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Abstract 

This study investigated the effects of acute oral taurine ingestion on: i) the power-time 

relationship using the three-min all-out test (3MAOT); ii) time to exhaustion (TTE) 5% > 

critical power (CP) and iii) the estimated time to complete (Tlim) a range of fixed target 

intensities. Twelve males completed a baseline 3MAOT test on a cycle ergometer. Following 

this, a double-blind, randomized cross-over design was followed, where participants were 

allocated to one of four conditions, separated by 72-h: TTE + taurine; TTE + placebo; 

3MAOT + taurine; 3MAOT + placebo. Taurine was provided at 50 mg·kg-1, whilst the 

placebo was 3 mg·kg-1 maltodextrin. CP was higher (P < 0.05) in taurine (212 ± 36 W) than 

baseline (197 ± 40 W) and placebo (193 ± 35 W). Work end power was not affected by 

supplement (P > 0.05), yet TTE 5% > CP increased (P < 0.05) by 1.7-min after taurine (17.7-

min) compared to placebo (16.0-min) and there were higher (P < 0.001) estimated Tlim 

across all work targets. Acute supplementation of 50 mg·kg-1 of taurine improved CP and 

estimated performance at a range of severe work intensities. Oral taurine can be taken prior 

to exercise to enhance endurance performance.  
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Introduction  

The critical power (CP) demarcates the boundary between heavy and severe exercise 

domains (Jones et al., 2010). It represents the highest power output that can be maintained, 

without a continuous rise in oxygen uptake (�̇�O2) and blood lactate or reductions in intra-

muscular phosphocreatine stores (Jones et al., 2008; Jones et al, 2010; Vanhatalo et al., 

2016). Whilst the CP is typically measured over several days and bouts of constant load 

exercise, it has been shown that the finite work capacity above CP (W') can be completely 

utilized in a single all-out, three-min exercise test (3MAOT). This test permits reliable and 

valid calculation of an equivalent CP and a W' value – the work end power (WEP) 

(Vanhatalo et al., 2007; Dekerle et al., 2006). Therefore, this single visit test permits 

quantification of work done above and below the CP; hence, the 2-component model 

(Vanhatalo et al., 2007). Parameters of the power-time relationship can be used to describe 

a ‘gold standard’ demarcation of the metabolic steady state (CP; Jones et al., 2019) and the 

finite capacity of individuals > CP (W’), which can be used in combination to  determine 

exercise performance (Jones et al., 2010; Jones and Vanhatalo, 2017).   

 

The CP provides a boundary that relates to both metabolic and respiratory control processes 

in the exercising human (Poole et al., 1988) and can be used to assess responses to training 

or acute dietary interventions, including caffeine (Machado et al., 2010; Cheng et al., 2016; 

Silveira et al., 2018), creatine (Smith et al., 1998; Miura et al., 1999; Vanhatalo and Jones, 

2009) and dietary nitrates (Kelly et al., 2013; Black et al., 2018). Taurine, a sulphur-

containing amino acid, is the most abundant free amino acid in mammalian tissue (Huxtable, 

1992), and is available to facilitate a variety of biological processes that can support exercise 

performance. As reported with the above-mentioned acute dietary supplements, taurine 

supplementation could theoretically alter components of the power-time relationship. For 

example, aerobically-biased (endurance) exercise has typically been improved following 
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taurine supplementation (see Waldron et al., 2018a & Souza et al., 2017 for reviews) and 

effects on skeletal muscle function have been reported (Dutka et al., 2014; Lim et al., 2018), 

which might collectively explain the improved exercise efficiency following oral administration 

(Paulucio et al., 2017). These mechanistic actions relate to the factors ascribed to govern 

the balance of CP and W’, which include a loss of muscle efficiency, characterised by 

distinct metabolic (Jones et al. 2008; Vanhatalo et al. 2016) and neuromuscular (Burnley et 

al. 2012) profiles.  

 

The effects of taurine on performance have been somewhat mixed during high-intensity 

exercise (Milioni et al., 2016; Warnock et al., 2017; Batitucci et al., 2018) and others have 

found no change in lower-intensity steady state performance or the physiological response 

to acute or chronic (7-days) taurine supplementation (1.66-3.32 g/day) (Galloway et al., 

2008; Rutherford et al., 2010). It is possible that inconsistency in the type of tests used, 

particularly during higher intensity exercise, have limited the current understanding. 

However, investigating parameters of the power-time relationship using a test, such as the 

3MAOT, provides capacity to quantify a ‘gold standard’ marker of endurance exercise 

performance (Jones et al., 2019), which is tightly coupled to metabolic and cardiovascular 

control processes. Indeed, evaluation of the power-time relationship permits concomitant 

quantification of work capacity in severe-intensity domains (W’), which has not been 

determined following taurine supplementation. Understanding of the ways in which taurine 

supplementation might affect the 2-component model would, therefore, reveal the domains 

of exercise that taurine supplementation is likely to enhance and extend the current 

understanding of its ergogenic role.   

 

Therefore, this study investigated the effects of acute oral taurine ingestion on: i) the power-

time relationship using the 3MAOT; ii) time to exhaustion in the severe-intensity domain and 
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iii) the estimated time to complete a range of fixed target intensities. It was hypothesised that 

oral taurine would alter the power-time relationship, thus increasing time to exhaustion at 

severe intensities.  

 

Methods 

Participants 

Twelve recreationally-active males (age 23 ± 3 years, stature 1.75 ± 0.61 m, body mass 75.5 

± 5.4 kg, �̇�O2max 54.9 ± 6.9 ml∙kg-1∙min-1) took part in this study. Informed consent was 

obtained from all individual participants. A-priori sample sizes were calculated using 

G*Power (Version 3.0.10). Given the typical changes (Cohen’s d = 0.4; Waldron et al. 

2018a) reported in endurance exercise after supplementation with taurine, a sample size of 

12 was sufficient to identify differences between groups with a statistical power of 0.90. The 

participants were asked to arrive at the laboratory having not completed any exercise in the 

48-h before testing, having abstained from alcohol and caffeine consumption in the 24-h 

prior. The participants were instructed to stay hydrated and consume a well-balanced meal 

no less than 2-h before testing, which was recorded and replicated across each day using a 

personal food diary. None of the participants were taking any other drugs or forms of 

supplementation during the study period. The participants consumed an additional 200 ml of 

fluid 1-h prior to exercise during each visit. Institutional ethical approval was granted for this 

study, which was conducted in accordance with the 1964 Helsinki declaration. 

 

Design 

The participants reported to the laboratory on seven occasions at the same time of day 

(10:00 am ± 1 h). On visit 1, the participants were screened and performed an incremental 

ramp test to measure maximal oxygen consumption (�̇�O2max) and determine the linear factor 
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for the subsequent CP tests. On visit 2, a familiarisation session was provided, where the 

participants completed a critical power test at the pre-determined linear factor. On visit 3, the 

participants completed their first experimental 3MAOT test on a cycle ergometer, which is 

hereafter referred to as the baseline CP. No supplement was provided at this visit. On visits 

4-7, a double-blind, cross-over design was followed, whereby the participants completed 

either a 3MAOT or a time to exhaustion (TTE) at a fixed external power output 5% > the 

baseline CP. This meant that a TTE or 3MAOT was conducted per visit with one of two 

supplements (50 mg·kg-1 Taurine or 3 mg·kg-1 maltodextrin Placebo) randomly provided 

(TTE + taurine; TTE + placebo; 3MAOT + taurine; 3MAOT + placebo). Participants were 

assigned to their conditions between visits 4 and 7 using block randomization online 

software (Urbaniak and Plous, 2015). The dose of taurine was based on recent studies that 

have demonstrated its ergogenic effect (Waldron et al. 2018a; Warnock et al., 2017) and 

was prepared by a laboratory technician, who was uninvolved with the experimental 

procedures. The supplement was not checked for purity and was provided as received from 

the manufacturer. Each visit was separated by no more than 72-h for each participant, which 

was deemed sufficient to washout taurine based on half-life of between 0.7 and 1.4-h 

(Ghandforoush-Sattari et al., 2010).  

 

Incremental ramp test 

The participants performed an incremental exercise test on an electronically-braked cycle 

ergometer (Lode Excalibur, Groningen, Netherlands) to determine �̇�O2max. After a 5-min, 

self-paced warm-up at an external workload of 100 W, the test was started at approximately 

160 W and increased by 25 W every minute until volitional fatigue. Respiratory gas 

exchange was measured breath-by-breath using a mask connected to a gas analysis system 

(Jaeger Oxycon Pro, Viasys Healthcare, Hoechberg, Germany). The gas analyzer and flow 

turbine were calibrated before each test using a known gas mixture (15% O2 and 5% CO2) 
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and a 3-L syringe, respectively (Hans Rudolph, Kansas City, KS). The test was terminated 

when cadence fell 10 rev·min-1 below the participants chosen cadence for more than 10-s, 

�̇�O2max was determined as the highest mean value recorded over 30-s of the test. The 

ventilatory threshold (VT) was determined by two independent investigators using the V-

slope method (Beaver et al., 1986).  

 

Three-minute all-out test (3MAOT)  

The 3MAOT was performed on the same cycle ergometer, which was adjusted to the 

participant based on their personal preferences recorded during the incremental test. The 

participants performed a warm-up at 50 W of external power for 5-min, followed by 5-min of 

seated rest (no pedalling) on the ergometer. In the next stage, the participant cycled in 

isokinetic mode (unloaded) on the ergometer for 2-min and 50-s at a cadence of 90 rev·min-

1, followed by a 10-s period of 110 rev·min-1. A countdown was given in the last 5-s of the 

isokinetic phase to lead in to the 3MAOT, which was performed in linear mode. The 

participant’s linear factor was determined based on the mechanical power output 50% 

between VT and �̇�O2max, which was achieved upon reaching their preferred cadence 

recorded during the incremental test (Vanhatalo et al., 2007) (linear factor = power 

(W)/cadence (rev·min-1)2). The participants were given non-specific verbal encouragement 

throughout the test by the investigators, without feedback of time to avoid pacing. The test 

was followed by 5-min recovery at 50 W. Peak power was determined as the highest 

external power maintained over a 1-s period, The end-power, hereafter referred to as the 

CP, was determined as the average external power sustained during the final 30-s of the 

test. The WEP was determined as the amount of external work (kJ) performed above the CP 

during the three-min test. At the beginning (pre-warm-up) and 4-min after the end of the CP 

test, a capillary blood sample was collected from the finger to measure the change in blood 



8 
 

lactate concentration (B[La] mmol·l-1) using a calibrated analyser (Biosen C Line, EKF 

diagnostic GmbH, Barleben, Germany), with a coefficient of variation of 1.5%. 

 

Time to exhaustion (TTE) 5% > critical power 

After a 5-min warm-up at 100 W, a TTE was performed on the same ergometer at a power 

output 5% > the CP, as determined at the baseline visit. It was deemed appropriate to use 

these values to demarcate the severe-intensity domain, as the participants were familiarised 

and the coefficient of variation for the 3MAOT end-power was commensurate with published 

literature between the familiarisation and baseline visit (< 3.3 % CV; Wright et al., 2017). The 

CV% for TTE 5%> CP has been previously determined as 3.7% in our laboratory with 

recreationally active participants. The participants were told to maintain their preferred 

cadence for as long as possible at the given power output. Exhaustion was determined by a 

drop in cadence of 10 rev·min-1 below the participants chosen rate for more than 10-s. Non-

specific verbal encouragement was provided throughout all tests.   

 

Estimation of target work  

The CP and WEP values obtained in the 3MAOT were used to predict the time required to 

complete a series of work-done targets of: 50,100,150 and 200 kJ, using the following 

equation:  

 

Tlim = (W-WEP)/CP  (eq. 1) 

 

Where Tlim is the limit of tolerance, W is the target work done (50 to 200 kJ), WEP and CP 

were the work end power (kJ) and critical power (W) determined from the respective tests. 
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The chosen work-done targets were deemed to reflect the power-duration relationship within 

the severe intensity domain (Jones et al., 2010). 

 

Supplementation 

All of the supplements were prepared in a powder form and measured using an analytical 

balance (Precisa 125A, Precisa Gravimetrics AG, Zurich, Switzerland) for subsequent 

ingestion in gelatine capsules. The capsules contained one of the following: taurine (50 

mg·kg-1 body mass) or placebo (3 mg·kg-1 body mass maltodextrin). Participants’ body mass 

was taken prior to each trial to measure the correct dose and the supplements were 

balanced such that an equal number of capsules were ingested between conditions. The 

dosages of taurine followed that recommended as safe, tolerable and ergogenic (Waldron et 

al., 2018a; Waldron et al., 2018c) and were all sourced from the same company (My Protein, 

Manchester, UK). After ingestion, the participants rested in a seated position for 1.5-h in a 

quiet room and were observed by the investigators. The 1.5-h timing was chosen as this 

permitted exercise to commence across the period of peak plasma availability of taurine 

after oral administration (Ghandforoush-Sattari et al., 2010).  

 

Statistical analysis  

A one-way repeated measures analysis of variance (ANOVA) was conducted to evaluate the 

effects of condition (baseline, taurine or placebo) on parameters of the power-time 

relationship (WEP, CP, peak power). A paired samples t-test was used to assess the effects 

of condition (taurine or placebo) on the TTE at 5% > CP and the change in B[La] from pre-

post-test. A two-way repeated measures ANOVA was conducted to evaluate the effects of 

condition on the estimated time (Tlim) at various work-done targets (100-200 kJ).  

Greenhouse-Geisser corrections were used when the assumption of sphericity was violated. 
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Significant interactions were followed-up using Bonferroni tests to identify pairwise 

differences. Statistical significance was accepted at P < 0.05 and all analyses were 

performed on IBM SPSS Statistics (Version 21, IBM Corp., Armonk, NY, USA).  

 

Results 

There were no trial order effects in the current study (P > 0.05). Post-study, the participants 

were asked to guess the order of supplements with respect to visits 4-7. The correct order of 

all four conditions was correctly guessed twice (16.7%), with two further participants 

correctly guessing three of four conditions (16.7%). The remainder of participants correctly 

guessed none (33.3%), one (8.3%) or two (25%) of the four conditions.  

   

Three-minute all-out test (3MAOT) 

During the 3MAOT, there was an effect of the supplement on the CP (F(2,22) = 20.4, P < 

0.001), with post-hoc tests revealing differences between the taurine and baseline (P = 

0.001) or placebo (P = 0.003) conditions. Similarly, peak power (F(2,22) = 8.2, P = 0.012) was 

highest in the taurine group, compared to baseline (P = 0.035) and placebo (F = 0.048) 

conditions. WEP was not affected by supplement, despite approaching significance (F(2,22) = 

3.4, P = 0.079). There were no differences (P > 0.05) between the baseline and placebo 

conditions for any measured variable (Figure 1). The delta values for baseline-placebo, 

baseline-taurine and placebo-taurine for critical power (-4.2 ± 10.1 W; 19.0 ± 13.3 W; -14.8 ± 

12.8 W, respectively), peak power (-3.7 ± 21.2 W; -65.4 ± 76.7 W; -65.6 ± 71.1 W, 

respectively) and WEP (-0.5 ± 0.14 kJ; 2.1 ± 3.4 kJ; -1.6 ± 3.4 kJ, respectively) are 

presented in Figure 1B, 1D and 1F, respectively. Figure 2 shows this for a representative 

participant.   
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***Insert Figure 1 and 2 here*** 

 

Exercise in the severe intensity domain  

Time to exhaustion at 5% > CP was increased in the taurine condition compared to the 

placebo (t(11) = 4.4 , P = 0.001). A two-way ANOVA revealed further effects of taurine on Tlim 

(F(1,11)= 29.8, P < 0.001), which interacted with work targets (F(3,33)= 16.3, P = 0.002). Post-

hoc tests demonstrated differences between taurine and placebo conditions across all work 

targets (P < 0.001) (Figures 3 and 4).    

 

***Insert Figures 3 and 4 here*** 

 

 

 

Blood lactate changes across the 3MAOT 

There was an effect of the supplement on the change in B[La] from pre-to-post 3MAOT 

(F(2,22) = 5.9, P = 0.008), with differences between taurine and placebo (P = 0.007) but not 

baseline (P = 0.055) (Figure 5). 

 

***Insert Figure 5 here*** 
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Discussion 

The primary aim of this paper was to investigate the effects of oral taurine supplementation 

on parameters of the power-time relationship during the 3MAOT. We found ~ 15 W 

increases in the CP compared to placebo but no significant change in the WEP, suggesting 

that the effects of taurine might be biased towards the oxidative component of the 2-

component CP bioenergetics model. However, the differences in WEP (2 kJ) approached 

significance (P = 0.079) and contributed toward the consistently improved Tlim across a 

range of work targets. Indeed, the TTE, conducted at a power output 5% > baseline CP, was 

also significantly improved (1.7-min) and explained by the effects of taurine on the severe 

intensity threshold. Collectively, these findings are the first to show the contribution of taurine 

supplementation to exercise performed in the severe intensity domain, thereby highlighting 

the possible roles of taurine in muscle bioenergetics or cardiorespiratory control processes.     

 

The increases in CP found here support the suggestions of recent meta-analyses, where the 

consumption of isolated oral taurine (Waldron et al, 2018a), or as part of an energy drink 

(Souza et al., 2017), was reported to enhance endurance performance. Indeed, an increase 

of 15 W in the severe-intensity boundary could be significant for endurance athletes. 

However, the ergogenic effects of taurine were, perhaps, most effectively demonstrated via 

the improved TTE and estimated Tlim across a number of work targets (Figures 3 and 4). TIim 

across these fixed work targets is determined by a combination of the CP and WEP. Thus, 

changes in Tlim can be facilitated by both aerobically and anaerobically-based metabolic 

control processes. For example, whilst exercise > CP is not entirely dependent on non-

oxidative energy pathways (Vanhatalo et al., 2010), inexorable falls in muscle pH and 

concomitant depletion of PCr stores have been reported (Jones et al., 2008). As might be 

anticipated, exercise at these intensities is also associated with increased type II fibre 

recruitment in animal models (Copp et al., 2010). Taurine supplementation could logically 
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assist with offsetting these sources of fatigue, particularly in relation to the enhanced severe-

intensity exercise capacity and B[La] responses reported herein. Previous studies have 

highlighted the preferential action of taurine in the potentiation of the sarcoplasmic reticulum 

(SR) of type I and II muscle fibres, where it can improve force generation or attenuate 

fatigue-induced force losses (Bakker and Berg, 2002; Hamilton et al., 2006; Goodman et al., 

2009; Dutka et al., 2014). Therefore, taurine supplementation could feasibly offset the decay 

of muscle force (particularly among glycolytic, fatigable fibres) observed during exercise 

testing. Furthermore, regulatory effects of taurine have been identified on voltage-gated 

chloride (ClC-1) in striated rodent muscle cells (Conte et al., 1987). Thus, it is feasible that 

the effect on membrane stabilization might also translate to the control of muscle function 

during acute fatigue, which is characterised by dysregulated membrane excitability (Fauler et 

al., 2012). Based on our findings, we contend that the inconsistent results in relation to 

taurine’s ergogenic capacity, to date, could be partly explained by the limited and variable 

modes of exercise adopted. The dual effects of taurine on both W’ and CP appear to 

combine to enhance severe-intensity exercise capacity, when quantified using a valid and 

reliable, gold standard testing procedure. Further work is required to establish why severe-

intensity exercise is augmented following taurine ingestion. 

 

Whilst an abundant body of research supports the ergogenic role of taurine, there are a few 

studies that have reported trivial effects on performance (Rutherford et al., 2010; Milioni et 

al., 2016; Ward et al., 2016). The closest of these to the current study (Milioni et al. 2016) 

reported ‘unclear’ effects on the maximal accumulated oxygen deficit (MAOD), which is a 

measure of anaerobic capacity and a value that is reported to relate to the WEP (Hill and 

Smith, 1993; 1994). It is interesting to contrast these findings with the changes found here in 

the power-time relationship, since our results are perhaps more appropriately explained by 

the prevailing opinion that work done above the CP is not equivalent to the anaerobic 

capacity and more closely relates to a general exercise tolerance and delayed fatigue in the 
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severe intensity domain (Vanhatalo et al., 2010; Jones and Vanhatalo, 2017). Indeed, the 

CP has been described as a ‘fatigue threshold’ (Poole et al., 2016), demarcating a boundary 

of tolerable exercise intensity. This interpretation is more in keeping with the ergogenic roles 

of taurine, which are commonly attributed to alterations in fuel utilisation (De Carvalho et al., 

2018), improved mechanical efficiency (Paulucio et al., 2017) or efficiency of ATP turnover in 

the muscle cell (Hansen et al., 2010). Each of these mechanisms has potential to improve 

exercise tolerance across a range of intensities and could certainly support the 15 W change 

in CP. Further work to establish the capacity of taurine to affect skeletal muscle ion handling 

or metabolic processes in vivo is necessary.    

 

In addition to its roles in skeletal muscle, taurine is active in smooth muscle and endothelial 

cells of the vasculature, acting directly on potassium channels (Abebe and Mozaffari, 2011), 

leading to improvements in vascular function (Sun et al., 2016). The CP is strongly related to 

the number of capillary contacts in both type I and II fibres of humans (Mitchell et al., 2018) 

and there is a dependency of the CP on muscle blood flow (Broxterman et al., 2015). 

Therefore, such mechanisms might have supported its increase after taurine 

supplementation. In the skeletal cells of mice, taurine has also been shown to control the 

rate of glycolytic flux (Takahashi et al., 2016), thus inferring a direct role in the control of 

metabolic pathways that are known determinants of high-intensity performance - the 

perturbation of which might lead to premature fatigue (Poole et al., 1988). It is the 

combination of these effects that we propose as an explanation for the concurrent 

improvements in both elements of the 2-component model. Whilst a reciprocity between the 

CP and W’ is often reported as a result of dietary or training interventions (Jones and 

Vanhatalo, 2017), supplements capable of participating in a variety of biological processes 

(i.e. cardiovascular, metabolic) are more likely to have combined effects on the power-time 

relationship. 
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The effect of oral taurine on time-trial performance (as opposed to capacity testing) has also 

been inconsistent, which is surprising given the clear roles established herein. For example, 

Ward et al. (2016) reported no effects of taurine on 4 km cycling time-trial performance, yet 

Balshaw et al. (2013) found improvements in 3 km time-trial running. The energetics of 

exercise across these distances relies heavily on capacity in the severe-intensity domain 

(Lacour et al., 1990) and, based on the current results, we would anticipate clear effects on 

closed-loop events of this distance. Indeed, the changes in severe-intensity exercise 

observed here (TTE and Tlim) are comparable or larger than those elicited by ischemic pre-

conditioning (Griffin et al., 2018), beetroot juice (Kelly et al., 2013), beta alanine (Black et al., 

2018) and caffeine (Silveira et al., 2018). Therefore, the reason for the discrepancy in 

findings between individual studies is unclear but could relate to the range of doses and 

supplementation periods used or the training status of the participants (Waldron et al., 

2018a). The participants of the current study were recreationally active, with a history of 

competitive sport but were not currently competitively trained. This might also explain the 

magnitude of the change in performance, since muscle taurine content is lower at baseline 

among untrained individuals (Graham et al., 1995). The type of research design has also 

varied between studies, with some including an additional group who are told they are 

receiving taurine but do not (see Rutherford et al., 2010). This was not included in the 

current study but might have ensured that the effects were not the result of placebo effects. 

Future research should be designed to directly address these problems.  

 

From a practical perspective, the results of this study support others in demonstrating the 

ergogenic effect of taurine on exercise tolerance and infer that a single supplement of 

taurine at a dose of 50 mg·kg-1 body mass could improve performance across a range of 

exercise intensities. Therefore, an adult weighing 70 kg would require a dose of 3.5 g 1.5-2-h 
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before training or competition to achieve an ergogenic effect. There have been no adverse 

side-effects reported across studies using doses up to 6 g (Waldron et al., 2018c), inferring 

the safety and tolerability of this supplement. The effects of taurine on endurance 

performance are fairly well-established among recreational athletes but, to date, there has 

been no work carried out on elite-level athletes, which is necessary to develop an 

understanding of the scope of taurine’s ergogenic effects. 

 

Conclusion  

Acute supplementation of 50 mg·kg-1 of taurine increased exercise tolerance within the 

severe intensity domain among recreationally-active participants. The increase in CP 

supports the reported roles of taurine on the oxidative energy system and, in combination 

with 2 kJ changes in WEP, estimated performance would be expected to improve at a range 

of severe intensities.  
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Figures  

 

Figure 1. Critical power (A), ∆critical power (B), peak power (C), ∆peak power (D), work end 

power (E) and ∆work end power (F) during the 3-min all-out test in baseline, placebo or 

taurine conditions (n = 12). * = significantly different (P < 0.05) to comparison conditions.  

 

 

 

 

 



25 
 

 

 

Figure 2. Power-time relationship of a representative participant during the 3-min all-out test   
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Figure 3. Time to exhaustion (A) and ∆time to exhaustion (B) at 5% > the critical power 

determined from the baseline 3-min all out test in baseline, placebo or taurine conditions (n = 

12). * = significantly different (P < 0.05) to comparison conditions.  
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Figure 4. Estimated time to complete (Tlim) target intensities of 100, 150, 200 and 250 kJ in 

placebo or taurine conditions (n = 12). * = significantly different (P < 0.001) to placebo.  
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Figure 5. Blood lactate concentration (B[La]) from pre-to-post critical power test in baseline, 

placebo or taurine conditions (n = 12). * = significantly different (P < 0.01) to placebo and 

baseline delta (pre-post) values.  

 


