 

last column of Table 2 where the extrapolative prediction errors from the Wsp-nw are lower than 

from the W2p model at all temperatures (especially so at 723K and 773K). For interpolation, 

the picture is more mixed with the W2p model performing noticeably better at 798K and 823K, 

with the Wsp-nw model performing either better than or the same as the W2p model at all the 

other temperatures. 

6   (a) Variation of ln(tf) - Qc(1/RT) and f(x) with ln[-ln(/TS)], (b) Predicted times to failure 

at different stresses and temperatures for the Wsp-nw model 

Conclusions 

This paper introduced a semi-parametric estimation methodology for the Wilshire model for 

times to failure at high temperatures. The paper also compared the predictions made using this 

approach to those obtained using more traditional approaches to modelling and estimation 

within the Wilshire methodology. When these techniques were applied to 2.25Cr-1Mo steel 

the following conclusions could be drawn 



1. For this material it is not immediately clear from graphical presentations of the data, 

exactly how many partitions, and so different creep regimes, are required to adequately capture 

the pattern of the relationship between ln[tf
d] and ln [− ln ( σ σTS⁄ )] 

2. This problem can be overcome by using a semi-parametric estimation procedure to 

identify the non-linear relationship between ln[tf
d] and ln [− ln ( σ σTS⁄ )], f(x).  

3.  Because f(x) was used for making failure time predictions, such predictions were 

constrained to be within the lower stress prediction boundary. This limit can be interpreted as 

the limit of valid extrapolation. The boundary prevents extrapolations into stress ranges beyond 

that used for estimating the model’s unknown parameters and so avoids the possibility of trying 

to make predictions where creep regimes not present in parameter estimation actually apply. 

Once a model has been validated by using sub sets of data, the full data that is available would 

be used to estimate the model and predictions made over the then enlarged prediction boundary. 

The presence of a prediction boundary then places more importance on the actual design of an 

accelerated test program – if the aim is to obtain life predictions at an operating stress for a 

materials, then the test program must include specimens tested at this stress with an accelerated 

temperature that will induce failure in a short time period (e.g. around 5,000 hours). 

4. The semi-parametric version of the Wilshire model resulted in extrapolative prediction 

errors that are lower than from the partitioned Wilshire models at all temperatures (especially 

so at 723K and 773K). For interpolation, the partitioned Wilshire model performs noticeably 

best at 798 and 823K, with the semi-parametric version of the model performing either better 

than or the same as the partitioned model at all the other temperatures. 

5. The shape of the predicted isothermal lines is smooth and do not have the abrupt 

discontinuities present in the partitioned models – a pattern of behaviour that is not a realistic 

description of actual creep behaviour. 

Important areas for future research include applying this semi-parametric version of the 

Wilshire model to i. other high temperature materials and ii. to other approaches for 

compensating failure times for temperature. It may also be worth investigating other non-

parametric and semi-parametric estimation procedures such as for example a locally weighted 

scatterplot smoothing (LOESS) curve, along the lines first proposed by Cleveland and Devlin26. 
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Table 1 Summary of some popular parametric creep models for predicting time to failure 

Model Name Single Comprehensive Equation 

Orr-Sherby-Dorn10 (OSD) 
ln(tf) = a0 + a1ln(σ) + a3

1

T
 

Larson-Miller9  (LM) 
ln(tf) = a0 + a3

1

T
 + a4

ln(σ)

𝑇
 

Minimum Commitment13 (MC) 
ln(tf) = a0 + a1ln(σ) + a2T + a3

1

T
 + b1𝜎 + b1𝜎2 

Manson and Haferd14 (MH)* 
ln(tf) = a0 + a1f(σ) + a4

f(σ)

𝑇
[𝑇 − a5] 

Manson and Brown15 (MB)* 
ln(tf) = a0 + a1f(σ) + a4

f(σ)

𝑇
[𝑇 − a5]𝑎6 

Soviet Model 18 (SM1) 
ln(tf) = a0 + a2ln(σ) + a3

1

T
 + a4

σ

𝑇
 

Wilshire Model11 (W) 
ln(tf) = a0 + a1ln[−ln(σ/𝜎𝑇𝑆)], +a3

1

T
 

Yang et al.12 Model (Y)  
ln(tf) = a0 + a1ln [σ/(𝜎𝑇𝑆 − σ)] + a3

1

T
 

*In these models f() is a polynomial function of stress. ln stands for natural log.  tf is the 

time to failure, T the test temperature,  the test stress and TS the tensile strength. a0 to a4 

are model parameters that required estimation and have different meanings and values in 

each of the models.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 The mean absolute percentage prediction error made over all stresses at different 

temperature using various models for creep life 

  Mean Absolute Percentage Error in prediction for various models: 

 Model: W1p W2p Wsp-nw 

723K Interpolate 47.2% 46.6% 50.4% 

 Extrapolate 79.0% 79.1% 68.1% 

748K Interpolate 42.8% 41.5% 22.9% 

 Extrapolate 11.3% 13.9% 11.7% 

773K Interpolate 20.3% 24.4% 5.9% 

 Extrapolate 28.7% 15.4% 9.0% 

798K Interpolate 80.2% 76.2% 103.0% 

 Extrapolate - - - 

823K Interpolate 49.6% 63.0% 86.4% 

 Extrapolate 48.4% 23.9% 16.2% 

873K Interpolate 47.0% 37.1% 28.0% 

 Extrapolate 69.5% 24.7% 19.4% 

923K Interpolate 48.2% 16.9% 18.3% 

 Extrapolate 55.4% 26.6% 26.9% 

W1p is the Wilshire model with one partition, W2p is the Wilshire model with two partitions 

and Wsp-nw is the semi-parametric version of the Wilshire model. Interpolate refers to all test 

conditions leading to failure times less than 10,000 hours and extrapolate refers to all test 

conditions leading to failure times of more than 10,000 hours. The absolute percentage error 

at a particular test condition is calculated as {|predicted failure time  - experimental failure 

time|}/experimental failure*100, where || stands for the absolute value. The Mean Absolute 

Percentage Error in prediction at a stated temperature is then found by adding up the absolute 

percentage error at all given stress conditions at that temperature and then averaging out.  
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