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1 Introduction

GARCHmodels (Engle, 1982 and Bollerslev, 1986) can elegantly capture the volatility

clustering in asset returns which accounts for both their theoretical appeal and their

empirical success. However, GARCH models are not able to explain some other

features of asset returns. For example, stock returns are negatively correlated with

changes in returns volatility, which was first noticed by Black (1976). This is because

GARCH models assume that only the magnitude and not the positivity or negativity

of unanticipated excess returns affect the volatilities of financial returns. For more

detailed discussions on this aspect, see Nelson (1991).

To overcome the limitations of GARCH models, alternative models such as thresh-

old GARCH (TGARCH) models have been developed in the literature. For example,

Glosten et al. (1993) proposed a TGARCH model, the so-called GJR-GARCH model,

which has been used to study the impact of negative and positive returns on condi-

tional volatility dynamics widely. Zakoian (1994) also proposed a threshold GARCH

model (denoted by T-GARCH) for similar purposes. Nelson (1991) developed the

exponential GARCH (E-GARCH) model, and Schwert (1990) proposed the absolute

value GARCH (AVGARCH) model. Yang and Chang (2008) considered a double-

threshold GARCH model with applications to stock and currency markets, and Yu

et al. (2010) extended the CAViaR idea (Engle and Manganelli, 2004) to TGARCH
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and mixture-GARCH models in order to take into account possible nonlinearity and

structural change in the value-at-risk (VaR) process. Chen and So (2006) proposed a

threshold heteroscedastic model that integrates threshold nonlinearity and GARCH-

type conditional variance for modeling mean and volatility asymmetries in financial

markets. An excellent review on threshold time series models in finance was given

by Chen et al. (2011). It is seen that these TGARCH models allow us to overcome

some of the limitations of GARCH models, and hence in this paper we focus on the

TGARCH model proposed by Yu et al. (2010) as it defines a more general TGARCH

model.

However, the above TGARCH models mainly focus on the conditional volatility of

financial returns, rather than the entire conditional distribution of financial returns.

Moreover, the limitations of the existing estimation and forecasting methods with

such models have affected the use of these models in practice. Hence it is important

to conduct further investigations on the estimation and forecasting entire conditional

distributions of financial returns following TGARCH models with multiple thresholds.

For these reasons, we develop a novel quantile function approach to the distribution

of financial data that follow a TGARCH model.

Quantile regressionmethod (Koenker and Bassett, 1978, Koenker, 2005) could be used

to study the conditional distribution of a response variable as it allows us to estimate a

sequence of conditional quantiles of the response variable. See, e.g. Koenker and Zhao

(1996), Taylor (2008) and Cai and Stander (2008). However, if no extra restriction

is imposed, the quantile crossing is an unavoidable problem when we perform the

quantile inference at more than one quantile level, and the situation becomes more

serious when these quantile levels are close to each other; see Bondell et al. (2010).
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Moreover, for TGARCH models, it is usually difficult to optimize the target function

of a quantile estimation since the iterative function of conditional variances is involved

(Xiao and Koenker, 2009) and the situation becomes much worse when there are more

than two regimes (Yu et al. 2010).

On the other hand, a quantile function approach could also be used to study the

conditional distributions of financial returns (Gilchrist, 2000, So and Chung, 2015,

Cai, 2016). This approach allows us to estimate the entire distribution function via

its quantile function, rather than a sequence of quantiles, of a response variable.

It is worth noting that, under certain conditions, quantile functions can be added,

multiplied or even transformed to generate another quantile function easily. Hence,

from a distributional point of view, it is more convenient to work with quantile func-

tions rather than other equivalent probability functions. Although it has received

less attention in the literature, in this paper, we show the potential of this statis-

tical modelling method for studying distributions of financial returns via TGARCH

models.

Note that Cai (2016) discussed a general quantile function model but only focused on

simple models where no structure change in mean or variance was involved. Estima-

tion of models with a structure change, such as TGARCH models, can be challenging

due to multiple thresholds (Yu et al. 2010 and Xiao and Koenker, 2009). Moreover,

the work of Cai (2016) did not consider multiple step ahead forecasting for financial

returns with quantile function models. Some work can be found in the literature

on forecasting with quantile models. For example, Cai (2010) studied forecasting

with quantile self-exciting threshold autoregressive time series models. Gaglianone

and Lima (2012) proposed a method for constructing density forecasts from quan-
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tile regression. Cai et al. (2013) considered density forecasts with quantile double

AR models. A common feature of these forecasting methods is that the forecasts

are obtained after a model has been estimated. One of the limitations of this two-

step procedure is that the forecasts cannot take into account the random variation

of the model parameters. In this paper we address the estimation and forecasting

issues that have not been addressed by Cai (2016) for TGARCH models due to the

importance of these models in finance. We overcome the limitations of the existing

methods discussed above by doing estimation and forecasting with TGARCH models

simultaneously by using a Bayesian approach.

Bayesian approach for GARCH models is one of the methods that have often been

used recently in the literature. For example, Bauwens and Lubrano (2002) used a

Bayesian method to study option pricing with asymmetric GARCHmodels; Ausin and

Galeano (2007) considered a Bayesian estimation of the Gaussian mixture GARCH

models; Dellaportas and Vrontos (2007) used a Bayesian method to estimate volatility

asymmetries with a class of tree structured multivariate GARCH models; Vrontos et

al. (2012) conducted a full Bayesian analysis of GARCH and EGARCH models that

consists of parameter estimation, model selection, and volatility prediction; and more

recently, Jensen and Maheu (2013) proposed a Bayesian approach to semiparametric

multivariate GARCH modeling. An excellent review on Bayesian inference methods

for GARCH models can be found in Virbickaite et al. (2015). In this paper, we also

use a Bayesian approach because it will allow us to do estimation and forecasting

with TGARCH models simultaneously and to deal with multiple thresholds easily.

In summary, this paper makes contributions to the literature about estimating and

forecasting the entire distributions of financial returns. Specifically, we develop a novel
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method that enables us to analyze distributions of financial returns and to obtain

density forecasts for future returns that take into account the variations of the model

parameters. We focus our discussions on TGARCH models for the reasons discussed

above. Our analysis delivers two main results. First, our method is robust to model

specification errors. Second, our method not only provides a better fitted model to

the financial returns considered in this paper but also provides much improved density

forecasts, compared with the benchmark models.

The paper is organized as follows. Section 2 introduces a quantile function TGARCH

model and Section 3 discusses the estimation and forecasting method. Results of

simulation studies and applications to Nasdaq returns are presented in Sections 4

and 5 respectively. Section 6 provides some further discussions and conclusions.

2 Quantile function TGARCH model

We focus on the general J-regime TGARCH model (Yu et al. 2010):

xt = εt
√
ht,

ht =
∑J

j=1

(
α
(j)
0 +

∑pj
i=1 α

(j)
i x2

t−i +
∑qj

ℓ=1 β
(j)
ℓ ht−ℓ

)
I(γj−1 ≤ xt−d < γj),

(2.1)

where I(·) is the indicator function, the regime number J and the delay parameter

d are positive integers, the γj’s are real numbers (thresholds) such that −∞ = γ0 <

γ1 < · · · < γJ−1 < γJ = ∞, and pj ≥ 0 and qj ≥ 0 define the orders of the model.

Moreover, α
(j)
0 > 0, α

(j)
i ≥ 0, β

(j)
ℓ ≥ 0. The εt’s are usually assumed to be i.i.d.

following the N(0, 1) distribution.

Note that model (2.1) does not contain a location process and Yu et al. (2010)

pointed out that this model can better explain nonlinear phenomena in the financial
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market and it can also be regarded as an extension of the CAViaR model of Engle

and Manganelli (2004), which has been used extensively in finance. Moreover, it has

been accepted widely that the variance of returns can be predicted using particular

time series models but the returns on financial assets may not be predictable at short

horizons; see e.g. Granger (1992) and Franses and Van Dijk (1996). Therefore, we

follow this trend and focus on model (2.1). However, it is worth noting that the

methodology developed in this paper can be extended to a model that also contains

a location process.

Now we extend model (2.1) by introducing the quantile function of εt, denoted by

Q(τ,η), into the model. It follows from the definition of a quantile function that we

must have τ = P{εt ≤ Q(τ,η)} for all τ ∈ (0, 1). Hence, if xt follows model (2.1),

then τ = P{εt ≤ Q(τ,η)} = P{εt
√
ht ≤ Q(τ,η)

√
ht | xt−1} = P{xt ≤ Q(τ,η)

√
ht |

xt−1}, i.e. the conditional quantile function of xt is given by

Qxt(τ | xt−1,β,γ,η, d, J,p,q,xini,hini) = Q(τ,η)
√
ht

= Q(τ,η)

√∑J
j=1

(
α
(j)
0 +

∑pj
i=1 α

(j)
i x2

t−i +
∑qj

ℓ=1 β
(j)
ℓ ht−ℓ

)
I(γj−1 ≤ xt−d < γj) ,

(2.2)

where

γ = {γ1, . . . , γJ−1}, β = {α(j)
0 , . . . , α(j)

pj
, β

(j)
1 , . . . , β(j)

qj
, j = 1, . . . , J},

p = {p1, . . . , pJ}, q = {q1, . . . , qJ}, L = max{dmax, pj, qj, j = 1, . . . , J}

xt = {xt, xt−1, . . . , xL+1}, xini = {xL, . . . , x1}, hini = {hL, . . . , h1},

and dmax is the maximum value of the delay parameter d. We call model (2.2) the

quantile function threshold GARCH model, denoted by QF-TGARCH.

Model (2.2) tells us that, conditional on the financial returns in the past, the proba-
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bility for today’s return to be less than Q(τ,η)
√
ht equals to τ . So if we let τ = 0.5,

then the conditional median value of today’s return is given by Q(0.5,η)
√
ht. If we let

τ = 0.025, then there is a 95% chance that today’s return lies between Q(0.025,η)
√
ht

and Q(0.975,η)
√
ht , given the past returns. Generally, when τ varies between 0 and 1

we have the entire conditional distribution of today’s return.

Note that if Q(τ,η) in model (2.2) is the quantile function of N(0, 1), then both mod-

els (2.1) and (2.2) are equivalent. Hence, model (2.2) extends model (2.1). Moreover,

compared with model (2.1), model (2.2) focuses on how past returns affects the en-

tire conditional distribution of current returns, and compared with quantile regression

approach, our approach does not suffer from the quantile crossing problem, because

model (2.2) defines a proper conditional quantile function for xt. Hence, as τ varies,

any two estimated quantile curves will not cross.

So and Chung (2015) proposed a two-step procedure for estimating conditional quan-

tiles by combining the empirical quantile function of εt and a quasi maximum like-

lihood estimator of model parameters. Their approach avoids specifying a specific

distribution for εt but is again difficult to deal with multiple thresholds and the delay

parameter in the estimation of TGARCH models.

Therefore, we adopt a parametric approach for which we need to specify a distribution

for εt. It is well-known that financial returns have some stylized features including

volatility clustering, tail properties and extreme fluctuations. A QF-TGARCH model

with a normal distribution may not be able to explain these distributional properties

of financial returns. We need to develop a more useful model from (2.2) that allows

us to study conditional distributions of financial returns and that is robust to model

specification errors.
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The work of Freimer et al. (1988) and Fournier et al. (2007) suggest that the

generalized Lambda distribution (GLD) is a good candidate for our model because

it can provide a very accurate approximation to many standard distributions such as

normal, log-normal, Weibull, t-, F- and skewed t-distributions as well as others (see

Figure 1 for some evidence).
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Figure 1: Density functions of seven commonly used distributions (continuous

curves) and those of generalized Lambda distributions (dashed curves).

Specifically, if we let

Q(τ,η) =
τ η1 − 1

η1
− (1− τ)η2 − 1

η2
, η1 < 0, η2 < 0, (2.3)

then model (2.2) defines a GLD (Freimer et al., 1988, Fournier et al., 2007) with

location 0, scale
√
ht and right and left tails controlled by η1 and η2 respectively.

If η1 < η2 the distribution is skewed to the left and if η2 < η1 it is skewed to the

right. When η1 = η2, it is symmetric and in this case it becomes the Turkey lambda
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distribution. Moreover, the parameters η1 and η2 also determine the relative weights

of the tails. In other words, the skewness of the distribution is modelled as a result

of tail shape and not as an independent feature (Gilchrist, 2000). Hence, the use of

the GLD will make model (2.2) robust to model specification errors, which is also

confirmed by our simulation studies.

Before ending this section, it is worth mentioning that apart from the GLD, there exist

many other quantile functions that could also be used for statistical modelling. For

example, the five-parameter lambda distribution is defined by Q(τ) = λ+(η/2){(1−

δ)τα − (1 + δ)(1− τ)β} and the Burr XII distribution is given by Q(τ) = {−1 + (1−

τ)−α}β. Detailed definitions of these and many other quantile functions can be found

in Gilchrist (2000).

In the next section we discuss our estimation and forecasting method for the QF-

TGARCH model (2.2) with Q(τ,η) defined by (2.3).

3 Estimation and forecasting method

Let the observed financial return series be xT = {xT , . . . , x1}, and let xpre = {xT+M , . . . ,

xT+1} be the first M future returns that we want to predict. Hence, xpre is a latent

parameter vector of the model. We assume that both xT and xpre follow the same

model. Our task is to estimate the model parameters and to predict future returns

xpre simultaneously.

It is worth reemphasizing that model (2.2) defined by (2.3) says that the condi-

tional distribution of xt is GLD. In the literature, different methods have been de-



Running title 11

veloped for the estimation of GLD models. For example, Karian et al. (1996) dis-

cussed the method of moment, Qzturk and Dale (1985) considered the method of

least squares, Karian and Dudewicz (1999) proposed the method of percentiles, King

and MacGillivray (1999) developed a starship estimation method, Gilchrist (2000)

discussed the MLE method and Su (2007a) proposed a two-step procedure that com-

bines the methods of moment or percentile and the MLE to fit the GLD to data. Su

(2007b) also pointed out that the MLE method is not only more efficient but also

tends to produce GLD that has closer first four moments to the data set.

In our case, apart from the parameters of our GLD model, we also need to deal with

forecasting and multiple thresholds issues, which cannot be easily achieved by the

above methods. Hence we consider a Bayesian approach to estimation and forecasting,

which allows us to do the estimation and forecasting simultaneously and to deal with

multiple thresholds easily. Our approach ensures that the forecasts are able to take

into account the variation of the model parameters.

It is worth mentioning that our estimation and forecasting method does not estimate

the values of J , p and q. Their values will be determined according to Bayes factors.

Hence, we will remove them, as well as the initial values xini and hini, from our

formulae below to simplify the notations.

3.1 Posterior distribution

To estimate the parameters xpre,β,γ,η and d simultaneously, we need to derive

the posterior distribution function of these parameters. Note that the posterior

density function of the parameters is given by π(xpre,β,γ,η, d | xT ) ∝ π(xT |

xpre,β,γ,η, d)π(xpre,β,γ,η, d), where the first term is simply the likelihood of the



12 Yuzhi Cai and Guodong Li

observed returns xT and the second term is a prior density function of xpre,β,γ,η

and d. However, this setting ignores the dependency between xpre and xT , which is

not desirable.

Hence we rewrite the posterior density function as π(xpre,β,γ,η, d | xT ) ∝ π(xpre |

xT ,β,γ,η, d) π(xT | β,γ,η, d)π(β,γ,η, d), where the first two terms can be easily

written out explicitly by using the dependence structure between xt’s, and the last

term is a prior density function of β,γ,η and d.

It follows from model (2.2) that, for each xt there exists τt ∼ U(0, 1) such that

xt = Q(τt,η)
√
ht. Moreover, we note that the relationship between the density

function f(y) of a random variable Y and its quantile function y = Q(τ) is given by

f(y) = (d(Q(τ))/dτ)−1. Therefore, the posterior density function becomes

π(xpre,β,γ,η, d | xT ) ∝
∏T+M

t=L+1

{
Q′(τ,η)

√
ht

}−1 |τ=τtπ(β,γ,η, d).

where Q′(τ,η) = dQ(τ,η)/dτ . Moreover, when Q(τ,η) is defined by (2.3), the pos-

terior density function of the parameters is given by

π(xpre,β,γ,η, d | xT )

∝
∏T+M

t=L+1

{
(τ η1−1

t + (1− τt)
η2−1)

√
ht

}−1
π(β,γ,η, d).

(3.1)

In practice, it is reasonable to assume that the thresholds γj ∈ (xmin, xmax) for all

possible j, where xmin = min{x1, . . . , xT} and xmax = max{x1, . . . , xT}. Moreover,

let α
(j)
0 ∈ [e0,∞) for all 1 ≤ j ≤ J , where e0 > 0 is a very small number such that its

effect can be ignored, and we set e0 = 10−30 in the calculations throughout this paper.

Then it is easy to see that τ η1−1+(1− τ)η2−1 ≥ 1 for all η1, η2 < 0 and τ ∈ (0, 1), and

Q′(τ,η)
√
ht =

{
τ η1−1 + (1− τ)η2−1

}√
ht ≥

√√√√ J∑
j=1

e0I(γj−1 ≤ xt−d < γj) .
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It follows from this inequality that, without further constrains on the parameters, once

π(β,γ,η, d) is a well-defined prior density function, the posterior density function of

xpre,β,γ, η and d is also well defined from equation (3.1).

3.2 Prior distribution

For the sake of easy illustration and calculation, we let the prior density function

π(β,γ,η, d) = π(β)π(γ)π(η)π(d), where γj is uniformly distributed on (xmin, xmax),

d is uniformly distributed on [1, dmax],

π(α
(j)
i ) =

1
√
2π α

(j)
i σij

e− ln2 α
(j)
i /2σ2

ij , π(β
(j)
ℓ ) =

1
√
2π β

(j)
ℓ sℓj

e− ln2 β
(j)
ℓ /2s2ℓj ,

π(ηv) =
1√

2π (−ηv)λv

e− ln2(−ηv)/2λ2
v ,

and the σij’s, sℓj’s and λv’s are the corresponding scale parameters.

Clearly, the prior distribution is well defined on the parameter space of the posterior

distribution. The strength of the prior information involved in the estimation and

forecasting procedure is controlled by the scale parameters. For example, σij controls

the strength of the prior information on α
(j)
i . This is because, given σij, the standard

deviation of α
(j)
i is given by

√
eσ

2
ij(eσ

2
ij − 1). A small (large) standard deviation

represents strong (weak) prior information on α
(j)
i . As in practice we usually do not

have any information on α
(j)
i and all other parameters, we deliberately let σij = sℓj =

λv = 2. This means that the standard deviation of these parameters are all 54.1,

which is very large. As a result, almost no prior information is used in the estimation

and forecasting procedure and we almost completely rely on the data to tell us the

behavior of financial returns. This suggests that for the same data the estimation

results do not depend on the choice of π(β,γ,η, d).
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3.3 MCMC algorithm

It is clear that the posterior distribution is not a standard distribution and it also

contains latent variables, which suggest that a Markov chain Monte Carlo (MCMC)

method would be appropriate for the estimation and forecasting. A Gibbs sampling

method is one of the popular methods for parameter estimation. However, in our

case it is difficult to obtain marginal distributions for each parameter or for blocks

of parameters. Hence, to facilitate the use of the proposed model, we adopt the

Metropolis-Hastings MCMC method for the parameter estimation. Denote by xpre,

β,γ,η and d the current values of parameters, and by x′
pre, β′,γ ′,η′ and d′ the

proposed values. Then we suggest the following MCMC algorithm to estimate the

parameters and to do forecasting simultaneously.

Step 1. Obtain the proposed value of x′
pre, β′,η′: For j = 1, . . . , J , i = 0, . . . , pj,

ℓ = 1, . . . , qj, and v = 1, 2, simulate

lnα
(j)′

i ∼ N
(
lnα

(j)
i , σ̃2

ij

)
, ln β

(j)′

ℓ ∼ N
(
ln β

(j)
ℓ , s̃2ℓj

)
,

ln (−η′v) ∼ N
(
ln (−ηv) , λ̃

2
v

)
.

Step 2. Obtain the proposed d′: Simulate d′ ∼ U [1, dmax].

Step 3. Obtain the proposed thresholds γ ′: Simulate γ ′:

• Let a1 = xmin, b = xmax.

• For j = 1, . . . , J − 1, simulate γ′
j ∼ N(γj, ξ

2
j ) such that γ′

j ∈ (aj, b). That

is:

– Simulate u ∼ U(0, 1).
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– Let c0 = (aj − γj)/ξj, c1 = (b− γj)/ξj.

– Let w = u(Φ(c1)− Φ(c0)) + Φ(c0).

– Let γ′
j = ξjΦ

−1(w) + γj.

– Let aj+1 = γ′
j.

Then γ′
j are random samples from N(γj, ξ

2
j ) and xmin < γ′

1 < γ′
2 < · · · < γ′

k−1 <

xmax.

Step 4. Construct [γ′
j−1, γ

′
j) using the proposed γ′

j.

Step 5. For t = L+ 1, . . . , T , calculate h′
t:

h′
t =

J∑
j=1

(
α
(j)′

0 +

pj∑
i=1

α
(j)′

i x2
t−i +

qj∑
ℓ=1

β
(j)′

ℓ h′
t−ℓ

)
I(γ′

j−1 ≤ x′
t−d < γ′

j).

Step 6. For m = 1, . . . ,M , simulate x′
T+m:

• Simulate τ ′T+m ∼ U(0, 1).

• Calculate

h′
T+m =

J∑
j=1

(
α
(j)′

0 +

pj∑
i=1

α
(j)′

i x′2
T+m−i +

qj∑
ℓ=1

β
(j)′

ℓ h′
T+m−ℓ

)
I(γ′

j−1 ≤ x′
T+m−d′ < γ′

j),

where x′
T+m−i = xT+m−i if T +m− i ≤ T .

• Let x′
T+m = Q(τ ′T+m,γ

′)
√

h′
T+m.

Step 7. Accept the proposed value with probability min{ABCDE, 1}, where

A =
π(x′

pre,β
′,γ ′,η′, d′ | xT , J,p,q,xini,hini)

π(xpre,β,γ,η, d | xT , J,p,q,xini,hini)

=
T+M∏
t=L+1

Q′(τt,η)
√
ht

Q′(τ ′t ,η
′)
√
h′
t

π(β′,γ ′,η′, d′ | J,p,q,xini,hini)

π(β,γ,η, d | J,p,q,xini,hini)
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=
T+M∏
t=L+1

(
τ η1−1
t + (1− τt)

η2−1
)√

ht(
(τ ′t)

η′1−1 + (1− τ ′t)
η′2−1

)√
h′
t

J∏
j=1

pj∏
i=0

α
(j)
i

α
(j)′

i

e−(ln2 α
(j)′
i −ln2 α

(j)
i )/2σ2

ij

×
qj∏
ℓ=1

β
(j)
ℓ

β
(j)′

ℓ

e−(ln2 β
(j)′
ℓ −ln2 β

(j)
ℓ )/2s2ℓj ×

2∏
v=1

ηv
η′v
e−(ln2(−η′v)−ln2(−ηv))/2λ2

v ,

B =
q(α′ → α)q(β′ → β)q(η′ → η)

q(α → α′)q(β → β′)q(η → η′)
=

J∏
j=1

pj∏
i=0

α
(j)′

i

α
(j)
i

qj∏
ℓ=1

β
(j)′

ℓ

β
(j)
ℓ

2∏
v=1

η′v
ηv
,

C =
q(d′ → d)

q(d → d′)
= 1,

as d is uniformly distributed on [1, dmax],

D =
q(γ ′ → γ)

q(γ → γ ′)
=

J−1∏
j=1

Φ((b− γj)/ξj)− Φ((γ′
j−1 − γj)/ξj)

Φ((b− γ′
j)/ξj)− Φ((γj−1 − γ′

j)/ξj)

with γ0 = xmin,

E =
q(x′

pre → xpre)

q(xpre → x′
pre)

= 1

as τ ′T+m is simulated uniformly on (0, 1), and q(z → z′) represents the proba-

bility density function of z′ conditional on z.

By repeating these steps multiple times, a Markov chain of parameters is hence gener-

ated. The theory of Markov chains (see, e.g. O’Hagan and Forster, 2004) guarantees

that the equilibrium distribution of the Markov chain is the posterior distribution of

parameters and the convergence does not depend on the initial values required by a

MCMC method. As a result, we may collect posterior samples of parameters from the

Markov chain after a burn-in period, and use them for further statistical inferences.
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It is worth noting that it is important to design each step of a sampling scheme

carefully if one uses the Metropolis-Hastings method. For example, in our case, we

need to ensure that the proposed thresholds should satisfy the monotone condition,

i.e. xmin < γ′
1 < γ′

2 < · · · < γ′
k−1 < xmax. Among various ways of achieving this, we

found that the method we proposed to use in this step is the most efficient one. It is

seen that the first five steps of our sampling scheme is for model parameters, in which

Steps 2 and 3 are for the delay parameter and thresholds respectively, and Step 6 is

for forecasting. Clearly, the sampling scheme makes it very easy to deal with multiple

thresholds, the delay parameter and the latent parameters xpre. Hence, it provides a

useful approach that allows us to overcome the limitations of the MLE method.

Our simulation studies show that the average acceptance rate is 0.3735 and the av-

erage computational time is about 152.0323 seconds per 105 iterations on a laptop

(Intel(R) CoreTM i5). Our experience with the sampling scheme suggests that the

algorithm converges quickly: a burn-in period of the first 5000 iterations is enough

for our simulation and application studies.

For the model selection, we use Bayes factors suggested by Koop and Potter (2003).

The Bayes factor may be defined by

p((J,p,q) | xT )

p((J ′,p′,q′) | xT )
=

p(xT | (J,p,q))
p(xT | (J ′,p′,q′))

,

where (J,p,q) and (J ′,p′,q′) represent two models with different order and number

of thresholds. The best model corresponds to the largest value of p((J,p,q) | xT ),

hence the largest p(xT | (J,p,q)), which can be estimated by (see Gelfand and Dey,

1994)

{p(xT | (J,p,q))}−1 ≈ U−1

×
∑U

u=1 g((β,γ,η, d)
(u)){p(xT | (J,p,q), (β,γ,η, d)(u))p((β,γ,η, d)(u) | (J,p,q))}−1,
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where (β,γ,η, d)(u) is the uth posterior sample, g(·) is an arbitrary density function

and U is the number of posterior samples collected.

We will also use several other methods to compare a couple of good models according

to Bayes factors. These methods require us to check the residuals of the estimated

models, the empirical coverage probabilities of the estimated quantile curves, fore-

casting performance and financial interpretations. By combining the Bayes factors

with these methods, we are able to identify a model that is not only statistically

sound but also financially meaningful.

4 Simulation studies

We conduct two simulation experiments to evaluate the performance of the proposed

methodology. The first experiment is for two QF-TGARCH models with two and

three regimes respectively. In this experiment the volatility persistence of the first

model is stronger than the second one. Hence, different levels of volatility persis-

tence can also be considered. The second experiment is to evaluate the robustness

of the proposed approach to model specification errors. This experiment also in-

volves two data generating models, both of them have high volatility persistence level

and both have a fat-tailed t-distribution for their innovation terms, but we will fit a

QF-TGARCH model to the data generated from the two models.

In the first simulation experiment, the first data generating process is

Qxt(τ | xt−1,β,γ,η, d) =

(
τ−0.06 − 1

−0.06
− (1− τ)−0.01 − 1

−0.01

)√
ht, (4.1)
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with

ht =

 0.02 + 0.05x2
t−1 + 0.8ht−1, xt−1 < 0,

0.06 + 0.05x2
t−1 + 0.85ht−1, xt−1 ≥ 0,

(4.2)

and the second data generating process is

Qxt(τ | xt−1,β,γ,η, d) =

(
τ−0.06 − 1

−0.06
− (1− τ)−0.12 − 1

−0.12

)√
ht, (4.3)

where

ht =


0.1 + 0.2x2

t−1 + 0.08ht−1, xt−2 < 0,

0.25 + 0.15x2
t−1 + 0.15ht−1, 0 ≤ xt−2 < 0.2,

0.9 + 0.1x2
t−1 + 0.3ht−1, xt−2 ≥ 0.2.

(4.4)
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Figure 2: Time series plots of the simulated series from (a) model (4.1), (b) model

(4.3), (c) model (4.5) and (d) model (4.6).

We independently simulated 200 sequences, each of size 500, from (4.1) and (4.3)

respectively. We use 500 as our sample size because knowing a method that works

well in small samples is of practical importance. Figure 2 (a) and (b) present the

time series plots of the first simulated series from these two models, both of which
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show some common features of financial time series, such as extremes and volatility

clustering.

We applied the MCMC algorithm to each of the 200 simulated series obtained from

each model. The required initial values for the MCMC algorithm were obtained by

simulating β, γ, η and d uniformly on (0, 1), (q1, q2), (−1, 0) and {1, 2, 3} respec-

tively, where q1 and q2 are the lower and upper 2.5% percentiles of the data respec-

tively. By checking the time series plots (not shown to save space) of the parameter

sequences we found that a burn-in period of the first 5000 iterations is appropriate,

after which the posterior samples were collected. For each run, corresponding to each

simulated sequence, we recorded the Bayesian estimate and an associated 95% credi-

ble interval for each parameter, resulting in 200 estimates for each of them. Figure 3
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Figure 3: Overall performance in the first experiment. Upper row: true (◦) and esti-

mated (△) parameters and the corresponding 95% credible intervals (vertical lines);

Lower row: true (◦, continuous curves) and estimated (△, dashed curves) median

forecasts and the central 95% probability ranges determined by the conditional dis-

tribution of xT+m.
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(a) and (b) show the average of these parameters (denoted by △) and credible in-

tervals (vertical lines) for models (4.1) and (4.3) respectively. We see that all the

true values (denoted by ◦) are well within the associated credible intervals. In fact

the mean squared errors (MSE) between the true and estimated parameter values are

0.0876 and 0.3059 for models (4.1) and (4.3) respectively.

For each run we also recorded the median forecasts and the central 95% probability

ranges determined by the estimated conditional distribution of xT+m. Figure 3 (c)

and (d) show the average of these median forecasts (△) and the central probability

ranges (dashed) for models (4.1) and (4.3) respectively. It is seen that the median

forecasts are also very close to those of the true medians (◦). In fact the MSEs

between them are 0.0025 and 0.0021 for models (4.1) and (4.3) respectively. It is also

seen that, compared with the true ones, the estimated central probability ranges of

the conditional distribution of xT+m are also satisfactory.

We now check the residuals of the estimated models. Let r̂it = xt/
√
ĥit be the

standardized residuals calculated by using the Bayesian estimates for the ith simulated

series, where i = 1, . . . , 200. For both models we know the theoretical distribution of

the error term, i.e. Q(τ,η). Hence we conducted the Kolmogorov-Smirnov (K-S) test

to check the difference between the distributions of r̂it = xt/
√

ĥit and Q(τ,η) for each

i. We found that, for both models, none of the tests rejected the null hypothesis of the

K-S test. This further confirms that the performance of our method is satisfactory in

this experiment.

In the second experiment, we consider the following two TGARCH models:

xt = εt
√

ht, εt ∼ t(5), ht is defined as in (4.2), (4.5)
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and

xt = εt
√

ht, εt ∼ t(10), (4.6)

where

ht =


0.1 + 0.2x2

t−1 + 0.8ht−1, xt−2 < 0,

0.02 + 0.05x2
t−1 + 0.85ht−1, 0 ≤ xt−2 < 0.2,

0.03 + 0.01x2
t−1 + 0.9ht−1, xt−2 ≥ 0.2.

Hence, both models generate data that have high volatility persistence and are fat-

tailed. We generated 200 time series, each of size 500, from models (4.5) and (4.6)

respectively. Figure 2 (c) and (d) show the first simulated series from these models.

In this experiment, we fit a QF-TGARCH model with Q(τ,η) defined by (2.3), rather

than the correct TGARCH model, to each series. Hence the errors of the models are

misspecified and we are not able to compare the estimated parameter values with the

true ones. However, we are able to check the robustness of our model with respect to

forecasting performance in this case. To achieve this, we saved the median forecasts

and the central 95% probability range of the density forecasts for each series and

compared them with those obtained from the true models (4.5) and (4.6) respectively.

Our results show that the MSE values between median forecasts and true ones are

0.0004 and 0.0028 for models (4.5) and (4.6) respectively, while the MSE values be-

tween the true and predicted lower bounds of the probability ranges are 0.4716 and

0.4410 for models (4.5) and (4.6) respectively, and those for the upper bounds are

0.4060 and 0.4588 for models (4.5) and (4.6) respectively. In summary, the simula-

tion results suggest that our method works well for both parameter estimation and

forecasting.
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5 Application

5.1 The data

We consider the Nasdaq daily returns from 3 January 2007 to 8 June 2012, denoted

by {yt}, which contain 1370 observations. We use the first T = 1364 returns for

model estimation and forecasting and leave the last six observations for evaluating

our multiple-step ahead forecasts for the returns in the next 6 days (about a week

ahead). As a result, the observation period for estimation spans from 3 January 2007

to 31 May 2012.

Figure 4 (a)-(c) give the time series plots of Nasdaq daily closing prices and returns

as well as the sample autocorrelation function (ACF) of the returns. It is seen that

the sample ACF stands out at lag one significantly, and hence an ARMA model was

first considered,

yt = â+ b̂ yt−1 + xt = 0.013− 0.0995 yt−1 + xt, (5.1)

where the standard errors of the estimated parameters are given by SE(â) = 0.041

and SE(b̂) = 0.027. The sample ACF of the residuals is presented in Figure 4 (d),

and we may consider {xt} for modelling.

It is worth noting that the proposed QF-TGARCHmodel allows us to study the asym-

metric relation between stock returns and volatility changes. As the GJR-GARCH

model of Glosten et al. (1993), T-GARCH model of Zakoian (1994), E-GARCH

model of Nelson (1991) and AVGARCH model of Schwert (1990) also allow us to

do so, we will use these models as our benchmark models for comparison purposes.

Moreover, we let the innovation term of the models follows a skewed t-distribution
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Figure 4: First row: time series plots of Nasdaq daily closing prices and their returns

from 3 January 2007 to 8 June 2012. Second row: the sample ACF of {yt} and {xt}.

due to its popularity in the literature. It will become clear later in the paper that,

the proposed QF-TGARCH model defined by a GLD distribution outperforms the

above benchmark models.

5.2 Estimated QF-TGARCH models

We consider the QF-TGARCH models with two and three regimes (J = 1 and 2),

respectively, where Q(τ,η) is defined by (2.3) and the orders of the models are given

by pj = 1, 2 and qj = 1, 2 for j = 1, 2. Hence there are eight models in total.

The initial values of β, γ, η and d required by the estimation and forecasting method

were simulated uniformly on (0, 1), (Qx,0.25, Qx,0.75), (−1, 0) and {1, 2, 3}, respectively,

where Qx,0.25 (or Qx,0.75) is the lower (or upper) 25% percentile of {xt}. The best two
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models selected by Bayes factors are:

Qxt(τ | xt−1, β̂, γ̂, η̂, d̂) = Q(τ, η̂)
√
ht ,

ht =

 0.056 + 0.020x2
t−1 + 0.023x2

t−2 + 0.965ht−1, xt−1 < −0.246,

0.016 + 0.003x2
t−1 + 0.016x2

t−2 + 0.764ht−1, xt−1 ≥ −0.246,

Q(τ, η̂) =
τ−0.066 − 1

−0.066
− (1− τ)−0.009 − 1

−0.009
,

(5.2)

and

Qxt(τ | xt−1, β̂, γ̂, η̂, d̂) = Q(τ, η̂)
√
ht ,

ht =


0.009 + 0.028x2

t−1 + 0.027x2
t−2 + 0.906ht−1, xt−1 < 0.608,

0.064 + 0.056x2
t−1 + 0.045x2

t−2 + 0.364ht−1, 0.608 ≤ xt−1 < 0.678,

0.008 + 0.004x2
t−1 + 0.038x2

t−2 + 0.645ht−1, xt−1 ≥ 0.678,

Q(τ, η̂) =
τ−0.046 − 1

−0.046
− (1− τ)−0.004 − 1

−0.004
,

(5.3)

with p(xT | (J,p,q)) = 1/20.75 and 1/19.51 for models (5.2) and (5.3) respectively,

which are very similar. So it is worth comparing them further in order to identify a

model that is not only statistically sound but also financially meaningful.

For illustration purposes, we first show the time series plots for the posterior samples

for model (5.2) in Figures 5 and 6, which suggest that the Markov chains generated

from our method converged.

For each model, we also compare the distribution of the standardized residuals r̂t =

xt/
√
ĥt with Q(τ, η̂) and we hope that they are not significantly different. The results

of the K-S test confirmed this as the test did not reject the null hypothesis at the

1% level of significance for both models (both p-values are greater than 0.02). Hence,
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Figure 5: Time series plot for the posterior samples of the parameters in model (5.2).
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Figure 6: Time series plot for the posterior samples of the forecasts for model (5.2).
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both models behave well from this point of view.

As we know the entire distribution of xt, where t = 1, . . . , T , we are able to calculate

the conditional quantile curves at levels τ = 0.01, 0.05, 0.25, 0.5, 0.75, 0.95 and 0.99.

For a good fitted model we would expect that the proportion of the returns that are

below the τth quantile curve is close to the value of τ . Table 1 provides a summary

of the results. It is seen that model (5.2) is slightly better.

Table 1: Empirical coverage rates of the estimated conditional quantile curves

τ 0.01 0.05 0.25 0.5 0.75 0.95 0.99 MSE

Model (5.2) 0.008 0.056 0.235 0.450 0.727 0.950 0.996 4.75× 10−4

Model (5.3) 0.013 0.062 0.246 0.451 0.718 0.946 0.998 5.20× 10−4

It follows from (5.1) that the conditional quantile function of the return yt is given

by

Qyt(τ | yt−1, β̂, γ̂, η̂, d̂) = 0.013− 0.0995yt−1 +Qxt(τ | xt−1, β̂, γ̂, η̂, d̂), (5.4)

whereQxt(τ | xt−1, β̂, γ̂, η̂) is given by models (5.2) and (5.3) respectively. As a result,

based on the posterior samples {x(1)
T+m, . . . , x

(U)
T+m}, we can construct a random sample

of yT+m by letting y
(u)
T+m = 0.013 − 0.0995y

(u)
T+m−1 + x

(u)
T+m, where m = 1, . . . , 6, U is

the number of posterior samples and y
(u)
T = yT = −2.8652 for all u. Hence, density

forecasts of yT+m can be obtained by using models (5.2) and (5.3) respectively. K-S

test results show that the two density forecasts are significantly different at the 1%

level for all values of m considered in this study. One of the limitations of the K-S

test is that this test is not constructive in that if a rejection occurs, the test itself

provides no guidance as to why. Hence, we further check the differences between the

density forecasts by comparing the forecasts of mean, median, 1% quantile (LQ), 99%
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quantile (UQ) and expected shortfalls (ES) at a 1% level, all of which can be derived

from the density forecasts. The results are given in Table 2.

To evaluate the accuracy of the forecasts, we compare the differences between the

observed data and their forecasts using the square root MSE (RMSE) and the mean

absolute deviation (MAD). We also use the tracking signal (TS) method proposed by

Brown (1959, 1962), which is defined as TSt =
∑m

t=1(ft − at)/C, for m = 1, . . . ,M,

where ft is the forecast, at is the actual observed value, and C =
∑m

t=1 |ft − at|/m

(i.e. the MAD). An alarm will be raised if the TS value is outside (−3.75, 3.75). This

method has been widely used in monitoring forecasting systems to ensure that the

underlying systems remain in control (Li et al., 2012). These RMSE, MAD and TS

values are also given in Table 2.

It is seen that, for both models, the mean and median forecasts are very similar,

although the median forecasts are slightly better than the mean forecasts for this data

set. The TS values also suggest that model (5.2) is slightly better since the TS values

for this model are closer to the center of the interval (−3.75, 3.75), suggesting that this

forecasting system is more stable. However, the two models produced very different

lower and upper 1% quantile forecasts and expected shortfall forecasts, which suggest

that the main difference between the two density forecasts could be in the region of

tails. This explains why the K-S test rejected the null hypothesis. In summary, the

results of statistical evaluations suggest that both models perform similarly from a

model fitting point of view, but from a density forecasting point of view, the two

models behaves very differently, especially in the tails of the density forecasts. So,

which model is better for the returns?

To answer this question we now evaluate the models from a financial point of view.
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Table 2: Multiple-step ahead forecasts of mean, median, 1% lower and upper quantiles

(LQ and UQ) and the expected shortfalls (ES) at a 1% level. Tracking signals for the

mean (TS-mean) and for the median (TS-median) forecasts.

QF-TGARCH model (5.2)

m Observed Mean Median LQ UQ ES TS-mean TS-median

1 0.654 0.101 0.104 -2.059 2.143 -2.460 -1.000 -1.000

2 2.369 0.130 0.143 -2.092 2.289 -2.547 -2.000 -2.000

3 -0.483 0.094 0.102 -2.063 2.288 -2.477 -1.973 -1.956

4 0.963 0.063 0.073 -2.003 2.141 -2.473 -2.919 -2.899

5 -1.718 0.044 0.046 -2.043 2.029 -2.438 -1.122 -1.095

6 1.180 0.023 0.015 -1.943 2.034 -2.325 -2.096 -2.074

RMSE 1.348 1.345

MAD 1.198 1.197

QF-TGARCH model (5.3)

m Observed Mean Median LQ UQ ES TS-mean TS-median

1 0.654 −0.033 −0.006 −3.429 3.197 −4.145 −1.000 −1.000

2 2.369 0.0548 0.077 −3.606 4.045 −4.466 −2.000 −2.000

3 −0.483 0.002 0.040 −3.768 3.576 −4.534 −2.165 −2.097

4 0.963 0.003 0.022 −3.562 3.762 −4.462 −3.127 −3.053

5 −1.718 0.032 0.047 −3.645 3.585 −4.923 −1.393 −1.298

6 1.180 0.006 0.007 −3.782 3.584 −4.606 −2.361 −2.266

RMSE 1.380 1.375

MAD 1.228 1.226
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If the last term in model (5.4) is defined by (5.2), then it says that the distribution of

tomorrow’s return depends on today’s return and tomorrow’s volatility that depends

on whether today’s return is less than or greater than −0.246%. On the other hand, if

it is defined by (5.3), then it says that the distribution of tomorrow’s return depends

on today’s return and tomorrow’s volatility that depends on whether today’s return

is less than 0.608%, or lies between 0.608% and 0.678% or greater than 0.678%. Ob-

viously the two models provide very different financial explanations on the dynamics

of Nasdaq returns from a distributional point of view.

It is worth noting that a perfect statistical model may not be able to verify the features

of financial returns suggested by a financial theory or intuition from a financial theory

in practice (Brooks, 2012, p.10). In finance it is well-known that the impact of

negative and positive returns on conditional volatility dynamics is different, see, e.g.

Glosten et al. (1993), Zakoian (1994), Nelson (1991) and Schwert (1990). This means

that the threshold of these models is set at number zero, representing a zero return.

Yu et al.’s (2010) work shows that the threshold value could be slightly greater or

less than 0, which suggests that a small amount of variation around 0 in financial

returns may not be significant enough to change their volatility dynamics. It is

seen that model (5.2) is in a good agreement with the work published in literature,

but model (5.3) is not because it suggests two very close positive thresholds for the

returns, which is difficult to explain from a financial point of view. Therefore, we

prefer model (5.2) for this return series and will use it in the rest of the paper.
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5.3 Estimated benchmark models

We estimated each of the following benchmark models to {xt}:

xt = σtvt, vt ∼ skewed t-distribution

GJR-GARCH: σ2
t = ω +

∑2
i=1(ai + biIt−i)x

2
t−i + cσ2

t−1,

T-GARCH: σt = ω +
∑2

i=1 ai(|xt−i| − bixt−i) + cσt−1,

E-GARCH: ln(σ2
t ) = ω +

∑2
i=1(aixt−i + bi(|xt−i| − E|xt−i|))

+ c ln(σ2
t−1),

AVGARCH: σt = ω +
∑2

i=1 ai|xt−i|+ cσt−1,

(5.5)

where It−i = 0 if xt−i ≥ 0, otherwise It−i = 1. Note that the order of these models is

the same as that of model (5.2) for comparison purposes. The estimated parameters

are given in Table 3.

For each model, we calculated the standardized residuals and compared its distri-

bution with the corresponding skewed t-distribution using the K-S test. The test

results show that the two distributions are significantly different at any conventional

levels (all p-values are much less than 0.01). Figure 7 shows the quantile-quantile

plots for these models, which explains why the K-S test rejected the null hypothesis,

suggesting that these models fail to interpret the data well. It is worth mentioning

that model (5.2) is much better than the benchmark models because the K-S test

did not reject the null hypothesis for model (5.2) and the quantile-quantile plot for

model (5.2) is also satisfactory (see the first plot in Figure 7).

We now compare the benchmark models (5.5) with the QF-TGARCH model (5.2)

from a density forecasting point of view. Suppose that ut is generated from ft(ut |

ut−1) and pt(ut) is the forecast of ft(ut | ut−1). Diebold et al. (1998) showed that, if
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Table 3: Estimated parameters of the GARCH-type models

Estimated parameters of the GJR-GARCH model

Parameter ω a1 a2 c b1 b2 skew df

Estimate 0.049 0.000 0.015 0.871 0.055 0.131 0.822 11.507

Std.Error 0.013 0.193 0.169 0.02 0.176 0.145 0.027 1.892

Estimated parameters of the T-GARCH model

Parameter ω a1 a2 c b1 b2 skew df

Estimate 0.046 0.066 0.049 0.879 1.000 -0.338 0.810 12.025

Std.Error 0.006 0.012 0.011 0.011 0.170 0.460 0.030 3.964

Estimated parameters of the E-GARCH model

Parameter ω a1 a2 c b1 b2 skew df

Estimate 0.020 -0.291 0.148 0.970 -0.224 0.366 0.803 14.042

Std.Error 0.005 0.042 0.042 0.006 0.060 0.061 0.031 5.433

Estimated parameters of the AVGARCH model

Parameter ω a1 a2 c b1 b2 skew df

Estimate 0.029 0.000 0.133 0.879 - - 0.834 9.666

Std.Error 0.010 0.031 0.037 0.018 - - 0.029 2.609
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Figure 7: QQ-plots for the estimated QF-TGARCH and benchmark models.

pt(ut) coincides with ft(ut | ut−1), then the sequence of probability integral transforms

of ut, denoted by {zt} are i.i.d. with U(0, 1), where zt =
∫ ut

−∞ pt(u)du. We will use the

approach of Diebold et al. (1998) to compare the estimated models because it does

not depend on the method that is used for obtaining the forecasts.

Figure 8 shows that the density forecasts obtained from the QF-TGARCH model are

significantly better because the distribution of {zt} for the benchmark models deviates

from that of U(0, 1) much more seriously. Moreover, we found that the strength of

the autocorrelation structures for {zt − z̄} and {(zt − z̄)2} is much weaker for the

QF-TGARCH model than that for the benchmark models, because for our model the

sample ACFs stand out at lag one only, while those for the benchmark models show

much stronger autocorrelation structures. For illustration purposes, Figure 9 shows

the ACF plots for our model and the GJR-GARCH model.

Some possible reasons for the better performance of the QF-TGARCH model are
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Figure 8: Distribution function of U(0, 1) (grey) and that of {zt} (dark) together

with a 95% confidence interval (dotted curve) for the estimated models.
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Figure 9: Sample ACFs of {(zt − z̄)} and {(zt − z̄)2} for the QF-TGARCH model

(first row) and the GJR-GARCH model (second row) respectively.
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discussed below: (i) We used the GLD for our QF-TGARCH model, which allowed us

to capture some data structures that cannot be captured by the skewed t-distribution.

(ii) The forecasts from the QF-TGARCH model can take into account the variation

of the model parameters, while those from the benchmark models cannot. (iii) The

threshold in our QF-TGARCH model needs to be estimated from data, but that in

the benchmark models is fixed.

In summary, this application shows that the proposed QF-TGARCH model can be

used to study the entire conditional distribution of financial returns and the asym-

metric relation between stock returns and volatility changes. It also outperforms the

commonly used TGARCH type models with respect to model estimation and fore-

casting. Hence, the proposed model has the potential to be very useful in financial

data analysis.

6 Conclusions and discussions

We develop a QF-TGARCH model for analyzing the distribution of financial returns

that follow a TGARCH model. We suggest a Bayesian method to do parameter

estimation and forecasting simultaneously. This method allows us to handle multiple

thresholds, the delay parameter and forecasts easily and ensures that the forecasts

can take into account the variation of the model parameters. We have shown that the

proposed model outperforms some commonly used TGARCH models with respect to

model estimation and forecasting. We have also shown that the QF-TGARCH model

with Q(τ,η) defined by (2.3) is more robust to model specification errors.

It is worth noting that this paper illustrates a novel approach to studying financial
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data. The proposed model can be extended in several different ways. For example,

rather than using (2.3) for Q(τ,η) in the model, we could use many other distributions

that can be defined by a quantile function only. An extension of the proposed model

in this direction will lead to many new models.

In this paper we focus on the TGARCH model of Yu et al. (2010) and hence, our

model does not contain a conditional location process. It is interesting to extend

our approach by including a location process into the proposed model so that the

conditional location, scale and forecasts can be estimated simultaneously. It is worth

noting that if an autocorrelation term is included into the model as its location term,

then several issues need to be considered. For example, what restrictions on the

parameters of the location process should be, whether the location process depends

on thresholds, whether the thresholds for the location process are the same as those

for the volatility process etc. Note that an extension in this direction will require

us to develop a new sampling scheme and to derive new formulae for the acceptance

probabilities. We will leave this for future work.

Another way to extend our approach is to treat the number of regimes J and the

values of pj and qj for j = 1, . . . , J as parameters of the model and to be estimated

simultaneously with other parameters and forecasts. However, any change in their

values will result in a change in the dimension of the parameter space of the posterior

distribution function. Therefore, a new estimation method, e.g. a reversible MCMC

algorithm, needs to be developed in order to deal with this case.
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Supplementary materials

Supplementary materials for this paper are available from

http://www.statmod.org/smij/archive.html.
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