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Abstract 
 
Energy harvesting technologies that rely on the conversion of ambient vibration into a 
usable form of energy have become the subject of significant research in recent years . 

The most common types of transduction methods are piezoelectric, electromagnetic and 
electrostatic. Among these three methods, piezoelectric convertors have been recognized 

to offer more benefits. They have presented a potential solution to the problem of power 
systems which have a short battery life and high maintenance costs. Battery replacement 
is more of a problem for Micro Electro Mechanical Systems (MEMS). For some 

applications, often it is not practical to replace the dead battery because they are not easily 
accessible. Therefore, the concept of low-power MEMS devices that are able to scavenge, 

or harvest energy from their operating environment have gained growing attention over 
recent years. In this thesis, an overview of energy harvesting technology based on 
different transduction methods is presented and discussed in detail.   

Most energy harvesters are designed to work at resonance frequency in order to obtain 
maximum output power, and they are usually manufactured to have resonance 

frequencies that match the frequencies of excitation. However, in some cases, there is a 
mismatch between the resonance and excitation frequencies due to manufacturing errors 
or changes in the working environment. Particularly, in MEMS devices due to the 

fabrication process such as mask alignment, deposition, photolithography, etching and 
drying, manufacturing tolerances are generally high and, in some cases, can be higher 

than ±10% of nominal values. Therefore, parameter uncertainty can significantly affect 
the performance of MEMS devices. To overcome this problem, a MEMS piezoelectr ic 
harvester with electrostatically adjustable resonance frequency is proposed. The main aim 

is to control the resonance frequency of the piezoelectric harvester with the application 
of a DC voltage to the electrostatic system in order to maximize the harvested power.  

Based on the voltage applied to the electrostatic system, the resonance frequency of the 
harvester can be adjusted through hardening and softening mechanisms. The problem 
addressed in this thesis is non-linear due to electrostatic forces. Moreover, by considering 

uncertainty in the model parameters; we are dealing with a dynamic problem with the 
effects of both nonlinearities and uncertainties which has not received significant 

attention in the literature. In this study, for the first time to our knowledge, the shooting 
method in conjunction with Monte Carlo Simulation has been used to solve a nonlinear 
uncertain problem. In addition, due to the similarity between electrostatic and 

electromagnetic forces, an experimental set-up based on the nonlinear electromagne tic 
forces has been designed to show the concept of the proposed model in macro scales. The 

experimental results have been verified numerically and it has been shown that the 
proposed model has great potential in practical applications. 
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Chapter 1: Introduction 

 

First chapter of this thesis gives a brief overview of microelectromechanical system 

(MEMS) and its wide range of applications across different fields. Based on the 

application of MEMS devices, supplying power for these devices is one of key issues. 

Generally, these devices need small amount of power to operate which can be harvested 

from ambient sources of energy in our environment. There are different energy harvesting 

technologies which will be discussed in this chapter.  

 

1.1. Microelectromechanical systems (MEMS) 

Microelectromechanical systems (MEMS) consist of a high-class technology which uses 

sophisticated manufacturing methods to create small integrated devices that combine 

silicon-based microelectrical and mechanical components. These devices range in size 

from a few micrometres to millimetre and can be fabricated using integrated circuit (IC) 

batch processing techniques. The fabrication of MEMS devices includes bulk and surface 

micromachining, as well as high aspect-ratio micromachining (HARM) which can 

selectively remove parts of the silicon or add different layers to form the mechanical and 

electromechanical components.  

 

Figure 1.1 Overview of MEMS [1] 

MEMS devices can sense, think, act and communicate in micro scale, and generate effects 

on the macro scale. The interaction of electronics, mechanics, light or fluids working 
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together makes up a microelectromechanical system, or MEMS, which is an acronym that 

originated in the United States. It is also referred to as Microsystems Technology (MST) 

in Europe and Micromachines in Japan. As Figure 1.2 shows, MEMS consist of 

mechanical microstructures, microsensors, microactuators and microelectronics which 

have been integrated into the same silicon chip.  

 

Figure 1.2 Schematic of MEMS components 

The changes in the system’s environment are measured by microsensors. Afterwards, 

microelectronics process the measured information and signal the microactuators to react 

and create some form of change to the environment. From originating in a very early 

version in the early 1950’s, this technology began appearing in numerous commercia l 

products by the mid-1990’s. MEMS devices are generally classified according to their 

actuation mechanisms. Actuation mechanisms for MEMS vary depending on their 

suitability to the application at hand. The most common actuation mechanisms are 

electrostatic, pneumatic, thermal, and piezoelectric. Electrostatically actuated devices 

form a broad class of MEMS devices due to their simplicity, as they require few 

mechanical components and small voltage levels for actuation. These devices are 

influenced by instability, which is known as pull-in phenomenon in MEMS literature. In 

pull-in voltage, the elastic restoring force can no longer resist the opposing electrostatic 

force, thereby leading to the collapse and failure of the structure. Hence, pull-in instability 

is a major structural safety concern for MEMS structural design. 

On the other hand, MEMS devices are characterized by low cost (due to batch 

fabrication), small size and lightweight. These features make them applicable in many 

places where large devices do not fit.  
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(a) (b) 

Figure 1.3 Application of MEMS technology in (a) biomedical and (b) aerospace 

Through advances in MEMS material and processing technology, MEMS devices have 

gained more popularity in modern technologies, such biomedical [2, 3], aerospace [4, 5], 

automotive [6, 7], wireless and communications [8, 9], atomic force microscope (AFM) 

[10, 11], detection of single electron spin [12], sensing sequence-specific DNA [13], mass 

sensors [14, 15], chemical sensors [16] and pressure sensors [17, 18]. For example, in 

biomedical application, there are microscale implantable drug delivery systems (IDDSs) 

which can be used to control drug delivery parameters, providing better disease control 

through more accurate, targeted and less painful drug delivery. Also, in aerospace 

application, by using MEMS Acoustic Emission (AE) sensors we can detect any failures 

occurring in materials and structures. 

Figure 1.4 shows the market breakdown forecast of MEMS devices from 2012 to 2018. 

Based on this forecast, the use of MEMS chips will top $22 billion by 2018 [19] 

In addition, MEMS devices need small amounts of power to operate, which not only 

reduces the operational cost but also paves the way for developing long-life and self-

powered devices that can harvest the requested power from the environment. Therefore, 

harvesting a small amount of energy from our environment can be used to power micro -

devices which are able to do extraordinary tasks. Moreover, more efficient use of ambient 

sources of energy requires different kinds of sensing microsystems to control the 

harvesting procedure which proliferate the application of MEMS devices in energy 

harvesting areas.  
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Figure 1.4 The market breakdown forecast of MEMS devices from 2012 to 2018 

 

1.2. Energy harvesting technology 

Nowadays, the proliferation of sensor nodes and electronic devices means the provision 

and efficient use of power is a key concern. In electronic devices the batteries are 

considered one of largest contributing elements to both size and cost. Additionally, due 

to the limited capacity of batteries, they have a limited useful lifespan before some sort 

of maintenance is needed. Furthermore, using battery-less and self-powered sensors can 

be highly beneficial to the environment otherwise disposal of millions of dead batteries 

will be a huge environmental problem. Therefore, techniques which can harvest energy 

from the environment are considered as a viable solution for powering sensor nodes and 

electronic devices. 

In our environment there are a variety of ambient energy sources such as solar, man-made 

radiation, temperature, wind and vibration. Converting ambient wasted energy into small 

amount of electrical energy can power many useful low-powered MEMS devices in 

different applications, ranging from wireless sensor nodes (WSNs) to structural health 

monitoring (SHM) sensors. These devices require low power, in the range of microwatts. 

Solar energy from solar cells is the most developed form of energy harvesting and it can 

be ideal where high ambient light levels are reliably available. Where they are not, 
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ambient man-made radiation, temperature gradients and vibration are potential 

alternatives. 

Using vibration sources has gained more popularity due to its high availability in various 

environments. Generally, vibration-based energy harvesters convert ambient kinetic 

energy into electricity. The most explored application of MEMS in energy harvesting 

technology is related to harvesting power from wasted vibration energy, something to 

which integrated electro-mechanical technology is perfectly suited. There are three main 

categories of ambient vibration sources: household electrical appliances, machiner ies,  

and moving vehicles. As stated by William and Yates [20] in their early work on 

vibration-based energy harvesters for microsystems, the most common types of energy 

transduction mechanisms are piezoelectric [21, 22], electromagnetic [23, 24] and 

electrostatic [25, 26]. The following sections give an overview of the principles of these 

different kinds of vibration-based energy harvesters. 

1.2.1. Piezoelectric energy harvesters 

Piezoelectric effect is a unique property of certain crystalline materials which was first 

discovered by the brothers Pierre Curie and Jacques Curie in 1880. In these kind of 

materials, there is a linear electromechanical interaction between the mechanical and the 

electrical state. As shown in Figure 1.5, by applying mechanical force to these materials, 

the crystals become electrically polarized. In fact, any compression or tension generated 

can shift the positive and negative charge centres and generate electrical voltage which is 

proportional to the applied force. Alternatively, by applying an electrical field to the 

crystal, it experiences mechanical strain based on the strength and polarity of the electrical 

field. Based on the structural characteristics of materials, all crystals obey the 32-point 

groups [27]. It indicates that there are only 32 possible combinations of symmetr ica l 

elements.  Of these 32 groups, 11 crystal classes are centrosymmetric and therefore have no 

polar properties. 
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Figure 1.5 The direct piezoelectric effect causes certain crystalline materials to generate 

an electric charge due to the mechanical strain [28]. 

Of the remaining 21 non-centrosymmetric classes, 20 classes exhibit electrical polarity 

when a stress is applied. Out of these 20 classes, 10-point groups belong to polar materials 

which possess electric dipole moments without being exposed to an electrical field. These 

crystals can be spontaneously polarized, and polarization can be compensated through 

external or internal conductivity or twinning or domain formation. 

 

Figure 1.6 The relationship diagram of piezoelectric materials [29]. 

Among different polar material, there is a special class of materials that are called 

ferroelectric, such as lead zirconate titanate (PZT), zinc oxide (ZnO) and barium titanate 

(BaTiO3) which have a high electromechanical coupling. These materials exhibit an 

internal spontaneous polarization within a certain temperature range. By applying a 

sufficiently large external electric field, the internal spontaneous polarization can be 

reversed.  
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Most piezoelectric materials exhibit a polar axis, and the energy harvesting performance 

is affected by the direction of the applied force relative to the polar axis. For a ferroelectr ic 

ceramic or polymer, the polar axis depends on the direction of the applied force. 

Generally, the polar axis is referred to the “3” direction and due to the symmetry, other 

directions at right angles to this axis are equivalent and can be referred to as the “1” 

directions. As illustrated in Figure 1.7, depending on the direction of stress (i.e. along the 

polar axis or at right angles to it), there are two common piezoelectric energy harvesting 

configurations, 33-mode and 31-mode [28]. 

  

(a) (b) 

Figure 1.7 (a) The 33-mode and (b) 31-mode piezoelectric stress driven generator 

configurations [28]. 

Piezoelectric material performance is quantified by the piezoelectric coefficient (𝑑3𝑖 ) 

which is the ratio of the open circuit charge density to the applied stress (in unit of C/N). 

Typically, in the piezoelectric materials a 𝑑33  coefficient is higher than 𝑑31  coefficient. 

However, harvesting energy in 31-mode needs the use of large strain in the 1-direction 

and therefore is commonly used in vibration-based energy harvesting.  

Generally, piezoelectric energy harvester design is based on the form of bimorph or 

unimorph cantilevers [30-33]. Figure 1.8, shows the most common 31-mode uniform 

bimorph piezoelectric energy harvester configurations. As shown in this figure, two 

separate piezoelectric layers are bonded to the cantilever beam and the structure operates 

in a bending mode. Therefore, the instantaneous average bending strains in the elements 

of the top and bottom layers have the opposite sign (i.e. one is in compression while the 

other is in tension). Consequently, if the top and bottom layers are poled oppositely in the 

thickness direction, the induced electric voltage by each layer will be added and the 

configuration called series polling. Conversely, if the top and bottom layers are polled in 
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the same direction and the electrodes are wired properly, the output current generated by 

each layer will be added and the configuration termed as parallel polling. Therefore, series 

polling produces a larger output voltage whereas parallel polling produces a larger output 

current under optimal conditions.  

 
 

(a) (b) 

Figure 1.8 Piezoelectric bimorph cantilever constructions: (a) parallel and (b) series 

connections of the piezoelectric layers [28]. 

The unimorph cantilever configuration is another basic form of vibration-based 

piezoelectric energy harvester. As shown in Figure 1.9, in 31-mode, the piezoelectr ic 

layer is sandwiched by the top and bottom electrodes, while in 33-mode, the electrodes 

are on top of the piezoelectric layer with an interdigital finger pattern. In both cases, the 

piezoelectric layer is bonded on top of the cantilever beam.  

  

(a) (b) 

Figure 1.9 Piezoelectric unimorph cantilever constructions: (a) 31-mode and (b) 33-

mode [28]. 

The open circuit voltage of the piezoelectric layer 𝑉𝑜𝑐  is given as [28]  

𝑉𝑜𝑐 =
𝑑𝑖𝑗
휀𝑟휀0

𝜎𝑖𝑗𝑔𝑒 (1.1) 

In equation 1.1, 𝜎𝑖𝑗  is the applied stress, 𝑑𝑖𝑗  is the piezoelectric coefficient, 𝑔𝑒 is the gap 

between electrodes and 휀0 and 휀𝑟  are permittivity of vacuum and the relative dielectr ic 

constant, respectively. The performance of a unimorph cantilever piezoelectric harvester 

is mostly dependent on the type of piezoelectric mode. Considering the most common 

type of piezoelectric materials PZT as an example and the same configuration parameters, 
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the output voltage of an energy harvester for 33-mode is expected to be greater than that 

of 31-mode. On the other hand, the output voltage is proportional to the distance between 

electrodes (𝑔𝑒) for 31-mode and to the distance between fingers for a 33-mode device. In 

microelectromechanical system (MEMS), the piezoelectric layers are very thin, therefore 

the distance between electrodes in 31-mode is shorter than in 33-mode. Consequently, the 

33-mode can generate higher voltage output, while 31-mode has the advantage of 

generating larger output current.  Considering the output power based on the production 

of voltage and current, a better performance in 31-mode in comparison with 33-mode was 

reported by Lee et al. [34]. A similar comparison was made by Kim et al. [35] and they 

concluded that  by optimizing the interfinger electrode (IDE), higher power and voltage 

could be achieved from the 33-mode device. 

 

1.2.2. Electromagnetic energy harvesters 

Electromagnetism has been used to produce electricity since the 1930s. Over the last 

decade, different kinds of micro/macro electromagnetic harvesters have been proposed 

with output voltages ranging from microwatts to watts.  The basic concept for most of 

these harvesters is based on Faraday’s law of electromagnetic induction. As shown in 

Figure 1.10, the voltage, or electromotive force (EMF), is induced in the conductive loops 

of wire due to the change in magnetic flux. 

 

Figure 1.10 Faraday’s law of electromagnetic induction. 

Generally, electromagnetic energy harvesters consist of a magnet, a coil, a mechanica l 

spring, damping and a frame. The spring supports either the coil or magnet and allows 

the relative movement in the device. The induced voltage in an N turn coil is given as 

[28]  
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휀 = −
𝑑Φ

𝑑𝑡
= −∑∫𝐵𝑑𝐴𝑖

𝑁

𝑖=1

 (1.2) 

where Φ is the total magnetic flux of the N turn coil, 𝐴𝑖 and B are the enclosed area and 

the magnetic flux density over the ith wire loop, respectively. It is noteworthy that 

electromagnetic induction can be induced either by changing the area at a constant 

magnetic field or changing the magnetic field at a constant area [28]. Figure 1.11 shows 

two common types of electromagnetic energy harvester configurations including the 

change of the magnetic flux: the moving coil with a static magnet (Figure 1.11a) and the 

moving magnet with a static coil (Figure 1.11b). In both configurations, the electrical 

current will be induced as a result of changing the magnetic flux across the coil. 

  

(a) (b) 

Figure 1.11 Common types of electromagnetic energy harvesting configurations (a) 

moving coil with static magnet and (b) moving magnet with static coil [28]. 

 

1.2.3. Electrostatic energy harvesters 

Electrostatic energy harvesters can be considered a good choice where miniaturization is 

beneficial. Since the standard MEMS and packing techniques for the fabrication of 

electrostatic transducers has been well established, capacitive-based electrostatic energy 

harvesters can be fabricated in large numbers and at low cost. The principle of 

electrostatic energy harvester is based on a variable capacitor and depending on how the 

capacitance is changed, capacitive-based electrostatic energy is classified into three types 

including in-plane gap closing which varies the gap between electrode fingers, in-plane 

overlap which varies the overlap area between electrodes, and out-of-plane gap closing 
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which varies the gap between two electrodes [36-38]. Generally, electrostatic energy 

harvesters can be divided into two categories: 

 Electret-free electrostatic converters 

 Electret-based electrostatic converters 

In Electret-free electrostatic converters, some controlled switches are required to change 

the capacitor’s condition discontinuously through conversion cycle and must be 

synchronized with the capacitance variation. However, in Electret-based electrostatic 

converters, the harvester can convert mechanical power into electricity directly. 

1.2.3.1. Electret-free electrostatic harvesters 

Electret-free electrostatic harvesters are passive structures that require an energy cycle to 

convert mechanical energy into useful power. There are two types of energy conversion 

cycles, charge-constrained and voltage-constrained modes [37, 39]. In the charge-

constrained cycle, while the charge on the capacitor is constrained, decreasing the 

capacitance increases the voltage. However, in the voltage-constrained cycle, the voltage 

across the capacitor will be constrained and by decreasing the capacitance, charge is 

moved from the capacitor [21]. 

1.2.3.1.1. Charge-constrained cycle  

The charge-constrained conversion cycle in the Q-V diagram has been shown in Figure 

1.12a. Cycle A-B-C-A represents the conversion cycle. At the beginning, the capacitance 

reaches its maximum under a given voltage of 𝑉𝑚𝑖𝑛  (Path A-B). The energy stored in the 

system can be written as  

𝐸𝐵 =
1

2
𝐶𝑚𝑎𝑥𝑉𝑚𝑖𝑛

2  (1.3) 

Then with the aid of a switch, the electrodes are electrically isolated and the charge on 

the electrodes is kept constant. Therefore, from point B to point C, the capacitance is 

decreased to 𝐶𝑚𝑖𝑛. By decreasing the capacitance at the constant charge, the effective 

potential voltage increases from 𝑉𝑚𝑖𝑛  to 𝑉𝑚𝑎𝑥 . The stored energy at point C can be 

expressed as 
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𝐸𝐶 =
1

2
𝐶𝑚𝑖𝑛𝑉𝑚𝑎𝑥

2  (1.4) 

In the last step of the energy conversion cycle, the capacitance is discharged, and the 

electric charges are removed from the harvester. Therefore, the total harvested energy in 

one conversion cycle is 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐶 −𝐸𝐵 =
1

2
(𝐶𝑚𝑖𝑛𝑉𝑚𝑎𝑥

2 − 𝐶𝑚𝑎𝑥𝑉𝑚𝑖𝑛
2 ) (1.5) 

Since the capacitor works in the charge-constrained cycle, the charges at point B and C 

are the same. 

𝑄𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛𝑉𝑚𝑎𝑥 = 𝐶𝑚𝑎𝑥𝑉𝑚𝑖𝑛  (1.6) 

Using equation 1.6, the total harvested energy in one energy cycle can be written as 

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝑉𝑚𝑖𝑛
2

𝐶𝑚𝑎𝑥
𝐶𝑚𝑖𝑛

(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛) =
1

2
𝑉𝑚𝑎𝑥  𝑉𝑚𝑖𝑛 Δ𝐶 (1.7) 

 

1.2.3.1.2. Voltage-constrained cycle 

Figure 1.12b shows another energy conversion cycle named the voltage-constra ined 

cycle. The energy conversion starts when the capacitance reaches to its maximum at a 

high voltage (𝑉𝑚𝑎𝑥).    

 

  

(a) (b) 

Figure 1.12 (a) The charge-constrained and (b) the voltage-constrained energy cycle. 
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Then by decreasing the capacitance to the minimum value of 𝐶𝑚𝑖𝑛 at the constant voltage, 

the charge decreases from 𝑄𝑚𝑎𝑥  to 𝑄𝑚𝑖𝑛 . In this step, the generated charges (𝑄𝑚𝑎𝑥 −

𝑄𝑚𝑖𝑛 ) will return to the voltage source or an external load. The net harvested energy per 

cycle can be expressed as 

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝑉𝑚𝑎𝑥
2 (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛) =

1

2
𝑉𝑚𝑎𝑥
2 Δ𝐶 (1.8) 

In both conversion cycles, the converted energy will be reduced because of the losses in 

the conversion electric circuit. Considering the same values for 𝐶𝑚𝑎𝑥  and 𝐶𝑚𝑖𝑛, a voltage-

constrained cycle is more efficient than a charge-constrained conversion cycle [40]. On 

the other hand, the voltage-constrained cycle requires a voltage source (𝑉𝑚𝑎𝑥) to be 

connected in all steps whereas the charge-constrained conversion cycle only needs a 

voltage source (𝑉𝑚𝑖𝑛 ) to be charged at the beginning of the conversion cycle.   

 

1.2.3.2. Electret-based electrostatic harvesters 

The conversion cycle in electret-based electrostatic harvesters is quite similar to the 

electret-free electrostatic harvesters. The only difference is related to the electret layer 

that is added to the variable capacitor and polarizes it. Generally, electrets are dielectric 

materials with a dipole polarization or quasi-permanent electrical charge. They can 

provide an electrostatic field for tens of years [41].  There are different materials such as 

Teflon, SiO2  and CYTOP, which can be used as electrets in electrostatic energy 

harvesters. The polarization of electrets can be obtained either by charge injection or 

dipole orientation (See Figure 1.13).  

  

(a) (b) 

Figure 1.13 Two different types of electrets for electret based electrostatic harvesters (a) 

dipole orientation and (b) charge injection. 

The electret layers are added to either one or both the plates of the capacitor and are able 

to polarize the harvesters throughout their lives, thereby enabling the direct mechanica l 
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to electrical conversion without any external source [42-44]. Based on the polarizat ion 

method, electrets can be classified into two categories: dipole oriented electrets and 

charge injection electrets (See Figure 1.13). The fabrication procedures of oriented-dipo le 

and real-charge electrets can be studied in [45] Due to the charge injection or dipole 

orientation, electrets have a surface potential (𝑉𝑠) which can be expressed as 

𝑉𝑠 =
𝜎𝑑𝑒
휀휀0

 (1.9) 

In which, 휀 is the dielectric permittivity, 휀0 is the permittivity of vacuum, 𝜎 is the surface 

charge density and 𝑑𝑒 is the thickness of the electret. Therefore, the electret layer can be 

modelled as a capacitor and its capacitance is given by  

𝐶𝑒 =
휀휀0𝐴

𝑑𝑒
 (1.10) 

 

1.3. Review of MEMS vibration-based energy harvesters 

So far, there have been several studies on the MEMS vibration-based energy harvesters 

and different models have been proposed based on the electromagnetic, piezoelectric, and 

electrostatic transduction methods.  

In 2005 Jeon et al. [46] studied a 170 μm × 260 μm PZT beam power generator that can 

harvest 1 μW power output across a 5.2 MΩ resistive load from a 10.8 g vibration at its 

resonance frequency of 13.9 kHz. Subsequently, a second generation of Piezoelectr ic 

Micro Power Generator (PMPG) was proposed by the same group [47]. They considered 

the effect of proof mass, beam shape and damping on the performance of the system and 

showed that the maximum harvested power occurs when the resonance frequency of the 

energy harvester matches the dominant excitation frequency. Based on their results, the 

maximum power harvesting, can be achieved by having a proof mass as heavy as possible 

unless it results other adverse effects such as excessive stress or damping. 

 Marzencki et al. [48], successfully designed and fabricated a thin film AlN cantileve r 

micro-generator, that can generate a power of 0.038 μW from a 0.5 g acceleration at 204 

Hz resonance frequency. However, the output power is limited to low power levels due 

to the properties of AlN material. In their later works Marzencki et al. [49], improved the 

power generated by increasing the vibration amplitude and frequency of their device to 4 
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g at 1368 Hz resonance frequency to generate a power of 1.97 μW. Muralt et al. [50], 

designed and fabricated a micro power generator of thin film PZT laminated cantileve r 

with proof mass and inter-digitated electrodes which could generate about 1.6 V and 1.4 

μW when excited under 2 g at 870 Hz resonance frequency. Elfrink et al. [51], designed 

and fabricated a MEMS-based AlN piezoelectric cantilever micro-generator, that can 

generate an output power of 60 μW under 2 g acceleration at 572 Hz resonance frequency. 

Feng et al. [52] investigated a MEMS based PZT cantilever power generator with a proof 

mass and showed that the system is capable of harvesting 2.16 μW from a 1g vibration at 

its resonance frequency of 609 Hz. While the demonstrated power density is quite high, 

the proof mass was not integrated with the cantilever beam. There is difficulty in 

fabricating high quality PZT thin films and/or complex process procedures to produce 

MEMS PZT-based cantilevers with an integrated proof mass at the end tip. A PZT-based 

micro cantilever with an integrated proof mass was not manufactured until 2007. Renaud 

et al. [53] reported the fabrication, modelling, and characterization of a MEMS 

piezoelectric cantilever power generator with an integrated proof mass that can generate 

an average power of 40 μW at 1.8 kHz. Shen et al. [54] designed a MEMS piezoelectr ic 

energy harvesting device for low vibration frequency and high vibration amplitude 

environments. They showed that with a beam dimension of 4.8 mm × 0.4 mm × 0.036 

mm, 2.15 μW power can be harvested at 461.15 Hz. Gu et al. [55] proposed an impact-

driven FUC (Frequency Up-Conversion) energy harvesting prototype that is suitable for 

MEMS implementation. They demonstrated the concept of impact vibration harvester 

using a plastic beam with 10 cm long, 1 cm wide, 1 mm thick having 8 g proof mass as 

the driving beam and a 27 mm long, 6.4 mm wide, 0.51 mm thick PZT beam as the 

generating beam. When the driving beam impacts the generating beam, vibration is 

excited first at the system’s coupled vibration frequency and then at the generating beam’s 

higher resonant frequency, producing electrical power. Therefore, the ambient low 

frequency is up-converted to high resonance frequency by the periodic impact between 

the driving beam and rigid generating beam.  

Meninger et al. [56] studied an energy harvester and obtained 8 μW at 2.52 kHz from an 

in-plane overlap electrostatic generator. Ma et al. [57] proposed an electrostatic generator 

and achieved 0.065 μW from a 4.5 kHz vibration. Kuehne et al. [58] reported a resonant 

based electrostatic MEMS device with an out-of-plane gap closing mechanism which 

provided an output power of 4.28 μW under vibration with frequency 1 kHz and 
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amplitude 1.96 m/s2, i.e. 0.2 g. Chiu et al. [59] developed an electrostatic MEMS energy 

harvester using an in-plane gap closing mechanism with a 1 cm2  chip area. An AC output 

power of 1.2 μW with a load of 5 MΩ was measured at 1.87 kHz.  

El-Hami et al. [60] studied a vibration-based magnet-coil power generator for embedded 

remote microsystem structure. They demonstrated that by using high performance NdFeB 

magnets and considering a vibration source with a frequency of 320 Hz, maximum output 

power of 0.53 mW can be achieved within a volume of 240 mm3. Sari et al. [61] reported 

a micro-electromagnetic harvester capable of harvesting energy in a wide range of 

frequencies. They showed that by using several serially connected cantilevers and a 

central magnet a continuous power of 0.4μW can be generated in a large input frequency 

band of 800 Hz. However, there are some problems in the fabrication of high performance 

magnets that can be integrated in magnetic MEMS harvesters. Traditional fabrication 

processes are not suitable anymore and it requires high processing temperatures which 

are not compatible with CMOS process. This problem can be solved by using 

electroplating technology [62] which is suitable for microstructures. On this basis, 

CoNiMnP permanent magnet arrays can be fabricated for potential application in MEMS 

sensor and actuators. Han et al. [63] designed a magnetic MEMS energy harvester with 

the combination of electroplated CoNiMnP permanent micro magnets and 

microfabricated metal structures.  

They showed that the designed harvester with a dimension of 5 mm × 5 mm × 0.53 mm 

can harvest 0.03 μW/cm2  output power density at 64 Hz. In addition, its small size makes 

it suitable for batch fabrication through the MEMS process. In general, the electrostatic 

mechanism has the lowest energy harvesting capabilities amongst the other types of 

energy harvesters [64]. However electrostatic energy harvesters do have specific 

advantages and areas of application. For example, they are mainly made of silicon by 

using semiconductor fabrication technology and this facilitates CMOS integration. 

The MEMS vibration-based harvesting device has AC output that needs to be rectified. 

Almost all the rectifying semiconductor devices consume at least 500 mV as dropped 

voltage. Hence to overcome this high voltage requirement it is proposed to use the inter -

digitated electrodes instead of the proposed PZT parallel electrodes [46, 65, 66]. Jeon et 

al. [46] developed a {3-3} mode thin film PZT cantilever device with inter-digitated 

electrodes that can generate 1.0 μW from 10.8 g vibration at 13.9 kHz resonance 

frequency. Lee et al. [65], designed and fabricated piezoelectric MEMS micro-genera tor 
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with laminated {3-3} mode PZT cantilever and interdigitated electrodes that can generate 

0.123 μW under 2 g acceleration amplitude. Similarly Lee et al. [66] developed two 

piezoelectric MEMS generators with {3-1} mode and {3-3} mode, having a cantilever 

made by a silicon micromachining process. The experimental results showed that {3-1} 

mode micro-generator could generate output power of 2.765 μW excited at 2.5 g 

amplitude and 255.9 Hz resonance frequency, while the {3-3} mode generator could 

generate an output power of 1.288 μW under 2 g amplitude and 214 Hz. 

Most energy harvesters are designed to work at resonance frequency in order to obtain 

maximum output power, and they are usually manufactured to have resonance 

frequencies that match the frequencies of excitation. However, in some cases, there is a 

mismatch between the resonance and excitation frequencies due to manufacturing errors 

or changes in the working environment. To overcome this problem, harvesters with 

adjustable natural frequencies [67] and multiple oscillators [68] have been proposed to 

improve the performance of the harvesters. Furthermore, the use of damping to allow 

better extraction over a broad frequency band [69] and the use of nonlinear behaviour 

[70] and magnetic buckling [71] have been exploited to harvest energy efficiently over a 

wider frequency range. There are different concepts through which the resonance 

frequency of the harvester can be tuned. 

Generally, the resonance frequency can be tuned “actively” or “passively” [72]. For the 

active mode we need continuous power input to tune the resonance frequency, while in 

the passive mode, intermittent power is used for tuning process. Resonance tuning 

methods can be categorized into mechanical, magnetic, and piezoelectric methods. 

Furthermore, tuning the resonance frequency can be implemented manually or in a self-

tuning way. Manual tuning is quite complicated to implement during operation. A fine 

self-tuning implementation is expected not only to cover the targeted frequency range but 

also to be capable of self-detecting the frequency. Based on elementary of vibration 

theory, the resonance of a system can be tuned by changing the stiffness or mass. In real 

life application, it is more practical to change the stiffness rather than the mass of the 

system. Leland and Wright [73] and Hu et al. [74] proposed to apply axial preload to alter 

the stiffness in their energy harvesting devices, thus tuning the resonant frequencies. In 

Leland and Wright’s work, an axial compressive load was applied on a simply supported 

bimorph energy harvester. In their experimental test on the prototype with a 7.1 g proof 

mass, it was determined that before the bimorph failure, a compressive axial preload can 
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reduce its resonance frequency by up to 24%. Over the frequency range of 200–250 Hz, 

this porotype achieved a power output of 300–400 W under a 1g excitation acceleration. 

Hu et al. [74] derived the governing equations of a cantilever piezoelectric bimorph with 

an axial preload and investigated its feasibility and resonance characteristics. The 

resonance can be adjusted either higher or lower with a tensile or compressive load, 

respectively. In their model, it was reported that a tensile load of 50 N increased the 

resonance from 129.3 to 169.4 Hz while the same compressive load decreased the 

resonance from 129.3 to 58.1 Hz. 

Marzencki et al. [75] employed mechanical nonlinear strain stiffening to tune the 

resonance frequency of a MEMS vibration energy harvester. Zhu et al. [76] used 

permanent magnets to adjust the natural frequency of an electromagnetic micro -

generator. They showed that by applying different axial tensile forces to the micro -

generator, the natural frequency of the system can be tuned. Challa et al. [77] investigated 

a vibration energy harvesting device with autonomously tuneable resonance frequency. 

They used a piezoelectric cantilever beam array with magnets attached to the free ends of 

cantilever beams to tune the resonance frequency of the system by magnetic force. More 

recently, Miller et al. [78] proposed a passive self-tuning beam resonator with sliding 

proof mass along the beam. This model enables the energy harvesting system to adjust 

the natural frequency of the system and thereby increase the energy harvested over time. 

Zhang et al. [79] proposed and fabricated an electret-based energy harvester with high 

normalized power density (NPD, harvested power/volume/acceleration2) and broad 

bandwidth. They showed that the proposed model works with a gap-closing scheme 

packaged at a low pressure, which increases the Q-factor and reduces the air damping.  

In addition, nonlinear techniques have been investigated to design broadband energy 

harvesters with no tuning effort required and a better power density. For example, using 

spring nonlinearity the bandwidth of the harvester can be expanded through several 

mechanisms such as magnetic levitation, non-linear stiffness and piezoelectric coupling 

[80]. Nonlinear techniques for broadband the frequency range of energy harvesters focus 

mostly on the generation of nonlinear force by a Duffing-type oscillator. This type of 

oscillators include monostable [81] , bistable [82], and tristable [83] nonlinear 

configurations.  

Generally, nonlinearity appears much more inherently in monostable cases. Therefore, 

the total volume is often not that bulky and suitable for integrated processes [84]. 
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Consequently, stretching-based monostable nonlinearity has been investigated by 

numerous researchers for broadband energy harvesting including macro and micro scale 

types. Leadenham and Erturk [85] reported an M-shaped asymmetric nonlinear oscillator 

for broadband vibration energy harvesting, which can be announced as yielding 

broadband behavior under low excitation levels. Gafforelli et al [86] propose a bridge 

shaped double clamped beam to widen the frequency by a stretching mechanism. Hajati et 

al [87] reported a mems piezoelectric energy harvester with a doubly clamped beam 

showing ultra wide-bandwidth due to stretching strain. Marzencki et al [75] reported 

mems piezoelectric clamped–clamped beam energy harvester device with passive 

resonance frequency adaption capabilities under high excitation amplitude. Mallick et 

al [88] described two nonlinear spring architectures with a fixed–fixed configuration for 

wideband output responses. Liu et al [89] reported a hybrid frequency broadening 

mechanism combining clamped –clamped beam stretching and different resonant modals. 

1.4. Thesis overview  

Here is a short overview of this thesis. 

 

Chapter 2: Modelling of cantilevered piezoelectric energy harvesters 

In this chapter, the theory of cantilevered piezoelectric energy harvesters for bimorph 

configuration with series and parallel connections is presented. In addition, the 

electromechanically coupled circuit equation will be derived based on Gauss’s law and 

the relevant piezoelectric constitutive equation. 

 

Chapter 3:  Modelling and design of MEMS piezoelectric energy harvester 

with adjustable resonance frequency 

This chapter presents a comprehensive study and a framework for the modelling and 

design of a MEMS piezoelectric harvester which employs an electrostatic device to adjust 

its resonance frequency. The main purpose of the proposed model is to control the 

resonance frequency of the MEMS piezoelectric harvesters with the DC voltage applied 

to the electrostatic system to maximize the harvested power. 
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Chapter 4:  Effects of manufacturing uncertainties in MEMS Energy 

Harvesters 

In this chapter, the performance of MEMS piezoelectric harvesters in the presence of 

manufacturing uncertainties is investigated. Based on the experimentally measured 

statistical properties available in the literature, manufacturing uncertainty in MEMS 

harvesters results in a lower output power. In order to improve the performance of the 

harvester two electrostatic tuning mechanisms will be used. 

 

Chapter 5: Experimental studies of an energy harvester with adjustable 

resonance frequency in macroscale 

Chapter 5 proposes an experimental set up to show the electrostatic softening mechanism 

by using electromagnets in macro-scales. Based on this model, applying voltage to the 

electromagnets will tune the resonance frequency of the harvester.  

 

Chapter 6: Conclusion and future work 

In the final chapter of this thesis the results are summarized and an outlook for suggested 

future work regarding energy harvesters is given. 
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Chapter 2: Modelling of cantilevered 

piezoelectric energy harvesters 

 

In this chapter, an analytical model for a cantilevered vibration-based piezoelectric energy 

harvester is presented. The model proposed by Erturk and Inman [90] is used as a basis 

for the linear piezoelectric energy harvester model. After deriving the mechanical and 

electrical equations representing the dynamic of the harvester, a steady-state solution is 

presented to study the behaviour of the harvester. 

 

2.1. Mechanical equation of motion 

In this section, an expression for the coupled beam equation of bimorph piezoelectr ic 

harvester is derived. Figure 2.1 shows a bimorph piezoelectric harvester in two 

configurations based on the connection between piezoelectric layers. By considering the 

base excitation, the partial differential equation of motion can be written as [90] 

−
𝜕2𝑀𝑏

𝜕𝑥2
+ 𝑚

𝜕2𝑤𝑟𝑒𝑙
𝜕𝑡2

+ 𝑐𝑎
𝜕𝑤𝑟𝑒𝑙
𝜕𝑡

=  −(𝑚 +𝑀𝑡𝛿(𝑥 − 𝐿))
𝜕2𝑤𝑏
𝜕𝑡2

 (2.1) 

where  𝑤𝑟𝑒𝑙 is the vertical displacement of the beam relative to its base,  𝑚 is the mass 

per unit length of the beam, 𝑀𝑡 is the tip mass, 𝛿(𝑥) is the Dirac delta function, 𝑤𝑏 is the 

base displacement and 𝑐𝑎 is the viscous air damping coefficient; 𝑀𝑏 refer to the interna l 

bending moment and represented as  

𝑀𝑏 = 𝑏(∫ 𝑇𝑝𝑧𝑑𝑧
−
ℎ�̃�
2

−ℎ�̃�−
ℎ�̃�
2

+∫ 𝑇𝑠̃𝑧𝑑𝑧

ℎ�̃�
2

−
ℎ�̃�
2

+∫ 𝑇𝑝𝑧𝑑𝑧

ℎ�̃�
2
+ℎ�̃�

ℎ�̃�
2

) (2.2) 

where ℎ𝑠̃ is the thickness of the beam, ℎ𝑝 is the thickness of each piezoceramic layer, and 

b  is the width of the cantilever beam and each piezoceramic layer and is supposed to be 

constant along the beam length. 
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(a) 

 

 

 

(c) 

Figure 2.1 Bimorph piezoelectric energy harvester configurations, (a) series and (b) 

parallel connection of piezoceramic layers and (c) their cross-sectional view [90] 

The subscripts �̃� and 𝑝 stand for the beam and piezoelectric material. In addition, 𝑇𝑠̃ and 

𝑇𝑝 are the stress components in the beam and piezoceramic. These stress components are 

given in the following equations 

𝑇𝑠̃ = 𝐸𝑠̃𝑆�̃�,       𝑇𝑝 = 𝑐1̅1
𝐸  𝑆𝑝 − 𝑐1̅1

𝐸 𝑑31𝐸3  (2.3) 

where  𝐸𝑠̃ is the elastic modulus of the beam, 𝑐1̅1
𝐸  is the elastic modulus of the 

piezoceramic layers at a constant electric field, 𝐸3 is the electric field component in the 

poling direction (i.e. z direction), 𝑑31  is the piezoelectric stress constant (unit F.m−1)and 

S is the axial strain expressed as 

𝑆(𝑥, 𝑧, 𝑡) = −𝑧
𝜕2𝑤𝑟𝑒𝑙
𝜕𝑥2

 (2.4) 

In addition, considering the plane-stress assumption for a transversely isotropic thin 

piezoceramic beam, the elastic modulus component of the piezoceramic can be written as 

𝑐1̅1
𝐸 =

1

𝑠11
𝐸

 (2.5) 

where  𝑠11
𝐸  is the elastic compliance (i.e. the strain produced in a piezoelectric materia l 

per unit of stress applied) at a constant electric field. Considering the same assumption, 

𝑑31  can be given by 
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  𝑑31 = 𝑒̅31𝑠11
𝐸  (2.6) 

where 𝑒̅31 is the effective piezoelectric stress-constant. Using equations (2.5) and (2.6), 

the stress component for piezoceramic can be written as 

𝑇𝑝 = 𝑐1̅1
𝐸  𝑆𝑝 − 𝑒̅31𝐸3 (2.7) 

It is noticeable that Equation (2.7), is valid only for small amplitude vibration. The electric 

field (𝐸3) depends on the connections between the piezoceramic layers and is written in 

terms of the corresponding voltage for series and parallel connections. The voltage across 

the electrodes of each piezoceramic layer in the series connection is 𝑣𝑠(𝑡)/2 and, as 

expected, in the parallel connection is 𝑣𝑝(𝑡). Due to the opposite polling in the series 

connection, 𝑒̅31 has the opposite sign for top and bottom electrodes. Therefore, the 

electrical field for each bimorph configuration can be written as 

𝐸3
𝑠(𝑡) = −

𝑣𝑠(𝑡)

2ℎ𝑝
    

𝐸3
𝑝(𝑡) =

{
 
 

 
 −

𝑣𝑝(𝑡)

ℎ𝑝
 ∶ Top layer

𝑣𝑝(𝑡)

ℎ𝑝
∶ Bottom layer

          

(2.8) 

It is noteworthy that for the electrode configuration shown in Figure 2.1, 𝐸1 and 𝐸2 are 

zero. The subscripts 𝑠 and 𝑝 stand for the series and parallel connections. For both 

configurations, the piezoelectric coupling term in equation (2.2) is only a time-dependent 

function, therefore due to the spatial differentiation in equation (2.1), it will be eliminated 

after substituting equation (2.2) into equation (2.1). Consequently, it must be multip l ied 

by Heaviside function. Using equations (2.3), (2.4) and (2.7), the internal bending 

moment for series and parallel connections are given by 

𝑀𝑏
𝑠 = −𝐸𝐼

𝜕2𝑤𝑟𝑒𝑙
𝑠

𝜕𝑥2
+𝜗𝑠𝑣𝑠(𝑡)[𝐻(𝑥) −𝐻(𝑥 − 𝐿)] 

𝑀𝑏
𝑝 = −𝐸𝐼

𝜕2𝑤𝑟𝑒𝑙
𝑝

𝜕𝑥2
+ 𝜗𝑝𝑣𝑝(𝑡)[𝐻(𝑥)− 𝐻(𝑥 − 𝐿)] 

(2.9) 

where EI is the bending stiffness term, 𝜗𝑠  and 𝜗𝑝 are the backward coupling terms for 

series and parallel connections. These terms can be expressed as [90] 
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𝐸𝐼 =
2𝑏

3
(𝑌𝑠̃

ℎ𝑠̃
3

8
+ 𝑐11

𝐸 ((ℎ𝑝 +
ℎ𝑠̃
2
)
3

−
ℎ𝑠̃
3

8
)) 

𝜗𝑠 =
𝑒̅31𝑏

2ℎ𝑝
 ((ℎ𝑝 +

ℎ𝑠̃
2
)
2

−
ℎ𝑠̃
2

4
) , 𝜗𝑝 = 2𝜗𝑠 =

𝑒̅31𝑏

ℎ𝑝
 ((ℎ𝑝 +

ℎ𝑠̃
2
)
2

−
ℎ𝑠̃
2

4
) 

(2.10) 

By substituting equation (2.9) in equation (2.1), the coupled beam equation for the parallel 

connection can be written as 

𝐸𝐼
𝜕4𝑤𝑟𝑒𝑙

𝑝

𝜕𝑥4
+𝑚

𝜕2𝑤𝑟𝑒𝑙
𝑝

𝜕𝑡2
+ 𝑐𝑎

𝜕𝑤𝑟𝑒𝑙
𝑝

𝜕𝑡
− 𝜗𝑝𝑣𝑝(𝑡)(

𝑑𝛿(𝑥)

𝑑𝑥
−
𝑑𝛿(𝑥 − 𝐿)

𝑑𝑥
) 

=  −(𝑚 +𝑀𝑡𝛿(𝑥 − 𝐿))
𝜕2𝑤𝑏
𝜕𝑡2

 

(2.11) 

Similarly, the coupled beam equation can be derived for series connection. In equation 

(2.11), the mass per unit length is  

  𝑚 = 𝑏(𝜌�̃�ℎ𝑠̃+ 2𝜌𝑝ℎ𝑝) (2.12) 

where 𝜌𝑝 and 𝜌�̃� are the densities of the piezoceramic and the beam, respectively. 

 

2.2. Coupled electrical equation  

In order to obtain the coupled electrical equation for series and parallel connections, one 

should first study the electrical equation of a single piezoceramic layer under base 

excitation. To this end, one of the piezoceramic layers in Figure 2.1 is connected to a load 

resistor. By considering the axial mechanical strain due to the bending vibration, the 

piezoelectric constitutive equation can be expressed as [90] 

𝐷3 = 𝑒̅31𝑆𝑝 + 휀3̅3
𝑠̃ 𝐸3 (2.13) 

where  𝐷3 is the electric displacement component and 휀3̅3
𝑠̃  is the permittivity component 

at constant strain with the plane stress assumption for the beam. Based on Gauss’s law, 

the generated charge, 𝑞(𝑡) can be achieved by integrating electric displacement over the 

electrode area, 𝐴𝑒 
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𝑞(𝑡) =∬𝐷3𝑑𝐴𝑒 (2.14) 

Since the external circuit admittance across the electrodes is 1/𝑅, therefore the output 

electrical current can be expressed as  

𝑖(𝑡) =
𝑑

𝑑𝑡
(∬𝐷3𝑑𝐴𝑒) =

𝑣(𝑡)

𝑅
 (2.15) 

After using equation (2.4) to express the average bending strain in the piezoceramic in 

form of the curvature and considering the electrical field as −𝑣𝑝(𝑡)/ℎ𝑝, equation (2.13) 

can be used in equation (2.15) to obtain 

−𝐶𝑝
𝑑𝑣(𝑡)

𝑑𝑡
− 𝑒̅31𝑏ℎ𝑝𝑐∫

𝜕3𝑤𝑟𝑒𝑙
𝜕𝑥2𝜕𝑡

𝑑𝑥
𝐿

0

=
𝑣(𝑡)

𝑅
 (2.16) 

where ℎ𝑝𝑐  is the distance between the center of each piezoceramic layer and the neutral 

axis and 𝐶𝑝 refers to the piezoelectric internal capacitance 

𝐶𝑝 =
휀3̅3
𝑠 𝑏𝐿

ℎ𝑝
 (2.17) 

According to equation (2.16), a simple RC circuit can be used to model the energy 

harvester. Therefore, as shown in Figure 2.2 each piezoceramic layer can be shown as a 

dependent current source in parallel with its internal capacitance.  

 

Figure 2.2 Electrical representation of a piezoceramic layer connected to a resistor. 
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2.2.1. Coupled electrical equation for series and parallel 

connections 

Based on the concepts described in Section 2.1, this section aims to study the electrical 

equation for series and parallel connections. Considering the electrical representation of 

each piezoceramic layer, Figure 2.3 shows the series connection of the piezoceramic layer 

in bimorph configuration. 

 

Figure 2.3 Electrical circuit representing the series connection of the piezoceramic 

layers. 

Using Kirchhoff’s laws for the circuit shown in Figure 2.3 gives 

𝐶𝑝
2

𝑑𝑣𝑠(𝑡)

𝑑𝑡
+
𝑣𝑠(𝑡)

𝑅
+ 𝑖𝑝

𝑠(𝑡) = 0 (2.18) 

where  

𝐶𝑝 =
휀3̅3
𝑠 𝑏𝐿

ℎ𝑝
, 𝑖�̃�

𝑠(𝑡) =
𝑒̅31𝑏(ℎ𝑝 +ℎ𝑠̃)

2
∫

𝜕3𝑤𝑟𝑒𝑙
𝑠

𝜕𝑥2𝜕𝑡
𝑑𝑥

𝐿

0

 (2.19) 

similarly, the electrical circuit of the parallel connection of the piezoceramic layer can be 

represented by Figure 2.4. 

 

Figure 2.4 Electrical circuit representing the parallel connection of the piezoceramic 

layers. 
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By applying Kirchhoff’s laws, the governing electrical circuit equation can be written as 

𝐶𝑝
𝑑𝑣𝑝(𝑡)

𝑑𝑡
+
𝑣𝑝(𝑡)

2𝑅
+ 𝑖�̃�

𝑝(𝑡) = 0 (2.20) 

where  

𝐶𝑝 =
휀3̅3
𝑠 𝑏𝐿

ℎ𝑝
, 𝑖𝑝

𝑝(𝑡) =
𝑒̅31𝑏(ℎ𝑝 +ℎ𝑠̃)

2
∫

𝜕3𝑤𝑟𝑒𝑙
𝑝 (𝑥,𝑡)

𝜕𝑥2𝜕𝑡
𝑑𝑥

𝐿

0

 (2.21) 

Depending on the voltage or current requirements, the piezoceramic layers can be 

connected in series or parallel configurations. Using piezoceramic layers in series 

connection produces a larger voltage output, whereas in parallel connection a larger 

current output can be obtained.   

 

   

2.3. Voltage and vibration response at steady state 

In this section, the Galerkin decomposition method is used to eliminate spatial 

dependence. To this end, the vibration response relative to the base of the beam can be 

represented as a series expansion in terms of the eigenfunctions of the beam, i.e. 

𝑤𝑟𝑒𝑙
𝑝 (𝑥, 𝑡) = ∑𝑈𝑖(𝑡)𝜑𝑖(𝑥)

𝑁

𝑖=1

 (2.22) 

where 𝜑𝑖(𝑥) is the ith linear undamped mode shape of the straight beam and 𝑈𝑖(𝑡) is the 

ith generalized coordinate. Considering the parallel configuration and 𝑧0𝑒
𝑗Ωt as a base 

excitation equations (2.11) and (2.20) can be converted into a system of differentia l 

equations using the Galerkin decomposition method. Substituting equation (2.12) into 

equations (2.11) and (2.20) and multiplying by 𝜑𝑖(𝑥) as a weight function in Galerkin 

method and integrating the outcome from 𝑥 = 0 to 1, a system of differential equations 

can be obtained. Assuming a single-mode approximation yields the following equations 

𝑀�̈�(𝑡) + 𝐶 �̇�(𝑡) + 𝐾𝑚𝑈(𝑡) − 휃𝑝𝑣𝑝(𝑡) = 𝐹𝑏𝑒
𝑗Ωt (2.23) 

𝐶𝑝
𝑑𝑣𝑝(𝑡)

𝑑𝑡
+
𝑣𝑝(𝑡)

2𝑅
+
휃𝑝
2
�̇�(𝑡) = 0 (2.24) 
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where 

𝑀 = 𝑚∫ 𝜑2(𝑥)
𝐿

0

𝑑𝑥, 𝐶 = 𝑐𝑎 ∫ 𝜑2(𝑥)
𝐿

0

𝑑𝑥, 𝐾𝑚 = 𝐸𝐼 ∫ 𝜑(𝑥)
𝐿

0

𝜑𝐼𝑉(𝑥)𝑑𝑥 

휃𝑝 = 𝜗𝑝  
𝑑𝜑(𝐿)

𝑑𝑥
, 𝐹𝑏 = 𝑧0Ω

2 (𝑚∫ 𝜑(𝑥)
𝐿

0

𝑑𝑥 + 𝑀𝑡∫ 𝜑(𝑥)
𝐿

0

𝛿(𝑥 − 𝐿)𝑑𝑥) 

(2.25) 

Since the beam is excited at frequency Ω, the steady-state response of the beam and the 

steady-state voltage across the load resistance are considered as following 

𝑈(𝑡) = 𝐴𝑒𝑗Ωt (2.26) 

𝑣𝑝(𝑡) = 𝐵𝑒
𝑗Ωt  (2.27) 

where A and B are complex values. Substituting equations (2.26) and (2.27) into 

equations (2.23) and (2.24), yields the following two equations for A and B 

(𝐾𝑚 − 𝑀Ω
2 +  𝑗𝐶Ω)𝐴− 휃𝑝𝐵 = 𝐹𝑏 (2.28) 

(2𝐶𝑝𝑗Ω+
1

𝑅
)𝐵 + 휃𝑝𝐴𝑗Ω = 0 (2.29) 

By solving above set of linear equations, the steady-state response of the beam and steady-

state voltage response can be expressed as  

𝑈(𝑡) =
(2𝐶𝑝𝑗Ω+

1
𝑅)𝐹𝑏

𝑗휃𝑝
2Ω + (𝐾𝑚 −𝑀Ω

2 +  𝑗𝐶Ω)(2𝐶𝑝𝑗Ω +
1
𝑅)
𝑒𝑗Ωt  (2.30) 

𝑣𝑝(𝑡) = −
𝑗 𝐹𝑏휃𝑝Ω

𝑗휃𝑝
2Ω+ (𝐾𝑚 − 𝑀Ω

2 +  𝑗𝐶Ω)(2𝐶𝑝𝑗Ω+
1
𝑅
)
𝑒𝑗Ωt  (2.31) 

Using equation (2.22) and considering a single-mode approximation, the transverse   

relative displacement response at point x on the beam can be expressed as 

𝑤𝑟𝑒𝑙
𝑝 (𝑥, 𝑡) =

(2𝐶𝑝𝑗Ω +
1
𝑅)𝐹𝑏

𝑗휃𝑝
2Ω + (𝐾𝑚 −𝑀Ω

2 +  𝑗𝐶Ω)(2𝐶𝑝𝑗Ω +
1
𝑅)

𝜑(𝑥)𝑒𝑗Ωt (2.32) 

Similarly, by following the same procedure for series configuration the following 

equation can be obtained 
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𝑤𝑟𝑒𝑙
𝑠 (𝑥,𝑡) =

(0.5𝐶𝑝𝑗Ω +
1
𝑅) 𝐹𝑏

𝑗휃𝑠
2Ω + (𝐾𝑚 −𝑀Ω

2 +  𝑗𝐶Ω)(0.5𝐶𝑝𝑗Ω+
1
𝑅)
𝜑(𝑥)𝑒𝑗Ωt (2.33) 

𝑣𝑠(𝑡) = −
𝑗 𝐹𝑏휃𝑠Ω

𝑗휃𝑠
2Ω+ (𝐾𝑚 − 𝑀Ω

2 +  𝑗𝐶Ω)(0.5𝐶𝑝𝑗Ω +
1
𝑅)
𝑒𝑗Ωt  (2.34) 

Note that if one is interested in the total displacement of the beam, it is the summation of 

the base displacement and the transversal relative displacement. Furthermore, in 

equations (2.31), (2.32), (2.33) and (2.34) by taking the limit as 𝑅 → ∞ and 𝑅 → 0, the 

output voltage and deflection of the beam converge to constant values [90]. The average 

power harvested between time 𝑡1 and 𝑡2 for parallel configuration is calculated by 

integrating the temporal response as 

𝑃𝑎𝑣𝑒 =
1

𝑡2 − 𝑡1
∫

{𝑣𝑝(𝑡)}
2

𝑅
𝑑𝑡

𝑡2

𝑡1

 (2.35) 

and peak power from the piezoelectric layers can be expressed as 

𝑃𝑚𝑎𝑥 =
|{𝑣𝑝(𝑡)}𝑚𝑎𝑥

|
2

𝑅
 (2.36) 

2.4. Theoretical case study 

In this section, a MEMS bimorph piezoelectric harvester is considered in parallel 

configuration to demonstrate the analysis presented in previous sections. The geometric 

properties of the harvester are given in Table 2.1. 

Shape functions, which satisfy the boundary conditions of the clamped–free microbeam 

(with tip mass 𝑀𝑡), are considered of the form [90] 

𝜑𝑖(𝑥) = 𝐴𝑟 [cos𝜆𝑖
𝑥

𝐿
− cosh𝜆𝑖

𝑥

𝐿
+ 𝜍𝑟 (sin 𝜆𝑖

𝑥

𝐿
− sinh 𝜆𝑖

𝑥

𝐿
)] (2.37) 

where 

𝜍𝑟 =
sin 𝜆𝑖 − sinh 𝜆𝑖 + 𝜆𝑖

𝑀𝑡

𝑚𝐿 (cos𝜆𝑖 − cosh𝜆𝑖)

cos𝜆𝑖 + cosh𝜆𝑖 − 𝜆𝑖
𝑀𝑡
𝑚𝐿 (sin𝜆𝑖 − sinh𝜆𝑖)

 (2.38) 
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𝐴𝑟 is the modal amplitude constant and the eigenvalues of the system (𝜆𝑖 for mode 𝑖) are 

obtained from  
 

1 + cos𝜆𝑖 cosh𝜆𝑖+ 𝜆𝑖
𝑀𝑡

𝑚𝐿
(cos𝜆𝑖 sinh𝜆𝑖 − sin 𝜆𝑖 cosh𝜆𝑖) − 

𝜆𝑖
3𝐼𝑡
𝑚𝐿3

(cosh𝜆𝑖 sin 𝜆𝑖 + sinh 𝜆𝑖 cos𝜆𝑖)+ 

𝜆𝑖
4𝑀𝑡𝐼𝑡
𝑚𝐿3

(1 − cos𝜆𝑖 cosh𝜆𝑖) = 0 

(2.39) 

Table 2.1 Geometrical and material properties of the MEMS harvester 

Design Variable  Value 

Length (L) 3000  μm 

Width (b) 1000  μm 

Thickness (ℎ𝑠̃) 4 μm 

Thickness (ℎ𝑝) 2 μm 

Young’s modulus (𝐸𝑠̃) 169.6 GPa 

Young’s modulus (𝑐11
𝐸 ) 65 GPa 

Viscous air damping coefficient (𝑐𝑎) 0.0002 N.s/m 

Poisson’s ratio (𝜐) 0.06 

Density of Si beam (𝜌�̃�) 2330 kg/m3     

Density of PZT (𝜌�̃�) 7800 kg/m3     

Equivalent piezoelectric coefficient (𝑒̅31) -11.18 Cm−2 

Permittivity component (휀3̅3
𝑠 ) 13.48 nF/m 

Tip mass (𝑀𝑡) 9.724× 10−8 kg 

Length of the tip mass (𝐿𝑚) 20 μm 

Thickness of the tip mass (ℎ𝑚) 10 μm 

 

Depending on the load resistance connected to the piezoelectric layers, the system can be 

in a short-circuit or an open-circuit condition. Considering the first vibration mode of this 

particular harvester, the lowest resistance is very close to the short-circuit conditions, 

whereas when using the largest load resistance, the system operates in open-circuit 

conditions. As the load resistance is increased from the short-circuit to open-circuit 

conditions, the voltage output at every frequency increases monotonically. On the other 

hand, in the exact short-circuit condtion ( 𝑅 = 0) the output voltage is zero and by 

increasing the load resistance to the largest load resistance the output voltage converges 

to its maximum value. In addition, as shown in Figure 2.5, by considering 0.3 μm as the 

amplitude of base excitation and increasing the load resistance from 100 Ω to 100 MΩ the 

resonance frequency of the harvester changes from short-circuit resonance frequency 
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(𝜔𝑟
𝑠𝑐  𝑓𝑜𝑟 𝑅 → 0) to open-circuit resonance frequency (𝜔𝑟

𝑜𝑐  𝑓𝑜𝑟 𝑅 →∞). Therefore, 

depending on the load resistance the resonance frequency of the harvester can take a value 

only between 272.8 Hz and 312.6 Hz.  

 

Figure 2.5 Output voltage of the harvester for a broad range of load resistance  

It can be seen that the damping caused by power dissipation in the resistor due to Joule 

heating is more complicated than viscous damping (although it has been oversimplif ied 

by several researchers in recent years [91, 92]. Firstly, unlike the case with viscous 

damping, increasing load resistance shifts the resonance frequency to the right in the FRF. 

Secondly, by further increasing the load resistance, although the amplitude of vibration 

decreases in the short-circuit condition (original resonance frequency), it amplifies 

considerably at the open-circuit resonance frequency (See Figure 2.6).  

Changing the electrical boundary conditions shifts the resonance frequency of the 

harvester. By increasing the load resistance to the upper extremum (𝑅 → ∞), the elastic 

modulus of the piezoelectric patch increases from the constant electric field value to the 

constant electrical displacement value and there is no overall energy dissipation. The 
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power dissipation in the mechanical domain is only valid for nonzero and finite values of 

load resistance, which associated with power generation in the electrical domain. 

 

Figure 2.6 Output voltage of the harvester for a broad range of load resistance  

Therefore, in the presence of electrical load resistance, the resonance frequency shift 

cannot be presented by a real-value viscous damping ratio or loss factor [90].  Generally, 

the resonance frequency shift from short-circuit condition to open-circuit condition is 

directly proportional to the square of the electromechanical coupling term and inversely 

proportional to the equivalent capacitance and square of the undamped resonance 

frequency. In addition, it is also affected by the modal mechanical damping ratio and the 

effect of electromechanical coupling can be counteracted by the modal mechanica l 

damping ratio. Physically, using very large mechanical losses and/or small 

electromechanical coupling, the short-circuit resonance frequency can be equal to the 

open-circuit resonance frequency [90]. 

To validate the results presented in this chapter, a bimorph cantilever beam has been 

considered based on Alper Erturk and Daniel J. Inman’s book (See Table 2.2).  As shown 

in Figure 2.7, by considering 1 mm as the amplitude of base excitation and changing the 
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load resistance from 100 Ω to 100 MΩ, the resonance frequency of the harvester changes 

from 185.1 Hz to 191.1 Hz, which is the same as the results in the book. 

 

Figure 2.7 Output voltage of the harvester for a broad range of load resistance  

 

Table 2.2 Geometrical and material properties of the harvester [90] 

Design Variable  Value 

Length (L) 30  mm 

Width (a) 5  mm 
Thickness (ℎ𝑠̃) 0.05 μm 

Thickness (ℎ𝑝) 0.15 μm 

Young’s modulus (𝐸𝑠̃) 70 GPa 

Young’s modulus (𝑐11
𝐸 ) 61 GPa 

Damping ratio (휁) 0.01 

Density of beam (𝜌�̃�) 2700 kg/m3     

Density of PZT (𝜌�̃�) 7750 kg/m3     

Equivalent piezoelectric coefficient (𝑒̅31) -10.4 Cm−2 

Permittivity component (휀3̅3
𝑠 ) 13.3 nF/m 
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The effect of the load resistance on the tip deflection and output voltage has been further 

studied in Figure 2.8. As shown in Figure 2.8a, by increasing the load resistance in both 

short-circuit and open-circuit frequencies, the output voltage increases and converges to 

a constant voltage. On the other hand, the variation of the tip deflection of the beam versus 

load resistance in short-circuit and open-circuit frequencies has been shown in Figure 

2.8b. As shown in Figure 2.8b, by increasing load resistance in short-circuit and open-

circuit frequencies the tip deflection of the beam converges to a constant value.  

Considering the short-circuit frequency, the output voltage converges to 3.8 mV at 14 kΩ. 

However, in open-circuit frequency it converges to 470 mV at 100 MΩ. In contrast, as 

Figure 2.8b shows, by increasing load resistance the vibration response at the tip of the 

beam does not change monotonically for short-circuit or open-circuit frequencies. For 

excitation at short-circuit frequency, by increasing load resistance the tip deflection 

decreases, whereas it amplified at open-circuit frequency.  

  

(a) (b) 

Figure 2.8 Variation of the tip deflection and output voltage with load resistance for 

excitations at the short-circuit and open-circuit resonance frequencies.  

According to equations (2.33) and (2.34), the output power is proportional to the square 

of the output voltage, and inversely proportional to the load resistance. Therefore, the 

output power does not necessarily exhibit monotonic behaviour with increasing (or 

decreasing) load resistance.    
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(a) (b) 

Figure 2.9 Variation of peak power with load resistance for excitations at (a) the 

short-circuit and (b) open-circuit resonance frequencies. 

The behaviour of output power with changing load resistance for short-circuit and open-

circuit frequencies has been given in Figure 2.9. As Figure 2.9a shows, the maximum 

power in short circuit condition can be obtained at 0.13 kΩ, whereas as shown in Figure 

2.9b at open-circuit condition the maximum power is delivered when a resistive load of 

1.2 MΩ is connected to the harvester. The maximum output power of the series and 

parallel connection cases are the same, but they correspond to different values of optimal 

load resistance. Furthermore, the optimal load resistance not necessarily the same for all 

modes of vibration and it can be changed depending on the vibration mode [90]. 
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Figure 2.10 Variation of peak power with load resistance for different excitation 

frequencies 

The output power of linear energy harvesters is quite sensitive to the excitation frequency. 

In resonance frequency, they can harvest maximum power using the optimal load 

resistance. However, as shown in Figure 2.10, any mismatch between the resonance 

frequency of the harvester and the excitation frequency can adversely affect the total 

harvested power.  
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2.5. Closure 

In this chapter, the dynamic behaviour of a MEMS piezoelectric harvester has been 

studied. The steady-state response of the beam and the steady-state voltage across the 

load resistance were obtained and the results validated by a reference book written by 

Erturk and Inman [90]. It was illustrated that depending on the load resistance connected 

to the piezoelectric layers, the resonance frequency of the harvetser can be changed 

between short-circuit and open-circuit frequencies. In addition, it was shown that by 

increasing load resistance the output volatge increases monotonically wheras the 

amplitude of vibration is decreased in the short-circuit condition (original resonance 

frequency) and amplified considerably at the open-circuit resonance frequency. 

Furthermore, the results showed that by increasing load resistance, both output voltage 

and amplitude of vibration are converged to constant values at short-circuit and open-

circuit conditions. The effect of different parameters in the resonance frequency shift were 

discussed and based on the obtained results, it was observed that the resonance frequency 

shift (Δ𝜔𝑟 = 𝜔𝑟
𝑜𝑐 − 𝜔𝑟

𝑠𝑐) is mostly related to the effect of the piezoelectric layers and 

electrical parameters. It was also shown that the output power of the harvester can be 

maximised by using the optimal resisctance. However, any mismatch between the 

resonance frequency of the harvester and the excitation frequency can decrease the 

harvested power significantly. To overcome this problem, in the next chapter we propose 

a MEMS piezoelectric harvester with adjustable resonance frequency. 
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Chapter 3: Modelling and design of 

MEMS piezoelectric energy harvester 

with adjustable resonance frequency 

 

This chapter presents a comprehensive study for the modelling and design of a MEMS 

piezoelectric harvester which employs an electrostatic device to adjust its resonance 

frequency. The idea is demonstrated in a hybrid system consisting of a cantilevered 

piezoelectric harvester combined with an electrostatic harvester which is connected to a 

variable voltage source. The main motivation of the proposed model is to control the 

resonance frequency of the MEMS piezoelectric harvester with the DC voltage applied 

to the electrostatic system in order to maximize the harvested power. 

3.1. Model description and mathematical modelling 

Figure 3.1 shows the model proposed in this chapter. The model is an isotropic 

microbeam of length 𝐿, width 𝑏, thickness ℎ, density 𝜌𝑠̃ and Young’s modulus 𝐸𝑠̃, 

sandwiched between piezoceramic layers of thickness ℎ𝑝, Young’s modulus 𝑐11
𝐸  and 

density 𝜌𝑝 throughout the microbeam length and located between two electrodes 

(electrode 1 and electrode 2). As illustrated in Figure 3.1, the piezoceramic layers are 

connected to the resistance (𝑅) in parallel connection and the coordinate system is 

attached to the middle of the left end of the microbeam where x and z refer to the 

horizontal and vertical coordinates respectively. The tip mass is used to control the 

dynamics of the micro-cantilever.  
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.  

Figure 3.1 Schematic of the proposed energy harvester. 

The governing equation of transverse motion can be written as 

𝐸𝐼
𝜕4𝑤𝑟𝑒𝑙

𝑝

𝜕𝑥4
+𝑚

𝜕2𝑤𝑟𝑒𝑙
𝑝

𝜕𝑡2
+ 𝑐𝑎

𝜕𝑤𝑟𝑒𝑙
𝑝

𝜕𝑡
− 𝜗𝑝  𝑣𝑝(𝑡) (

𝑑𝛿(𝑥)

𝑑𝑥
−
𝑑𝛿(𝑥 − 𝐿)

𝑑𝑥
) 

= 𝐹𝑒𝑠(𝑉𝐷𝐶 , 𝑤𝑟𝑒𝑙
𝑝 ) − (𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿))

𝜕2𝑧(𝑡)

𝜕𝑡2
 

(3.1) 

where 𝐸𝐼, 𝑚 and 𝜗𝑝 are given by equations (2.10) and (2.11). Equation (3.1) is subject to 

the following boundary conditions 

𝑤𝑟𝑒𝑙
𝑝 (0,𝑡) = 0,     

𝜕𝑤𝑟𝑒𝑙
𝑝 (0, 𝑡)

𝜕𝑥
= 0,  

𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝑤𝑟𝑒𝑙
𝑝 (𝐿,𝑡)

𝜕𝑥2
) = 𝑀𝑡 (

𝜕2𝑤𝑟𝑒𝑙
𝑝 (𝐿,𝑡)

𝜕𝑡2
) 

𝐸𝐼
𝜕2𝑤𝑟𝑒𝑙

𝑝 (𝐿,𝑡)

𝜕𝑥2
= −𝐼𝑀𝑡

𝜕2

𝜕𝑡2
(
𝜕𝑤𝑟𝑒𝑙

𝑝 (𝐿, 𝑡)

𝜕𝑥
) 

(3.2) 

In equation (3.1), 𝑤𝑟𝑒𝑙
𝑝

 is the transverse deflection of the beam relative to its base at the 

position x and time t,  𝑐𝑎 is the viscous air damping coefficient, 𝛿(𝑥) is the Dirac delta 

function, 𝐹𝑒𝑠 is the electrostatic force between electrodes which is a function of applied 

DC voltage to the microbeam, and 𝑤𝑟𝑒𝑙
𝑝

, 𝑧(𝑡) is the base excitation function, 𝑣𝑝(𝑡) is the 

voltage across the electrodes of each piezoceramic layer and 𝜗𝑝   is the coupling. The 

electrical circuit equation based on Kirchhoff's laws can be expressed as 
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𝐶𝑝
𝑑𝑣𝑝(𝑡)

𝑑𝑡
+
𝑣𝑝(𝑡)

2𝑅
+ 𝑖�̃�

𝑝(𝑡) = 0 (3.3) 

where the internal capacitance (𝐶𝑝) and the current source are given by equation (2.21). 

Using the electrostatic principle, the force between electrodes and the microbeam can be 

written as follows 

𝐹𝑒𝑠 =
휀0𝑏 𝐻(𝑥− 𝑑)

2
(

𝑉𝐷𝐶
2

(𝑔0 −𝑤𝑟𝑒𝑙
𝑝 )

2
−

𝑉𝐷𝐶
2

(𝑔0 + 𝑤𝑟𝑒𝑙
𝑝 )

2
) (3.4) 

In equation (3.4), 휀0 is the permittivity of free space, 𝐻(𝑥) is the Heaveside function, 𝑉𝐷𝐶  

is the applied DC voltage to the microbeam, 𝑔0 is the air gap between electrodes (the 

system is assumed to be symmetrical). It is obvious that the electrostatic force is an 

inherent source of nonlinearity. In order to investigate the nonlinearity, the total deflection 

of the microbeam can be considered as 

𝑤𝑟𝑒𝑙
𝑝 (𝑥, 𝑡) = 𝑤𝑠𝑡 (𝑥) +wd(𝑥, 𝑡) (3.5) 

which is the summation of static (𝑤𝑠𝑡 ) and dynamic (𝑤𝑑) deflection of the beam. By 

Substituting equation (3.5) into equation (3.4) and using a Taylor series expansion about 

the equilibrium position (𝑤𝑠𝑡 = 0) up to the ninth-order, the electrostatic force (𝐹𝑒𝑠) can 

be approximated as follows 

𝐹𝑒𝑠 =
휀0𝑏 𝑉𝐷𝐶

2  𝐻(𝑥− 𝑑)

2
(
4𝑤𝑑
𝑔0
3
+
8𝑤𝑑

3

𝑔0
5
+
12𝑤𝑑

5

𝑔0
7
+
16𝑤𝑑

7

𝑔0
9
+
20𝑤𝑑

9

𝑔0
11

+⋯ ) (3.6) 

It is noticeable that the number of terms in the electrostatic force approximation depends 

on the different parameters such as amplitude of base excitation and damping coefficient.   

Considering equation (3.6) and using the Galerkin decomposition method, the spatial 

dependence can be eliminated in equation (3.1). To this end, the deflection of the 

microbeam can be represented as a series expansion in terms of the eigenfunctions of the 

microbeam, i.e. 

wd(𝑥, 𝑡) =∑𝑈𝑖(𝑡)𝜑𝑖(𝑥)

𝑁

𝑖=1

 (3.7) 
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where 𝜑𝑖(𝑥) is the ith linear undamped mode shape of the straight microbeam and 𝑈𝑖(𝑡) 

is the ith generalized coordinate. By considering the approximated electrostatic force and 

using the Galerkin method, equations (3.1) and (3.4) can be converted into a system of 

differential equations. Considering a single-mode approximation (N=1) yields the 

following equations 

𝑀�̈�(𝑡) + 𝐶 �̇�(𝑡) + (𝐾𝑚 +𝐾𝑒)𝑈(𝑡) − 휃𝑝𝑣𝑝(𝑡) +𝐾𝑛1𝑈
3(𝑡) + 𝐾𝑛2𝑈

5(𝑡)

+ 𝐾𝑛3𝑈
7(𝑡) + 𝐾𝑛4𝑈

9(𝑡) = 𝐹𝑏 cos(Ω𝑡) 
(3.8a) 

�̇�𝑝(𝑡) + 𝜆 𝑣𝑝(𝑡) + 𝜅 �̇�(𝑡) = 0 (3.8b) 

where 

𝐾𝑒 = 𝑎1∫ 𝜑2(𝑥)𝐻(𝑥 − 𝑑)
𝐿

0

𝑑𝑥,     휃𝑝 = 𝜗𝑝  
𝑑𝜑(𝐿)

𝑑𝑥
, 

𝐾𝑛1 = 𝑎2∫ 𝜑4(𝑥)𝐻(𝑥 − 𝑑)
𝐿

0

𝑑𝑥,          𝜅 =  
𝑒̅31𝑏(ℎ𝑝 + ℎ𝑠̃)

2𝐶𝑝
(
𝑑𝜑(𝐿)

𝑑𝑥
) 

 𝐾𝑛2 = 𝑎3∫ 𝜑6(𝑥)𝐻(𝑥− 𝑑)
𝐿

0

𝑑𝑥,         𝜆 =
1

2𝑅𝐶𝑝
   

𝐾𝑛3 = 𝑎4∫ 𝜑8(𝑥)𝐻(𝑥 − 𝑑)
𝐿

0

𝑑𝑥 , 𝐾𝑛4 = 𝑎5∫ 𝜑10(𝑥)𝐻(𝑥− 𝑑)
𝐿

0

𝑑𝑥, 

𝐹𝑏 = 𝑧0Ω
2(𝑚∫ 𝜑(𝑥)

𝐿

0

𝑑𝑥 +𝑀𝑡 ∫ 𝜑(𝑥)
𝐿

0

𝛿(𝑥 − 𝐿)𝑑𝑥), 

(3.9) 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4 and 𝑎5  have been given in Appendix A. For convenience, equation 

(3.8a) can be rewritten as  

�̈�(𝑡) + 2𝜇𝜔𝑛�̇�(𝑡) +𝜔𝑛
2𝑈(𝑡) − 𝜒𝑣𝑝(𝑡) + 𝛼𝑈

3(𝑡) + 𝛽𝑈5(𝑡) + 𝛾𝑈7(𝑡)

+ 𝛿𝑈9(𝑡) = 𝐹 cos(Ω𝑡) 
(3.10) 

 

 

 



 

44 

 

where 

𝜇 =
𝐶

2𝑀𝜔𝑛
,         𝜔𝑛 = √

𝐾𝑚 + 𝐾𝑒
𝑀

,        𝜒 =
휃𝑝
𝑀
,       𝛼 =

𝐾𝑛1
𝑀

,      𝛽 =
𝐾𝑛2
𝑀
 ,  

𝛾 =
𝐾𝑛3
𝑀

,        𝛿 =
𝐾𝑛4
𝑀

,      𝐹 =
𝐹𝑏
𝑀

 

(3.11) 

equation (3.10) shows that the electrostatic forces create a negative stiffness which 

opposes the mechanical stiffness. Above a certain applied DC voltage, electrostatic 

MEMS devices can become unstable. This voltage is known as the pull-in voltage [93]. 

To determine the analytical solution of transverse vibration of the mircobeam, the method 

of harmonic balance is used. By assuming a steady state periodic response, 𝑈(𝑡) and 

𝑣𝑝(𝑡) can be written as 

𝑈(𝑡) = 𝑎1(𝑡) sin(Ω𝑡) + 𝑏1(𝑡) cos(Ω𝑡) (3.12) 

𝑣𝑝(𝑡) = 𝑎2(𝑡) sin(Ω𝑡) + 𝑏2(𝑡) cos (Ω𝑡) (3.13) 

with slowly varying coefficients such as 

�̇�(𝑡) = (�̇�1 +𝑎1Ω) cos(Ω𝑡) + (�̇�1 − 𝑏1Ω) sin(Ω𝑡) (3.14) 

�̇�𝑝(𝑡) = (�̇�2 + 𝑎2Ω) cos (Ω𝑡) + (�̇�2 − 𝑏2Ω) sin(Ω𝑡) (3.15) 

�̈�(𝑡) = Ω(2�̇�1 − 𝑏1Ω) cos(Ω𝑡) −Ω(2�̇�1 +𝑎1Ω) sin(Ω𝑡) (3.16) 

Substituting the above expressions into equations (3.9) and (3.10), neglecting higher 

harmonics and balancing terms multiplied by sin(Ω𝑡) and cos(Ω𝑡) from the mechanica l 

equation, the following equations are obtained 

2𝜇𝜔𝑛�̇�1 −2Ω�̇�1 = 𝑄𝑎1 + 𝜒𝑎2 +2𝜇𝜔𝑛𝑏1Ω (3.17) 

2𝜇𝜔𝑛�̇�1 + 2Ω�̇�1 = 𝑄𝑏1 + 𝜒𝑏2 + 𝐹− 2𝜇𝜔𝑛𝑎1Ω (3.18) 

where 

𝑟2 = 𝑎1
2 + 𝑏1

2 (3.19) 
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𝑄 = −𝜔𝑛
2 +Ω2 −

3

4
𝛼𝑟2 −

5

8
𝛽𝑟4 −

35

64
𝛾𝑟6 −

63

128
𝛿𝑟8  (3.20) 

Applying the same approach to the electrical equation yields 

𝜅�̇�1 + �̇�2 = 𝑏2Ω− 𝜆𝑎2 +𝜅𝑏1Ω (3.21) 

𝜅�̇�1 + �̇�2 = −𝑎2Ω − 𝜆𝑏2 −𝜅𝑎1Ω (3.22) 

In steady state, all time derivatives vanish so that we can re-write the mechanica l 

amplitude equations as 

0 = 𝑄𝑎1 + 𝜒𝑎2 +2𝜇𝜔𝑛𝑏1Ω (3.23) 

0 = 𝑄𝑏1 + 𝜒𝑏2 + 𝐹 − 2𝜇𝜔𝑛𝑎1Ω (3.24) 

and the electrical amplitude equations as 

0 = 𝑏2Ω− 𝜆𝑎2 + 𝜅𝑏1Ω (3.25) 

0 = 𝑎2Ω + 𝜆𝑏2 +𝜅𝑎1Ω (3.26) 

The electrical coefficients 𝑎2 and 𝑏2 can be obtained from equations (3.25) and (3.26) as 

𝑎2 =
𝜅Ω

Ω2 + 𝜆2
(𝜆𝑏1 − 𝑎1Ω) (3.27) 

𝑏2 = −
𝜅Ω

Ω2 + 𝜆2
(𝜆𝑎1 + 𝑏1Ω) (3.28) 

Substituting the steady-state solutions for 𝑎2 and 𝑏2 into the steady-state equations for 𝑎1 

and 𝑏1 yields 

0 = Λ𝑎𝑎1 + Λ𝑏𝑏1 (3.29) 

𝐹 = Λ𝑏𝑎1 −Λ𝑎𝑏1 (3.30) 
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where 

Λ𝑎 = 𝑄 −
𝜅𝜒Ω2

Ω2 + 𝜆2
, Λ𝑏 = 2𝜇𝜔𝑛Ω+

𝜅𝜒𝜆Ω

Ω2 + 𝜆2
 (3.31) 

Squaring and adding equations (3.29) and (3.30) gives an eighteenth order nonlinear 

algebraic equation in 𝑟 as 

𝐹2 = 𝑟2(Λ𝑎
2 + Λ𝑏

2 ) (3.32) 

and the frequency response can be determined by numerically finding the positive real 

roots of equation (3.32). Similarly, by squaring and adding equations (3.27) and (3.28), 

the response voltage amplitude can be written in terms of the mechanical amplitude as 

𝑆 = 𝑟√Γ𝑎
2 +Γ𝑏

2 (3.33) 

where 

Γ𝑎 =
𝜅𝜆Ω

Ω2 + 𝜆2
, Γ𝑏 =

𝜅Ω2

Ω2 + 𝜆2
  (3.34) 

and 𝑟 is an implicit function of the forcing amplitude, damping, electromechanica l 

coupling, and electrical dissipation as derived from the roots of equation (3.32). The peak 

power through the resistance can then be written as 

𝑃0 =
𝑆2

𝑅
 (3.35) 

and the average power is  

�̅�0 =
𝑆2

2𝑅
 (3.36) 

In this subsection a stability analysis is provided because only a few solutions of the 

eighteen total roots for 𝑟 in equation (3.32) can be realized in practice. In order to ascertain 

the stability of the solutions, it is first necessary to rewrite equations (3.17), (3.18), (3.21) 

and (3.22) in matrix form 

𝐀 �̇� = 𝐃(𝐱) (3.37) 
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where 

𝐀 = [

2𝜇𝜔𝑛
2Ω

−2Ω
2𝜇𝜔𝑛

𝜅
0

0
𝜅

    

0
0

0
0

1
0

0
1

]  ,         𝐃(𝐱) = [

𝑄𝑎1 +𝜒𝑎2 +2𝜇𝜔𝑛𝑏1Ω
𝑄𝑏1 +𝜒𝑏2 +𝐹 − 2𝜇𝜔𝑛𝑎1Ω

𝑏2Ω− 𝜆𝑎2 +𝜅𝑏1Ω
−𝑎2Ω− 𝜆𝑏2 − 𝜅𝑎1Ω

] (3.38) 

with the vector 𝐱 = [𝑎1 𝑏1 𝑎2 𝑏2]
T.  One may write equation (3.37) as 

 �̇� = 𝐆(𝐱) (3.39) 

where 𝐆(𝐱) = 𝐀−1 𝐃(𝐱). The stability can be investigated by constructing the Jacobian 

matrix of  𝐆(𝐱) and calculating its value at the steady state values for 𝐱, which are 

indicated as 𝐱ss  

𝐉 =
𝜕𝐆

𝜕𝐱
|𝐱=𝐱ss 

(3.40) 

The values for 𝐱ss  can be found through the solutions of equations (3.23), (3.24), (3.25) 

and (3.26). By evaluating the eigenvalues of the Jacobian matrix, the stability of the 

steady state solutions is determined. If all of the eigenvalues associated with the steady 

state solution have negative real parts, then the solution is asymptotically stable. 

Otherwise, if one eigenvalue has a positive real part, then the solution is unstable. 

 

3.2. Numerical Results and Discussion  

In order to study the behaviour of the proposed model, a clamped-free microbeam is 

considered with the same characteristics given in Table 2.1. The results will be discussed 

in the following subsections. At first, a parametric study is presented to analyse the effect 

of different parameters in the performance of the harvester. Afterwards, the sustainability 

of the proposed model will be investigated and finally a tuneable MEMS piezoelectr ic 

harvester is designed to cover a given range of vibration source. 

3.2.1. Parametric study 

This subsection investigates the effect of different parameters in the design of a tuneable 

harvester. Based on the proposed model, electrostatic forces create a negative stiffness, 
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which decreases the equivalent stiffness of the structure. Generally, electrostatic stiffness 

increases by increasing the applied DC voltage or/and decreasing initial gaps between 

electrodes. Based on the Taylor expansion of this force at a constant initial gap, by 

increasing the applied DC voltages to the electrostatic electrodes, the electrical stiffness 

of the structure is increased and leads to the decrease of the equivalent stiffness of the 

structure (see equation (3.8a)). Consequently, at the critical value of the applied DC 

voltage called the pull-in voltage, the system has a static instability by undergoing a 

pitchfork bifurcation [47]. Figure 3.2 shows that increasing the air gap between the 

electrodes decreases the electrostatic force and increases the pull-in voltage. 

  

(𝑎)  (𝑏)  

Figure 3.2 Variation of the (a) pull in voltage and (b) the electrostatic force with the air 

gap between the electrodes (𝑔0). 

On the other hand, decreasing the equivalent stiffness of the structure decreases the 

resonance frequency of the system. Figure 3.3 illustrates that by considering different air 

gaps between electrodes the short-circuit resonance frequency of the system decreases 

with increasing DC voltage and becomes zero at the pull-in voltage. 
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Figure 3.3 Variation of the natural frequency with electrostatic voltage for different 

air gaps when 𝐿𝑒 = 0.5 𝐿. 

The dynamic behaviour of the system is also affected by the nonlinearity of the 

electrostatic force. In order to study the dynamic analysis of the harvester using the 

harmonic balance method (HBM), the electrostatic force is approximated by a Taylor 

series expansion. In addition, an arbitrary case (𝑔0 = 30 μm, 𝐿𝑒 = 0.5 𝐿, 𝑉𝐷𝐶 = 8 𝑉,

𝑧0 = 0.3 μm and 𝑅 = 100 kΩ) has been considered to show the results. It is noticeable 

that some of the parameters of the considered case may change in some figures. Figure 

3.4 illustrates that acceptable convergence can be obtained by including the terms up to 

ninth-order. 
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Figure 3.4 Displacement frequency response curve for different order of nonlinearity  

The presented results based on the ninth order nonlinearity are verified by numerica l 

results. Figure 3.5 shows a good agreement between the results obtained by harmonic 

balance and those achieved by time integration (Runge-kutta forth-order method). In the 

numerical method, the exact form of the electrostatic force is considered. According to 

the dynamic analysis of the system the peak output power can be obtained from equation 

(3.35). Adjusting the resonance frequency of the system to match the frequency of the 

base excitation will increase the harvested power. Also, choosing the appropriate 

resistance can increase the harvested power. As illustrated in Figure 3.6a, the optimal 

resistance depends on the frequency of base excitation and Figure 3.6b shows that the 

optimal resistance reduces as the frequency of the base excitation increases. 
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Figure 3.5 Displacement frequency response curve  

According to the dynamic analysis of the system, the peak output power can be obtained 

from equation (3.35). Adjusting the resonance frequency of the system to match the 

frequency of the base excitation will increase the harvested power. Also, choosing the 

appropriate resistance can increase the harvested power. As illustrated in Figure 3.6a, the 

optimal resistance depends on the frequency of base excitation and Figure 3.6b shows 

that the optimal resistance reduces as the frequency of the base excitation increases. 

The dynamic behaviour of the system can be affected by the applied DC voltage, the 

length of the electrode, the initial gap and the resistance. Therefore, these parameters can 

significantly affect the dynamic behaviour of the system. Increasing the length of the 

electrodes or/and decreasing initial gap at constant voltage increases softening effect. 

However, it will decrease the harvested power. 
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(𝑎)  (𝑏)  

Figure 3.6 (a)Variation of the piezoelectric peak power with load resistance for different 

frequencies of base excitation (b) Variation of the optimal resistance for different 

frequencies of base excitation 

Figure 3.7 investigates the effect of electrode length and resistance on the dynamics of 

the system at constant applied DC voltage. As shown in Figure 3.7a, the length of the 

electrode is a key parameter in changing the resonance frequency of the system and also 

the nonlinearity of the system is affected by this parameter. Moreover, changing the value 

of the resistance changes the nonlinearity of the system (see Figure 3.7b). Therefore, by 

considering constant values for initial gap and electrodes length, the resonance frequency 

of the harvester can be controlled by the applied DC voltage and resistance to maximize 

the harvested power. 

  

(a) 𝑅 = 70 kΩ (b)𝐿𝑒 = 0.5 𝐿   

Figure 3.7 Variation of the piezoelectric peak power with frequency of base excitation  
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Increasing the range of operation frequency of the harvester based on the increasing 

applied DC voltage and the length of the electrode is limited due to the pull-in instability. 

However increasing the electrostatic force decreases the vibration of the microbeam and 

leads to a decrease in the output power. Therefore, the system needs to be optimized for 

maximum harvested power. On the other hand, due to the softening nonlinearity there are 

three solutions for the beam response within the frequency range closed to resonance and 

in order to harvest maximum power the beam response should always occur at the higher 

of the two solutions and close to resonance (but not too close to risk jumping down to the 

low amplitude solution). However, the response at the high amplitude solution mostly 

depends on the initial conditions and hence it cannot be guaranteed. The control system 

using the applied DC voltage can be used to ensure the harvester always responds in the 

higher amplitude solution. For a given excitation frequency, if the harvester response 

happens to be in the lower amplitude solution, the DC voltage is increased until a region 

is reached where the harvester only has a single solution. The DC voltage is then slowly 

reduced, and the harvester follows the high amplitude solution until the resonance is 

obtained.  

  

(a) (b) 

Figure 3.8 (a) Frequency range of the harvester based on increasing DC voltage (b) 

Voltage range for different lengths of electrodes to cover the frequency range  

Figure 3.8a shows that electrostatic forces, a frequency range between 312.2 Hz to 163.4 

Hz is accessible. However, the amount of variation in the voltages that requires covering 

the given range of operation frequency will be dependent upon the length of the 

electrodes, as shown in Figure 3.8b.  
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In some cases, it is possible to have a vibration source with a constant frequency and a 

variable amplitude of base excitation. Figure 3.9 investigates the variation in the output 

power when the excitation amplitude is changed at a constant frequency. This figure 

shows that by increasing the amplitude of the base excitation, the harvested power 

increases. However, depending on the frequency of the vibration source, jumping is 

observed in some excitation amplitudes ranges. 

 

Figure 3.9 Variation of the piezoelectric peak power with the frequency of base 

excitation.  

 

3.2.2. Sustainability of the proposed harvester 

In the proposed model the voltage source has been used to change the natural frequency 

of the harvester. However, this source can be charged by the harvested power from the 

electrostatic harvester.  In general, electrostatic harvesters have passive structures which 

need an energy cycle to convert mechanical energy into electrical energy [94]. As 

discussed in Chapter 1, there are two common cycles which use charge or voltage 

constraint concepts in the conversion cycle. Figure 3.1 shows that the proposed model 

consists of two variable capacitors which are connected to the same DC voltage [56]. The 

variable capacitors are charged by 𝑉𝐷𝐶  and their capacitances can be expressed as 

𝐶𝑣1(𝑡) =
휀0  𝐴𝑒 

(𝑔0 + 𝑤𝑎𝑣(𝑡))
 ,   𝐶𝑣2(𝑡) =

휀0 𝐴𝑒 

(𝑔0 −𝑤𝑎𝑣(𝑡))
 (3.44) 
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where 𝐴𝑒 is the overlapping area between the fixed and moveable electrodes and 𝑤𝑎𝑣 is 

the average value of 𝑤 in this area. The total amount of energy stored in the capacitors is  

𝑈𝑡(t) =
1

2
(𝐶𝑣1(t) + 𝐶𝑣2(t))𝑉𝐷𝐶

2  (3.45) 

and consequently, the generated instantaneous power can be represented by  

𝑃𝑡(𝑡) =
𝑑𝑈𝑡
𝑑𝑡

=
휀0  𝐴𝑒  𝑉𝐷𝐶

2

2
(

1

(𝑔0 −𝑤av(𝑡))
2
 −

1

(𝑔0 +𝑤av(𝑡))
2
 )
𝑑𝑤av
𝑑𝑡

 (3.45) 

As illustrated in Figure 3.10, the instantaneous power obtained from the capacitors varies 

between positive and negative values during each cycle. Therefore, the voltage source is 

self-chargeable. 

 

Figure 3.10 Variation of the instantaneous electrostatic power with time when 𝐿𝑒 =

0.01 L and Ω = 253 Hz  

In real life applications, they are some power losses in the electrical circuit which 

generally come in the form of conduction and switching losses. The calculation of 

conduction losses is relatively simple but the calculation of switching is dependent on a 

number of factors such as parasitic effect, impedance of the gate drive circuit and 

temperature. On the other hand, deformation of the mechanical structure of the harvester 

results in charges with opposite polarities appearing on same surface, leading to current 

loss in the attached metal electrode. Considering all these effects we can calculate the 

energy conversion efficiency.  
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3.2.3. Design strategy 

The design of the tuneable harvester should be preceded by an analysis of the vibration 

source. There are two main design considerations: the first is related to the maximum 

value of the excitation frequency (Ω𝑚𝑎𝑥) which is important when choosing the 

dimensions of the microbeam to match the resonance frequency of the harvester 

with Ω𝑚𝑎𝑥 . The pull-in instability and the clearance between the electrodes are the second 

design factor. In addition, because of the strong coupling between the mechanical and 

electrical equations, resistance can significantly change the mechanical behaviour of the 

harvester. Therefore, this resistance is a key parameter in analysing the vibration 

amplitude of the harvester. As an example, a vibration source with a frequency range of 

70-110 Hz and an amplitude of 0.25 μm is considered. According to the design 

considerations, the first step will be to choose geometric properties of the harvester to 

match the maximum value of the excitation frequency (110 Hz). Like any other design 

problem, there is no unique solution. Table 3.2 gives one possibility. In order to choose 

the geometrical parameters, care has been taken to select reasonable dimensions. The 

dimensions that are used here are similar to those used in recent experimental and 

theoretical research papers [95, 96] 

Table 3.1 Geometrical properties of the microbeam and piezoelectric layers 

Design Variable  Value 

Length (L) 4600  μm 

Width (b) 2000  μm 
Thickness (ℎ𝑠̃) 3.005 μm 

Thickness (ℎ𝑝) 2 μm 

Tip mass (𝑀𝑡) 2.8108e-07 

 

The second step in designing the harvester is to find the optimal value of the resistance 

when the harvester works at Ω𝑚𝑎𝑥 . As shown in Figure 3.11a, without any electrostatic 

force the optimal resistance is 786 kΩ. In the third step, by analysing the vibration 

response of the harvester, the minimum initial gaps between electrodes can be determined 

to avoid any contact between the microbeam and the electrodes. Based on this analysis, 

the initial gap between the electrodes is 165 μm  (see Figure 3.11b). 
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(a) (b) 

Figure 3.11 (a) Variation of the piezoelectric peak power with load resistance for a 

linear harvester (b) Displacement frequency response curve considering optimal 

resistance  

In order to change the resonance frequency of the harvester, there are two possibilit ies : 

using only the variable voltage source or simultaneously varying the load resistance and 

the voltages source. In the first case, the harvester is designed based on a constant load 

resistance. As shown in Figure 3.12, by considering the optimal value of the resistance at 

𝛺𝑚𝑎𝑥  as a constant load resistance, the frequency range can be covered by changing the 

applied DC voltage from zero up to 50.5 V. The pull-in voltage of the microbeam is 

greater than 50.5 V and the clearance between the electrodes is considered in the second 

step.  
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Figure 3.12 Variation of the piezoelectric peak power with DC voltage and excitation 

frequency  (𝐿𝑒 = 0.5 L)  

According to Figure 3.6b, by decreasing the frequency of excitation, the optimal 

resistance value increases. On the other hand, based on Figure 3.7b, increasing the value 

of load resistance increases the softening effect and this can be considered a second 

frequency adjusting parameter. Therefore, in the second case, the harvester is designed 

based on finding the optimal load resistance at each frequency of excitation. Figure 3.13 

shows the harvested power by considering the variable load resistance and voltage source 

at 70 and 80 Hz. Choosing suitable values for the load resistance and the applied DC 

voltage can increase the harvested power. At 70 Hz, the harvested power can be 

maximized by applying 43.6 V and using 1.9 MΩ load resistance. However, in order to 

increase the harvested power at 80 Hz, the tuning parameters can be considered as 𝑉𝐷𝐶 =

35.3 V and 𝑅=1.5 MΩ. 
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(a) 70 Hz (b) 80 Hz 

Figure 3.13 Variation of the piezoelectric peak power by changing load resistance and 

applied voltage at 70 and 80 Hz  

By comparing the results of these two cases, the harvested power can be increased by 

using variable resistance and the difference is more obvious when the operational 

frequency range of the harvester is increased (see Figure 3.14a). As shown in Figure 

3.14b, using variable resistance decreases the range of voltage source required to cover 

the given frequency range. In general, the design process can be divided into four steps 

which are shown in Figure 3.15.  

  

(a) (b) 
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(c) 

Figure 3.14 (a) Frequency range of the harvester based on increasing DC voltage (b) 

Voltage range for covering the frequency range (c) optimal resistance at each frequency 

 

 

Figure 3.15 Design flow chart 
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3.3. Closure 

In this chapter, the design of a MEMS piezoelectric harvester, capable of adjusting its 

resonance frequency to the excitation frequency has been studied. The steady-state 

solution was obtained by using the harmonic balance method and the results were verified 

numerically. It was observed that the analytical solution can lead to significant savings in 

computational time, particularly when there is a need for multiple runs, when performing 

parametric studies for design purposes for example. Although the analytical solution 

requires an approximation to the electrostatic force by using a truncated Taylor’s series, 

a convergence study can determine the number of terms that have to be retained in order 

to maintain sufficient accuracy. The results showed that the operating frequency 

bandwidth of the harvester can be increased by using a variable DC voltage source. In 

addition, due to the strong coupling between electrical and mechanical equations, the 

results showed that load resistance can be considered a second adjusting frequency 

parameter. A MEMS piezoelectric harvester was designed for a vibration source with a 

frequency range of 70-110 Hz and 0.25 μm amplitude of base excitation. The 

disadvantage of the proposed system is the effect of the softening nonlinearity of the 

electrostatic part of the harvester which results in a lower level of harvested energy. In 

addition, due to manufacturing uncertainties sometimes there is a need to tune the  

harvester’s resonance frequency to a higher frequency, which is behind the capability of 

the model proposed in this chapter. In order to tackle this problem, the next chapter 

includes devising a mechanism that has a hardening effect on the system and hence the 

frequency of the harvester can be adjusted on both sides of its linear resonance frequency.  
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Chapter 4: Effects of manufacturing 

uncertainties in MEMS Energy 

Harvesters  

 

This chapter provides an introduction to Uncertainty Analysis (UA) in general and 

particularly in MEMS devices. A brief description of different methods for uncertainty 

representation is given and then two main concepts in UA, namely representation and 

propagation are discussed. The focus is then placed on the different types of uncertain 

parameters in designing a MEMS piezoelectric harvester. Afterwards, an electrostatic 

device is proposed to improve the performance of MEMS piezoelectric harvesters in the 

presence of manufacturing uncertainties. In order to show the results, an experimenta l ly 

measured statistical properties available in the literature is considered, and Monte Carlo 

Simulation (MCS) is used for uncertainty propagation.  

4.1. Introduction to Uncertainty Analysis  

Nowadays, real-world structures are subject to uncertainties arising from material 

imperfections, machining tolerance, and manufacturing processes. Using determinis t ic 

models based on nominal parameters might over- or under-estimate the behaviour of the 

actual structures. Therefore, it is necessary to create statistic models which can be more 

reliable by providing additional information. 

Generally, there are two types of uncertainties: epistemic and aleatoric (irreducible and 

inherent) [97]. Epistemic uncertainty is also known as reducible uncertainty, subjective 

uncertainty, and model form uncertainty. There are two types of epistemic uncertainty: 

the first type is uncertainty which is related to a model itself and can be reduced by 

increasing knowledge about the system or the surrounding environment. The second type 

of epistemic uncertainty is uncertainty in model parameters. For example, uncertainty in 

the estimation of the relevant parameters can increase uncertainty in the model 

(parametric epistemic uncertainty). Parametric epistemic uncertainty can be reduced by 

increasing the number of measurements, or by using more relevant data to estimate the 
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parameters. On the other hand, aleatory uncertainty is induced by inherent randomness. 

There are two types of aleatory uncertainty: variable aleatory uncertainty and physical 

aleatory uncertainty [98]. All variations in structural parameters due to the accumula t ion 

of manufacturing tolerances or environmental erosion are considered as variable aleatory 

uncertainty, which is the main concern of this chapter. However, physical aleatory 

uncertainty is caused by physical phenomena and remains the same even if all the 

stochastic variables of the problem were replaced by deterministic values. The different 

types of uncertainty have been summarized in Figure 4.1. 

 

 
 

Figure 4.1 Aleatory and epistemic uncertainty 

 

4.2. Representation and Propagation of Uncertainty 

In order to deal with uncertainty in the field of structural dynamics, there are two main 

concerns: namely representation and propagation which are discussed in the following 

subsections. 

4.2.1. Representation 

Uncertainty can be modelled by different frameworks, which may be categorised into two 

groups: probabilistic models and non-probabilistic models. There are many probabilis t ic 

models such as classical probability theory (or random parameters), random fields, 

Bayesian, Evidence (Dempster–Shafer theory (DST)) and Possibility theory. For 

example, in probability theory, a domain of possible values for the random parameter X 

is defined and the frequency of occurrences or likelihood of the random parameter being 

inside a certain domain is given by a Probability Density Function (PDF). The PDF can 

be used to evaluate the probability of occurrence of a random parameter in a particular 

domain of interest [51]. Random fields theory is used to model the spatial variation of 
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uncertain parameters over a region in which the variation takes place. Alternatively, there 

are some methods based on the non-probabilistic approach such as Interval model and 

Fuzzy sets. In the Interval approach, the uncertain variables can be variable within 

intervals between extreme values and no assumption is made about the probability 

distribution of the uncertain variables. 

The Fuzzy logic is one of the elder statesmen of contenders within probability theory, 

which models uncertainty based on indistinctive definition (instead of probability 

distribution).  In Fuzzy Set theory, an element x may be associated (with given weight) 

with a number of different sets. Initially, the most intensive use of Fuzzy logic in 

engineering was associated with control, however in recent years Fuzzy Sets have been 

used a great deal to construct data-based classifiers for condition monitoring and 

structural health monitoring applications [53]. 

4.2.2. Uncertainty Propagation 

There are different uncertainty propagation methods such as the Monte Carlo Simula t ion 

(MCS) method, the asymptotic integral method, and the first and second order 

perturbation methods. Monte Carlo Simulation (MCS) is the most accurate and reliable 

propagation method, which is explained in this section. MCS is based on a sampling 

method and has been frequently used in the literature for the purposes of uncertainty 

propagation. 

In MCS, a large number of samples of uncertain parameters is generated according to the 

PDF of parameter, while the respective response values are evaluated from determinis t ic 

analysis. The mean and covariance matrix of the output vector from the 

analytical/numerical model can then be directly evaluated from the scatter of responses 

and the system parameters that provide the input to the simulation [97]. 

The generation of samples in the Monte-Carlo process can be carried out via different 

methods such as multivariate normal sampling [99], Latin Hypercube Sampling (LHS)  

and Orthogonal Array Sampling [100]. Multivariate normal sampling and LHS have been 

used in this thesis. Generally, this method is used when the uncertain parameters belong 

to a multivariate normal distribution. In cases where the uncertain parameters are 

uncorrelated; the covariance matrix is diagonal. Therefore, the sampling is 

straightforward as the samples from each component of the random vector can be taken 

independently to generate a number of sample vectors of the random vector. It is 
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noteworthy that once the uncertain parameters are correlated, the procedure will be 

slightly different.  

 

4.3. Manufacturing uncertainties in MEMS devices 

Demands for innovative MEMS devices has led to engineers developing micro 

fabrication techniques.  Generally, MEMS are manufactured based on two lithography-

based methods: bulk and surface micromachining [101]. Bulk micromachining is the 

earliest and best-characterized method of producing micromachined devices. It mainly 

consists of wet etching of silicon wafer, which is the most common substrate for 

micromachined structures. Unlike bulk micromachining, surface micromachining builds 

microstructures by deposition and etching different structural layers over a substrate. In 

addition, there are other processes such as mask alignment, chemical polishing and drying 

which need to be carried out in the fabrication of MEMS devices. Therefore, the MEMS 

fabrication processes do not guarantee infinite repeatability of the mechanical or 

geometrical properties of final fabricated devices. Generally, manufacturing tolerances of 

MEMS devices are high and in some cases, they can be higher than ±10% of nomina l 

values [102]. This fact should be taken into account while designing MEMS, because it 

can significantly affect the performance of the devices. 

Uncertainty analysis of MEMS devices has been studied by several authors. Gurav et al. 

[103] investigated design optimization under uncertainty for micro energy harvesters. 

They considered both uncertainties in geometric parameters and material properties, and 

showed that accounting for uncertainties would sacrifice 20% of the power output 

compared to deterministic optimization results. Shanmugavalli et al. [104] illustrated the 

use of interval methods to study the electromechanical behaviour of MEMS in the 

presence of manufacturing and process uncertainties. They achieved a robust and reliable 

analysis of pull-in voltage of fixed-fixed beam in a most efficient way. Agarwal and Aluru 

[105] presented a framework to quantify different kinds of outputs in MEMS structures 

such as deformation and electrostatic pressure in these devices. The same 

researchers [106] proposed a framework to include the effect of uncertain design 

parameters in MEMS devices. Based on this framework, they investigated the effect of 

variations in Young's modulus, induced because of variations in the manufactur ing 

process parameters or heterogeneous measurements, on the performance of a MEMS 
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switch. Alexeenko et al. [102] studied the effects of uncertainties in gas damping models, 

geometry, and mechanical properties on the dynamics of MEMS capacitive switch. They 

showed that due to the parameter uncertainties, the nominal switch, i.e. the switch with 

the average properties, does not actuate at the mean actuation voltage. Additiona lly, 

device-to-device variability leads to significant differences in dynamics. 

Based on the experimental results [102], the most important variation of parameters in 

the fabrication of MEMS devices include thickness, air gap and Young’s modulus. These 

variations can decrease the performance of the harvester significantly. In the next section, 

an electrostatic device is proposed to compensate the adverse effect of manufactur ing 

uncertainties on the performance of MEMS piezoelectric harvesters. 

4.4. Model description and mathematical modelling 

Figure 4.2 shows the model proposed in this chapter. The model is an isotropic micro-

beam of length 𝑳, width 𝒃, thickness 𝒉, density 𝝆�̃� and Young’s modulus 𝑬�̃�, sandwiched 

with piezoceramic layers having length 𝑳𝒄, thickness 𝒉�̃�, Young’s modulus 𝒄𝟏𝟏
𝑬  and 

density 𝝆�̃� throughout the micro-beam length and located between two straight-shaped 

electrodes and one arc-shaped electrode. As illustrated in Figure 4.2, the piezoceramic 

layers are connected to the resistance (𝑹), and the coordinate system is attached to the 

middle of the left end of the micro-beam, where x and z refer to the horizontal and vertical 

coordinates respectively. The free end of the micro-beam is attached to two arc-shaped 

comb fingers, which subtend angle 𝜶 at the base of the beam and remain parallel to the 

fixed arc-shaped electrode. The governing equation of transverse motion can be written 

as  

𝜕2

𝜕�̂�2
(𝐸𝐼(�̂�, �̂�1)

𝜕2�̂�𝑟𝑒𝑙
𝑝

𝜕�̂�2
)+   𝑚(�̂�, �̂�2)

𝜕2�̂�𝑟𝑒𝑙
𝑝

𝜕�̂�2
+ �̂�𝑎

𝜕�̂�𝑟𝑒𝑙
𝑝

𝜕�̂�

+ 𝐹𝑓(�̂�3)
𝜕2�̂�𝑟𝑒𝑙

𝑝

𝜕�̂�2
− �̂�𝑝(�̂�4) 𝑣𝑝(�̂�) (

𝑑𝛿(𝑥)

𝑑�̂�
−
𝑑𝛿(�̂� − 𝐿𝑐)

𝑑�̂�
) 

= 𝐹𝑒(�̂�5) + 𝑧0�̂�
2 (𝑚(�̂�, �̂�2) +𝑀𝑡𝛿(�̂� − 𝐿))cos(�̂��̂�) 

(4.1) 

 

and subject to the following boundary conditions 
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�̂�𝑟𝑒𝑙
𝑝 (0, �̂�) = 0     

𝜕�̂�𝑟𝑒𝑙
𝑝 (0, �̂�)

𝜕�̂�
= 0          

𝜕

𝜕𝑥
(𝐸𝐼(�̂�, �̂�1)

𝜕2�̂�𝑟𝑒𝑙
𝑝 (𝐿, 𝑡̂)

𝜕𝑥2
) = 𝑀𝑡 (

𝜕2�̂�𝑟𝑒𝑙
𝑝 (𝐿, 𝑡̂)

𝜕𝑡̂2
)   

𝜕2�̂�𝑟𝑒𝑙
𝑝 (𝐿, 𝑡̂)

𝜕𝑥2
= 0 

(4.2) 

 

where �̂�1, �̂�2 , … , �̂�𝑛 shows the stochastic parameters, which have been used as an input 

to the mathematical model. 

 
 

  

Figure 4.2 Schematic of the proposed energy harvester 

In equation (4.1), �̂�𝑟𝑒𝑙
𝑝

 is the transverse deflection of the beam relative to its base at 

position �̂� and time �̂�,  𝑐𝑎 is the viscous air damping coefficient, 𝛿(�̂�) is the Dirac delta 

function, 𝑧(�̂�) is the base excitation function, 𝐹𝑓  is the follower force which is applied to 

the harvester by the arc-shaped electrode, 𝐹𝑒 is the electrostatic force which is applied to  

the harvester by the straight-shaped electrodes, 𝑣𝑝(�̂�) is the voltage across the electrodes 

of each piezoceramic layer, �̂�𝑝 is the coupling term. Using Kirchhoff's laws, the electrica l 

circuit equation can be expressed by  

𝐶𝑝(�̂�6)
𝑑𝑣𝑝(�̂�)

𝑑�̂�
+
𝑣𝑝(�̂�)

2𝑅
+ 𝑖𝑝

𝑝(�̂�, �̂�7) = 0 (4.3) 

where the internal capacitance (𝐶𝑝), coupling term (�̂�𝑝) and the current source (𝑖�̃�
𝑝
) can be 

obtained as  

Arc-shaped electrode 

Straight-shaped electrodes  

Straight-shaped electrodes  
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𝐶𝑝(�̂�6) =
휀3̅3
𝑠 𝑏𝐿𝑐
ℎ𝑝

,    �̂�𝑝(�̂�4) =
𝑒̅31𝑏

ℎ𝑝
 ((ℎ𝑝 +

ℎ𝑠̃
2
)
2

−
ℎ𝑠̃
2

4
), 

𝑖𝑝
𝑝(�̂�, �̂�7) =

𝑒̅31𝑏

2
(ℎ𝑝 +ℎ𝑠̃)∫

𝜕3�̂�𝑟𝑒𝑙
𝑝 (�̂�, �̂�)

𝜕�̂�2𝜕�̂�
𝑑�̂�

𝐿𝑐

0

 

(4.4) 

and 휀3̅3
𝑠  is the permittivity component at constant strain with the plane stress assumption 

for the beam. Using electrostatic principles, the electrostatic force between the micro -

beam and the straight electrodes (𝐹𝑒) can be written as [93] 

𝐹𝑒(�̂�5) =
휀0𝑏 𝐻(�̂�) 

2
(

𝑉1
2

(𝑔01 − �̂�𝑟𝑒𝑙
𝑝
)
2
−

𝑉1
2

(𝑔02 + �̂�𝑟𝑒𝑙
𝑝
)
2
) (4.5) 

where 

𝐻(�̂�) = 𝐻(�̂� − �̂�1)− 𝐻(�̂� − �̂�2) (4.6) 

In equation (4.5), 휀0 is the permittivity of free space, 𝐻(�̂�) is the Heaviside function, 𝑉1  

is the DC voltage applied to the straight electrodes, 𝑔01  and 𝑔02 are the air gaps between 

the micro-beam and the straight electrodes. By applying voltage to the arc-shaped 

electrode shown in Figure 4.2, the amplitude of 𝐹𝑓  can be tuned. Figure 4.3 shows that 

for a small angular deflection of the micro-beam (휃), the angular overlap between the 

finger and the arc-shaped electrode is always 2𝛼 and the force remains a follower force 

in all conditions.    

  

(a) (b) 

Figure 4.3 A micro-beam with an arc-shaped comb finger in its (a) unperturbed state 

and (b) perturbed state. 

Finger 
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Based on electrostatic principles, the amplitude of the follower force (𝐹𝑓) can be written 

as  

𝐹𝑓(�̂�3) =
휀0𝑏

𝑔𝑟
2
 𝑉2
2𝐿𝛼 (4.7) 

where 𝑔𝑟  is the radial gap between the comb fingers and arc-shaped electrode, b is the 

width of the resonator, L is the length of the beam (the thickness of the arc-shaped 

electrode can be ignored), and 𝑉2  is the voltage applied to the arc-shaped electrode.  For 

convenience, we introduce the following non-dimensional variables 

𝑤 =
�̂�

𝑔01
, 𝑥 =

�̂�

𝐿
, 𝑡 = �̂�√

𝐸𝐼𝐶
𝑚𝐶𝐿

4
, 𝛺 = �̂�√

 𝑚𝐶𝐿
4

𝐸𝐼𝐶
, 𝑙𝑐 =

𝐿𝑐
𝐿

 (4.8) 

where 𝐸𝐼𝐶  and 𝑚𝐶 are related to the bending stiffness and mass per unit length of the 

beam with piezoelectric layers. Substituting equation (4.8) into equations (4.1) and (4.3), 

the following non-dimensional equations are obtained 

𝜕2

𝜕𝑥2
(𝑠1(𝑥, 𝜓1)

𝜕2𝑤𝑟𝑒𝑙
𝑝

𝜕𝑥2
) + 𝑠2(𝑥, 𝜓2)

𝜕2𝑤𝑟𝑒𝑙
𝑝

𝜕𝑡2
+ 𝑐𝑎

𝜕𝑤𝑟𝑒𝑙
𝑝

𝜕𝑡
+ 𝛼𝑓(𝜓3) 𝑉2

2
𝜕2𝑤𝑟𝑒𝑙

𝑝

𝜕𝑥2
 

−𝜗𝑝(𝜓4) 𝑣𝑝(𝑡)(
𝑑𝛿(𝑥)

𝑑𝑥
−
𝑑𝛿(𝑥 − 𝑙𝑐)

𝑑𝑥
)

= 𝛼𝑒(𝜓5) 𝑉1
2(

𝐻(𝑥)

(1 −𝑤
𝑟𝑒𝑙

𝑝 )
2
−

𝐻(𝑥)

(𝑟(𝜓6) + 𝑤𝑟𝑒𝑙
𝑝 )

2
) 

+(𝜎1𝑠2(𝑥, 𝜓2) + 𝜎2𝛿(𝑥 − 1))Ω
2 cos(Ω𝑡) 

 

(4.9) 

𝑑𝑣𝑝(𝑡)

𝑑𝑡
+ 𝜆(𝜓7)𝑣𝑝(𝑡) + 𝛾(𝜓8) ∫

𝜕3𝑤𝑟𝑒𝑙
𝑝

𝜕𝑥2𝜕𝑡
𝑑𝑥

𝑙𝑐

0

= 0 (4.10) 

where the coefficients of equation (4.9) and (4.10) have been given in Appendix A. Using 

the Galerkin decomposition method and considering a single-mode approximation, 

equations (4.9) and (4.10) can be converted into a system of differential equations 
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�̈�(𝑡) + 2𝜇𝜔𝑛 �̇�(𝑡) + 𝜔𝑛
2𝑈(𝑡) − 휃𝑝  𝑣𝑝(𝑡)

= 𝛼𝑡∫ (
 𝑉1
2𝐻(𝑥)

(1 − 𝑈𝜑(𝑥) )2
−

 𝑉1
2𝐻(𝑥)

(𝑟 + 𝑈𝜑(𝑥) )2
)𝜑 𝑑𝑥

1

0

 

+𝐹 Ω2 cos(Ω𝑡) 

(4.10) 

�̇�𝑝(𝑡) + 𝜆 𝑣𝑝(𝑡) + 𝛽 �̇�(𝑡) = 0 (4.11) 

where 𝜑(𝑥) is the ith linear undamped mode shape of the straight micro-beam and 𝑈(𝑡) 

is the ith generalized coordinate. The coefficients of equations (4.10) and (4.11) have 

been introduced in Appendix A. Due to the electrostatic nonlinearity in equation (4.10), 

finding an analytical solution to study the dynamic behaviour of the system is quite 

complicated. However, there are different methods to find an approximate analyt ica l 

solution to equations (4.10) and (4.11). Previously in Chapter 3 we used the harmonic 

balance method to study the dynamic behaviour of the system by considering an 

approximate electrostatic force using Taylor expansion. Based on the assumption of 

symmetrical electrostatic force in the approximation, it was shown that acceptable 

convergence can be obtained by including terms up to ninth-order. However, in the 

presence of manufacturing uncertainties, the electrostatic force could be unsymmetr ica l 

due to variabilities in the air gap, and more terms may need to be included to reach 

acceptable convergence. Therefore, using the harmonic balance method makes 

uncertainty propagation tedious because for every different sample, the number of 

truncated terms should be determined.  In this chapter, the shooting method [107] is used 

to investigate the dynamic behaviour of the system. Generally, the shooting method is a 

powerful and useful method to find periodic solutions to a nonlinear system, and it is 

computationally more time efficient than direct integration methods. The shooting 

method can also find unstable solutions, although this is not needed for the analysis 

undertaken here. By introducing  𝑋1 = 𝑈, 𝑋2 = �̇� and 𝑋3 = 𝑣𝑝 , equations (4.10) and 

(4.11) can be rewritten as 
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�̇�1 = 𝑋2, (4.12) 

�̇�2 = 𝐹 cos(Ω𝑡) − 2𝜇𝜔𝑛𝑋2 − 𝜔𝑛
2𝑋1 +휃𝑝𝑋3

+ 𝛼𝑡  𝑉1
2∫ (

𝐻(𝑥)

(1 − 𝑋1𝜑)
2
−

𝐻(𝑥)

(𝑟 + 𝑋1𝜑)
2
)𝜑 𝑑𝑥

1

0

 
(4.13) 

�̇�3 = −𝜆 𝑋3 − 𝛽 𝑋2 (4.14) 

To find a periodic solution to equations (4.12), (4.13) and (4.14), an appropriate set of 

initial conditions (휂1, 휂2, 휂3) must be identified. To proceed with the shooting technique, 

for convenience, the following variables are defined: 

𝑋4 =
𝜕𝑋1
𝜕휂1

, 𝑋5 =
𝜕𝑋1
𝜕휂2

, 𝑋6 =
𝜕𝑋1
𝜕휂3

 

𝑋7 =
𝜕𝑋2
𝜕휂1

, 𝑋8 =
𝜕𝑋2
𝜕휂2

, 𝑋9 =
𝜕𝑋2
𝜕휂3

 

𝑋10 =
𝜕𝑋3
𝜕휂1

, 𝑋11 =
𝜕𝑋3
𝜕휂2

, 𝑋12 =
𝜕𝑋3
𝜕휂3

 

(4.15) 

The shooting technique requires simultaneously integrating equations (4.12), (4.13) and 

(4.14), plus the time derivatives of the variables (�̇�4,… , �̇�12) in the time domain for one 

period of excitation. The initial conditions for solving the set of differential equations are 

defined as 

𝑋1(0) = 휂10 , 𝑋2(0) = 휂20 , 𝑋3(0) = 휂30 , 𝑋4(0) = 1, 

𝑋5(0) = 0, 𝑋6(0) = 0,             𝑋7(0) = 0, 𝑋8(0) = 1, 

𝑋9(0) = 0, 𝑋10(0) = 0, 𝑋11(0) = 0, 𝑋12(0) = 1 

(4.16) 

휂10 , 휂20  and 휂30 are initial guesses for the initial conditions that result in periodic 

solution. There is no straightforward way to find the initial conditions for the periodic 

solutions and we need to try different initial guesses for the initial conditions. Generally, 

these initial guesses deviate from the exact values by an error or correction 𝛿𝜼. By 

calculating the values of 𝑋4, … , 𝑋12 at one-period and substituting them in the algebraic 

system of equations below, the error can be found for each set of initial guesses [107]. 
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[[

𝑋4
𝑋7
𝑋10

𝑋5
𝑋8
𝑋11

𝑋6
𝑋9
𝑋12

] − [𝐼]][

𝛿휂1
𝛿휂2
𝛿휂3

] = [

휂10 − 𝑋1(𝑇, 휂10, 휂20 , 휂30 )

휂20 − 𝑋2(𝑇,휂10 , 휂20 , 휂30)
휂30 − 𝑋3(𝑇,휂10 , 휂20 , 휂30)

] (4.17) 

By trying different initial guesses and using equation (4.17), the error (𝛿휂1, 𝛿휂2  and 𝛿휂3 ) 

can be minimized and convergence is achieved. Then, peak power through the resistance 

can be obtained by substituting  𝑣𝑝 into the following equation 

𝑃0 =
𝑣𝑝

2

𝑅
 (4.18) 

4.5. Numerical results and discussion 

To demonstrate the analysis presented in the previous section, a bimorph piezoelectr ic 

micro cantilever beam is considered with the same characteristics given in Table 2.1. The 

only difference is related to the tip mass, viscous air damping coefficient (𝑐𝑎) and the 

additional air gap between arc-shaped electrodes, which have been given in Table 4.1.  

Table 4.1 Geometrical properties of the arch-shaped electrodes. 

Design Variable  Value 

Width, b (μm) 1000 
Thickness of arch-shape electrode, ℎ𝑟 (μm) 5 

Radial air gap, 𝑔𝑟  (μm) 3 

Viscous air damping coefficient, 𝑐𝑎  (N.s/m) 0.002  

Based on the experimental results [102], the most important variations in the fabricatio n 

parameters include thickness, air gap and Young’s modulus. To show the effect of these 

parameters on the performance of the harvester, a Gaussian distribution of parameters is 

assumed and given in Table 4.2. 

Table 4.2 Parameters most sensitive to manufacturing uncertainties[102]. 

Data  Mean Std COV (%) 

Thickness, ℎ𝑠̃ (μm) 4 0.35 8.75 

Thickness, ℎ𝑝 (μm) 2 0.175 8.75 

Young’s modulus, 𝐸𝑠̃ (GPa) 169.6 16.58 9.78 

Young’s modulus, 𝐸𝑝 (GPa) 65 6.35 9.78 

Air gap, 𝑔0  (μm) 40 2.52 6.3 

Air gap, 𝑔𝑟  (μm) 3 0.18 6.3 
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(a) (b) 

Figure 4.4 (a) Variation of the piezoelectric peak power with load resistance at nominal 

resonance frequency (b) Displacement frequency response curve with the optimal 

resistance 

Considering the mean parameters of the microbeam, the optimal resistance of the 

harvester is obtained at its resonance frequency. As shown in Figure 4.4a, by exciting the 

harvester at its resonance frequency, 12.6 nW power can be harvested at the optimal 

resistance. In addition, as Figure 4.4b shows, the maximum deflection of the beam at 

resonance frequency is less than 40 μm. To investigate the effect of manufactur ing 

uncertainties on the performance of the MEMS piezoelectric harvester, different numbers 

of samples are generated and Monte Carlo Simulation is used for uncertainty propagation. 

Figure 4.5a shows that the Probability Density Function (PDF) of the power does not 

significantly change when the number of samples is increased from 1500 to 2000, hence 

2000 samples will be enough for uncertainty analysis.  
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(a) (b) 

Figure 4.5 Probability density function of (a) harvested power and (b) resonance 

frequency. 

Due to the variability of the parameters, the resonance frequencies of the samples have a 

large deviation from one sample to another and this can significantly decrease the 

performance of the harvester. Figure 4.5b shows that the resonance frequency of the 

harvester considering mean parameters is 406 Hz, however, there are many samples 

which have resonance frequencies either greater or less than the mean value. Because of 

this variability in resonance frequency, the harvested power of most samples deviates 

from the power of the system with the mean parameters when it is excited at the 

mean/nominal resonance frequency (see Figure 4.5a). In order to compensate for the 

effect of manufacturing uncertainties, the resonance frequency of samples can be adjusted 

by applying voltage to the electrodes. Figure 4.6a shows that by applying voltage to the 

straight electrodes, the resonance frequency of the micro-beam decreases due to the 

softening nonlinearity of the electrostatic field. Considering this nonlinearity, there are 

multiple solutions for the micro beam response within the frequency range close to the 

frequency of the vibration source. In order to harvest more power, the micro-beam 

response should be at the higher of the two solutions and close to the resonance frequency.  

However, being at the higher solution depends on the initial conditions and therefore the 

response at the higher amplitude cannot be guaranteed. Using applied DC voltage can 

ensure that the response of the harvester will be in the higher solution. For a given 

excitation frequency if the harvester response happens to be in the lower amplitude 

solution the DC voltage is increased until a region is reached where the harvester only 
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has a single solution. The DC voltage is then slowly reduced, and the harvester follows 

the high amplitude solution until the resonance is obtained. 

  

(a) (b) 

Figure 4.6 Tuning resonance frequency of microbeam using (a) softening (𝑑2 −𝑑1 =

0.5𝐿) and (b) hardening (𝛼 = 30°)  mechanism 

As shown in Figure 4.6a, by applying 8 V to the electrodes, the resonance frequency of 

the sample is decreased by 7.5 percent to match the vibration source frequency. 

Consequently, the harvested power can be increased by 13.2 nW. Figure 4.6b shows that 

the resonance frequency of the micro-beam can be increased by applying a follower force. 

In Figure 4.6b, an arbitrary sample with a resonance frequency of less than 406 Hz has 

been considered. Using the hardening mechanism and applying 13.6 V, the resonance 

frequency of the sample can be increased by 7.7% and therefore more power can be 

harvested. 

In both mechanisms, the resonance frequency of the sample is tuned based on the 

electrostatic force. The magnitude of this force can be controlled by voltage, air gap and 

the overlapping area between electrodes. Generally, the air gap and overlapping area are 

considered to be design parameters and they are constant. However, based on Table 4.2, 

the air gaps between electrodes will be affected by manufacturing uncertaint ies. 

Therefore, depending on the air gaps between electrodes, the resonance frequency of the 

sample can be tuned by applying DC voltage. In the hardening mechanism, by applying 

voltage to the arc-shape electrodes, the resonance frequency of the harvester is changed 

linearly. However, due to the geometric configuration of the electrodes, in the softening 

mechanism the behavior of the harvester is affected by electrostatic nonlinearity.  
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(a) (b) 

Figure 4.7 (a) Tuning resonance frequency of symmetrical model (𝑔01 = 𝑔02 = 40μm) 

(b) comparison of symmetrical and unsymmetrical model (𝑔01 = 44.6μm, 𝑔02 =

36μm) 

In addition, due to variabilities in the air gap between two straight electrodes, the system 

may become unsymmetrical. According to equation (4.5), the amplitude of the 

electrostatic force can be controlled by applying a DC voltage (𝑉1 ) and changing the air 

gap between electrodes. As shown in Figure 4.7a, by considering equal initial gaps 

between electrodes (𝑔01 = 𝑔02 = 40μm), the resonance frequency of the sample can be 

tuned to the nominal frequency by applying 10.1 V to the electrodes. However, by 

including the variabilities in the air gaps, the resonance frequency for the given sample 

may be changed by applying 8 V to the electrodes (See Figure 4.7b). Therefore, in 

comparison with the symmetrical model, depending on the initial gaps between electrodes 

in the unsymmetrical model, the applied DC voltage may either be increased or decreased. 

In addition, as shown in Figure 4.8 the output power due to the steady state response for 

the unsymmetrical model can be different in comparison with the symmetrical model. In 

the unsymmetrical model, due to the nonzero static deflection, the output voltage will be 

affected by a DC offset. Therefore, the output voltage will swing between two different 

values, instead of the usual +𝑣𝑎𝑐  and −𝑣𝑎𝑐 . Consequently, there will be double peaks in 

the steady state response of the output power in the unsymmetrical model (see figure 

4.8a). 
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(a) (b) 

Figure 4.8 Output power due to the steady state response at 406 Hz (a) unsymmetrical 

model (𝑉1 = 8 𝑉) (b) symmetrical (𝑉1 = 10.1 𝑉) 

Generally, in nonlinear energy harvesters, maximum power can be harvested when the 

harvester responds on the upper branch in the vicinity of its resonance frequency. For any 

changes in the initial condition, the harvester tends to jump down to the lower branch, 

thereby decreasing harvested power significantly. As Figure 4.9a, by jumping down from 

point 𝑃2 in Figure 4.6b, the harvested power decreases by 89%. As shown in the time 

history of the power in Figure 4.9a, once the transient response is eliminated the system 

converges to the lower harvested power (𝑃0). In order to tackle with this problem, Figure 

4.9b shows that in the case of jumping down to the lower solution (𝑃0), the applied DC 

voltage is increased until a region is reached where the harvester only has a single 

solution. Then by delivering a gradually decreasing voltage in the fixed frequency 

direction, the harvester follows the high amplitude solution until resonance is obtained.  

The voltage source in both the symmetrical and unsymmetrical models can be charged 

through the harvested power from the electrostatic side. 
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(a) (b) 

Figure 4.9 (a) Output power of the harvester on the lower branch (𝛺 = 406 𝐻𝑧,𝑉1 =

8 𝑉)  (b) Moving from the lower branch to the higher by decreasing the voltage. 

As discussed in Chapter 2, electrostatic harvesters require an energy cycle to convert 

mechanical energy to electrical energy. The energy conversion cycles mostly rely on 

charge or voltage constraint concepts. In both cycles, electrical charge is stored in a 

variable capacitor when its capacitance is high. Then the capacitance of the capacitor is 

reduced by mechanical vibration, and eventually the capacitor will be discharged.  

Considering the voltage constraint cycle as shown in Figure 4.10a, there are two variable 

capacitors between the beam and the straight electrodes. In each cycle of vibration, these 

capacitors are charged and discharged continuously, and they can charge the voltage 

source (𝑉1 ) based on the voltage constraint cycle. Therefore, in both symmetrical and 

unsymmetrical models, the voltage source is self-chargeable and the harvested power 

from the electrostatic side is used to keep the voltage source constant. 

Considering all samples, by applying different voltages to the electrodes, the resonance 

frequency of the samples matches the excitation frequency and more power can be 

harvested, as shown in Figure 4.11. Figure 4.12 shows that by applying DC voltage to the 

straight electrodes (𝑉1 ) up to 26.6 V and the arch-electrodes (𝑉2 ) up to 24 V, the harvested 

power of the samples can be improved significantly. 
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(a) (b) 

Figure 4.10 (a)Variable capacitors in the proposed model (b) Electrical circuit 

 

Consequently, in comparison with Figure 4.5a, most samples are shifted to the region 

around the power of the system with the mean parameters. As shown in Figure 4.12a, the 

mean DC voltage applied to the straight electrodes (point A) is 8.5 V, and in most cases 

the harvested power of the samples is close to the power of the system with the mean 

parameters. 

  

(a) (b) 

Figure 4.11 Harvested power of samples based on (a) softening and (b) hardening 

mechanism 

However, for the hardening mechanism, the mean applied DC voltage (point B in figure 

4.12b) is 12.2 V, which is 3.7 V greater than the mean applied DC voltage for the 

softening mechanism. Furthermore, the mean harvested power of the samples for the 

hardening mechanism is less than 12 nW. Therefore, the electrostatic nonlinearity in the 



 

80 

 

softening mechanism can make the tuning mechanism more efficient in comparison with 

the hardening mechanism.  

  

(a) (b) 

Figure 4.12 (a) Applied DC voltage versus harvested power for softening mechanism 

and (b) hardening mechanism 

In the current analysis, a constant optimal resistance (70 kΩ) is used for all samples, 

however this resistance can be optimized for each sample [108]. In addition, since the 

axial deflection of the beam is negligible, the power loss of voltage source 𝑉2  is small. 

Considering the results of both mechanisms, as shown in Figure 4.13 by using the 

electrostatic force in both mechanisms, the effect of manufacturing uncertainties can be 

compensated for and after tuning the resonance frequencies of the samples, the harvested 

power of the samples varies between 8 to 14 nW. 
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Figure 4.13 Harvested power of samples before and after applying DC voltage 

 

4.6. Closure 

In this chapter, the effect of manufacturing uncertainties on the performance of MEMS 

piezoelectric harvesters has been investigated. The steady state solution was obtained by 

using the shooting method and 2,000 samples were considered based on Monte Carlo 

Simulation. From this study, the following important conclusions were drawn: 

 

 The results showed that variability in a MEMS harvester will significantly reduce its 

performance. This is because the resonance frequencies of the samples in most cases 

were far away from the excitation frequency and resulted in lower harvested power. It 

should be noted that the experimental data in the literature was used to randomise the 

model parameters. 

 

 We propose two tuning mechanisms that can be used to compensate for the effect of 

manufacturing uncertainty. For each sample, depending on its resonance frequency, 

appropriate DC voltage was applied. Based on these mechanisms, it was observed that 

the harvested power can be increased by applying DC voltage to the straight electrodes 

and arc-shaped electrode up to 26.6 V and 24 V, respectively. 
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 The problem that we encountered in this study was a nonlinear and uncertain dynamic 

problem. This is a very challenging problem and there is little attention to it in the 

literature. I found that the use of previous semi-analytical solutions described by 

authors in previous studies is not feasible. The use of time-integration is also extremely 

time-consuming in this problem (considering that we are only interested in the steady 

state solution). Therefore, (for the first time to my knowledge) we proposed the 

combined version of a shooting method and Monte Carlo Simulation which was found 

to be efficient enough to solve this uncertain nonlinear problem.  
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Chapter 5: Experimental studies of an 

energy harvester with adjustable 

resonance frequency in macroscale 

 

This chapter presents an experimental setup to tune the resonance frequency of a bimorph 

piezoelectric energy harvester. The aim of this chapter is to simulate electrostatic force 

via electromagnets to illustrate the concept of broadband energy harvesting in macro 

scales. To this end, firstly the dynamic behaviour of the model based on the 

electromagnetic forces is investigated. Following this, piezoelectric patches are bonded 

to the beam to show the application of the proposed model in energy harvesting. 

 

 

5.1. Experimental set up 

As shown in Figure 5.1, the model is a cantilever beam with two tip permanent magnets 

(N42 Neodymium magnets) in both sides of the beam. In addition, there is an 

electromagnet in one side of the beam which can create attractive or repulsive force 

depending on the arrangement of the magnet poles. The geometric and other properties 

of the beam and tip magnets have been listed in Table 5.1. The tip magnets and 

electromagnet pull strength are 2 kg and 25 kg respectively. Generally, the pull strength 

is the highest possible holding power of the magnet, measured in kilograms. It is 

noticeable that the equations and the solutions considered earlier for a microscale model 

can be used for a macroscale model. 
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Table 5.1 Geometrical and material properties of the beam and tip magnets 

Design Variable Value 

Length of the beam, L (mm) 312 
Width of the beam, b (mm) 30 

Thickness of the beam, ℎ𝑠̃ (mm) 1.1 

Thickness of the tip magnets, ℎ0 (mm) 1.5 

Diameter of tip magnets, 𝐷0 (mm) 20 
Young’s modulus of the beam, 𝐸𝑠̃ (GPa) 205.5 

Young’s modulus of permanent magnets, 𝐸0 (GPa) 160 

Density of beam, 𝜌�̃� (kg/m3) 8040 
Density of permanent magnets, 𝜌0(kg/m3) 7500 

Viscous damping, 𝑐𝑎(N.s/m) 0.455 

 

 

 

 

 

Figure 5.1 Schematic of the proposed model (Top view) 

5.2. Characterization of electromagnetic force 

In this section, the electromagnetic force between magnets is investigated experimentally. 

Generally, the electromagnetic force between the beam and the electromagnet depends 

on the air gap and the DC voltage applied to the electromagnet. Figure 5.2 shows the 

effect of the air gap on the electromagnetic force between the beam and the electromagne t. 

In this case, there is no DC voltage applied to the electromagnet, and the tip deflection of 

the beam is measured by a laser displacement sensor. Decreasing the air gap between the 

beam and the electromagnet, the beam is attracted to the electromagnet. As shown in 

Figure 5.2, by varying the air gap from 50 mm to 35 mm, the tip deflection of the beam 

increases linearly. However, in air gaps of less than 35 mm, the system becomes nonlinea r 

and suddenly, at 18mm, the beam becomes stuck to the electromagnet. Therefore, 

ICP sensor 

Tip magnets 

𝐿 

𝑧(𝑡) = 𝑧0 cos(Ω𝑡) 
x 

z 

 

𝑔0  
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depending on the distance between magnets, there can be some initial deflection on the 

beam and it is more obvious when the distance is less than 40 mm. 

Alternatively, by considering the attractive force between the beam and electromagne t, 

the deflection of the beam can be increased by increasing the DC voltage applied to the 

electromagnet. Furthermore, depending on the distance between magnets, the deflection 

of the beam can be increased either linearly or nonlinearly.  

 

Figure 5.2 Tip deflection of the beam versus distance between magnets (𝑉𝐷𝐶 = 0 𝑉) 

Based on the result shown in Figure 5.3, the nonlinearity increases when the distance 

between magnets is less than 30 mm. Note that in the case of a 20 mm air gap between 

magnets, the beam becomes stuck to the electromagnet when applying voltages of more 

than 6 V to the electromagnet. 
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Figure 5.3 Tip deflection of the beam versus DC voltage applied to the electromagnet 

As previously noted, the electromagnetic force between magnets can be either attractive 

or repulsive. In Figure 5.4, these two possible scenarios and their effect on the beam at a 

25mm air gap between magnets are shown. As illustrated in Figure 5.4, the attractive 

force is more powerful than the repulsive force. For instance, considering the attractive 

force at 20 V applied voltage to the electromagnet, the deflection of the beam is 2.5 times 

greater than the same scenario when applying the repulsive force. The main reason that 

the repulsive force is weaker than the attractive one is related to this fact that the 

permanent magnet is always attracting the iron core inside the electromagnet. By using 

air-core electromagnets, the repulsive force between the electromagnet and the permanent 

magnet can be same as the attractive one. In addition, when using the repulsive force 

scenario, the deflection of the beam increases almost linearly by increasing the DC 

voltage applied.    
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Figure 5.4 Tip deflection of the beam versus DC voltage applied to the electromagnet 

at D=25 mm  

5.3. Frequency analysis 

The aim of this section to study the dynamics of the proposed model. To carry out the 

dynamic test, we have used an APS Dynamics Model 420-HF electrodynamic shaker 

(APS Dynamic Juan Capistrano, CA) as an excitation source, powered by an APS 

amplifier Model 145. As shown in Figure 5.5, two ICP sensors have been used to measure 

the acceleration of the beam and the base. The analogue data measured by these two 

sensors is converted into digital data using Abacus dynamic signal analysis hardware and 

is then sent to a SignalCalc analyser.  

 

Figure 5.5 linear model 
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To identify the first two resonance frequencies of the beam, here we have used a random 

burst excitation. As Figure 5.6 shows, the first and second resonance frequencies of the 

beam are 7.7 Hz and 50 Hz, respectively. Using random burst excitation is a 

straightforward and fast way to determine the resonance frequencies of the beam. It is 

noticeable that random burst excitation method takes the average of several FRFs and its 

accuracy can be increased by increasing the number of taken FRFs. In the case of there 

being nonlinearity in the system, we must use sin-step analysis to capture the nonlinea r 

behaviour of the system properly. 

  

Figure 5.6 FRF of the linear model 

As stated earlier, the aim of this chapter is to simulate electrostatic force via using 

electromagnets to illustrate the concept of broadband energy harvesting in macro scales. 

To this end, we used two identical electromagnets in both sides of the beam (See Figure 

5.7). Depending on the arrangement of the magnet poles, the electromagnetic force 

between magnets can be either attractive or repulsive. 
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Figure 5.7 Using electromagnetic device to control the resonance frequency of the 

beam 

Firstly, we consider the attractive force between magnets. As shown in Figure 5.2, there 

is a displacement dependent electromagnetic force between magnets when there is no DC 

voltage applied to the electromagnet. Figure 5.8 investigates the effect of the magnetic 

force on the dynamics of the system for different air gaps between magnets (𝑔0).  

 

Figure 5.8 FRFs for different air gaps between magnets (𝑔0) 

As Figure 5.8 shows, for 𝑔0 = 40𝑚𝑚, the electromagnets have no significant effect on 

the beam and the resonance frequency remains the same as the initial linear system (See 

Figure 5.6). However, by decreasing 𝑔0 to 35mm the resonance frequency of the beam 
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decreases linearly. By further reducing the air gap between magnets, the system becomes 

nonlinear and the frequency response of the beam is affected by the softening 

nonlinearity. This behaviour is similar to the electrostatic model, discussed in previous 

chapters. By applying voltage to the electromagnet, the attractive force between the 

magnets increases.  

 
 

(a) 𝑔0 = 40𝑚𝑚 (b) 𝑔0 = 40𝑚𝑚 

 
 

(c) 𝑔0 = 35𝑚𝑚 (d) 𝑔0 = 35𝑚𝑚 

Figure 5.9 FRFs of the beam for different air gaps between magnets (𝑔0) 

Depending on the air gap between the magnets, the resonance frequency of the beam can 

be tuned to lower frequencies by using applied DC voltage as a control parameter.  Figure 

5.9 shows the changes in the resonance frequency of the beam by applying voltage to the 

electromagnets for 40mm and 35mm air gaps between magnets. As shown in Figures 5.9a 

and 5.9b, by increasing the voltage up to 20 V for 𝑔0=40mm, the resonance frequency of 

the beam can be changed from 7.7 to 7.13 Hz. By decreasing the air gap to 35mm, the 
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resonance frequency of the beam can be tuned in the range of 7.6 to 6.5 Hz (see Figures 

5.9c and 5.9d). In these two cases, with lower voltages applied to the electromagnets, the 

resonance frequency of the beam decreases linearly and when increasing the voltages 

applied, the behaviour of the system is affected by softening nonlinearity.  

  

(a) 𝑔0 = 30𝑚𝑚 (b) 𝑔0 = 30𝑚𝑚 

  

(c) 𝑔0 = 25𝑚𝑚 (d) 𝑔0 = 25𝑚𝑚 

Figure 5.10 FRFs of the beam for different air gaps between magnets (𝑔0) 

By further reducing the air gap between magnets, the range of tuning can be increased. 

On the other hand, the amplitude of the beam decreases. As illustrated in Figure 5.10a, at 

a 30mm air gap between magnets, increasing the voltage applied to the electromagnets 

from 0 up to 20 V can change the resonance frequency of the beam from 7.2 to 5.2 Hz. 

However, a 5mm reduction of 𝑔0 changes the resonance frequency of the beam from 6.7 

to 3.8 Hz (see Figure 5.10c). In addition, decreasing the air gap between magnets 

decreases the dynamic pull-in voltage. Considering the same level of base excitation, the 
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dynamic pull-in voltage in all cases is greater than 20 V, except in the last case (𝑔0 =

25𝑚𝑚), where it is 16 V.  

As discussed earlier, by changing the pole arrangement of the electromagnet poles, the 

attractive force between the magnets can be changed to repulsive force. Figure 5.11 

investigates the effect of the repulsive force on the resonance frequency of the beam when 

the air gap between magnets is 25 mm. 

  

(a) 𝑔0 = 25𝑚𝑚 (b) 𝑔0 = 25𝑚𝑚 

Figure 5.11 FRF of the beam for different air gaps between magnets (𝑔0) 

 

As Figure 5.11 shows, by increasing the voltage applied to the electromagnets, the 

resonance frequency of the beam increases. Using repulsive force configuration and 

applying voltage up to 20 V increases the resonance frequency of the beam from 6.6 to 

9.1 Hz. By using repulsive force between magnets, the resonance frequency of the beam 

can be tuned from 6.6 to 9.1 Hz. It is noticeable that based on Figure 5.4, the repulsive 

force is less nonlinear in comparison with the attractive force. In addition, in repulsive 

force configurations, there is still a small amount of attractive force between the 

permanent magnets and the exterior part of the electromagnets. This attractive force is 

cancelled out by repulsive force when applying 2 V to the electromagnets in static 

analysis (See Figure 5.4). However, in the dynamic tests the frequency response of the 

beam is still affected by softening nonlinearity at 2 V and by increasing the voltage 

applied to the electromagnets, the system becomes linear due to the effect of repulsive 

force. Considering both repulsive and attractive force at a 25mm air gap between magnets, 
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the resonance frequency of the beam can be tuned from 3.8 to 9.1 Hz.  This behavio ur 

shows the great potential of the proposed model for energy harvesting applications. 

 

5.4. Mathematical modelling 

This section focuses on developing a mathematical model to verify the experimenta l 

results provided in the previous section. Figure 5.12 shows the schematic of the beam 

from top view.  

 

 

 

 

 Figure 5.12 Top view of the model 

As shown in Figure 5.12, two permanent magnets are attached to the tip of the beam and 

there are two electromagnets (EM) which are connected to the same DC voltage. In 

addition, there are two ICP sensors to measure the acceleration of the beam and the base. 

The governing equation of transverse motion can be written as 

𝐸𝐼
𝜕4𝑤𝑟𝑒𝑙(𝑥,𝑡)

𝜕𝑥4
+ (𝑚 +𝑀𝑠𝛿(𝑥 − 𝐿𝑠))

𝜕2𝑤𝑟𝑒𝑙(𝑥, 𝑡)

𝜕𝑡2
+ 𝑐𝑎

𝜕𝑤𝑟𝑒𝑙(𝑥,𝑡)

𝜕𝑡
 

= −(𝑚 + 𝑀𝑠𝛿(𝑥 − 𝐿𝑠) + 𝑀𝑡𝛿(𝑥 − 𝐿))
𝜕2𝑧(𝑡)

𝜕𝑡2
+𝐹𝑀𝛿(𝑥 − 𝐿) 

(5.1) 

and subjected to the following boundary conditions 

𝑤𝑟𝑒𝑙(0,𝑡) = 0,     
𝜕𝑤𝑟𝑒𝑙(0,𝑡)

𝜕𝑥
= 0,

𝜕2𝑤𝑟𝑒𝑙(𝐿, 𝑡)

𝜕𝑥2
= 0 

𝐸𝐼
𝜕3𝑤𝑟𝑒𝑙(𝐿,𝑡)

𝜕𝑥3
= 𝑀𝑡

𝜕2𝑤𝑟𝑒𝑙(𝐿,𝑡)

𝜕𝑡2
 

(5.2) 
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In equation (5.1), 𝑤𝑟𝑒𝑙(𝑥,𝑡) is the transverse deflection of the beam relative to its base at 

position x and time t, 𝐸 is the Young’s modulus of the beam, 𝑐𝑎 is the viscous air damping 

coefficient, 𝛿(𝑥) is the Dirac delta function, 𝐹𝑀  is the magnetic force, 𝑧(𝑡) is the base 

excitation function, 𝑚 is the mass per unit length of the beam, 𝑀𝑡 is the tip mass, and 

𝑀𝑠 is the mass of the ICP sensor attached to the beam. Generally, electromagnetic force 

is a function of applied DC voltage to the electromagnets and the initial gap between 

magnets. In addition, it depends on the geometrical characteristics of the electromagnets. 

Having permanent magnets as a tip mass creates a magnetic force, which depends on the 

distance between the beam and the electromagnet. 

There have been several approaches to model the magnetic force between magnets [109, 

110], however, for the current configuration there is no specific equation. Therefore, here 

we try to identify the nonlinearity by assuming appropriate function. Based on the 

experimental results, 𝐹𝑀  can be considered as following 

𝐹𝑀 = 𝛼0𝑤𝑟𝑒𝑙 + 𝛼𝑛𝑤𝑟𝑒𝑙
3  

(5.3) 

where 𝛼0 and 𝛼𝑛 are two unknowns which can be obtained by using experimental results . 

In order to find the dynamic response of the beam, the deflection of the beam is 

represented as a series expansion in terms of the eigenfunctions of the beam, i.e. 

𝑤𝑟𝑒𝑙(𝑥,𝑡) =∑𝑈𝑖(𝑡)𝜑𝑖(𝑥)

𝑁

𝑖=1

 (5.4) 

Using the Galerkin method, equation (5.1) can be converted into a system of differentia l 

equations. Considering a single-mode approximation yields the following equation 

𝑀�̈�(𝑡) + 𝐶 �̇�(𝑡) + (𝐾𝑚 −𝐾0)𝑈(𝑡) −𝐾𝑛𝑈
3 = 𝐹𝑏 cos(Ω𝑡) (5.5) 

where 

𝑀 = ∫ (𝑚 +𝑀𝑠𝛿(𝑥 − 𝐿𝑠))𝜑
2(𝑥)

𝐿

0

𝑑𝑥, 𝐾0 = 𝛼0∫ 𝜑2(𝑥)𝛿(𝑥 − 𝐿)
𝐿

0

𝑑𝑥 

𝐾𝑚 = 𝐸𝐼∫ 𝜑(𝑥)
𝐿

0

𝜑𝐼𝑉(𝑥)𝑑𝑥, 𝐶 = 𝑐𝑎 ∫ 𝜑2(𝑥)
𝐿

0

𝑑𝑥,   

(5.6) 
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𝐾𝑛 = 𝛼𝑛∫ 𝜑4(𝑥)𝛿(𝑥 − 𝐿)
𝐿

0

𝑑𝑥 

𝐹𝑏 = 𝑧0Ω
2(∫ (𝑚 +𝑀𝑠𝛿(𝑥 − 𝐿𝑠) +𝑀𝑡𝛿(𝑥 − 𝐿))𝜑(𝑥)

𝐿

0

𝑑𝑥) 

For convenience, equation (5.5) can be rewritten as  

�̈�(𝑡) + 2𝜇𝜔𝑛  �̇�(𝑡) +𝜔𝑛
2  𝑈(𝑡) − 𝛽𝑛𝑈

3(𝑡) = 𝐹 cos(Ω𝑡) (5.7) 

where 

𝜇 =
𝐶

2𝑀𝜔𝑛
,         𝜔𝑛 = √

𝐾𝑚 −𝐾0
𝑀

,      𝐹 =
𝐹𝑏
𝑀
, 𝛽𝑛 =

𝐾𝑛
𝑀

 (5.8) 

To determine the analytical solution of the transverse vibration of the beam, the harmonic 

balance method is used. By assuming a steady state periodic response, 𝑈(𝑡) and 𝑣𝑝(𝑡) 

can be written as 

𝑈(𝑡) = 𝑎1(𝑡) sin(Ω𝑡) + 𝑏1(𝑡) cos(Ω𝑡) (5.9) 

with slowly varying coefficients such that 

�̇�(𝑡) = (�̇�1 +𝑎1Ω) cos(Ω𝑡) + (�̇�1 − 𝑏1Ω) sin(Ω𝑡) (5.10) 

�̈�(𝑡) = Ω(2�̇�1 − 𝑏1Ω) cos(Ω𝑡) −Ω(2�̇�1 +𝑎1Ω) sin(Ω𝑡) (5.11) 

Substituting the above expressions into equation (5.7), neglecting higher harmonics and 

balancing terms multiplied by sin(Ω𝑡) and cos(Ω𝑡), from the mechanical equation the 

following equations are obtained 

2𝜇𝜔𝑛 �̇�1 −2Ω�̇�1 = 𝑄𝑎1 +2𝜇𝜔𝑛𝑏1Ω (5.12) 

2𝜇𝜔𝑛�̇�1 + 2Ω�̇�1 = 𝑄𝑏1 + 𝐹 − 2𝜇𝜔𝑛𝑎1Ω (5.13) 

where 

𝑟2 = 𝑎1
2 + 𝑏1

2 (5.14) 
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𝑄 = −𝜔𝑛
2 + Ω2 −

3

4
𝛼𝑟2 (5.15) 

In a steady state, all time derivatives vanish so that the mechanical amplitude equations  

can be rewritten as 

𝑄𝑎1 +2𝜇𝜔𝑛𝑏1Ω = 0 (5.16) 

2𝜇𝜔𝑛𝑎1Ω− 𝑄𝑏1 = 𝐹 (5.17) 

squaring and adding equations (3.29) and (3.30) gives a sixth order nonlinear algebraic 

equation in 𝑟 as 

𝐹2 = 𝑟2(𝑄2 + (2𝜇𝜔𝑛Ω)
2) (5.18) 

and the frequency response can be determined by numerically finding the positive real 

roots of equation (5.18). To validate the developed mathematical model with 

experimental results, firstly the linear behaviour of the beam is studied. As shown in 

Figure 5.13, there is a good agreement between the dynamic results obtained by 

experiment and the theory.  

   

Figure 5.13 FRF of the linear model: comparison between experimental and 

theoretical results 
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In order to validate the nonlinear behaviour of the proposed model, it is necessary to find 

the unknown linear and nonlinear stiffness (𝐾0 and 𝐾𝑛), which is related to the magnetic 

force. To this end, Matlab optimization toolbox is used to match the resonance 

frequencies for different scenario. Figure 5.14 shows the results for the attractive force 

configuration. As shown in this figure, by choosing appropriate 𝐾0 and 𝐾𝑛, the theoretical 

model matches the experimental results. 

 
 

(a) 𝑔0 = 25 𝑚𝑚 (b) 𝑔0 = 30 𝑚𝑚 

  

(c) 𝑔0 = 35 𝑚𝑚 (d) 𝑔0 = 40 𝑚𝑚 

Figure 5.14 FRF of the beam for different air gaps between magnets (there is no 

applied voltage to the electromagnets) 

 

It can be seen that for each initial gap, new values for 𝐾0 and 𝐾𝑛 are obtained. Table 5.2 

shows the values of 𝐾0 and 𝐾𝑛for different initial gaps. As shown in Table 5.2, increasing 
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the initial gap decreases the magnetic nonlinearity and, consequently, 𝐾0 and 𝐾𝑛 decrease. 

On the other hand, by applying voltage to the electromagnets, the magnetic nonlinear ity 

increases. Considering 30 mm as the initial gap between electrodes in the attractive force 

configuration, Figure 5.15 compares the results of the experiment with the theoretical 

model in four cases where DC voltage applied to the electromagnets. 

Table 5.2 Identified values for 𝐾0 and 𝐾𝑛 for different initial gaps at 𝑉 = 0 𝑉 

 𝑲𝟎  𝑲𝒏 

𝒈𝟎 = 𝟐𝟓 𝒎𝒎 2.016556072496814 1.586798007393011e4 

𝒈𝟎 = 𝟑𝟎 𝒎𝒎 1.065831847069356 5.724431999224028e3 

𝒈𝟎 = 𝟑𝟓 𝒎𝒎 0.946488016069645 7.473075848312722e2 

𝒈𝟎 = 𝟒𝟎 𝒎𝒎 0.095689938424641 5.0368531217627762e1 

 

 
 
As shown in Figure 5.15, the nonlinear behaviour of the beam can be modelled by the 

assumed function for the cases in which voltage is applied. However, as Figure 5.15 

shows by increasing applied DC voltage to the electromagnets the discrepancy between 

theoretical and experimental curves increases. This behaviour can be related to the use of 

approximated function for the electromagnetic nonlinearity. In order to get more accurate 

results we need use more precise function by adding more nonlinear terms to our 

approximation. The values for 𝐾0 and 𝐾𝑛 have been shown in Table 5.3. The comparison 

between the experimental results and the proposed theoretical model shows that the 

nonlinear behaviour of the beam can be modelled with the assumed function for the 

magnetic force. 
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(a) 𝑉 = 4 𝑉 (b) 𝑉 = 8 𝑉 

  

(c) 𝑉 = 12 𝑉 (d) 𝑉 = 16 𝑉 

Figure 5.15 FRF of the beam (𝑔0 = 30𝑚𝑚) 

However, by increasing the voltage applied to the electromagnets, the margin of error 

increases and more precise function may be needed to model magnetic nonlinearity. 

Table 5.3 Identified values for 𝐾0 and 𝐾𝑛 for different voltages at 𝑔0 = 30 𝑚𝑚 

 𝑲𝟎  𝑲𝒏 

𝑽 = 𝟎 𝑽 1.065831847069356 5.724431999224028e3 

𝑽 = 𝟒 𝑽 1.172415031776292 9.159091198758446e3 

𝑽 = 𝟖 𝑽 1.598747770604034 1.630840959782728e4 

𝑽 = 𝟏𝟐 𝑽 2.664579617673390 2.560171196818515e4 

𝑽 = 𝟏𝟔 𝑽 3.730411464742746 3.809035195266570e4 

𝑽 = 𝟐𝟎 𝑽 4.796243311812102 4.933012793869821e4 
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5.5. Energy harvester  

 
In this section, the dynamic behaviour of the proposed harvester is studied. To this end, 

the MFC piezoelectric patches (M8585-P2) were bonded to the beam. The geometric and 

other properties of the piezoelectric patches have been listed in Table 5.4. 

As shown in Figure 5.16, in this case lightweight ICP sensors were used to measure the 

acceleration of the beam and base.  

Table 5.4 Geometrical and material properties of the MFC piezoelectric patches 

Design Variable Value 

Overall length, 𝐿𝑝 (mm) 103 

Overall width, b (mm) 31 

Thickness, ℎ𝑝 (mm) 0.3 

Young’s modulus, 𝐸𝑝 (GPa) 30.336 

Density of beam, 𝜌𝑝 (kg/m3) 7740 

Piezoelectric coefficient, 31-mode (𝑑31) -2.1e2 pC/N   

Piezoelectric coefficient, 33-mode (𝑑33) 4.0e2 pC/N 

 

Adding piezoelectric patches to the beam increases the resonance frequency of the beam. 

Using a random burst excitation, the first three resonance frequencies of the beam were 

identified. As Figure 5.17 shows, the first, second and third resonance frequencies of the 

beam are 9.2 Hz, 54.1 Hz and 152.8 Hz, respectively. 

 

 

Figure 5.16 Proposed energy harvester 

Afterwards, the close circuit condition was investigated for the harvester. Due to the input 

voltage limitation of the SignalCalc analyser a voltage divider circuit was designed to 

satisfy the input voltage condition of the SignalCalc analyser. As Figure 5.18 shows, the 

voltage divider circuit consist of two resistors (𝑅1 = 10.04 𝑀Ω and 𝑅2 = 98.8 𝑘Ω) in 
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series connection which was connected to the AC current coming from the piezoelectr ic 

patches. 

 

Figure 5.17 FRFs of the linear model with added MFC piezoelectric patches  

Generally, a voltage divider circuit takes a higher voltage and converts it to a lower one 

by using a pair of resistors. The formula for calculating the output voltage is based on 

Ohms Law and is expressed as follows 

𝑉2 =
𝑉𝑝  𝑅2

(𝑅1 +𝑅2)
 (5.21) 

where 𝑉𝑝 is the output voltage of the piezoelectric patches. The connection of the 

piezoelectric patches can be either series or parallel depending on the application. Here 

we have considered parallel connection. However, as first step we measured the output 

voltage of each patch separately to make sure they generated the same voltage.  
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Figure 5.18 voltage divider circuit 

As shown in Figure 5.18, both patches gave almost the same output voltage. There is a 

negligible difference in the peak, which can be related to wiring losses and differences in 

the thickness of the adhesive layer on both sides. It is noticeable that the measured voltage 

is related to the voltage cross smaller resistor (𝑅2). Figure 5.19 illustrates that 3.76 V/g 

can be obtained at the resonance frequency: considering this value and using equation 

(5.21), the total output voltage of the piezoelectric patch (𝑉𝑝) is 385.849 V/g.  

Using the frequency tuning mechanism explained in the previous section, the resonance 

frequency of the harvester can be tuned to harvest more power.  

 

Figure 5.19 Voltage output FRFs of the piezoelectric patches. 

Connected to the 

piezoelectric patches 

Connected to the 

SignalCalc analyser 

𝑹𝟏  𝑹𝟐  
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The experimental set-up including the tuning mechanism has been shown in Figure 5.19. 

Considering 25 mm as an initial gap between magnets, Figure 5.20 shows the scenario in 

which 5V was applied to the electromagnets in the attractive configuration.   

 

Figure 5.20 Proposed energy harvester with frequency tuning mechanism 

As shown in Figure 5.20, by applying 5V to the electromagnets, the resonance frequency 

of the harvester can be decreased to 7.24 Hz, and 2.83 V/g can be obtained at the 

resonance frequency. Here we need to consider the sustainability of the harvester by 

comparing the current generated and consumed to change the resonance frequency.  

 

Figure 5.21 Voltage output FRF of the piezoelectric patches when 𝑉𝐷𝐶 = 5 𝑉 

𝐕𝐨𝐥𝐭𝐚𝐠𝐞  
𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐨𝐫 

SignalCalc 

analyser  

APS 420-HF shaker 
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Using equation (5.21), the total output voltage of the piezoelectric patches (𝑉𝑝) is 290.41 

V/g. Considering the equivalent resistor (𝑅𝑒𝑞) of the voltage divider circuit and using 

Ohm’s law, the current generated by the harvester (𝐼𝑝) can be obtained as follows 

𝐼𝑝 =
𝑉𝑝  

𝑅𝑒𝑞
=

290.41 

10.13 × 106
= 0.028 𝑚𝐴/𝑔 

(5.22) 

Whereas the voltage generator uses 0.113A to provide 5V to the electromagnets. By 

comparing the input current with the output current, we find that the proposed harvester 

is not sustainable. However, by considering the movements of the tip magnets we can 

take the advantage of electromagnetic harvesters and modify our model to a hybrid 

piezoelectric and electromagnetic harvester. As discussed in Chapter one, by changing 

the magnetic flux across a coil the electrical current will be induced. Therefore, by adding 

coils around movable magnets the output power of the harvester can be improved.  
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5.6. Closure 

In this chapter, an experimental set-up was designed to tune the resonance frequency of 

the beam using magnetic forces, which have similar nonlinearity to electrostatic forces. 

It has been shown that depending on the arrangement of the magnet poles the resonance 

frequency of the beam can be either decreased or increased. Based on the experimenta l 

results, with the magnets in the attractive force configuration, increasing the magnetic 

force decreases the resonance frequency of the beam through softening nonlinear ity, 

whereas in the repulsive force configuration, it can be increased. Different initial gaps 

between magnets were considered and showed that with a 25 mm air gap between 

magnets and by increasing the voltage applied to the electromagnets up to 20 V in both 

attractive and repulsive force configurations, the resonance frequency of the beam can be 

changed from 3.8 to 9.1 Hz.   

In order to verify the experimental results, an odd polynomial function up to the third 

order was considered for the magnetic force. The steady-state solution was obtained using 

the harmonic balance method and it has been shown that the resonance frequency 

obtained by the theoretical model matches the experimental results. However, it also 

showed that increasing the voltage applied to the electromagnets increases the margin of 

error between the experimental and theoretical results and more precise function may be 

needed to model magnetic nonlinearity. 

In addition, the use of the proposed electromagnetic tuning mechanism for energy 

harvesting applications was studied. To this end, MFC piezoelectric patches were bonded 

to the beam and the sustainability of the energy harvester was investigated. The results 

showed that the proposed harvester is not sustainable. However it can be upgraded to a 

hybrid piezoelectric and electromagnetic harvester to increase the efficiency of the 

harvester. 
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Chapter 6: Conclusions and future 

work 

This chapter summarises the conclusions derived from the previous chapters and 

highlights the future directions of the work related to this thesis. 

 

Conclusions 

In this thesis, dynamic behaviour of vibration-based MEMS piezoelectric harvesters have 

been studied and the effect of manufacturing uncertainties in the performance of MEMS 

piezoelectric harvesters have been investigated. 

In the first chapter of this thesis, a brief overview of microelectromechanical systems 

(MEMS) was given and the importance of using energy harvesting technology to provide 

power for MEMS devices was highlighted.  A comprehensive review was carried out to 

establish awareness of the different MEMS vibration-based energy harvesters proposed. 

Then, in the second chapter, a reduced-order model was developed to study the dynamic 

behaviour of MEMS piezoelectric harvesters.  

An arbitrary bimorph MEMS piezoelectric harvester was considered, and it was shown 

that depending on the load resistance connected to the piezoelectric layers, the resonance 

frequency of the harvetser can be changed between short-circuit and open-circuit 

frequencies. The effect of different parameters in the resonance frequency shift were 

discussed and based on the obtained results, it was observed that the resonance frequency 

shift (Δ𝜔𝑟 = 𝜔𝑟
𝑜𝑐 − 𝜔𝑟

𝑠𝑐) is mostly related to the effect of the piezoelectric layers and 

electrical parameters. Furthermore, the results showed that by increasing load resistance, 

the output volatge increases monotonically wheras the amplitude of vibration is decreased 

in the short-circuit condition (original resonance frequency) and amplified considerably 

at the open-circuit resonance frequency. 
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In addition, it was shown that the output power of the harvester can be maximised by 

using the optimal resisctance. However, any mismatch between the resonance frequency 

of the harvester and the excitation frequency can decrease the harvested power 

significantly. To overcome this problem, in the third chapter a MEMS piezoelectr ic 

harvester with an adjustable resonance frequency was proposed. It was shown that by 

using an electrostatic device, the resonance frequency of the harvester can be decreased 

to harvest power in a wide range of excitaion frquencies.  

The effect of different parameters on the performance of the proposed harvester were 

invesigated and  a MEMS piezoelectric harvester was designed for a vibration source with 

a frequency range of 70-110 Hz and 0.25 μm amplitude of base excitation. The 

disadvantage of the model proposed in Chapter three was the effect of the softening 

nonlinearity of the electrostatic part of the harvester which resulted in a lower level of 

harvested energy. 

In Chapter four, different types of uncertain parameters in the design of a MEMS 

piezoelectric harvester were studied and the results showed that manufactur ing 

uncertainty could potentially change the harvester’s resonance frequency and, 

consequently, the deviation from its nominal value may be positive or negative. 

Therefore, there is a need to tune the harvester’s resonance frequency to a higher 

(hardening) or lower (softening) frequency. In order to tackle this problem, the 

electrostatic tuning device was improved by adding the capability of increasing the 

resonance frequency of the samples via a hardening mechanism. In order to show the 

results, experimentally measured statistical properties available in the literature were 

considered and Monte Carlo Simulation (MCS) was used for uncertainty propagation.  

The problem that we encountered in the fourth chapter was a nonlinear uncertain dynamic 

problem which is a very challenging problem and there is little attention to it in the 

literature. It was found that the use of semi-analytical solutions and time integration is not 

feasible. Therefore, the combined use of a shooting method and Monte Carlo Simula t ion 

was used. The method was found to be efficient enough to solve this uncertain and 

nonlinear problem.  

The sustainability of the proposed model was also investigated and it has been shown that 

the power losses of voltage sources in both mechanisms are negligible. Therefore, the 

proposed model can be used in real-life applications. Due to the lack of access to MEMS 
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fabrication facilities, the concept of the tuning mechanism was shown in large scale in 

Chapter five. To this end, an experimental set up was designed to tune the resonance 

frequency of the beam using magnetic forces. It was shown that by using an 

electromagnetic device the resonance frequency of the beam can be either decreased or 

increased. The experimental results showed that by using the electromagnetic device in 

the attractive force configuration, the resonance frequency of the beam can be decreased  

through the softening nonlinearity, whereas in the repulsive force configuration, it can be 

increased. For an arbitrary case of using the electromagnetic device, it was shown that by 

applying voltage to the electromagnets up to 20 V in both attractive and repulsive force 

configurations, the resonance frequency of the beam can be changed from 3.8 to 9.1 Hz.   

A mathematical model was developed to verify the experimental results, and it has been 

shown that the resonance frequency obtained by the theoretical model matches the 

experimental results. However, it was also showed that increasing the voltage applied to 

the electromagnets increases the margin of error between the experimental and the 

theoretical results and more precise function may be needed to model magnetic 

nonlinearity. The use of the electromagnetic tuning mechanism in energy harvesting 

applications was studied. The results showed that using an electromagnetic device to tune 

the resonance frequency of the piezoelectric harvester is not efficient. However, to 

increase its efficiency the model can be modified to a hybrid piezoelectric and 

electromagnetic harvester. 

 

Suggestions for future work 

Future work related to this thesis can involve  improving the electrostatic device by 

modifying the tuning mechanisms. In the current proposed model using the softening 

nonlinearity of the electrostatic part results in a lower level of harvested energy. On the 

other hand, the hardening mechanism may have some fabrication difficulties. Therefore, 

finding new sustainable tuning mechanisms can be considered as a potential future work. 

Considering the nonlinearity of the electrostatic force and uncertainty at the same time, 

future work may focus on finding more efficient methods to deal with nonlinear uncertain 

problem. In addition, it may involve in investigating the role of global sensitivity analysis 
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in the selection of uncertain parameters, and the robust design of such a system to 

passively minimise the adverse effects of uncertainty in the harvester. 

The identification of the electromagnetic nonlinear force requires fusther studies where 

the  analysis presented in this work was not able to provide the best match between 

expemental data and the theoritical results.  
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Appendix A 

Coefficients of equation (3.9) are as following 

𝑎1 =
−2휀0𝑏 𝑉𝐷𝐶

2
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3

, 𝑎2 =
−4휀0𝑏 𝑉𝐷𝐶

2

𝑔0
5

, 𝑎3 =
−6휀0𝑏 𝑉𝐷𝐶

2

𝑔0
7

 (A.1) 

𝑎4 =
−8휀0𝑏 𝑉𝐷𝐶

2

𝑔0
9

, 𝑎5 =
−10휀0𝑏 𝑉𝐷𝐶

2

𝑔0
11

 

Coefficients of equation (4.9) and (4.10) are as following 
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Coefficients of equation (4.10) and (4.11) are as following 

𝑀 = ∫ 𝑠2(𝑥,𝜓2 ) 𝜑
2(𝑥)

1

0

𝑑𝑥, , 𝐶 = 𝑐𝑎 ∫ 𝜑2(𝑥)
1

0

𝑑𝑥, 

𝐾𝑓 = 𝛼𝑓  𝑉2
2∫ 𝜑(𝑥)

1

0

𝜑𝐼𝐼(𝑥)𝑑𝑥, 휃𝑝 =
𝜗𝑝
𝑀
 (
𝑑𝜑(𝑙𝑐)

𝑑𝑥
) 

𝐾𝑚 = ∫ (𝑠1
𝐼𝐼(𝑥,𝜓1)𝜑

𝐼𝐼(𝑥) + 2𝑠1
𝐼(𝑥,𝜓1)𝜑

𝐼𝐼𝐼 (𝑥)
1

0

+ 𝑠1(𝑥,𝜓1)𝜑
𝐼𝑉(𝑥))𝜑(𝑥)𝑑𝑥, 

𝐹 =
1

𝑀
(𝜎1∫ 𝜑(𝑥)𝑠2(𝑥, 𝜓2)

1

0

𝑑𝑥 + 𝜎2∫ 𝜑(𝑥)
1

0

𝛿(𝑥 − 1)𝑑𝑥), 

  𝛼𝑡 =
𝛼𝑒
𝑀
, 𝛽 =  𝛾 (

𝑑𝜑(𝑙𝑐)

𝑑𝑥
) , 𝜇 =

𝐶

2𝑀𝜔𝑛
,         𝜔𝑛 = √

𝐾𝑚 + 𝐾𝑓
𝑀

, 

 

(A.3) 

 



 

111 

 

References 

[1] Seok S. Overview of MEMS Packaging Technologies.  Advanced Packaging and 

Manufacturing Technology Based on Adhesion Engineering: Wafer-Level Transfer 

Packaging and Fabrication Techniques Using Interface Energy Control Method. Cham: 

Springer International Publishing; 2018. p. 1-12. 

[2] Velosa-Moncada LA, Aguilera-Cortés LA, González-Palacios MA, Raskin J-P, 

Herrera-May AL. Design of a Novel MEMS Microgripper with Rotatory Electrostat ic 

Comb-Drive Actuators for Biomedical Applications. Sensors. 2018;18(5):1664. 

[3] Tuominen J, Lehtonen E, Tadi MJ, Koskinen J, Pänkäälä M, Koivisto T. A 

miniaturized low power biomedical sensor node for clinical research and long term 

monitoring of cardiovascular signals. Conference A miniaturized low power biomedica l 

sensor node for clinical research and long term monitoring of cardiovascular signals. 

IEEE, p. 1-4. 

[4] Mileshin S, Tsivinskaya T, Sergeeva N. Microelectromechanical sensors and 

microstructures in aerospace applications. KnE Engineering. 2017;2(3). 

[5] Yuan W. Development and application of high-end aerospace MEMS. Frontiers of 

Mechanical Engineering. 2017;12(4):567-73. 

[6] Hiller T, Kuhlmann B, Buhmann A, Roth H. Noise contributions in a closed-loop 

MEMS gyroscope for automotive applications. Conference Noise contributions in a 

closed-loop MEMS gyroscope for automotive applications. IEEE, p. 62-5. 

[7] Zachäus C, Müller B, Meyer G. Advanced Microsystems for Automotive Applicat ions 

2017: Smart Systems Transforming the Automobile: Springer, 2017. 

[8] Yuan Q, Kan X, Chen Z, Yang J, Zhao J, Sun L, et al. RF MEMS resonant devices 

for wireless communication. Conference RF MEMS resonant devices for wireless 

communication. IEEE, p. 1-4. 

[9] Lee EK, Kim CS, Kim JJ, Choi HR. A study on the fabrication and evaluation of the 

MEMS based FBAR filter for wireless systems. Conference A study on the fabrication 

and evaluation of the MEMS based FBAR filter for wireless systems. IEEE, p. 21-4. 



 

112 

 

[10] Maroufi M, Ruppert MG, Fowler AG, Moheimani SR. Design and control of a 

single-chip SOI-MEMS atomic force microscope. Conference Design and control of a 

single-chip SOI-MEMS atomic force microscope. IEEE, p. 2869-74. 

[11] Dziekoński C, Dera W, Jarząbek DM. Method for lateral force calibration in atomic 

force microscope using MEMS microforce sensor. Ultramicroscopy. 2017;182:1-9. 

[12] Haikka P, Kubo Y, Bienfait A, Bertet P, Mølmer K. Proposal for detecting a single 

electron spin in a microwave resonator. Physical Review A. 2017;95(2):022306. 

[13] Vabret N, Bhardwaj N, Greenbaum BD. Sequence-specific sensing of nucleic acids. 

Trends in immunology. 2017;38(1):53-65. 

[14] Soysal U, Marty F, Algré E, Géhin E, Motzkus C. Sub-µm air-gap resonant MEMS 

mass sensors fabrication and electrical characterization for the detection of airborne 

particles. Conference Sub-µm air-gap resonant MEMS mass sensors fabrication and 

electrical characterization for the detection of airborne particles. IEEE, p. 1-5. 

[15] Keeler EG, Jing P, Wu J, Zou C, Lin LY. MEMS Resonant Mass Sensor Integrated 

with Optical Manipulation. IEEE Transactions on Nanotechnology. 2018. 

[16] Gupta A, Singh TS, Yadava R. Polymer-coated MEMS chemical sensor array for 

monitoring oxidative stress by breath analysis. Conference Polymer-coated MEMS 

chemical sensor array for monitoring oxidative stress by breath analysis. IEEE, p. 1-8. 

[17] Wittmeier F, Kuthada T, Filipsky J, Cizek J. New MEMS Pressure Sensors for 

Transient Aerodynamic Measurements. ATZ worldwide. 2018;120(4):38-41. 

[18] Hasan MH, Alsaleem FM, Ouakad HM. Novel threshold pressure sensors based on 

nonlinear dynamics of MEMS resonators. Journal of Micromechanics and 

Microengineering. 2018;28(6):065007. 

[19] Status of the MEMS 2014. Yole Développement. (Villeurbanne, France). 

[20] Williams CB, Yates RB. Analysis of a micro-electric generator for microsystems. 

Sensors and Actuators A: Physical. 1996;52(1):8-11. 



 

113 

 

[21] Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source 

for wireless sensor nodes. Computer communications. 2003;26(11):1131-44. 

[22] Jeon Y, Sood R, Jeong J-H, Kim S-G. MEMS power generator with transverse mode 

thin film PZT. Sensors and Actuators A: Physical. 2005;122(1):16-22. 

[23] Glynne-Jones P, Tudor MJ, Beeby SP, White NM. An electromagnetic, vibration-

powered generator for intelligent sensor systems. Sensors and Actuators A: Physical. 

2004;110(1):344-9. 

[24] Arnold DP. Review of microscale magnetic power generation. IEEE Transactions 

on Magnetics. 2007;43(11):3940-51. 

[25] Roundy S, Wright PK, Rabaey JM. Energy scavenging for wireless sensor networks. 

Norwell. 2003. 

[26] Mitcheson PD, Miao P, Stark BH, Yeatman E, Holmes A, Green T. MEMS 

electrostatic micropower generator for low frequency operation. Sensors and Actuators 

A: Physical. 2004;115(2):523-9. 

[27] Nye JF. Physical properties of crystals: their representation by tensors and matrices: 

Oxford university press, 1985. 

[28] Yang B, Liu H, Liu J, Lee C. Micro and Nano Energy Harvesting Technologies : 

Artech House, 2014. 

[29] Gonzalo JA, Jiménez B. Ferroelectricity: The Fundamentals Collection: John Wiley 

& Sons, 2008. 

[30] Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials 

(2003–2006). Smart materials and Structures. 2007;16(3):R1. 

[31] Aboulfotoh N, Twiefel J. On developing an optimal design procedure for a bimorph 

piezoelectric cantilever energy harvester under a predefined volume. Mechanical Systems 

and Signal Processing. 2018;106:1-12. 



 

114 

 

[32] Zeng S, Zhang C, Wang K, Wang B, Sun L. Analysis of delamination of unimorph 

cantilever piezoelectric energy harvesters. Journal of Intelligent Material Systems and 

Structures. 2018;29(9):1875-83. 

[33] Thein CK, Ooi BL, Liu J-S, Gilbert JM. Modelling and optimisation of a bimorph 

piezoelectric cantilever beam in an energy harvesting application. J Eng Sci Technol. 

2016;11(2):212-27. 

[34] Lee B, Lin S, Wu W, Wang X, Chang P, Lee C. Piezoelectric MEMS generators 

fabricated with an aerosol deposition PZT thin film. Journal of Micromechanics and 

Microengineering. 2009;19(6):065014. 

[35] Kim S-B, Park H, Kim S-H, Wikle HC, Park J-H, Kim D-J. Comparison of MEMS 

PZT cantilevers based on e_ {31} and e_ {33}  modes for vibration energy harvesting. 

Journal of microelectromechanical systems. 2013;22(1):26-33. 

[36] Kazmierski TJ, Beeby S. Energy harvesting systems: Springer, 2014. 

[37] Kim C-K. Theoretical comparison of the energy conversion efficiencies of 

electrostatic energy harvesters. Journal of the Korean Physical Society. 2017;70(3):292-

9. 

[38] Mahmoud M, Abdel-Rahman EM, Mansour R, El-Saadany E. Out-of-Plane 

Continuous Electrostatic Micro-Power Generators. Sensors. 2017;17(4):877. 

[39] Lee C, Lim YM, Yang B, Kotlanka RK, Heng C-H, He JH, et al. Theoretica l 

comparison of the energy harvesting capability among various electrostatic mechanisms 

from structure aspect. Sensors and Actuators A: Physical. 2009;156(1):208-16. 

[40] Mur Miranda JO. Electrostatic vibration-to-electric energy conversion: 

Massachusetts Institute of Technology, 2004. 

[41] Tao K, Lye SW, Miao J, Hu X. Design and implementation of an out-of-plane 

electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic 

Engineering. 2015;135:32-7. 

[42] Ahmed S, Kakkar V. An Electret-Based Angular Electrostatic Energy Harvester for 

Battery-Less Cardiac and Neural Implants. IEEE Access. 2017;5:19631-43. 



 

115 

 

[43] Suzuki M, Shimokizaki M, Takahashi T, Yoshikawa Y, Aoyagi S. Fabrication and 

Characterization of Nano/Micro Textured Electret to Avoid Electrostatic Stiction and 

Enhance Its Surface Potential. Journal of Physics: Conference Series. 

2015;660(1):012042. 

[44] Fujita T, Toyonaga T, Nakade K, Kanda K, Higuchi K, Maenaka K. Selective electret 

charging method for energy harvesters using biased electrode. Procedia Engineer ing. 

2010;5:774-7. 

[45] Onishi T, Fujita T, Fujii K, Kanda K, Maenaka K, Higuchi K. Selective electret 

charging method of SiO<inf>2</inf> film for energy harvesters by using biased 

electrode. Conference Selective electret charging method of SiO<inf>2</inf> film for 

energy harvesters by using biased electrode. p. 1-5. 

[46] Jeon YB, Sood R, Jeong Jh, Kim SG. MEMS power generator with transverse mode 

thin film PZT. Sensors and Actuators A: Physical. 2005;122(1):16-22. 

[47] Choi WJ, Jeon Y, Jeong J-H, Sood R, Kim SG. Energy harvesting MEMS device 

based on thin film piezoelectric cantilevers. Journal of Electroceramics. 2006;17(2):543 -

8. 

[48] Basrour S, Charlot B, Marzencki M, Grasso A, Colin M, Valbin L. Design and 

fabrication of piezoelectric micro power generators for autonomous microsystems. 

Conference Design and fabrication of piezoelectric micro power generators for 

autonomous microsystems, Montreux, Switzerland. TIMA, p. 299-302. 

[49] Marzencki M, Ammar Y, Basrour S. Integrated power harvesting system includ ing 

a MEMS generator and a power management circuit. Sensors and Actuators A: Physical. 

2008;145-146:363-70. 

[50] Muralt P, Marzencki M, Belgacem B, Calame F, Basrour S. Vibration Energy 

Harvesting with PZT Micro Device. Procedia Chemistry. 2009;1(1):1191-4. 

[51] Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Andel Yv, et al. 

Vibration energy harvesting with aluminum nitride-based piezoelectric devices. Journal 

of Micromechanics and Microengineering. 2009;19(9):094005. 



 

116 

 

[52] Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Chen D, Cai B-C, et al. A MEMS-based 

piezoelectric power generator for low frequency vibration energy harvesting. Chinese 

Physics Letters. 2006;23(3):732-4. 

[53] Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R. Fabrication, 

modelling and characterization of MEMS piezoelectric vibration harvesters. Sensors and 

Actuators A: Physical. 2008;145(Supplement C):380-6. 

[54] Dongna S, Jung-Hyun P, Jyoti A, Song-Yul C, Howard CW, III, Dong-Joo K. The 

design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof 

mass for vibration energy harvesting. Journal of Micromechanics and Microengineer ing. 

2008;18(5):055017. 

[55] Gu L, Livermore C. Impact-driven, frequency up-converting coupled vibration 

energy harvesting device for low frequency operation. Smart Materials and Structures. 

2011;20(4):045004. 

[56] Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan A, Lang JH. 

Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems. 2001;9(1):64-76. 

[57] Ma W, Wong M, Ruber L. Dynamic simulation of an implemented electrostatic 

power micro-generator. Conference Dynamic simulation of an implemented electrostatic 

power micro-generator. p. 380-5. 

[58] Kuehne I, Frey A, Marinkovic D, Eckstein G, Seidel H. Power MEMS—A capacitive 

vibration-to-electrical energy converter with built-in voltage. Sensors and Actuators A: 

Physical. 2008;142(1):263-9. 

[59] Chiu Y, Tseng VF. A capacitive vibration-to-electricity energy converter with 

integrated mechanical switches. Journal of Micromechanics and Microengineer ing. 

2008;18(10):104004. 

[60] El-hami M, Glynne-Jones P, White NM, Hill M, Beeby S, James E, et al. Design and 

fabrication of a new vibration-based electromechanical power generator. Sensors and 

Actuators A: Physical. 2001;92(1):335-42. 



 

117 

 

[61] Sari I, Balkan T, Kulah H. An electromagnetic micro power generator for wideband 

environmental vibrations. Sensors and Actuators A: Physical. 2008;145-146:405-13. 

[62] Cho HJ, Ahn CH. A bidirectional magnetic microactuator using electroplated 

permanent magnet arrays. Journal of Microelectromechanical Systems. 2002;11(1):78 -

84. 

[63] Han M, Yuan Q, Sun X, Zhang H. Design and Fabrication of Integrated Magnetic 

MEMS Energy Harvester for Low Frequency Applications. Journal of 

Microelectromechanical Systems. 2014;23(1):204-12. 

[64] Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC. Energy harvesting 

from human and machine motion for wireless electronic devices. Proceedings of the 

IEEE. 2008;96(9):1457-86. 

[65] Lee BS, Wu W-J, Shih WP, Vasic D, Costa F. Power Harvesting using Piezoelectr ic 

MEMS Generator with Interdigital Electrodes. Conference Power Harvesting using 

Piezoelectric MEMS Generator with Interdigital Electrodes, New-York, United States. p. 

-. 

[66] Lee BS, Lin SC, Wu WJ, Wang XY, Chang PZ, Lee CK. Piezoelectric MEMS 

generators fabricated with an aerosol deposition PZT thin film. Journal of 

Micromechanics and Microengineering. 2009;19(6):065014. 

[67] Youngsman JM, Luedeman T, Morris DJ, Anderson MJ, Bahr DF. A model for an 

extensional mode resonator used as a frequency-adjustable vibration energy harvester. 

Journal of Sound and Vibration. 2010;329(3):277-88. 

[68] Xue H, Hu Y, Wang Q-M. Broadband piezoelectric energy harvesting devices using 

multiple bimorphs with different operating frequencies. IEEE transactions on ultrasonics, 

ferroelectrics, and frequency control. 2008;55(9). 

[69] Erturk A, Hoffmann J, Inman D. A piezomagnetoelastic structure for broadband 

vibration energy harvesting. Applied Physics Letters. 2009;94(25):254102. 

[70] Ghandchi Tehrani M, Elliott SJ. Extending the dynamic range of an energy harvester 

using nonlinear damping. Journal of Sound and Vibration. 2014;333(3):623-9. 



 

118 

 

[71] Mann BP, Sims ND. Energy harvesting from the nonlinear oscillations of magnetic 

levitation. Journal of Sound and Vibration. 2009;319(1):515-30. 

[72] Roundy S, Zhang Y. Toward self-tuning adaptive vibration-based microgenerators. 

Conference Toward self-tuning adaptive vibration-based microgenerators,  vol. 5649. 

SPIE, p. 12. 

[73] Eli SL, Paul KW. Resonance tuning of piezoelectric vibration energy scavenging 

generators using compressive axial preload. Smart Materials and Structures. 

2006;15(5):1413. 

[74] Yuantai H, Huan X, Hongping H. A piezoelectric power harvester with adjustable 

frequency through axial preloads. Smart Materials and Structures. 2007;16(5):1961. 

[75] Marzencki M, Defosseux M, Basrour S. MEMS Vibration Energy Harvesting 

Devices With Passive Resonance Frequency Adaptation Capability. Journal of 

Microelectromechanical Systems. 2009;18(6):1444-53. 

[76] Zhu D, Roberts S, Tudor MJ, Beeby SP. Design and experimental characteriza t ion 

of a tunable vibration-based electromagnetic micro-generator. Sensors and Actuators A: 

Physical. 2010;158(2):284-93. 

[77] Vinod RC, Prasad MG, Frank TF. Towards an autonomous self-tuning vibration 

energy harvesting device for wireless sensor network applications. Smart Materials and 

Structures. 2011;20(2):025004. 

[78] Miller LM, Pillatsch P, Halvorsen E, Wright PK, Yeatman EM, Holmes AS. 

Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. 

Journal of Sound and Vibration. 2013;332(26):7142-52. 

[79] Zhang Y, Wang T, Luo A, Hu Y, Li X, Wang F. Micro electrostatic energy harvester 

with both broad bandwidth and high normalized power density. Applied Energy. 

2018;212:362-71. 

[80] Triplett A, Quinn DD. The Effect of Non-linear Piezoelectric Coupling on Vibration-

based Energy Harvesting. Journal of Intelligent Material Systems and Structures. 

2009;20(16):1959-67. 



 

119 

 

[81] Elshurafa AM, Khirallah K, Tawfik HH, Emira A, Aziz AKSA, Sedky SM. 

Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive 

Resonators. Journal of Microelectromechanical Systems. 2011;20(4):943-58. 

[82] Vocca H, Neri I, Travasso F, Gammaitoni L. Kinetic energy harvesting with bistable 

oscillators. Applied Energy. 2012;97:771-6. 

[83] Zhou S, Cao J, Inman DJ, Lin J, Liu S, Wang Z. Broadband tristable energy 

harvester: Modeling and experiment verification. Applied Energy. 2014;133:33-9. 

[84] Shi S, Xuhan D, Yunna S, Xiaojian X, Guifu D, Xiaolin Z. MEMS-based wide-

bandwidth electromagnetic energy harvester with electroplated nickel structure. Journal 

of Micromechanics and Microengineering. 2017;27(11):115007. 

[85] Leadenham S, Erturk A. M-shaped asymmetric nonlinear oscillator for broadband 

vibration energy harvesting: Harmonic balance analysis and experimental validat ion. 

Journal of Sound and Vibration. 2014;333(23):6209-23. 

[86] Gafforelli G, Corigliano A, Xu R, Kim S-G. Experimental verification of a bridge-

shaped, nonlinear vibration energy harvester. Applied Physics Letters. 

2014;105(20):203901. 

[87] Hajati A, Kim S-G. Ultra-wide bandwidth piezoelectric energy harvesting. Applied 

Physics Letters. 2011;99(8):083105. 

[88] Mallick D, Amann A, Roy S. High Figure of Merit Nonlinear Microelectromagne tic 

Energy Harvesters for Wideband Applications. Journal of Microelectromechanica l 

Systems. 2017;26(1):273-82. 

[89] Liu H, How Koh K, Lee C. Ultra-wide frequency broadening mechanism for micro-

scale electromagnetic energy harvester. Applied Physics Letters. 2014;104(5):053901. 

[90] Erturk A, Inman DJ. Piezoelectric energy harvesting: John Wiley & Sons, 2011. 

[91] Ajitsaria J, Choe S-Y, Shen D, Kim D. Modeling and analysis of a bimorph 

piezoelectric cantilever beam for voltage generation. Smart Materials and Structures. 

2007;16(2):447. 



 

120 

 

[92] Lin J, Wu X, Ren T, Liu L. Modeling and simulation of piezoelectric MEMS energy 

harvesting device. Integrated Ferroelectrics. 2007;95(1):128-41. 

[93] Madinei H, Rezazadeh G, Azizi S. Stability and Bifurcation Analysis of an 

Asymmetrically Electrostatically Actuated Microbeam. Journal of Computational and 

Nonlinear Dynamics. 2015;10(2):021002--8. 

[94] Mitcheson PD, Miao P, Stark BH, Yeatman EM, Holmes AS, Green TC. MEMS 

electrostatic micropower generator for low frequency operation. Sensors and Actuators 

A: Physical. 2004;115(2):523-9. 

[95] Nizar J, Abdallah R, Armando AAC, Mohammad IY. Higher order modes excitation 

of electrostatically actuated clamped–clamped microbeams: experimental and analyt ica l 

investigation. Journal of Micromechanics and Microengineering. 2016;26(2):025008. 

[96] Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Wang L, Chen D, et al. Fabrication and 

performance of MEMS-based piezoelectric power generator for vibration energy 

harvesting. Microelectronics Journal. 2006;37(11):1280-4. 

[97] Khodaparast HH. Stochastic finite element model updating and its application in 

aeroelasticity: University of Liverpool, 2010. 

[98] Sandberg D, Mansour R, Olsson M. Fatigue probability assessment includ ing 

aleatory and epistemic uncertainty with application to gas turbine compressor blades. 

International Journal of Fatigue. 2017;95:132-42. 

[99] Vanmarcke E. Random fields: analysis and synthesis: World scientific, 2010. 

[100] Koehler JR, Owen AB. 9 Computer experiments.  Handbook of Statistics: Elsevie r; 

1996. p. 261-308. 

[101] Lin R, Wang W. Structural dynamics of microsystems—current state of research 

and future directions. Mechanical systems and signal processing. 2006;20(5):1015-43. 

[102] Alexeenko A, Chigullapalli S, Zeng J, Guo X, Kovacs A, Peroulis D. Uncertainty 

in microscale gas damping: Implications on dynamics of capacitive MEMS switches. 

Reliability Engineering & System Safety. 2011;96(9):1171-83. 



 

121 

 

[103] Gurav S, Kasyap A, Sheplak M, Cattafesta L, Haftka R, Goosen J, et al. 

Uncertainty-Based Design Optimization of a Micro Piezoelectric Composite Energy 

Reclamation Device.  10th AIAA/ISSMO Multidisciplinary Analysis and Optimiza t ion 

Conference: American Institute of Aeronautics and Astronautics; 2004. 

[104] Shanmugavalli M, Uma G, Vasuki B, Umapathy M. Design and Simulation of 

MEMS Devices using Interval Analysis. Journal of Physics: Conference Series. 

2006;34(1):601. 

[105] Agarwal N, Aluru NR. Stochastic modeling of coupled electromechanica l 

interaction for uncertainty quantification in electrostatically actuated MEMS. Computer 

Methods in Applied Mechanics and Engineering. 2008;197(43):3456-71. 

[106] Agarwal N, Aluru NR. A data-driven stochastic collocation approach for 

uncertainty quantification in MEMS. International Journal for Numerical Methods in 

Engineering. 2010;83(5):575-97. 

[107] Younis MI. MEMS Linear and Nonlinear Statics and Dynamics. 2011. 

[108] Madinei H, Khodaparast HH, Adhikari S, Friswell MI. Design of MEMS 

piezoelectric harvesters with electrostatically adjustable resonance frequency. 

Mechanical Systems and Signal Processing. 2016;81:360-74. 

[109] Abdelkefi A, Barsallo N. Comparative modeling of low-frequency 

piezomagnetoelastic energy harvesters. Journal of Intelligent Material Systems and 

Structures. 2014;25(14):1771-85. 

[110] Abdelmoula H, Zimmerman S, Abdelkefi A. Accurate modeling, comparative 

analysis, and performance enhancement of broadband piezoelectric energy harvesters 

with single and dual magnetic forces. International Journal of Non-Linear Mechanics. 

2017;95:355-63. 

 

 

 


