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Abstract
Purpose This study investigated the effects of l-menthol mouth rinse and ice slurry ingestion on time to exhaustion, when 
administered at the latter stages (~ 85%) of baseline exercise duration in the heat (35 °C).
Method Ten male participants performed four time to exhaustion (TTE) trials on a cycle ergometer at 70% Wmax. In a rand-
omized crossover design, (1) placebo-flavored non-calorific mouth rinse, (2) l-menthol mouth rinse (0.01%), or (3) ice inges-
tion (1.25 g kg−1), was administered at 85% of participants’ baseline TTE. Time to exhaustion, core and skin temperature, 
heart rate, rating of perceived effort, thermal comfort and thermal sensation were recorded.
Results From the point of administration at 85% of baseline TTE, exercise time was extended by 1% (placebo, 15 s), 6% 
(l-menthol, 82 s) and 7% (ice, 108 s), relative to baseline performance (P = 0.036), with no difference between l-menthol 
and ice (P > 0.05). Core temperature, skin temperature, and heart rate increased with time but did not differ between condi-
tions (P > 0.05). Thermal sensation did not differ significantly but demonstrated a large effect size (P = 0.080; �2

p
 = 0.260).

Conclusion These results indicate that both thermally cooling and non-thermally cooling oral stimuli have an equal and 
immediate behavioral, rather than physiological, influence on exhaustive exercise in the heat.

Keywords Menthol · Ice slurry · TTE · Heat · Thermoregulation · Perception

Abbreviations
HR  Heart rate
MST  Mean skin temperature
RPE  Rating of perceived exertion
TC  Thermal comfort
T(core)  Core temperature
TS  Thermal sensation
T(skin)  Skin temperature
TTE  Time to exhaustion

V̇O2peak  Peak oxygen uptake
Wmax  Maximum power output achieved at V̇O2peak

Introduction

During exercise in the heat, an increasing thermal load leads 
to thermo-behavioral adjustments in work rate or reduction 
in time to exhaustion at a fixed intensity, due to greater per-
ceptual and physiological strain (MacDougall et al. 1974; 
Galloway and Maughan 1997; González-Alonso et al. 1999; 
Tatterson et al. 2000; Nybo and Nielsen 2001; Tucker et al. 
2004, 2006). Sensory information relating to body temper-
ature is relayed via central and skin thermoreceptors to a 
thermoregulatory centre in the hypothalamus, which also 
integrates information from non-thermal sensory receptors 
(Fortney and Vroman 1985; Gleeson 1998). Behavioral 
reductions in self-paced exercise in the heat are initially 
mediated via rise in skin temperature, which alter ther-
mal perception (comfort and sensation) and later by rise in 
core temperature, which increase cardiovascular strain and 
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perceived exertion (Fortney and Vroman 1985; Flouris and 
Schlader 2015). This provides evidence that prioritization 
of afferent signals, most likely based on the type and mag-
nitude, occur under a progressive thermal load. Therefore, 
we can suppose that thermoregulatory activity occurs in an 
ordered manner and may be dependent on the magnitude of 
afferent feedback relayed to the brain.

Cooling interventions during exercise function to either 
increase the capacity for heat storage or improve thermal 
sensation, comfort and exertion (Mundel et al. 2006; Lee 
et al. 2008; Riera et al. 2014; Stevens et al. 2015, 2016; 
Trong et al. 2015; Bongers et al. 2015; Flood et al. 2017). 
We have previously shown that an orally administered 
l-menthol mouth rinse, which elicits non-thermal cooling, 
extended exercise time at a fixed RPE in the heat (Flood 
et al. 2017). This has also been supported elsewhere by 
improved performance during exhaustive exercise (Mündel 
and Jones 2010; Schlader et al. 2011; Stevens et al. 2015; 
Stevens and Best 2016). However, in our study, administra-
tion of l-menthol was most effective in the early stages of 
exercise in the heat when both core and skin temperature 
was low, and was accompanied by a higher self-selected 
work rate at a fixed RPE of 16. Subsequent administration 
of l-menthol at 10 min intervals, as thermal load increased, 
was unable to recover the rate of decline in power output. 
Therefore, we questioned whether l-menthol’s effects on 
perceived exertion related to: (1) the early application of a 
novel, non-thermal cooling stimuli or (2) its efficacy when 
thermal load was low in the early stages of exercise in the 
heat. Thermal cooling using ice slurry ingestion (Vanden 
Hoek et al. 2004; Siegel et al. 2010; Ross et al. 2011) and 
ice slurry mouth rinsing (Burdon et al. 2013) has also been 
shown to be effective in improving heat tolerance and 
extending exercise performance. Whilst the primary objec-
tive of ice slurry ingestion is to mediate reduction in core 
temperature and increase the capacity for heat storage, it also 
enhances thermal perception via stimulation of thermore-
ceptors located within oral and abdominal regions (Siegel 
and Laursen 2012). Indeed, ice slurry mouthwash has been 
shown to lower the perceptual responses to exercise in the 
heat and improve time trial performance (Burdon et al. 
2013). Given that both l-menthol and ice slurry ingestion 
enhance cold sensations by acting on thermoreceptors on 
the oral mucosal surfaces (Eccles 1994), it is possible that 
both of these interventions have an immediate influence on 
thermal perception, yet their independent effects have not 
been investigated.

Considering the evidence that orally administered thermal 
(ice) and non-thermal (l-menthol) stimuli improve exercise 
performance in the heat via perceptual mechanisms, it would 
appear that changes in oral temperature, per se, are not a 
requirement for the initiation of thermoregulatory behav-
iour. Rather, afferent signals emanating in the oral cavity 

are capable behavioral controllers, overriding underlying 
thermal threats. However, it is not known whether a single 
novel application of thermal and non-thermal oral cool-
ing can enhance performance when thermal load is high. 
In addition, our understanding of whether afferent signals 
emanating from cold receptors in the oral cavity could be 
deprioritized when faced with a greater bodily threat to ther-
mal homeostasis is unclear.

Therefore, our aims were to investigate the effects of: (1) 
a non-thermal cooling menthol mouth wash and (2) a ther-
mally cooling ice slurry ingestion on time to exhaustion at 
a fixed intensity when administered at ~ 85% of the baseline 
exercise duration. We hypothesised that the delayed admin-
istration of l-menthol solution and the ice slurry at 85% of 
time-to-exhaustion, during a period of high thermal stress, 
would immediately reduce thermal perception, and improve 
exercise time compared to placebo.

Methods

Participants

Ten non-heat-acclimated males (age 33 ± 9 years; body mass 
76.2 ± 6.5 kg; height 179.3 ± 4.6 cm; peak oxygen uptake [ V̇
O2peak) 52.4 ± 5.3 ml kg−1 min−1; maximal aerobic power 
output (Wmax) 371 ± 27 W], with a minimum of 1 year endur-
ance training, volunteered to take part in the study. None 
of the participants had visited a hot country in the previ-
ous 3 months and all testing took place during the months 
of January–April (average temperatures ranged from 6 to 
12 °C). Participants were asked to keep a food diary for 24 h 
prior to testing and replicate it before each trial and asked 
to refrain from alcohol, caffeine and strenuous exercise for 
the 24 h period prior to testing. All participants gave writ-
ten informed consent. Ethical approval was provided by St 
Mary’s University ethics committee, which was conducted 
in accordance with the 1964 Helsinki declaration.

Study design

Participants visited the laboratory on six separate occasions. 
All tests were carried out on an electrically braked cycle 
ergometer (SRM, Julich, Germany) and took place in an 
environmental chamber (Sporting Edge UK, Basingstoke, 
UK). During visit one, participants undertook an incremen-
tal exercise test to volitional exhaustion in thermoneutral 
conditions [16 ± 2 °C, 40 ± 8% relative humidity (RH)] to 
determine V̇O2peak and 70% Wmax. All subsequent tests were 
conducted in the heat (35 ± 0.2 °C, 40 ± 0.5% RH). Visit 
two was a familiarisation time to exhaustion (TTE) on a 
cycle ergometer at 70% Wmax. Visit three was a baseline 
performance TTE. Visits 4–6 replicated the TTE with an 
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intervention (ice slurry ingestion, menthol mouth rinse, or 
placebo mouth rinse), administered at 85% of the partici-
pants’ baseline TTE, established in visit two, using a rand-
omized crossover design. Randomisation was conducted by 
generating random numbers for each condition for all par-
ticipants using online software (Urbaniak and Plous 2015). 
Participants were blinded to the original hypothesis of the 
study and informed that the effect of differing mouth rinses 
on exercise in the heat was being investigated. For each par-
ticipant, tests were conducted at the same time of day, and 
experimental trials were separated by a minimum of 72 h to 
minimise any acclimation effects.

Experimental procedure

Preliminary testing

Participants were familiarised with the cycle ergometer and 
saddle and handlebar position were recorded and adjusted as 
required. Participants then completed a 5-min self-selected 
warm-up prior to completing an incremental ramp test. 
The test started at 120 W and increased by 5 W every 15 s 
until volitional exhaustion. Oxygen uptake was measured 
using breath-by-breath expired air analysis (Jaeger Vyntus 
CPX, Hoechberg, Germany). Heart rate (HR) was recorded 
throughout the trial (Polar Team  System®, Polar UK). V̇
O2peak was calculated by measuring the highest 30 s aver-
age V̇O2. Wmax was measured as the highest power output 
recorded during the test.

Experimental trials

Following a familiarisation test, visit two involved a base-
line TTE at 70% Wmax that was used to anchor performance 
in the heat. Participants self-selected their pedal cadence 
during the first familiarisation trial and were instructed to 
maintain the same cadence for all subsequent trials. We 
calculated a test re-test reliability of 4.3% coefficient of 
variation (CV) in preliminary testing (n = 8) (Atkinson and 
Nevill 1998). On visits 36, participants gave a urine sam-
ple and had their semi-nude body mass recorded. Hydration 
status was measured using a refractometer (Pocket Osmo-
chek, Vitech Scientific Ltd, West Sussex, UK), a reading of 
> 600 mOsm kg H2O indicated the start of de-hydration, in 
which case the participant consumed 500 ml of water and 
waited 30 min before any testing began. Heart rate (Polar 
Team  System®, Polar UK) was recorded throughout the 
trial and reported every 2 min. A rectal thermometer (Edale 
Instruments Ltd., Cambridge, UK) was self-inserted 10 cm 
past the anal sphincter to measure core temperature (Tcore) 
and recorded every 2 min via a scanning thermometer type 
CDS 1.0 (Edale Instruments Ltd, Cambridge, UK). Skin 
thermistors (Grant Instruments Ltd., Cambridge, UK) were 

then attached to four sites on the participants’ right side of 
the body; upper chest, mid humerus, mid-calf and mid-thigh 
(Ramanathan 1964). Skin temperature was recorded continu-
ously via a Squirrel data logger (SQ2010, Grant Instruments 
Ltd., Cambridge, UK) and reported every 2 min. Mean skin 
temperature (Tskin) was calculated using Ramanathan’s for-
mula (Ramanathan 1964):

Prior to the main experimental test, participants com-
pleted a 10 min standardised warm-up in thermoneutral con-
ditions before moving into the environmental heat chamber. 
Participants were passively warmed in the chamber until 
their core temperature reached ~ 37.5 °C. The experimental 
trial started cycling at 70% of Wmax until volitional exhaus-
tion which was defined as a 10% drop in cadence for longer 
than 5 s, or if core temperature exceeded 39.5 °C. At 85% 
of participants’ baseline TTE, one of three interventions 
were administered: (1) placebo mouth rinse, (2) l-men-
thol mouth rinse, or (3) ice slurry. Time to exhaustion was 
recorded and performance from the point administration 
was also observed. A blood sample via capillary puncture 
was taken at exhaustion for blood lactate (BLa) analysis 
(Biosen C-Line, EKF Diagnostics, Germany). Participants 
towel dried to remove any residual sweat and were weighed 
to assess changes in semi-nude (cycling shorts only) body 
mass to estimate sweat loss (kg h−1) (Baker et al. 2009). 
These data were adjusted for fluid intake during the ice slush 
ingestion trial.

Perceptual measurements

Ratings of perceived exertion (RPE) was recorded on a 6–20 
point Borg scale (Borg 1982). Thermal comfort (TC) was 
recorded on a 7-point scale where − 3 = “much too cool”, 
0 = “comfortable”, and 3 = “much too warm” (Bedford 
1936). Thermal sensation (TS) was recorded on a 9-point 
scale where − 4 = “very cold”, 0 = “neutral”, and 4 = “very 
hot” (Zhang et al. 2004). RPE, TC and TS were recorded at: 
rest; every 5 min during the trial; 10 s prior to administra-
tion of the intervention (Pre), 10 s following the intervention 
(Post) and at exhaustion (End).

Drink formulation

l-Menthol solution was formulated from menthol crystals 
(House of Flavours, Gloucestershire, UK) dissolved in de-
ionized water heated to 40 °C at a concentration of 0.64 mM 
(0.01%). The solution was then cooled and stored at 5 °C for 
up to 2 months. Prior to use, solutions were aliquoted for 
mouth rinse (25 ml) and warmed to 19.5 ± 0.5 °C. Ice slurry 
was made by adding crushed ice to water and mixing in a 
blender (NutriBullet, Los Angeles, USA), until consistency 

Tskin = 0.3 × (Tchest + Tarm) + 0.2 × (Tthigh + Tcalf).
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reached that of an ice slurry (0.3 ± 0.3 °C) and administered 
1.25 g kg−1 (95 ± 8 g) (Siegel et al. 2011). Placebo was a 
neutral raspberry flavor non-calorific mouth rinse (25 ml) 
(FlavDrops, MyProtein, Norwich, UK) (19.3 ± 0.4 °C). The 
participants either ingested the ice slurry over a period of 
~ 10 s or swilled the menthol/placebo mouth rinse for 5 s 
before spitting the solution into a cup.

Data analysis

Statistical analyses were performed using SPSS (IBM SPSS 
statistics 22 Inc, USA) and statistical significance was set at 
P < 0.05. Single time point data was examined for within-
group effects across condition using a one-way repeated 
measures analysis of variance (ANOVA). A two-way 
repeated measures ANOVA was used to test for within-
group effects across condition and time. Where sphericity 
could not be assumed, a Greenhouse–Geisser correction was 
applied. Differences in main effects (condition or time) were 
further analyzed using pairwise comparisons, incorporating 
a Bonferroni adjustment. Magnitude of effect was calculated 
with partial eta-squared ( �2

p
 ) according to the following cri-

teria: 0.02, a small difference; 0.13, a moderate difference; 
0.26 a large difference (Cohen 1988). Data are presented as 
mean ± SD (n = 10).

Results

TTE differed between condition [F(2,18) = 6.852, P = 0.006; 
�2
p
 = 0.432]. Pairwise analysis confirmed that when compared 

to a placebo-flavored mouth rinse (19 °C) (24:27 ± 4.22 min) 
exercise time was increased following menthol 
(25:34 ± 4.37 min; P = 0.036) and ice (25:59 ± 4.16 min; 
P = 0.04) with no difference between ice slurry and menthol 
(P > 0.05) in the heat (35 °C) (Fig. 1). From the point of 
administration at 85% of TTE in trial 1 (21.02 ± 3.53 min), 
participants exercised for an additional 3:25 ± 1.55 min (pla-
cebo), 4:32 ± 2.29 min (menthol) and 4:57 ± 1.27 min (ice), 
representing a 1% (15 s), 6% (82 s) and 7% (107 s) increase 
in performance time for placebo, menthol and ice slurry, 
respectively, relative to baseline performance.

There was no trial order effect (P > 0.05), and no signifi-
cant difference between conditions at the point of drink 
administration (Table 1): Tcore [F(2,18) = 0.184, P = 0.834, 
�2
p
 = 0.020]; Tskin [F(2,18) = 0.265, P = 0.770, �2

p
 = 0.029]; HR 

[F(2,18) = 0.428, P = 0.658, �2
p
 = 0.045]; TC [F(2,18) = 0.310, 

P = 0.737, �2
p
 = 0.033]; TS [F(2,18) = 0.231, P = 0.796, 

�2
p
 = 0.025]; RPE [F(2,18) = 0.448, P = 0.646, �2

p
 = 0.047].

Core temperature was similar at the beginning of the 
trial (placebo: 37.5 ± 0.2 °C; menthol: 37.5 ± 0.2 °C; ice: 
37.6 ± 0.2 °C) and increased with time [F(8,72) = 141.421, 
P < 0.001; �2

p
 = 0.940]; however, there was no difference 

between conditions [F(2,18) = 0.161, P = 0.852; �2
p
 = 0.018] 

(Fig. 2a). End core temperature was not different between 
conditions (placebo: 38.9 ± 0.4 °C; menthol: 38.8 ± 0.3 °C; 
ice slurry: 38.7 ± 0.3 °C). Mean skin temperature increased 
with time [F(8,72) = 31.495, P < 0.001; �2

p
 = 0.778]; how-

ever, there was no difference between conditions 
[F(2,18) = 0.914, P = 0.359; �2

p
 = 0.107] (Fig. 2b).

Thermal comfort increased with time [F(5,45) = 58.857, 
P < 0.001; �2

p
 = 0.867]; however, there was no difference 

between conditions [F(2,18) = 0.060, P = 0.942; �2
p
 = 0.007] 

Control Menthol                 Ice

20

25

30

Ti
m

e 
(m

in
)

*
*

Fig. 1  Time to exhaustion following administration of placebo, 
menthol and ice conditions at 85% of baseline time to exhaustion. 
Exercise time from the point of administration (21.02 ± 3.53 min) is 
shown, placebo (black), menthol mouth rinse (gray) ice slurry inges-
tion (white). All data are shown as mean ± SD, (n = 10)

Table 1  Physiological and perceptual values at the point of drink 
administration for placebo, menthol and ice slurry conditions

All data are shown as mean ± SD (n = 10)
T
core

 core temperature, MSK mean skin temperature, HR heart rate, 
TC thermal comfort, TS thermal sensation, RPE rating of perceived 
exertion

Placebo Menthol Ice slurry

Tcore (°C) 38.5 ± 0.3 38.5 ± 0.2 38.4 ± 0.3
MST (°C) 35.5 ± 0.7 35.5 ± 1.0 35.7 ± 0.7
HR (beats/min) 178.2 ± 12.0 176.7 ± 9.4 177.8 ± 8.7
TC (− 3 to 3) 2.3 ± 0.7 2.2 ± 0.8 2.3 ± 0.7
TS (− 4 to 4) 3.1 ± 0.8 3.0 ± 1.1 3.1 ± 1.1
RPE (6–20) 17.3 ± 1.9 17.1 ± 2.2 17.3 ± 2.0
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(Fig.  3a). Thermal sensation increased with time 
[F(5,45) = 30.298, P < 0.001; �2

p
 = 0.771]. There was no dif-

ference between conditions [F(2,18) = 2.909, P = 0.080; 
�2
p
 = 0.260]; however, there were large effect sizes between 

conditions, suggesting that thermal sensation may have 
been reduced (Fig. 3b).

RPE increased with time [F(2.638,23.740) = 184.914, 
P < 0.001; �2

p
 = 0.954]; however, there was no difference 

between conditions [F(2,18) = 0.404, P = 0.674; �2
p
 = 0.043]. 

End test blood lactate was not different between conditions 
[F(2,18) = 0.244, P = 0.786; �2

p
 = 0.026]. Heart rate increased 

with time [F(8,72) = 309.647, P < 0.001; �2
p
 = 0.972]; how-

ever, there was no difference between conditions 
[F(2,18) = 0.840, P = 0.448; �2

p
 = 0.085]. Body mass was 

reduced between pre- and post-trial [F(1,9) = 141.525, 

P < 0.001; �2
p
 = 0.940]; however, this was not different 

between conditions [F(2,18) = 1.756, P = 0.201; �2
p
 = 0.163].

Discussion

We investigated the effects of l-menthol mouth rinse and 
ice slurry ingestion on time to exhaustion, when adminis-
tered at the latter stages (~ 85%) of baseline exercise dura-
tion in the heat (35 °C). Our main finding was that thermal 
and non-thermal cooling of the oral cavity using l-menthol 
mouth rinse or ice slurry, respectively, increased total TTE 
by ~ 6% (82 s) and 7% (107 s), respectively, compared to 
baseline performance. These changes were larger than the 
typical error of the TTE (CV% = 4.3), indicating that a real 
change in performance was observed. The ergogenic effects 
of the cooling strategies were apparent in the absence of any 
change body temperature or other physiological variables. 
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(gray) ice slurry ingestion (white). All data are shown as mean ± SD, 
(n = 10)
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Similarly, there were no significant changes in thermal com-
fort or thermal sensation; however, there were large effect 
sizes noted for thermal sensation between the two cooling 
conditions and placebo, inferring the presence of a percep-
tual cooling effect. Collectively, these findings demonstrate 
that both thermally cooling and non-thermally cooling oral 
stimuli have an equal and immediate behavioral, rather than 
physiological, influence on exhaustive exercise in the heat.

Our findings confirm, and expand upon, recent work 
investigating oral mouth rinsing with l-menthol. Oral 
l-menthol has typically been intermittently administered 
(3–6 times) over the course of an endurance exercise bout 
(Mündel and Jones 2010; Riera et al. 2014; Stevens et al. 
2015; Trong et al. 2015; Flood et al. 2017). To our knowl-
edge, this was the first study to intervene during a period of 
advanced thermal stress by administering orally a single ice 
slurry or menthol mouth rinse, with the aim of rapidly alter-
ing thermal perception of the athlete. The immediate effects 
elicited by both cooling strategies in the current study adds 
to the extant literature by demonstrating that: (1) the psy-
chophysical effects of l-menthol appear to be at least equal 
to that of ice slurry; (2) these effects occur with immediate 
effect on physical performance and (3) both of these inter-
ventions are capable of overriding the deleterious effects 
experienced during baseline performance, presumably elic-
ited via a combination of afferent cues (i.e., internal thermal 
and metabolic perturbations).

We previously speculated that the effects of oral l-men-
thol on perceived exertion and thermal sensation might dis-
sipate as a function of exercising heat exposure (Flood et al. 
2017). We suggested that afferent cues from the oral cav-
ity may be deprioritized when homoeostasis is challenged 
through increased core and skin temperature. The current 
findings would entirely refute our previous supposition. 
During periods of progressive thermal stress, imposed by 
the combination of exercise and environmental heat and 
humidity, both l-menthol and ice slurry ingestion offered an 
immediate cooling stimulus. Indeed, at the point of admin-
istration, core temperature (~ 38.5 °C) and mean skin tem-
perature (~ 35.6 °C) were increased compared to the start of 
exercise. We also observed an immediate reduction in ther-
mal sensation with no change in thermal comfort following 
administration of menthol and ice slurry. Thermal comfort 
is described to reflect the state of mind that expresses sat-
isfaction with the surrounding environment, whilst thermal 
sensation results from the perception of stimulus generated 
by peripheral and central thermosensors (Flouris 2011). It 
would appear that the cold sensations, emanating in the oral 
cavity, have the capacity to influence the control of exercise 
intensity by overriding the underlying, yet progressively 
changing thermal threats and inducing immediate behav-
ioral adjustments. The importance of perceptual cooling 
is reinforced by the limited effects of ice slurry ingestion 

following exercise-induced hyperthermia (39.3 °C) on abso-
lute measures of voluntary activation or muscle force pro-
duction reported elsewhere (Burdon et al. 2014).

Both of these thermo-effective interventions have poten-
tial to act upon the transient receptor potential (TRP) family 
of oral mucosal receptors, which relay information to the 
brain regarding the perception of temperature (McKemy 
et al. 2002; Peier et al. 2002; Knowlton and McKemy 2011; 
Andersen et al. 2014). Here, the homeostatic set-point error 
can be determined and iteratively acted upon, in combina-
tion with the milieu of other feedback loops (St Clair Gibson 
et al. 2018). In concert with other peripheral feedback mech-
anisms (Lambert et al. 2005), these sub-conscious cues facil-
itate the conscious behavioral and subsequent physiological 
adjustments that are necessary to protect bodily homeostasis 
(i.e., thermal balance) from catastrophic derangement. Cold 
and menthol-induced cold sensations are thought to primar-
ily be transduced by the TRPM8 voltage-gated ion channel 
present on Aδ and C-sensory nerve fibers (McKemy et al. 
2002). A recent review on non-thermal cooling interven-
tions suggested that menthol application could also inhibit 
the TRPA1 channel, thereby mediating pain responses and 
reducing a possible ergolytic influence of pain sensations 
(Stevens et al. 2018). While it is possible that pain is inhib-
ited, multimodal signaling can occur in somatosensory neu-
rons whereby fibers expressing TRPM8 relay information 
to both thermal and nociceptive pathways (Belmonte and 
Viana 2008; Green and Akirav 2010). Therefore, it is fea-
sible that the actions of l-menthol are more complex than 
previously postulated in the sports performance literature 
and that cooling sensations conferred to the athlete are, per-
haps, co-joined with ‘distractors’ from the stressful thermal 
and physiological cues. During simple repetitive tasks, such 
as cycling, it may be advantageous to engage in dissocia-
tive strategies (Bigliassi et al. 2017), reallocating attention 
towards novel (and possibly moderately painful) stimuli, 
permitting background projections of thermal or metabolic 
cues and lower ‘weighting’ of their overall influence (St 
Clair Gibson et al. 2018). Clearly, further research is neces-
sary to explore the above suggestions.

It was previously reported that ice slurry pre-exercise 
ingestion did not alter thermal sensation, despite lowering 
core temperature (Stevens et al. 2015). In the same trial, 
oral l-menthol lowered thermal sensation and extended 
time to exhaustion compared to the ice condition. The 
differences to the ice condition in our study are partly 
explained by the timing of the ingestion but one would 
anticipate the ingestion of ice to provide a psychophysi-
cal effect. For example, ice slurry ingestion is thought to 
stimulate thermoreceptors in oral and abdominal regions 
(Siegel and Laursen 2012), as well as the reward/pleasure 
centres of the brain, leading to an increase in central drive 
and motivation (Guest et al. 2007). Guest et al. (2007) 
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introduced different temperatures of artificial saliva into 
the mouth and recorded activation of brain regions and 
perceived pleasantness. The authors found that a cold fluid 
(5 °C) was perceived to be more pleasant when compared 
to a warm (50 °C) solution and that some of the same brain 
regions involved in detecting temperature were involved in 
sensing pleasantness. Therefore, it is possible that pleas-
ant stimuli helped to maintain central drive and increase 
motivation for exercise, partly explaining the reason for a 
longer exercise duration with ice slurry (~ 0.3 °C) com-
pared to placebo (~ 19.5 °C).

Our findings have some potential implications for ath-
letes who compete in endurance events. Based on the 
current preliminary evidence, it is feasible that a single 
administration of l-menthol or ice slurry would elicit an 
almost identical effect on exercise capacity, without con-
ferring a notable physiological change. These effects are, 
therefore, likely to be based on an alteration in the sensa-
tion and subsequent perception of the thermal load. While 
both strategies elicited similar performance effects, the 
l-menthol administration is the most practical choice and 
could be carried about the person during competition or 
training. However, further research is needed to corrobo-
rate these preliminary findings and explore the potential 
magnitude of these effects in practical scenarios prior to 
any field application.

Conclusion

In summary, non-thermal cooling (l-menthol) and thermal 
cooling (ice slurry) of the oral cavity when administered 
at the latter stages (~ 85%) of baseline exercise duration in 
the heat (35 °C) are capable of extending exercise perfor-
mance. This occurs in the absence of any changes in body 
temperature or other physiological variables. The observed 
reduction in thermal sensation suggests that the mecha-
nism may relate to a diminished perception of heat stress, 
enhanced motivation or distraction from stressful thermal 
and physiological cues, thereby enhancing performance.
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