
 
 
 
 
 
 
 
 
 

Mitchell, Jennifer P. (2019) Investigating NF-κB ubiquitination: an in vitro 
study. PhD thesis 

 

https://theses.gla.ac.uk/74343/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 
 
 
 
 
 

 
 
 
 
 
 

Enlighten: Theses  
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/74343/
https://theses.gla.ac.uk/74343/
https://theses.gla.ac.uk/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk
mailto:research-enlighten@glasgow.ac.uk


 
Investigating NF-κB ubiquitination: 

An in vitro study 
 
 
 

Jennifer P. Mitchell 
LL.B, B.Sc (Hons) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in fulfilment of the requirements for the degree of  
Doctor of Philosophy 

 
 
 

College of Medical, Veterinary and Life Sciences 
Institute of Infection, Immunity and Inflammation 

University of Glasgow 

 
 
 

May 2019 



2 
 

Abstract 

NF-κB is a transcription factor family that controls the expression of hundreds of 

biologically important genes, many of which have essential roles in the 

regulation of inflammation. When its activity is dysregulated, this can lead to 

the development of chronic inflammatory diseases such as rheumatoid arthritis. 

Therefore, it is critical that NF-κB is tightly controlled. The p50 subunit of NF-κB 

lacks a transactivation domain so when present as a homodimer, it acts as a 

transcriptional repressor in macrophages to limit the expression of pro-

inflammatory cytokines and promote the resolution of inflammation. The 

stability of p50 homodimers is an important determinant of this repressor 

function and is controlled by ubiquitin-triggered degradation. Despite this, 

relatively little is known about the molecular mechanisms that target p50 for 

degradation, or the cellular components that mediate p50 ubiquitination. By 

identifying the components of the ubiquitin-proteasome system (UPS) that target 

p50 for degradation, and in particular, the identity of an E3 ligase for p50, we 

can intervene therapeutically to prevent ubiquitination and degradation from 

occurring, and regulate NF-κB activity in a gene-specific manner. In this thesis, 

the relationship between the known E3 ligases for the other NF-κB subunits and 

p50 was explored through a series of in vitro assays. SOCS1 was observed to 

promote the ubiquitination and degradation of p50, although this was in some 

capacity that is independent of both its E3 ligase activity and the proteasome. 

The role of a known site of ubiquitination of p50 was investigated using a mutant 

monocytic cell line and was found to have influence over the levels of the other 

subunits of NF-κB. Furthermore, transcriptomic analysis of two E3 ligase knock-

out macrophage cell lines revealed that these selectively control the expression 

of NF-κB target genes in response to TLR activation. Collectively, the data 

presented in this thesis advances our understanding of the ubiquitination-

controlled regulation of NF-κB transcriptional activity. 
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1.1 General 

The cellular microenvironment undergoes constant challenge from injury, 

infection and other stresses causing it to be highly dynamic in nature as it adapts 

to maintain the physiological integrity of the host. The response of the immune 

system must be readily inducible, specific and tightly regulated to restore the 

microenvironment to its homeostatic state. One mechanism by which the 

immune system achieves this is through the evolutionarily conserved 

transcription factor, NF-κB. Nuclear Factor-κB (NF-κB) controls the expression of 

hundreds of biologically important genes, many of which have essential roles in 

the immune system, which warrants its description as the ‘master regulator’ of 

the inflammatory response. In particular, it regulates the expression of genes 

encoding pro-inflammatory cytokines, chemokines and others that are important 

for the development of the immune system. NF-κB is activated by a wide array 

of inducers, including microbial components known as pathogen associated 

molecular patterns (PAMPs) which are recognised by pattern recognition 

receptors (PRRs) such as Toll-like receptors (Carmody & Chen, 2007) (figure 1.1). 

For example, the bacterial component lipopolysaccharide (LPS) is a ligand of 

TLR4. In addition, endogenous ligands and damage associated molecular patterns 

(DAMPs) that occur in response to cell death rather than microbial assault have 

also been implicated in activating TLR responses (Feldman et al., 2015). Once 

such an activating stimulus has been identified by the cell, the activation of NF-

κB is closely regulated by a multitude of elements at various stages throughout 

the signalling pathway. Considering its extensive influence in a diverse range of 

biological systems, failure to regulate the activation of NF-κB can result in 

devastating consequences for the host, such as cancer, neurodegenerative 

disorder, cardiovascular disease and autoimmune and other chronic 

inflammatory diseases. 
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Figure 1.1: Input and output of NF-κB activity.  
NF-κB is activated by a diverse array of stimuli such as pathogens, cytokines, environmental and 
chemical stresses, mitogens and hormones, among others. Once activated, NF-κB controls a great 
number of transcriptional outputs including the expression of immuno-regulatory proteins, cell cycle 
factors, cytokines, and regulators of NF-κB creating a negative feedback loop.  

  

1.2 NF-κB 

1.2.1 History of NF-κB 

Since its discovery over 30 years ago by David Baltimore and Ranjan Sen, NF-κB 

has firmly rooted itself as the main regulator of inducible gene expression within 

the immune system (Sen & Baltimore, 1986). NF-κB was initially reported to be a 

specific binding activity in B cells that recognised an enhancer element in the 

gene encoding the immunoglobulin-κ light chain, and was named accordingly. 

However, it was later found to be expressed in almost all cell types but the 

name NF-κB persisted (Baeuerle & Baltimore, 1988). It was soon understood that 

NF-κB was an inducible transcription factor fulfilling essential roles in the 

regulation of the development of and homeostasis within the immune system, as 

well as orchestrating the inflammatory response. Although it is essential in 

inflammation, the role of NF-κB in the transcription of the κ light chain for 

which it is named remains unknown. 
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1.2.2 Subunits of NF-κB 

Despite often being misunderstood as just a single entity, NF-κB in mammals is 

in fact a family of five related proteins that can bind together to form dimers 

that are capable of either positively or negatively regulating gene transcription. 

These five subunits are p65, also known as RelA (and encoded by the gene rela), 

RelB (relb), c-Rel (c-rel) and p105 (nfkb1) and p100 (nfkb2) which are further 

processed into the active subunits p50 and p52 respectively (figure 1.2). All of 

the subunits share a common, evolutionarily conserved 300 amino acid long Rel 

homology domain (RHD) at the N-terminal, which allows these transcription 

factors to bind to the κB sites of gene promotors and to form either homo- or 

heterodimers with each other, of which there is a possible 15 combinations 

(figure 1.3). Additionally, p65, RelB and c-Rel also have a transactivation domain 

(TAD) at their C-terminal that enables these subunits to positively regulate gene 

transcription. On the other hand, p50 and p52 lack TADs, so when they are 

present as homodimers they are thought to act as repressors of transcription as 

they compete with the transcriptionally active dimers to bind to their DNA 

targets, preventing them from doing so. These subunits can also drive 

transcription when they are bound to a TAD-containing subunit in the form of a 

heterodimer, highlighting their dual role in the regulation of transcription. 

 

Figure 1.2: Members of the NF-κB Rel protein family.  
The mammalian Rel protein family consists of five members: RelA (p65), RelB, c-Rel, p50 and p52 
that are derived from the limited proteasomal processing of precursors p105 and p100 respectively. 
Numbers refer to amino acid sequence. LZ: leucine zipper; TAD: transactivation domain. 
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Figure 1.3: Dimer combination of NF-κB subunits.  
The presence of the RHD allows NF-κB subunits to form either homo- or heterodimers. p65, RelB 
and c-Rel contain a TAD domain that confer transcriptional activity upon dimers containing these 
subunits, whereas p50 and p52 lack this domain and correspondingly lack transcriptional activity. In 
vivo, RelB has only been observed to form dimers with p50 and p52 so there are only 12 dimer 
configurations that exist biologically. 

 

1.2.3 Regulation by IκB proteins 

NF-κB signalling functions through both positive and negative regulation 

following its induction by a stimulus. In resting cells, NF-κB dimers are 

sequestered in the cytoplasm in an inactive state by members of a family of 

inhibitor of κB (IκB) proteins. The typical members of this family are IκBα (ikbα), 

IκBβ (ikbb), IκBε (ikbe) and the precursors of p50 and p52, p105 and p100 

(Hayden & Ghosh, 2014). As well as these, there are two atypical IκB proteins: 

BCL-3 (B-cell lymphoma-3) and IκBζ (figure 1.4). Common among the IκB 

proteins are multiple ankyrin repeat domains (ANK). Of the IκB proteins, the 

most extensively studied is IκBα. In the absence of an activating signal, IκBα 

binds to NF-κB dimers in the cytoplasm, masking their nuclear localisation 

signals (NLS) and thus preventing them from translocating into the nucleus and 

maintaining them in an inactive state. Upon receiving an activating signal, the 

IκB proteins are rapidly phosphorylated at two serine residues (Hayden & Ghosh, 

2014) by the IκB kinase (IKK) complex (Baker & Ghosh, 2010) (C Scheidereit, 

2006). This phosphorylation event ultimately results in lysine48- (K48) linked 

polyubiquitination by the Skp cullin F-box-containing complex (SCF)/UbcH5 
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ubiquitin ligase complex (Wertz & Dixit, 2010) which causes proteasomal 

degradation of the IκB proteins. In this event, NF-κB dimers are now free to 

move into the nucleus where they can bind to their DNA targets and regulate 

gene expression. Although complexes of IκBα:p65:p50 are able to dynamically 

shuttle between the nucleus and the cytoplasm (Tam  et al., 2000), the masking 

of the NLS on p65 results in NF-κB dimers being maintained in the cytoplasm. IKK 

contains the catalytic kinases IKKα or IKKβ plus a regulatory element, IKKγ (also 

known as NF-κB essential modifier, or NEMO). It is upon the IKK complex that 

both activation pathways of NF-κB converge. 

 

Figure 1.4: Members of the IκB protein family.  
There are 8 members of this family, which are IκBα, IκBβ, IκBε, BCL-3, IκBζ, IκBNS, p105 and 
p100 and are typified by the presence of multiple ankyrin repeats. Numbers refer to amino acid 
sequence. ANK: ankyrin repeat domains; PEST: PEST domain. 

 

1.2.4 Activation pathways 

The two pathways through which NF-κB signalling can progress are the canonical 

and the non-canonical (Bonizzi & Karin, 2004). The first step of both is the post-



26 
 
translational modification of the IκB proteins, and as stated above, both 

converge on the activation of one of two IKK complexes. 

1.2.4.1 Canonical pathway 

The canonical, or classical, pathway is the general model of NF-κB regulation. 

The activation stimulus in this activation pathway is the binding of a ligand 

displaying a pathogen associated molecular pattern (PAMP), or a pro-

inflammatory cytokine to a cell surface receptor, such as the members of the 

Toll-like receptor (TLR), interleukin-1 (IL-1) receptor or tumor necrosis factor 

(TNF) receptor families. This results in the activation of the IKK complex, which 

in the canonical pathway, is predominantly the IKKβ catalytic subunit that exists 

in a complex along with IKKα and regulatory NEMO. This phosphorylates IκBα 

which is bound to the NF-κB subunits at positions serine 32 (S32) (Senftleben et 

al., 2001a) and S36 (or S19 and S23 on IκBβ). This phosphorylation tags IκBα for 

polyubiquitination by the SCF beta-transducin repeats-containing (SCFβTrCP) 

ubiquitin ligase (at positions K21 and K22 on IκBα) and subsequently IκBα is 

degraded by the 26S proteasome, therefore allowing NF-κB dimers (in this case 

predominantly p65:p50) to move into the nucleus, bind to DNA and activate the 

transcription of NF-κB target genes (figure 1.5). 

1.2.4.2 Non-canonical pathway 

The end result of the non-canonical, or alternative pathway, is the activation of 

p100:RelB complexes and is reliant upon on IKKα alone, without IKKβ or NEMO 

(figure 1.5). Stimuli that activate the non-canonical pathway lead to the 

stabilisation of NF-κB-inducing kinase (NIK). NIK phosphorylates and thus 

activates IKKα, which itself then phosphorylates p100 at S176 and S180 in its C-

terminal. Again, this leads to polyubiquitination by the SCFβTrCP ubiquitin ligase 

and degradation by the proteasome, however in this case degradation is only 

partial. Only the inhibitory C-terminal of p100 is degraded, leaving the N-

terminal – the NF-κB subunit p52. This pathway is triggered by a limited number 

of stimuli including B cell activating factor (BAFF) and lymphotoxinβ (LTβ), and 

occurs during the generation of lymphoid organs (Senftleben et al., 2001b). 

There has been the observation that the non-canonical pathway is almost 

entirely independent of other pathways except for the MyD88 and mitogen-
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activated protein kinases (MAPK) activation pathways. However, the canonical 

pathway is able to mediate cross-communication with different signalling 

pathways such as p53, MAPK and interferon regulatory factors (IRF), so this must 

be taken into consideration when investigating the regulation of the NF-κB 

activation pathways (Ghosh & Dass, 2016). Whilst the canonical pathway is a 

rapid responder to infection, the non-canonical pathway is slow and its kinetics 

depend on the synthesis of new proteins, which is consistent with a role in 

organogenesis (Baltimore, 2011). 
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Figure 1.5: Canonical and non-canonical activation pathways of NF-κB.  
Upon receiving an activating signal, IκB proteins, which sequester NF-κB dimers in the cytoplasm, 
are phosphorylated by the IKK complex, marking them for ubiquitination and proteasomal 
degradation. This frees the NF-κB dimers that can now move into the nucleus and activate gene 
transcription. In the canonical pathway, the triggering stimuli may be the binding of a TLR ligand 
resulting in the phosphorylation and degradation of IκBα, following which, p65:p50 dimers move 
into the nucleus and bind to their DNA targets. The non-canonical pathway is induced by certain 
TNF family cytokines such as CD40L, BAFF and LTβ and leads to the IKKα-mediated 
phosphorylation of p100 into p52 that is bound to RelB and is transcriptionally active. 
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1.2.4.3 Oscillations of NF-κB signalling 

It has been observed that NF-κB activity can occur in oscillations between the 

cytoplasm and nucleus. As detailed above in section 1.2.3, IκB proteins 

sequester NF-κB dimers in the cytoplasm of resting cells and upon receiving an 

activating signal, NF-κB is released and translocates to the nucleus. However, 

NF-κB also controls the transcription of IκBα (Sun et al., 1993) resulting in a 

negative feedback loop that causes oscillations in NF-κB activity leading to 

dynamic changes in gene expression that may depend on the number, duration 

and intensity of such oscillations (Nelson et al., 2004). For example, treatment 

of cells with TNFα at time intervals that represented pulsative inflammatory 

responses resulted in synchronised oscillations of translocation of NF-κB from the 

cytoplasm into the nucleus, with different stimulation intervals resulting in 

different patterns of gene expression (Ashall et al., 2009). Nuclear:cytoplasmic 

oscillations were recorded over a period of 100 minutes for a range of TNFα 

concentrations, although as the concentration was lowered, a smaller fraction of 

the cells responded which supports the concept of a threshold for activation 

(Turner et al., 2010). 

 

1.3 The role of NF-κB in inflammation 

NF-κB controls the expression of hundreds of biologically important genes (an 

ever-increasing list can be found at https://www.bu.edu/nf-kb/gene-

resources/target-genes/), thus living up to its reputation as the ‘master 

regulator’, however, one of its most critical roles is in the regulation of genes 

that control inflammation. Considering there are 15 possible combinations of NF-

κB subunit dimers, this provides some diversity in approaching this complex task. 

However, there are nuances surrounding the specificity of NF-κB targets genes 

that influence how this transcription factor controls genes expression, including 

which other transcription factors are also involved in the signalling pathway, and 

what the specific binding site sequence is for a particular gene. The hundreds of 

genes that are activated by NF-κB do so via κB sites in their enhancer or 

promotor regions. The consensus κB site is 5’-GGGRNWYCC-3’ (where N is any 

base, R is a purine, W is adenine or thymine and Y is a pyramidine) and it is this 
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sequence that binds to the RHD of NF-κB dimers (Smale, 2012). The different 

dimer combinations can recognise variations of the κB sequence with different 

affinities and this leads to the vast array of gene regulatory patterns that 

emerge from just five protein subunits (Zhang et al., 2017). In order to further 

discern how such a modest family of transcription factors can respond to a large 

number of activators and in turn activate the required patterns of gene 

expression in multiple tissue types we can look to knock-out studies conducted 

in mice, and more recently to human genetic deficiencies. Mice that have the 

individual NF-κB subunits knocked out or otherwise modified have provided huge 

insight into the roles of these subunits themselves as well as their activators and 

regulators and have highlighted the complexity of this signalling pathway. 

Almost every technique available for manipulating the mouse genome has been 

employed in the analysis of NF-κB signalling and the challenging nature of 

evaluating the individual roles in vivo has been revealed due to this complexity 

and the many redundancies that exist between the various factors (Pasparakis et 

al., 2006). Additionally, continual progress in the study of human genetic 

diseases that affect the components of the NF-κB signalling pathway will 

significantly contribute to our future understanding of the regulation of NF-κB in 

human health and disease. 

 

1.3.1 NF-κB subunits 

1.3.1.1 p105/p50 (Nfkb1) 

The loss of p50 is not fatal and indeed results in viable adult development when 

Nfkb1 is knocked out (Sha et al., 1995). However, there is evidence of impaired 

innate and adaptive immune function (Cariappa et al., 2000; Artis et al., 2005). 

As pointed out by Gerondakis et al. (2006), it is problematic to blame all of the 

defects seen in these mice solely on the loss of p50 because a high proportion of 

p105 subunits act as scaffolds for Tumour progression locus 2 (Tpl2), the apical 

kinase of the MAPK cascade (Beinke & Ley, 2004). In resting cells, all cellular 

Tpl2 is bound by p105, while Tpl2-bound p105 represents only a small pool of the 

total p105 in the cell. This interaction is required to keep Tpl2 in an inactive but 

stable state. Activation of the MAPK pathway requires the IKKβ-induced 

phosphorylation of p105 and Tpl2, which triggers the proteasomal degradation of 
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p105 and the activation of Tpl2 (Roget et al., 2012). In the absence of p105, 

there is little to no Tpl2 found in cells, as it is rapidly degraded. Therefore, 

Nfkb1-/-cells essentially have defects in two signalling pathways – NF-κB and 

MAPK (Yang et al., 2012). In Nfkb1-/-macrophages, following TLR stimulations 

there is reduced expression of interleukin-6 (IL-6), IL-10 and cyclooxygenase-2 

(COX-2), which are all immune effectors. IL-6 and COX-2 are regulated by both 

NF-κB and extracellular-signal-regulated kinase (ERK) so this effect was found to 

result from a combined defect in both pathways (Banerjee et al., 2006).  

Natural killer (NK) cells that lack Nfkb1 however, exhibit enhanced proliferation 

and increased expression of IFNγ in vitro when stimulated with Toxoplasma 

gondii which suggests p105/p50 is a negative regulator of these cells (Tato et 

al., 2006). B cells from Nfkb1-/- mice show some variation: marginal zone and 

CD5+ peritoneal B cells are reduced, however, follicular B cell numbers are 

normal but turn over more quickly (Grumont  et al., 1998; Pohl et al., 2002). B 

cell activating factor of the TNF family (BAFF) promotes follicular B cell survival 

by inducing the expression of p52 (Claudio et al., 2002), however, it was 

discovered that BAFF also activates p50 (Hatada et al., 2003), which may 

suggest that p50 has a role in BAFF-dependent B cell survival as well. B cells 

lacking Nfkb1 exhibit a poor response to LPS, a ligand of Toll-like receptor 4 

(TLR4), although B cell receptor proliferation is normal (Sha et al., 1995). In the 

case of T cells, Nfkb1 is not essential for maturation but it is indispensable for 

the development of normal Th2 responses involving the effector cytokines IL-4, 

IL-5 and IL-13 (Das et al., 2001; Artis et al., 2005). On the other hand, when the 

C-terminal of p105 is deleted as in Nfkb1ΔCT/ΔCT mice, this results in 

overexpression of p50 homodimers in the nucleus and thus highlights the C 

terminal as an important regulatory domain (Gerondakis et al., 2006). Mice with 

this mutation exhibit lymphoid infiltration into various organs and enlarged 

lymph nodes and spleen (Ishikawa et al., 1998). Additionally, B cell numbers are 

increased and are hyper-responsive, however T cells are less able to proliferate 

and their capacity to produce cytokines is diminished.  

In human studies, heterozygous mutations in NFKB1 result in common variable 

immunodeficiency (CVID) which presents as poor antibody responses and 

ineffective isotype class switching. Furthermore, these mutations result in a 
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reduction of p105 and p50 in resting cells and greatly diminished p105 

phosphorylation following stimulation (Fliegauf et al., 2015; Boztug et al., 

2016). 

1.3.1.2 p100/p52 (Nfkb2) 

As with Nfkb1-/- mice, Nfkb2-/- mice are viable but develop a multitude of 

immune deficiencies such as the inability to develop normal secondary lymphoid 

organs, an impairment in B cell maturation and abnormal T cell functionality 

(Beinke & Ley, 2004). They have disrupted structures of their spleen and lymph 

nodes in that the perifollicular marginal zone of the spleen is absent and B cell 

follicular areas are greatly diminished (Caamano et al., 1998).  

The link between NF-κB and other signalling pathways was highlighted by Nfkb2-

/- mice because similar defects were seen in mice that lack lymphotoxinβ (LTβ), 

LTβ-receptor (LTβR), NIK or RelB (Beinke & Ley, 2004). A signalling pathway that 

operates downstream of LTβR and which in stromal cells is essential for the 

p52/RelB-dependent expression of chemokines that are crucial for lymphoid 

organogenesis was identified (Bonizzi & Karin, 2004). Other TNF-receptor 

superfamily ligands in addition to LTβ, such as BAFF and CD40, also induce 

nuclear expression of p52/RelB dimers. This is done via the NIK-IKKα-dependent 

processing of p100, so defects (such as the poor survival rates of B cells) that are 

seen in mice that lack these ligands will overlap with mice that lack Nfkb2 

(Beinke & Ley, 2004) (Gerondakis & Strasser, 2003).  

Activated T cells in vitro that lack Nfkb2 proliferate at a normal rate and exhibit 

no defects in cytokine production (Franzoso et al., 1998). However, the Th1 

responses of Nfkb2-/- mice appear to vary depending on the challenging 

pathogen. These mice are particularly susceptible to assault by Leishmania 

major due to their inability to mount an effective IFNγ response (Speirs et al., 

2002) but this is due to diminished CD40-dependent IL-12 production by Nfkb2-/- 

macrophages rather than an inability of Nfkb2-/- T cells to mount at Th1 

response. Furthermore, challenge by Toxoplasma gondii also results in increased 

susceptibility due to an inefficient IFNγ response, however in this case it is due 

to a Fas-dependent reduction in the number of T cells (Caamano et al., 2000). 

Studies conducted in Nfkb2ΔCT/ΔCT mice, which have deletions in the ankyrin 
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repeats of the C-terminal, and which cause overexpression of p52 again 

highlights the importance of the C-terminal as an inhibitory domain. These mice 

exhibit many abnormalities such as lymphocytic infiltrates into organs, enlarged 

lymph nodes and granulocytosis (Ishikawa et al., 1997) all of which are hyper-

proliferative defects and are consistent with the induction of p52-containing 

dimers being regulated with many TNF-R superfamily ligands (Beinke & Ley, 

2004). The C-terminal of p100 is highlighted as an important inhibitory domain 

because, when mutated, higher than usual levels of p52 are detected in tissues 

and there is increased expression of NF-κB target genes. The hyper-proliferative 

defects observed in mice that overexpress p52 indicate the importance of 

controlling cell proliferation by regulating the nuclear levels of p52 dimers 

(Gerondakis et al., 2006). This is further entrenched by observations made in 

some human lymphomas that have similar alterations in NFKB2 to the 

Nfkb2ΔCT/ΔCT mice (Courtois & Gilmore, 2006).  

In human genetic diseases, heterozygous mutations in NFKB2 are present in an 

autosomal-dominant common variable immune deficiency (CVID) where patients 

present with chronic respiratory infections and autoimmune infiltration of the 

scalp causing baldness, among other symptoms (Shi et al., 2016). 

1.3.1.3 c-Rel 

Like, p105/p50, c-Rel is essential for the normal function of B and T cells, 

macrophages and dendritic cells (DCs). c-Rel is responsible for co-ordinating G1- 

to S-phase of the cell cycle (Grumont et al., 1998) as it is able to induce the 

expression of E2F3a which is required for cycle progression (Cheng et al., 2003). 

It also promotes the survival of B cells by upregulating the B-cell lymphoma 2 

(BCL-2)-like survival genes, A1 and Bcl-xl. Additionally, B cells with c-Rel 

knocked-out are defective in isotype switching (Pohl et al., 2002).  

In T cells, c-Rel is not required for positive or negative selection (Strasser et al., 

1999) but is essential for the control of CD4+ and CD8+ immunity. In CD4+ 

responses, c-Rel regulates the development of Th1 cells and cytokine expression 

(Hilliard et al., 2002; Mason et al., 2004). Although c-Rel-dependent production 

of IL-12 by professional antigen presenting cells (APCs) is important in 

influencing the development of Th1 cells in a mouse model of multiple sclerosis 
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(MS) (experimental autoimmune encephalomyelitis, or EAE) (Hilliard et al., 

2002), c-Rel is not required for the generation of Th1 cells and IL-12 production 

by APCs when challenged by T. gondii (Mason et al. , 2004). In this case, the 

defective Th1 response in Rel-/- mice appears to stem from defective clonal 

expansion of Th1 effector cells. Furthermore, c-Rel has a role in the production 

of cytokines by T cells. In CD4+ T cells, c-Rel is essential for pro-inflammatory 

cytokine priming of immune responses leading to greater expression of IFNγ and 

IL-2 by naïve T cells (Banerjee et al., 2005). When CD4+ T cells are activated, c-

Rel assists in the production of GM-CSF and IL-2 (Gerondakis et al., 1996) by 

directly regulating IL-2 transcription via chromatin remodelling on the Il2 

promotor (Chen et al., 2005).  

In terms of APCs, Rel-/- mice exhibit reduced numbers of plasmacytoid dendritic 

cells (pDCs) which produce type I IFNs (O’Keeffe et al., 2005). The lack of c-Rel 

does not negatively affect the development of conventional DCs (cDCs) nor their 

co-stimulatory protein expression, but it is essential for the promotion of 

antigen-specific cytotoxic T cell responses (Mintern et al., 2002) and for the 

expression of the IL-12 gene, p53 (Grumont et al., 2001). This is in contrast with 

the requirement for c-Rel in the expression of the IL-12 gene, p40, by 

macrophages (Sanjabi et al., 2000). The reasons for the different requirements 

for regulation of IL-12 subunit production by c-Rel across different APCs are not 

understood, however it is speculated that it may be that cDC and macrophages 

are the essential producers of IL-12 in primary and sustained immune responses 

(Gerondakis et al., 2006).  

Of interest, a role for c-Rel has been implicated in the formation of long-term 

memories (LTM). Although known to promote the survival of neurons (Pizzi et 

al., 2002), it was later found that c-Rel binding sites were enriched in the 

upstream regions of genes that are regulated in the consolidation of LTM and 

later confirmed by studies using Rel-/- mice (Levenson et al., 2004). 

1.3.1.4 p65 (Rela) 

Also known as RelA, the p65 subunit of NF-κB has been difficult to study in vivo 

because p65 KO (Rela-/-) mice die on embryonic day 15 due to TNFα-mediated 

foetal hepatocyte apoptosis (Sha et al., 1995), however this is overcome by 
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either removing TNFα (Doi Marino et al., 1999) or TNF-receptor 1 (Alcamo et al., 

2001). Therefore, Rela-/-Tnfr-/- mice are born without major overt abnormalities, 

including a protective role for p65 against TNFα-induced toxicity. Shortly after 

birth however, these mice die at increased rates possibly due to greater 

susceptibility to infection (Alcamo et al., 2001). The protective effect of p65 

against TNFα toxicity has also been observed in other cell types such as 

macrophages (Beg & Baltimore, 1996), B cells (Prendes et al., 2003) and T cells 

(Senftleben et al., 2001b). However, its anti-apoptotic effect extends beyond 

TNFα as p65 also protects against apoptosis induced by double-stranded RNA 

(dsRNA) which is a TLR9 ligand (Li et al., 2001). This feature of p65 derives from 

its regulation of many genes that encode proteins like cellular FLICE (FADD-like 

IL-1β-converting enzyme)-inhibitory protein (c-FLIP), the transcription factor 

A20 and growth arrest and DNA damage inducible beta (GADD45β), among others 

(Dutta et al., 2006).  

In Rela-/-Tnfr-/- mice, the structure of the spleen is disrupted and there is an 

absence of lymph nodes (Alcamo et al., 2002). It was revealed that the role of 

p65 in the development of secondary lymphoid organs is dependent on radio-

resistant stromal cell development rather than haemopoietic cells. Along with 

p50, p65 reduces sensitivity to LPS-induced toxic shock that can be a 

consequence of an unregulated innate immune system (Gadjeva et al., 2004). 

Furthermore, during the initiation of the innate immune response, p65 is 

required for the recruitment of leukocytes, and in adaptive immunity it is 

essential for T cell responses (Alcamo et al., 2002) and for B cell isotype 

switching to IgG3 (Horwitz et al., 1997). 

1.3.1.5 RelB 

RelB has not been observed to form homodimers unlike the other subunits of NF-

κB. Instead, it forms heterodimers with p50 and p52, the highest concentrations 

of which are found in the thymus, lymph nodes and Peyer’s patches suggesting 

its main role is in the development of secondary lymphoid organs and the 

regulation of immune cell responses. Mice that lack Relb exhibit an abnormal 

inflammatory phenotype (Burkly et al., 1995) with T cell infiltrates in multiple 

organs, inflammatory dermatitis, T-cell dependent myeloid hyperplasia and 

splenomegaly all being observed. As with Nfkb1-/- and Nfkb2-/-mice, Relb-/- mice 
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exhibit disrupted development of secondary lymphoid organs (Yilmaz et al., 

2003). These mice do not develop Peyer’s patches nor splenic germinal centres 

and follicular DCs (fDCs) in response to exposure to antigen. In addition, RelB is 

indispensable for the proper development of the marginal zone and its 

infiltration by macrophages and B cells (Weih & Caamano, 2003). As with Nfkb2-

/- mice, the defects in secondary lymphoid organogenesis observed in Relb-/- 

mice are due to the p52/RelB-dependent expression of chemokines regulated by 

LTβ signalling (Bonizzi & Karin, 2004).  

Relb-/- mice have a complete deficiency of certain thymic and splenic DCs which 

is thought to be a consequence of defective stromal cells and haemopoietic stem 

cells (Wu et al., 1998). The function of Relb-/- B cells in vitro appears to be 

normal. However, Relb-/- mice exhibit defects in humoral immunity, perhaps 

because of an impairment in CD4+ T cell responses from deficient APC or T cell 

function (Weih et al.,1997). The expression of RelB by T cells is essential for the 

proliferation of single positive T cells throughout the latter stages of 

development (Guerin et al., 2002). It is also required in mature CD4+ T cells for 

normal Th1 function and IFNγ production because Relb-/- mice exhibit impaired 

differentiation to Th1 cells, possibly due to decreased expression of Stat4 (Corn 

et al., 2005).  

In human studies, an autosomal recessive RelB deficiency has been observed in 

three patients from the same family, who all presented with combined 

immunodeficiency (CID) from a young age, experiencing frequent infections and 

severe autoimmune skin diseases (Sharfe et al., 2015). 

1.3.1.6 Double knock-out mice 

Individual NF-κB knock-out mutant mice provide much information about the 

unique roles of the subunits within the control of inflammation, however they do 

not fully reveal their functions because overlapping pattern expressions and 

redundant roles that are performed by more than one subunit will prevent the 

full story from unravelling. Therefore, mice with more than one subunit knocked 

out reveal a wider picture.  
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Lo et al. (2006) performed analysis of Nfkb1-/-Nfkb2-/- mice, which indicated a 

role for these subunits in co-ordinating the LTβ-dependent formation of 

secondary lymphoid organs. The phenotype of mice that lack LTβ is similar to 

these mice and is more severe than mice with single gene knock-outs. 

Accordingly, LTβ is an inducer of both p50- and p52-containing dimers in the 

nucleus. Double knock-outs of Nfkb1 and Relb in mice exhibit more severe organ 

inflammation than that seen in single Relb-/- mice (Weih et al., 1997). The 

double knock-out mice experience inflammatory infiltrates that are entirely 

devoid of B cells, indicative of a critical impairment in B cell development. Mice 

with both Nfkb1 and Rel knocked out display similar defects as the single knock-

outs but more severe, for example in the reduction in the CD5+ peritoneal B cell 

population in Nfkb1-/- mice is even further diminished in the double knock-outs 

(Pohl et al., 2002). The embryonic death observed in Rela-/- mice due to 

hepatocyte apoptosis in response to TNFα toxicity occurs at an even earlier stage 

of development in Nfkb1-/-Rela-/- mutants (Horwitz et al., 1997). Furthermore, 

this double knock-out mutation reveals a joint role for p50 and p65 in the 

control of mature B cell activation because although normal haemopoietic cells 

can rescue the development of these double knock-out mutants, they do not 

divide in response to mitogenic signals (Horwitz et al., 1999). 

 

1.3.2 IKK complex 

1.3.2.1 IKKα 

In the canonical activation pathway of NF-κB, IKKβ appears to be the most 

important kinase while IKKα alone is required for activation of the non-canonical 

pathway (Scheidereit, 2006). Initial studies demonstrated that mutant mice 

lacking IKKα (Ikka-/-) exhibit many skin and skeletal defects that are not seen in 

mice lacking one or more NF-κB subunits. These developmental defects are not 

seen in mice with a catalytically inactive allele of IKKα (IkkaAA/AA), thus revealing 

a kinase-independent role for IKKα (Cao et al., 2001). The importance of IKKα in 

the activation of the non-canonical pathway is obvious in these mice, which are 

phenotypically similar to Nfkb2-/-, Ltb-/- and Nik-/- mice, in that they exhibit 

defects in the development of secondary lymphoid organs and do not produce 

mature fDCs (Bonizzi et al., 2004; Gerondakis et al., 2006). Somewhat counter-
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intuitively, IkkaAA/AA mice also display a heightened inflammatory response to 

LPS due to increased pro-inflammatory cytokine expression by macrophages 

(Lawrence et al., 2005). The mechanism behind this response is unclear and has 

been proposed that IKKα phosphorylation of c-Rel and p65 promotes their 

degradation. However, it has also been suggested that in the absence of IKKα 

kinase activity there is a decreased post-stimulus induction of IκBα due to 

increased IKKβ activity, indicating a role for IKKα in the regulation of the IKK 

complex (Li et al., 2005). This is further supported by studies from IKKα-null 

bone marrow chimeras that demonstrate immune system abnormalities including 

altered NF-κB activation in macrophages and defective B-cell function 

(Senftleben et al., 2001a). 

In humans, autosomal recessive loss-of-function mutations in IKKα result in 

foetal lethality, whereas IKKβ deficiency causes severe combined 

immunodeficiency (SCID) (Pannicke et al., 2013). 

1.3.2.2 IKKβ 

The importance of IKKβ in the classical pathway of NF-κB activation is apparent 

from the phenotype of mice that lack it which broadly encompasses the 

phenotypes of Nfkb1-/-, Rel-/- and Rela-/- mice. As with Rela-/- mice, Ikkb-/- mice 

die as embryos due to TNFα-induced hepatocyte apoptosis (Li et al., 1999). This 

has meant that much of our understanding of IKKβ function in vivo has come 

from studies performed using tissue or cell-specific deletion of IKKβ, identifying 

important cell-specific roles for IKKβ in regulating inflammation.  

IKKβ expression in macrophages is required for the production of pro-

inflammatory cytokines (Lawrence et al., 2005) and there has been a link 

established between IKKβ and the inflammation observed during obesity-induced 

insulin resistence (Arkan et al., 2005). Hepatocyte-specific inactivation of IKKβ 

led to the liver still being responsive to insulin, whereas muscle and fat tissue 

became resistant. However, mice with IKKβ deleted in myeloid cells retained 

systemic sensitivity to insulin suggesting that the production of pro-inflammatory 

mediators by myeloid cells as regulated by NF-κB is key to the development of 

systemic insulin resistance that is the hallmark of type II diabetes. In 

keratinocytes, the opposite finding was observed, wherein inactivating IKKβ 
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resulted in inflammation (Pasparakis et al., 2002). Mice with epidermis-specific 

deletion of IKKβ developed severe, TNFα-dependent inflammation in the skin 

shortly after birth. These studies suggest that IKKβ in epidermal keratinocytes 

has a critical function in maintaining immune homeostasis of the skin. This 

highlights the complex role IKKβ plays in the regulation of inflammation, 

whereby for monocytes IKKβ is essential for inflammatory responses, whereas in 

skin cells, its inactivation leads to an inflammatory response. 

In human studies, patients that lack IKKβ are born without any obvious defects 

but develop SCID after birth that is in contrast to Ikkb-/- mice, which die as 

embryos, and further highlights a major physiological difference in the role of 

IKKβ in mice and humans. Cells from patients with a homozygous mutation in 

IKKB had impaired responses to stimulation through T-cell receptors, B-cell 

receptors, TLRs, inflammatory cytokine receptors and mitogens (Zhang et al., 

2017). In the absence of IKKβ, the IKK complex consists of IKKα homodimers thus 

altering the response to some stimuli; for example, phosphorylation and 

degradation of IκBα and induction of IL-6 is eliminated in response to TLR5 

stimulation, but only marginally affected following IL-1β stimulation (Pannicke 

et al., 2013). These studies demonstrate that IKKα homodimers can mediate 

canonical pathway signalling for some stimuli, suggesting IKKα and IKKβ may 

serve different receptors (Solt et al., 2007; Zhang et al., 2017). 

1.3.2.3 NEMO 

NEMO is a regulatory component of the IKK complex that is essential for the 

activation of the canonical NF-κB pathway. Mice that lack NEMO (Ikbkg-/-), 

similar to Rela-/- and Ikkb-/- mice, die during embryogenesis due to hepatocyte 

apoptosis induced by TNFα (Cho et al., 2003). The Ikbkg gene is located on the X 

chromosome so heterozygous null females are viable but exhibit an inflammatory 

skin disease soon after birth that is similar to incontinentia pigmenti, a human 

genetic condition caused by NEMO mutations (Makris et al., 2000). Indeed, in 

humans complete loss of function or amorphic mutations cause pre-natal 

lethality in males (Zhang et al., 2017)). Hypomorphic mutation in Ikbkg cause 

anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) (Döffinger et 

al., 2001). Cells without NEMO also lack activation of the canonical pathway in 

response to a number of immune mediators such as IL-1β, TNFα and LPS (Hubeau 
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et al., 2011). TNFα activates both apoptotic and NF-κB pathways and so the 

immune activation of cells requires NF-κB to induce genes that inhibit apoptosis 

(Karin & Lin, 2002). When NEMO is disrupted, NF-κB does not induce the 

expression of these anti-apoptotic genes leading to TNFα-induced apoptosis and 

dysregulated immunity. 

Mice with a conditional deletion of NEMO in intestinal epithelial cells (NEMOΔIEC) 

revealed a key role for NF-κB in maintaining epithelial barrier function and 

immune homeostasis in the gut (Nenci et al., 2007). As a result, NEMOΔIEC mice 

develop spontaneous colitis due to defective epithelial barrier function. Of note, 

this phenotype is observed in mice with the conditional deletion of both Ikka and 

Ikkb in intestinal epithelial cells, but not in mice with a conditional deletion of 

either alone, providing further proof that IKKα and IKKβ share some functional 

redundancy. 

T cell-specific deletion of NEMO or the replacement of IKKβ with a dominant-

negative mutant prevents the development of mature peripheral T cells, 

demonstrating that mature T cells require NF-κB activity (Schmidt-Supprian et 

al., 2003). Hepatocyte-restricted NEMO deletion leads to spontaneous chronic 

hepatitis in adult mice, which ultimately progresses to hepatocellular carcinoma 

through compensatory hepatocyte proliferation (Luedde et al., 2007). Indeed, 

this finding that was the first indication that the pharmaceutical inhibition of 

the IKK complex may not be a viable strategy (Herrington et al., 2016).  

 

1.3.3 IκB proteins 

1.3.3.1 Prototypical 

The main control of NF-κB transcriptional activity is by the IκB proteins. In 

resting cells, IκB proteins sequester NF-κB dimers in the cytoplasm where they 

are unable to bind to their DNA targets in the nucleus and regulate gene 

expression. However, the nuances of the regulatory role of these proteins are 

further clarified by studying mice with their encoding genes knocked out. The 

prototypical IκB proteins are IκBα, IκBβ and IκBε, however the regulatory roles 

of IκBα and IκBβ were found to be almost identical (Cheng et al., 1998). When 

IκB proteins are absent, there is no inhibition of NF-κB activity and so the 



41 
 
consequences on the regulation of inflammation will be detrimental. Iκbα-/- mice 

die very soon after birth because of severe inflammatory dermatitis (Sha et al., 

1995). IκBα is essential in regulating the expression of pro-inflammatory genes as 

controlled by NF-κB, therefore in the inflammatory dermatitis observed in Ikba-/- 

mice there is increased levels of TNFα, granulocyte-colony stimulating factor (G-

CSF), macrophage inflammatory protein 2 (MIP-2, also known as CXCL2) and 

eotaxin (Klement et al., 1996). Conversely, mice that lack IκBε are viable and 

present with only minor immune defects (Memet et al., 1999), such as B cell 

hyper-proliferation (Alves et al., 2014). Also, mice that lack IκBβ have been 

observed to have hypo-inflammatory responses, with a reduction in TNFα 

expression and resistance to endotoxin shock and collagen-induced arthritis (CIA) 

(Rao et al., 2010; Scheibel et al., 2010). More recently, research using 

mathematical modelling and experimental approaches revealed that fibroblasts 

and macrophages that lack IκBβ also lack p65 homodimers, which are a strong 

activator of inflammatory gene expression (Tsui et al., 2015). Previous models 

were unable to account for this phenotype as they assumed that the amount of 

NF-κB dimers was constant and calculated the control of their subcellular 

localisation and DNA-binding activity based on IκB degradation and synthesis. 

This investigation based their model on biophysical measurements of 

recombinant proteins and in vivo experimentation and thus revealed that IκBβ 

acts as an essential positive regulator of the formation of p65 homodimers, 

whereas IκBα is the main regulator of the dynamics of NF-κB activity, not only of 

p65:p50 heterodimers but also p65 homodimers (Tsui et al., 2015). They 

concluded that the prototypical IκB proteins could be categorised into two 

classes: IκBα and –ε primarily function within the IκB-NF-κB signalling module 

that is responsive to inflammatory stimuli, whereas IκBβ’s main function is as a 

positive regulator of NF-κB dimer formation, which explains the different 

phenotypes of mice that lack each of these IκB proteins. 

1.3.3.2 Atypical IκB proteins 

BCL-3 is an atypical IκB protein that, unlike the prototypical proteins, is mainly 

nuclear in its localisation and is not degraded upon activation of the IKK 

complex. It binds only to homodimers of p50 or p52 (Nolan et al., 1993), the two 

transcriptionally inactive subunits of NF-κB. It has the effect of stabilising p50 

homodimers by preventing their ubiquitination and subsequent degradation by 
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the proteasome. BCL-3, therefore, is a negative regulator of TLR-activated 

immune responses. When BCL-3 is knocked out, Bcl3-/- macrophages are hyper-

responsive to TLR stimulation and do not develop TLR tolerance (Carmody et al., 

2007). This was attributed to p50 homodimers undergoing greater ubiquitination 

and proteasomal degradation, thus shifting the balance between repressive and 

activating NF-κB dimers in the nucleus toward the activating end of the 

spectrum. The result of this is dysregulated cytokine production due to improper 

NF-κB dimer loading and exchange (Palmer & Chen, 2008) as indicated by the 

increased expression of pro-inflammatory genes such as Tnfa and Il6. 

Furthermore, the formation of secondary lymphoid organs is disrupted in Bcl3-/- 

mice as the structure of the germinal centre of the spleen is diminished which is 

accompanied by a reduction in follicular B cells and marginal zone macrophages 

(Franzoso et al., 1997; Schwarz et al., 1997; Gerondakis et al., 2006).  Similar 

defects were found in mice that lacked the Nfkb1 and Nfkb2 genes, which 

reinforces the link between BCL-3 and these subunits. BCL-3 was reported to 

have a role independent of being a negative regulator of inflammation by 

O’Carroll et al. (2013) when Bcl3-/- mice were observed to be less sensitive to an 

induced model of colitis than wild-type (WT) controls and retained more 

integrity in the structure of colonic tissue. There was no difference between the 

mutants and WT counterparts in the expression of pro-inflammatory cytokines, 

but Bcl3-/- mice exhibited greater proliferation of intestinal epithelial cells.  

 

1.4 The ubiquitin-proteasome system and NF-κB 

Considering the ability of NF-κB to control the expression of many genes, it is 

essential that its activity is regulated, and that this regulation occurs at various 

levels to prevent the negative consequences of dysregulation such as 

autoimmune disease, cancer and sepsis. The primary point of control of NF-κB 

transcriptional activity is through the IκB proteins, which, as outlined in section 

1.2.3, sequester NF-κB dimers in the cytoplasm in resting cells. When an 

activating signal is received, the IKK complex phosphorylates the IκB protein 

resulting in its subsequent ubiquitination and degradation by the proteasome. 

NF-κB dimers are now free to translocate into the nucleus, bind κB sites on 

promoter and regulate gene expression (Hayden & Ghosh, 2012). However, the 
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degradation of the IκB proteins by themselves in not sufficient to result in an 

optimal NF-κB response (Oeckinghaus & Ghosh, 2009) and the human and mouse 

studies detailed in section 1.3.1 do not explain the full story of how NF-κB 

regulates transcriptional activity. In recent years, a number of investigations 

have shed light on further regulatory mechanisms that are essential for the 

control of NF-κB transcription (Christian et al., 2016). In addition to the 

phosphorylation of the IκB proteins and the IKK complex, they also undergo 

other post-translational modifications (PTMs), and the NF-κB subunits 

themselves are subject to a number of modifications that contribute to the 

regulation of the signalling system including phosphorylation, ubiquitination, 

acetylation, glycosylation and nitrosylation (Huang et al., 2010). A clear 

emerging theme from studies on NF-κB modification is that many regulate NF-κB 

transcriptional activity in a gene-specific manner, and demonstrate the further 

complexity of NF-κB regulatory networks that incorporate the local environment 

of promoter and enhancer regions. 

 

1.4.1 Background 

Ubiquitin was discovered some 40 years ago when a small (8.5 kDa), highly 

conserved polypeptide of 76 amino acids was isolated from bovine thymus 

(Schlesinger et al., 1975) (figure 1.6). It was so named because ubiquitin is 

found in all eukaryotes, and is so highly conserved that human and yeast share 

96% sequence identity. This highlights its essential role within biological 

systems. The initial studies that elucidated ubiquitin’s role in ATP-dependent 

proteolysis following the covalent attachment of ubiquitin to a substrate protein 

outlined the beginning of what is now known as the ubiquitin-proteasome system 

(UPS).  
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Figure 1.6: Crystal structure of ubiquitin monomer.  
Prominent features include three and a half alpha-helix turns, a short 3(10)-helix, a mixed beta-
sheet that contains five strands and seven reverse turns. There is a hydrophobic core between the 
alpha-helix and beta-sheet (Vijay-Kumar et al., 1987). 

 
Ubiquitination is the process of these ubiquitin molecules being covalently 

attached to the lysine (K) residues of a substrate protein, and it controls a 

diverse array of cellular processes (table 1.1). These include cell cycle and 

division, DNA repair, transcriptional regulation and signal transduction (Geng et 

al., 2012). However, its most prominent role is in the regulation of protein 

stability as ubiquitination acts as a molecular signal, targeting proteins for 

degradation by the proteasome, most commonly in the form of K48-linked poly-

ubiquitin chains. Thus, the turnover of proteins and the elimination of damaged 

or misfolded proteins is tightly controlled.  

  



45 
 
Table 1.1: List of poly-ubiquitin linkages and their function 

Residue Function Reference 

M1 NF-κB activation Tokunaga et al., 2009 

Walczak et al., 2012 

Gerlach et al., 2011 

K6 DNA damage response 

Parkin-mediated mitophagy 

Morris & Solomon, 2004 

Ordureau et al., 2014 

K11 Cell cycle regulation 

Proteasomal degradation 

Endoplasmic reticulum-associated 

degradation (ERAD) 

Wnt/β-catenin signalling 

Matsumoto et al., 2010 

Meyer and Rape, 2014 

 

Bremm & Komander, 2011 

Hay-Koren et al., 2011 

K27 PKC signalling pathway 

DNA damage response 

Parkin-mediated mitophagy 

Differentiation of T cells 

Okumura et al., 2004 

Gatti et al., 2015 

Glauser et al., 2011 

Peng et al., 2011 

K29 Differentiation of T cells 

AMPK-related kinases regulation 

Wnt/β-catenin signalling 

Chastagner et al., 2006 

Al-Hakim et al., 2008 

Hay-Koren et al., 2011 

K33 Differentiation of T cells 

AMPK-related kinases regulation 

Post-Golgi trafficking 

Huang et al., 2010 

Al-Hakim et al., 2008 

Yuan et al., 2014 

K48 Proteasomal degradation 

Lysosomal degradation 

Chau et al., 1989 

Zhang et al., 2013 

K63 DNA damage response 

NF-κB signalling 

Liu et al., 2018 

Ohtake et al., 2016 

 

  



46 
 

1.4.2 Ubiquitin cascade 

The covalent attachment of an ubiquitin molecule to a substrate protein is a 

process involving three enzymes: an ubiquitin-activating enzyme (E1), an 

ubiquitin-conjugating enzyme (E2) and an ubiquitin ligase (E3) (figure 1.7). 

Firstly, ubiquitin is activated in a process that requires ATP, whereby the C-

terminal carboxyl group on ubiquitin is linked to the sulfhydryl group of an E1 

enzyme by a thioester bond. Following this, the activated ubiquitin is 

transferred to the active site cysteine on an E2 enzyme and finally the E2 works 

with the E3 ligase to conjugate ubiquitin to a substrate protein by an isopeptide 

bond between the C-terminal glycine (G) of the ubiquitin molecule and a lysine 

residue of the substrate. This attachment may also occur non-conventionally at 

residues other than lysine (Kravtsova-Ivantsiv et al., 2015). Ubiquitination may 

cease after the addition of a single ubiquitin molecule (monoubiquitination), or 

many ubiquitin molecules may attach via the preceding ubiquitin forming a 

polyubiquitin chain. Multiple ubiquitin molecules may attach at different lysine 

residues to create a multi-monoubiquitinated substrate protein, or multiple 

chains of ubiquitin may attach at multiple residues resulting in multi-

polyubiquitination (figure 1.8). Polyubiquitin chains may form via one of the 

seven lysine residues on ubiquitin itself (K6, K11, K27, K29, K33, K48 and K63), 

or the N-terminal methionine residue (Met or M1) (Komander and Rape, 2012).  

Only two E1 enzymes have been identified in humans (UBA1 and UBA5), but 

there are around 50 E2s and upwards of 600 E3s (Berndsen and Wolberger, 2014) 

which allows for great specificity within this process (Metzger et al., 2014). A 

single E3 enzyme can interact with several other E3 ligases which themselves 

selectively bind multiple substrate proteins. It is via this mechanism that the 

many thousands of proteins within the proteome can be tightly regulated by a 

relatively small number of enzymes. Additionally, E4 ligases have been shown to 

enhance the activity of E3 ligases in some cases. These factors can bind to a 

single conjugated ubiquitin or polyubiquitin chain, extend, and regulate the 

length of the chain (Baranes-Bachar et al., 2018). For example, ubiquitin fusion 

degradation 2 (UFD2) was the first identified family of E4 enzymes in yeast, and 

is characterised by a C-terminal U-box that is structurally similar to the RING 

domain of RING E3 ligases, which are described in more detail below. It binds to 

substrates that have been conjugated with between one and three ubiquitin 
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molecules and facilitates the addition of further molecules in the presence of 

E1, E2 and E3 enzymes, resulting in multi-ubiquitinated substrates that are 

targeted by the proteasome (Hoppe, 2005). 

Furthermore, once a protein has been ubiquitinated, this can be recognised by 

other proteins that contain a ubiquitin-binding domain (UBD) that can bind non-

covalently to ubiquitin signals, most commonly around isoleucine at position 44 

(I44) of the ubiquitin molecule (Husnjak & Dikic, 2012). Over 20 families of UBDs 

have been identified and have different specificities for the different ubiquitin 

chain linkages. This allows for ubiquitination to act as a signal that triggers other 

molecular events within cells such as the regulation of protein stability, receptor 

trafficking in the endosome, DNA damage responses and inflammatory pathways 

(Dikic et al., 2009).   
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Figure 1.7: The ubiquitin cascade.  
Ubiquitination of a substrate protein occurs via a three-step enzymatic reaction. Firstly, ubiquitin is 
activated in an ATP-dependent reaction by the E1 ubiquitin-activating enzyme by way of 
adenylation of the C-terminal carboxyl group. Then ubiquitin is transferred via a thioester linkage to 
the active site cysteine on the E1, releasing AMP and pyrophosphates. Next, ubiquitin is 
transferred to a sulfhydryl group on the E2 ubiquitin-conjugating enzyme by way of a trans-
thioesterification reaction. Finally, an E3 ubiquitin-ligase catalyses the transfer of ubiquitin to the 
substrate protein. Ubiquitination can be reversed by de-ubiquitinating enzymes (DUBs) which 
hydrolyse the isopeptide bond between ubiquitin and the substrate, or the peptide bond between 
ubiquitin molecules to remove the modification partially or completely. Ubiquitin is then recycled 
back into the UPS maintaining a constant available pool. 
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Figure 1.8: Different types of ubiquitin attachments.  
(A) A single ubiquitin molecule is attached via an isopeptide bond to the substrate protein, usually 
at a lysine residue. Either this can occur at a specific residue, or it can be confined to a domain. (B) 
When the N-terminus of one of the seven lysine residues present on ubiquitin itself is modified this 
leads to poly-ubiquitination. Ubiquitin chains may be short, consisting of just two molecules, or can 
incorporate upwards of ten. The chains may be homogenous if the same K residue is modified, or 
mixed if the residues are different. (C) Multiple K residues on the substrate protein may be modified 
by single ubiquitin molecules, leading to multi mono-ubiquitination. (D) Multiple K residues on the 
substrate protein may be modified by multiple ubiquitin chains, leading to multi-polyubiquitination. 
These may be homogenous or mixed causing branched chains. 

 

1.4.3 Ubiquitination and the control of transcription by NF-κB  

Current research has begun to explore the relationship between the UPS and 

transcriptional regulation. It is surprising that, in addition to controlling the 

steady state levels of transcription factors, their proteolysis has been implicated 

in both the repression and promotion of gene activity. Although as important in 

transcriptional regulation are the non-proteolytic functions of ubiquitination, 

such as determining the subcellular localisation of transcription factors (Hoppe 

et al., 2000), their interaction with other co-activators (Kaiser et al., 2000) and 

the duration of their occupancy of promoters (Saccani et al., 2004). 

Even so, the proteolysis of transcription factors as induced by ubiquitination 

remains the prominent way in which the UPS regulates transcription. It controls 

the abundance of protein that is available for activation and destabilises the 

interaction between transcription factors and DNA thus preventing uncontrolled 

gene expression (Molinari et al., 1999). 

With regards to NF-κB activity, and as mentioned above in section 1.2.3, 

ubiquitination of the IκB proteins by the E3 ligase complex SCFβ-TrCP follows their 

initial phosphorylation at S32 and S36 by the IKK complex as triggered by a 

stimulating event (Brown et al., 1995). This induces the proteasomal 

degradation of IκBα that has, until now, sequestered NF-κB dimers in the 
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cytoplasm and so these dimers are now free.  The inducible degradation of IκBα 

provides a highly sensitive and fast system allowing NF-κB dimers to translocate 

into the nucleus, bind their κB target sites on DNA and activate gene expression. 

This is also a negative feedback loop, as NF-κB also induces the expression of the 

Nfkbia gene that encodes IκBα, thus limiting its own response. When IκBα is re-

synthesised it enters the nucleus, dissociates NF-κB that is bound to DNA and 

shuttles it back into the cytoplasm (Collins et al., 2016). In fact, it was in 

studying Ikba-/- cells that the role of ubiquitination in regulating NF-κB activity 

was initially identified. Despite lacking the critical negative feedback loop, NF-

κB activity was still terminated following stimulation, which turned out to be 

dependent on the ubiquitination and degradation of p65, which in turn is 

dependent on the binding of p65 to DNA (Saccani et al., 2004). 

Although the ability to respond rapidly to changes in the cellular environment is 

essential in mounting an immune response to pathogenic invasion, it is also 

important that NF-κB activity be tightly controlled to avoid the damaging effects 

of prolonged expression of pro-inflammatory genes. In contrast to the previously 

held belief, this regulation is not only by way of the blanket repression of NF-κB 

by the IκB proteins, but its activity is selectively controlled in a gene-specific 

manner, and this is achieved by the post-translational modification of not only 

the upstream elements but of the NF-κB subunits themselves (Perkins, 2006).  

1.4.3.1 Ubiquitination of p65 

Most of the available information concerning the regulation of NF-κB by 

ubiquitination comes from work done on the p65 subunit. Ubiquitination results 

in degradation of p65, as occurs with the factors contributing to its activation. 

However, unlike IκBα, the degradation of p65 is partial rather than complete 

(Collins et al., 2016). It occurs mostly in the nucleus with DNA binding being an 

essential stimulus as demonstrated by the observations that DNA-binding 

defective p65 mutants are ubiquitination-resistant (Saccani et al., 2004). When 

p65 degradation is prevented by the expression of an ubiquitination-resistant 

mutant, p65 remains bound to the promoter for longer, thus extending the 

duration of NF-κB target gene expression. A number of important forms of poly-

ubiquitination have been identified for p65. For degradation, K48 poly-

ubiquitination is the predominant mechanism, however there are a number of 
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others including K29, K33 and K63, the function of which remains unknown (Li et 

al., 2012). There is also evidence of non-degradative mono-ubiquitination that 

may promote the retention of p65 in the nucleus (Hochrainer et al., 2012). To 

prevent p65 ubiquitination it is essential that almost all lysine residues be 

abolished, therefore it is thought that its ubiquitination is highly promiscuous (Li 

et al., 2012), but it is unclear whether one p65 molecule is ubiquitinated at 

many sites at the same time, or if an individual lysine residue is modified in 

isolation.  

1.4.3.2 Deubiquitination and other PTMs 

Also pertinent in the regulation of NF-κB is the role of deubiquitinases (DUBs). As 

the name suggests, these remove poly-ubiquitin chains from residues, which 

causes increased transcription as the activating NF-κB subunits are no longer 

degraded by the proteasome.  Ubiquitin specific protease 7 (USP7) is known to 

play an essential role in regulating transcription with it being reported that p65 

is a unique substrate and that deubiquitination by USP7 increases p65 stability 

(Colleran et al., 2013). Mass spectrometry analysis revealed that a number of 

ubiquitination sites also overlap with acetylation sites, which is another PTM 

that happens to NF-κB subunits. It appears that when ubiquitination of p65 is 

increased, acetylation decreases and vice versa. The mechanism of this effect is 

unknown (Li et al., 2012). Furthermore, methylation occurs on p65 lysine 

residues that have been modified by acetylation and ubiquitination so there may 

be some interplay between a number of PTMs, contributing to the regulation of 

p65 and the control of transcription on a gene-specific level (Ea and Baltimore, 

2009). 

 

1.4.4 E3 ligases 

As outlined in section 1.4.2, E3 ligases are the final catalysts in the ubiquitin 

cascade that function to bind an E2-Ub complex and a substrate protein to assist 

in the formation of an isopeptide bond between the C-terminal carboxyl of the 

ubiquitin molecule and the amino group of the substrate.  
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1.4.4.1 Classification 

Common among all E3s is the E2-Ub-binding domain and what distinguishes them 

is the structure of this particular domain and the mechanism by which they 

transfer ubiquitin from the E2 to the substrate (figure 1.9). 

RING (really interesting new gene) E3s act directly to catalyse the transfer of 

ubiquitin from the E2 to the substrate. They make up the largest sub-group of 

E3s in humans (Li et al., 2008) and are characterised by the presence of a RING 

(or U-box) catalytic domain, which is required to recruit an E2 and stimulate the 

transfer of ubiquitin (Buetow & Huang, 2016). RING E3s may act as monomers 

such as casitas B-lineage lymphoma (CBL) (Zheng et al., 2000), or as oligomers in 

the case of cellular inhibitor of apoptosis protein 2 (cIAP2) (Mace et al., 2008) or 

TNF-receptor-associated factor 6 (TRAF6) (Yin et al., 2009). Other RING E3s only 

gain ligase activity upon forming a heterodimer with a RING domain-containing 

partner, such as BRCA1-associated RING domain 1 (BARD1) with breast cancer 

type 1 associated protein (BRCA1) (Brzovic et al., 2001), and others are actually 

large multi-subunit complexes such as the cullin-RING E3 ligases (CRLs) (Lydeard 

et al., 2013). 

HECT (homologous to E6AP carboxyl terminus) E3s, by contrast, facilitate 

ubiquitination in a two-step process, firstly via a catalytic cysteine residue that 

receives ubiquitin from an E2 to form an E3-Ub thioester intermediate. This is 

followed by the transfer of ubiquitin to the substrate protein. At 28, as opposed 

to 600, there are much fewer HECT than RING E3 ligases in humans (Rotin & 

Kumar, 2009). They contain an N-terminal substrate-binding domain and a C-

terminal HECT domain that has the catalytic components for conjugating and 

transferring ubiquitin. The HECT domain itself comprises an N-terminal lobe that 

binds E2-Ub complexes and this is connected by a flexible hinge to the C-

terminal lobe that contains the catalytic cysteine. 

Finally, RBR (RING-between-RING) E3 ligases also facilitate ubiquitination in an 

indirect, two-step process. They have in common a RING1-IBR-RING2 motif. Thus 

far, 14 have been identified in humans, and they are RING-HECT hybrids that use 

the RING domain to recruit an E2, and contain a catalytic cysteine to form a 
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thioester intermediate with the C-terminus of ubiquitin, like HECT E3s (Dove & 

Klevit, 2017). 

 

Figure 1.9: RING, HECT and RBR E3 ligases.  
(A) RING and RING-like E3s serve as scaffolds that bring together the E2 and substrate in a direct 
transfer of ubiquitin. They can function as monomers, dimers or as part of multi-subunit complexes. 
(B) HECT E3s are bi-lobed, consisting of an N-terminal lobe that interacts with E2 enzymes, and a 
C-terminal lobe that contains the active-site cysteine that forms the thioester bond with ubiquitin. 
The two lobes are connected via a flexible hinge that allows them to come nearer together during 
ubiquitin transfer. HECT E3s transfer ubiquitin in an indirect manner, with the initial formation of a 
thioester intermediate between the active-site cysteine and ubiquitin, followed by transfer to the 
substrate protein. (C) RBR E3s consist of a RING, an in-between RING and a RING-like domain, 
and are considered hybrids of RING and HECT E3s. The RING domain recruits the E2 and then 
ubiquitin is transferred to an active-site cysteine in the RING-like domain, again forming a thioester 
intermediate before finally ubiquitin is transferred to the substrate. IBR: in-between RING domain. 
Cys: active-site cysteine. Lys: lysine residue. 

 

1.4.4.2 Known E3 ligases of NF-κB 

A number of E3 ligases for p65 and c-Rel have been identified, although to date 

none has been found for p50 or RelB (see table 1.2). RelB has been 

demonstrated to be ubiquitinated however, and unlike p65, its ubiquitination 

does not require DNA binding and appears to promote rather than inhibit 



54 
 
transcriptional activity (Leidner et al., 2008), perhaps due to non-degradative 

poly-ubiquitination. It remains unclear whether there is redundancy in the 

activity of E3 ligases on the NF-κB subunits but studies suggest that the E3 

ligases for p65 may control specific subsets of NF-κB target genes (gene-specific 

effects). 

Table 1.2: Table of E3 ligases of NF-κB subunits and their target residues where known 

Subunit E3 ligase Target residue 

p65 SOCS1 

COMM1 

ING4 

PDLIM2 

PPARγ 

MKRN2 

? 

 

 

K62 

 

K28 

 

K195 

RelB ?  

c-Rel PELI1 

cIAP 

 

p105 SCFβ-TrCP 

KPC1 

 

p100 SCFβ-TrCP  

p50 ? K128 

p52 ?  

 

1.4.4.2.1 SOCS1 

Suppressor of cytokine signalling 1 (SOCS1) is a member of a family of proteins 

that regulate cytokine responses in many cells (Alexander, 2002). They each 

have a central SH2 domain, an amino terminal of variable length and divergent 

sequence, and a C-terminal SOCS box (Hilton et al., 1998) (figure 1.10). SOCS1 

has a number of roles within the immune system. By way of its SH2 domain, it 

can interact with and inhibit members of the Janus kinase (JAK) family. JAKs 

function to phosphorylate tyrosine residues on intracellular receptors leading to 

the recruitment and activation of signal transduction proteins such as the signal 

transducer and activator of transcription (STAT) family of transcription factors, 

which results in the production of cytokines. Beyond this function in the case of 

NF-κB, SOCS1 was found to bind to and induce the ubiquitination and 

degradation of p65 when it was part of a multi-subunit complex alongside 

elongin c, cullin2 and Rbx1 known collectively as ECS(SOCS1) (Ryo et al., 2003). 

This complex interacts with copper metabolism Murr1 domain-containing 1 
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(COMMD1) which stabilises the interaction between SOCS1 and p65, further 

enhancing the ability of SOCS1 to ubiquitinate p65 (Maine et al., 2007). This 

interaction has been demonstrated in both the cytoplasm and nucleus 

(Strebovsky et al., 2011).  

 

Figure 1.10: Schematic of SOCS1 structure.  
Like all members of the SOCS family, SOCS1 contains a Src homology 2 (SH2) domain and a C-
terminal SOCS box immediately preceded by a nuclear localisation signal (NLS). SOCS1 also 
contains a kinase inhibitory region (KIR) upstream of the SH2. 

 

1.4.4.2.2 ING4 

ING4, as a tumour suppressor and member of the inhibitor of growth family, has 

an important role in a number of cellular processes including cell cycle 

progression, proliferation and tumour angiogenesis (Zhang et al., 2004; Russell 

et al., 2006). When dysregulated, it has been implicated in a number of cancers 

including gastric, breast, brain and melanomas among others. It had been 

observed to inhibit NF-κB target gene expression; however, the mechanism by 

which it did this was unknown. It became clear that ING4 was functioning as an 

E3 ligase via its plant homeodomain (PHD) motif inducing K48-linked poly-

ubiquitination and subsequent degradation of p65 at its K62 residue (Hou et al., 

2014). Since p65 is an activating subunit of NF-κB, its degradation results in the 

termination of NF-κB activity. 

1.4.4.2.3 PPARγ 

Peroxisome proliferator activated receptor-γ (PPARγ) is a transcription factor in 

its own right that, alongside NF-κB, performs distinct but also overlapping 

functions in cell regulation. It has an important role in glucose metabolism and 

in negatively regulating the immune response and the expression of 

inflammatory cytokines in macrophages. Many studies had observed that PPARγ 

bound to p65 and inhibited NF-κB transcriptional activity in vitro however again 

the mechanism remained unknown until relatively recently. It was shown that 

PPARγ, via its RING domain, acts as an E3 to induce the K48-linked poly-

ubiquitination and degradation of p65 at its K28 residue (Hou et al., 2012). 
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1.4.4.2.4 PDLIM2 

PDLIM2 is a protein that contains both PDZ and LIM domains and can be either 

nuclear or cytoplasmic in its location depending on the cell type. PDLIM2 was 

first identified as an E3 ligase for STAT4, binding to and promoting its 

ubiquitination and degradation, thus inhibiting STAT-induced gene expression 

(Tanaka et al., 2005). Similarly, it was also found to bind to and promote the 

ubiquitination of p65 via its LIM domain which is similar to the RING domain 

(Tanaka et al., 2007), thus negatively regulating NF-κB activity. The lack of 

PDLIM2 was observed to result in an accumulation of p65 in the nucleus, its 

ubiquitination was defective and the production of pro-inflammatory cytokines 

in response to stimuli was increased. Additionally, PDLIM2, via its PDM domain, 

sequestered p65 in discrete intra-nuclear compartments called promyelocytic 

leukaemia protein (PML) bodies where it was degraded by the proteasome (Shin 

et al., 2017). 

1.4.4.2.5 PELI1 

PELI1 is a member of the Pelino family of RING ligases. For many years, the 

ubiquitination of c-Rel had been reported but the mechanism remained elusive. 

Recently, it was reported that PELI1 is responsible for promoting the K48-linked 

poly-ubiquitination and subsequent degradation of c-Rel in T cells (Chang et al., 

2011). In this manner, PELI1 acts as a negative regulator of T cell activation and 

prevents the development of autoimmunity. This was further established by 

observing PELI1-deficient activated T cells that accumulated c-Rel in the 

nucleus, were hyper-responsive to TCR-CD28 stimulation, and Peli1-deficient 

mice that developed autoimmunity. Since, PELI1 does not affect upstream TCR 

signalling, it may be a potential therapeutic target for T cell therapy. 

1.4.4.2.6 MKRN2 

Although much more has become known about how NF-κB activity is negatively 

controlled, the full picture is still emerging. Recently it emerged that MKRN2, a 

RING finger domain-containing protein that belongs to the makorin ring finger 

gene family, is a novel E3 ligase of p65 (Shin et al., 2017). The researchers in 

this study employed yeast two-hybrid screening to identify and isolate proteins 

that interacted with PDLIM2 and were critical for supressing NF-κB signalling. 
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They observed that MKRN2 and PDLIM2 worked synergistically to promote the 

ubiquitination and degradation of p65. It was also recorded that the knock-down 

of MKRN2 resulted in a larger amount of p65 in the nucleus of dendritic cells and 

increased pro-inflammatory cytokine production in response to innate stimuli. 

1.4.4.2.7 KPC1 

Thus far has been discussed the E3 ligases responsible for ubiquitinating and 

degrading the active subunits of NF-κB. However, recently characterised was the 

mechanism that leads to the limited proteasomal processing of the NF-κB1 

precursor, p105, to p50. KPC1 (KIP1 ubiquitination-promoting complex) was 

identified as the E3 ligase that binds to the ankyrin repeats domain of p105 and 

ubiquitinates it. This leads to it being processed, both under basal and 

stimulated conditions (Kravtsova-Ivantsiv et al., 2015). This study observed that 

overexpression of KPC1 inhibits the growth of tumours, probably via the 

increased generation of repressive p50. Furthermore, this overabundance of p50 

leads to the downregulation of p65, which suggests that p50 homodimers may 

regulate transcription in place of the prototypical p50:p65 and this suppresses 

tumour growth. 

 

1.4.5 BCL-3 and p50 

Thus far, the published data on the role of ubiquitination in the regulation of NF-

κB activity has come mainly from work done on p65 with relatively little known 

about the mechanisms involved in p50 ubiquitination. Therefore, much of what 

is known about the UPS and p50 has been derived from studies on the atypical 

IκB protein, BCL-3.  

BCL-3 was initially detected by cloning chromosomal breakpoints containing a t 

(14;19) translocation found in some patients with B cell chronic lymphocytic 

leukaemia (Ohno et al., 1990). It is considered an IκB protein because it contains 

several central ANK domains that facilitate its interaction with NF-κB subunits 

(Palmer & Chen, 2008), but is atypical because unlike its typical counterparts it 

is predominantly nuclear in localisation as opposed to sequestering the subunits 

in the cytoplasm, and it is not degraded upon activation of the IKK complex. 
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Furthermore, BCL-3 has a well-defined transactivation domain that is absent 

from the typical IκB proteins (Ghosh & Hayden, 2008). 

There has been much investigation into the nature and function of the 

interaction between BCL-3 and NF-κB, with early studies showing that BCL-3 

interacts preferentially with p50 and p52 (Nolan et al., 1993b). BCL-3 associates 

with p50 homodimers and has the effect of prolonging their half-life and thus 

occupancy of target gene promoters by inhibiting K48-linked poly-ubiquitination 

and subsequent proteasomal degradation, as opposed to increasing their binding 

affinity (Carmody & Chen, 2007). Because p50 lacks a transactivation domain it 

is considered to be a repressor of NF-κB target gene transcription when present 

as a homodimer, so when it is stabilised by BCL-3 it can inhibit the expression of 

pro-inflammatory genes for longer as it competes with the transcriptionally 

active subunits to bind to DNA κB target sites (figure 1.11). When BCL-3 is not 

present in macrophages, p50 becomes hyper-ubiquitinated and its half-life 

drastically reduced. These Bcl3-/- macrophages are hypersensitive to TLR 

stimulation as demonstrated by the increase in TNFα and IL-6 (Carmody et al., 

2007). 
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Figure 1.11: BCL-3 stabilises p50 homodimers.  
When p50 homodimers are bound to DNA in the nucleus, this triggers their ubiquitination and 
degradation by the proteasome. This allows transcriptionally active NF-κB dimers such as p65:p50 
to bind to κB targets on DNA and promote the transcription of pro-inflammatory target genes. BCL-
3 binds preferentially to p50 and has the effect of inhibiting its ubiquitination and degradation, 
therefore stabilising the complex allowing it to remain bound to DNA for longer. This reinforces p50 
homodimers’ repressive effects on the transcription of pro-inflammatory genes, therefore 
inflammation is reduced, and the cellular state known as TLR tolerance is mimicked. 

 
It is not currently known how BCL-3 is able to inhibit p50 ubiquitination but it 

has been established that a direct interaction with p50 is essential for this 

stabilisation and anti-inflammatory effect (Collins et al., 2014). Further 

investigations indicated that there are many points of interaction between p50 

homodimers and BCL-3, in particular with the ANK 1, 6 and 7 domain and the N-

terminal region of BCL-3 (Collins et al., 2015). This study used this data to 

generate a short mimetic peptide consisting of the essential amino acid 

sequence of BCL-3 that is required for interaction with p50 homodimers, which 

emulates the inhibitory effects that BCL-3 has on NF-κB transcription in vitro. 

Furthermore, the peptide, known as BDP2, had the effect of repressing the 

expression of pro-inflammatory cytokines in vitro and reducing paw swelling in 

carrageenan-induced mouse models of arthritis. This highlights a potential role 

for BCL-3 and BDP2 to be used as part of a therapeutic strategy to reduce 

chronic inflammation by inducing the cellular state known as TLR tolerance. This 

is in addition to a role for BCL-3 as a regulator of central immunologic tolerance 

to self, whereby it functions within stroma to create medullary thymic epithelial 

cells, which are required for the negative selection of auto-reactive T cells 

(Zhang et al., 2007). 
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1.5 NF-κB as a therapeutic target 

Considering the ubiquity of NF-κB in the control of hundreds of biologically 

important genes and its critical role in the regulation of inflammation and 

immune development, it is a highly attractive pharmaceutical target. If its 

activity can be attenuated this may provide potential treatments for chronic 

inflammatory diseases and cancer. Current research is underway that hopes to 

take advantage of the increasing understanding of the molecular mechanisms 

involved in all aspects of the NF-κB signalling pathway, particularly in the 

context of inflammation, and the problems this can cause when it becomes 

dysregulated. Indeed, already in some cancers there has been some success in 

the use of inhibitors of NF-κB (Herndon et al., 2013). 

Dysregulated NF-κB activation has been implicated in the development of 

pathologies such as autoimmune disease. Patients with rheumatoid arthritis have 

presented with NF-κB activation in their joint synovium (Handel et al.,1995) 

which contributes to the expression of pro-inflammatory genes that promote 

lymphocyte recruitment, cartilage destruction and pannus formation (Han et al., 

1998). On the other hand, it is not only increased activity that is the 

consequence of dysregulated NF-κB activity, as patients with systemic lupus 

erythematosus (SLE) have exhibited reduced levels of NF-κB binding to DNA in 

peripheral blood lymphocytes (Oikonomidou et al., 2006).  

Currently, the anti-inflammatory therapies used in the treatment of autoimmune 

diseases such as non-steroidal anti-inflammatory drugs (NSAIDs) and disease-

modifying anti-rheumatic drugs (DMARDs) have non-specific effects on various 

stages of the NF-κB signalling pathway, which incidentally result in the 

dampening down of pro-inflammatory transcription (Herrington et al., 2016). 

The development of specific inhibitors of NF-κB is an active area of research 

following on from the discoveries that the individual NF-κB subunits can be 

targeted as each plays a unique role in the signalling pathway (Ghosh et al., 

1998). This is in addition to the various stages and co-factors of the NF-κB 

pathway that can be attenuated such as the IKK complex, IκB proteins, 

ubiquitination and other PTMs, and the DNA-binding ability of NF-κB. There are 

already drugs on the market that have the effect of inhibiting NF-κB activity, 

such as raloxifene, which removes p65 from its binding site through estrogen 
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receptor α interaction with p65 (Olivier et al., 2006). Given the vast number of 

components of NF-κB signalling, there are many potential therapeutic targets 

that could be efficacious against autoimmune and lymphoproliferative diseases. 

However, these may also result in unwanted side effects. Thalidomide is an IKK 

inhibitor and has been effective in treating myeloma. However, its side effects 

include nephrotoxicity and neuropathy (Mina et al., 2016). The development of 

NF-κB-focussed drugs that are efficacious in treating disease but do not cause 

undesirable side effects therefore remains a difficult task for researchers.   
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1.6 Thesis hypothesis and aims 

The transcription factor NF-κB is regulated post-translationally by components of 

the ubiquitin proteasome system and this affects both the stability of its 

subunits and the transcription of its target genes. 

To confirm or dismiss this hypothesis, this thesis aims to: 

 Identify potential E3 ligases of p50. 

 Investigate the mechanisms that cause SOCS1 to promote the 

ubiquitination and degradation of p50. 

 Map the transcriptional landscapes of macrophages that are deficient in 

either ING4 or SOCS1, both of which are known E3 ligases of NF-κB p65. 
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Chapter 2  

Materials and methods  
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2.1 Materials 

2.1.1 Antibodies 

Table 2.1: Primary antibodies 

Antibody and clone Cat # Supplier 

c-Myc (9E10) sc-40 Santa Cruz 

c-Rel (C)  sc-71 Santa Cruz 

FLAG M2 F1804 Sigma Aldrich 

GFP ab6556 Abcam 

HA sc-805 Santa Cruz 

HDAC QC8205 Sigma Adrich 

ING4 ab108621 Abcam 

ING4 (BTIM-4) MABE1156 Millipore 

ING4 10617-1-AP ProteinTech 

IκBα (44D4) 4812S Cell Signalling 

NF-κB p65 A301-824A Bethyl 

NF-κB1 p50/p105 (D7H5M) 12540 Cell Signalling 

p44/42 MAPK (ERK1/2) 9102 Cell Signalling 

Phospho-p44/42 MAPK (P-ERK1/2) 9101 Cell Signalling 

RelB (C-19) sc-226 Santa Cruz 

SOCS1 (4H1) 04-002-C Millipore 

SOCS1 25852-1-AP ProteinTech 

Ubiquitin (VU-1) VU101 LifeSensors 

Xpress PN 46-0528 Thermo Scientific 

β-actin SAB1305567 Sigma Aldrich 

α-tubulin T6074 Sigma Aldrich 

β-tubulin (9F3) 5346S Cell Signalling 

 

Table 2.2: Secondary antibodies 

Antibody and clone Cat # Supplier 

Anti-mouse IgG HRP LNXA931V/AF GE Healthcare 

Anti-rabbit IgG HRP LNA934V/AH GE Healthcare 

Mouse anti-goat IgG HRP Sc-2768 Santa Cruz 

 
 

2.1.2 BCL-3 mimetic peptides 

Table 2.3: BDP2 mimetic peptide sequences 

BDP2 mBDP2 

YGRKKRRQRRAAVYRILSLFKLGSR YGRKKRRQRRWAWGYILSLDCLGSY 

Both supplied by GenScript (Hong Kong) 
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2.1.3 Plasmids 

Table 2.4: Plasmids used 

All plasmids were from Carmody lab stocks and were cloned using murine cDNA 

with the exception of the SOCS1 plasmids, which used human cDNA. 

Protein Supplier (if external) Backbone Tag Antibiotic-
resistance 

BCL-3  pRK5 Flag  Ampicillin 

Empty  pcDNA3.1 Flag  Ampicillin 

ING4  pcDNA3.1 Flag Ampicillin 

p50  peF4a Xpress Ampicillin 

p50K49R  peF4a Xpress Ampicillin 

p50K74,76,77R  peF4a Xpress Ampicillin 

p50K83R  peF4a Xpress Ampicillin 

p50K114R  peF4a Xpress Ampicillin 

p50K128R  peF4a Xpress Ampicillin 

p50K191R  peF4a Xpress Ampicillin 

p50K249R  peF4a Xpress Ampicillin 

p50K272,275R  peF4a Xpress Ampicillin 

p50K312,315R  peF4a Xpress Ampicillin 

p50K334  peF4a Xpress Ampicillin 

p50K352,354R  peF4a Xpress Ampicillin 

p50K360,363R  peF4a Xpress Ampicillin 

p50Y57A  peF4a Xpress Ampicillin 

p65  pcDNA3.1 - Ampicillin 

PDLIM2  pcDNA3.1 Ha Ampicillin 

PDLIM2  pcDNA3.1 Myc Ampicillin 

PELI1  pcDNA3.1 HA Ampicillin 

PPARγ  pcDNA3.1 Flag Ampicillin 

SOCS1  peGFP GFP  Kanamycin 

SOCS1 GenScript pcDNA3.1 Flag Ampicillin 

SOCS16R/A A gift from the Dalpke 
lab 

peGFP GFP Kanamycin 

SOCS1R172X  peGFP GFP Kanamycin 

Ubiquitin   Flag Ampicillin 

Ubiquitin   Ha Ampicillin 

UBR5 A gift from Darren 
Saunders (Addgene 
#52050) 

pcDNA6.2 GFP Ampicillin 

UBR5ΔHECT A gift from Darren 
Saunders (Addgene 
#52051) 

pcDNA6.2 GFP Ampicillin 
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2.1.4 Primers 

2.1.4.1 RT-qPCR 

Table 2.5: qPCR primers used 

Primer Sequence Supplier Catalogue # 

CCL2 F: AGCCAACTCTCACTGAAGCC  
R: GCGTTAACTGCATCTGGCTG  
 

A gift from 
Chemokine 
Research 
Group 

- 

CCL7 F: TGAAAACCCCAACTCCAAAG  
R: TTAGGCGTGACCATTTCACA  
 

A gift from 
Chemokine 
Research 
Group 

- 

CXCL1 Quantitect Primer Assay  Qiagen QT00115647 

CXCL2 Quantitect Primer Assay Qiagen QT00113253 

FAM63A Quantitect Primer Assay  Qiagen QT00159075 

hc-Rel Quantitect Primer Assay  Qiagen QT00052472 

hCXCL2 Quantitect Primer Assay  Qiagen QT00013104 

hIL-6 Quantitect Primer Assay  Qiagen QT00083720 

hRelB Quantitect Primer Assay  Qiagen QT00038640 

hTBP Quantitect Primer Assay  Qiagen QT00000721 

hTNFα Quantitect Primer Assay  Qiagen QT00029162 

IFNβ Quantitect Primer Assay  Qiagen QT00249662 

IL-10 Quantitect Primer Assay  Qiagen QT00106169 

IL-1β Quantitect Primer Assay  Qiagen QT01048355 

ORM1 Quantitect Primer Assay  Qiagen QT00101409 

PALM3 Quantitect Primer Assay  Qiagen QT02330804 

SHISA3 Quantitect Primer Assay  Qiagen QT01049811 

TBP1 TGTTGGTGATTGTTGGT Eurofins  

TBP2 AACTGGCTTGTGTGGGAAAG Eurofins  

TNFα Quantitect Primer Assay  Qiagen QT00104006 

Mouse unless specified otherwise 

 
 

2.1.5 Reagents 

All general salts and chemicals were stored and prepared according to the 

manufacturer’s instructions. 

Table 2.6: List of reagents 

Reagent Supplier Catalogue # 

30 % acrylamide Sigma Aldrich A3574 

Agarose ultrapure Invitrogen 16500 

Ammonium persulfate (APS) Sigma Aldrich A3678 

Ampicillin sodium salt Sigma Aldrich A9518 

Aprotinin Sigma Aldrich A1153 
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β-mercaptoethanol Sigma Aldrich M6250 

Bafilomycin   

Bovine serum albumin (BSA) Sigma Aldrich A7906 

Bromophenol blue Sigma Aldrich B8026 

Dimethyl sulfoxide (DMSO) Fisher Chemical D/4120/PB08 

DPBS 1X Gibco 14190-094 

Dithiothreitol (DTT) Melford Biolaboratories MB1015 

Dulbecco’s Modified Eagle’s 
Medium-High Glucose (DMEM) 

Sigma Aldrich D6429 

Ethylenediaminetetraacetic acid 
(EDTA) 

Fisher Chemical D/0700/60 

Ethanol VWR 20821-330 

GSH beads Sigma Aldrich G4510 

L-glutamine Sigma Alrich G7513 

Glycerol Fisher Scientific G/0650/17 

Glycine Fisher Scientific G/0800/60 

Heat-inactivated foetal bovine 
serum (FBS) 

Gibco 10500-064 

Hydrochloric acid Fisher Chemical H/1200/PB17 

Isopropanol Sigma 24137 

Kanamycin Melford Laboratories K0126 

NP-40 Sigma Aldrich 18896 

Leupeptin Sigma Life Science L2884 

Lipopolysaccharides from E.coli 
055:B5 (LPS) 

Sigma Aldrich L2880 

Methanol  Fisher Chemical M/4000/PC17 

MG132 (Z-leu-leu-leu-al) Sigma C2211-5MG 

Nuclease-free water Qiagen 1039480 

Penicillin/streptomycin Sigma Aldrich P0781 

Pepstatin A Sigma Life Science P5318 

Potassium chloride Analar Normapur 26764 

Potassium dihydrogen phosphate Analar Normapur 26936 

Protein Assay Dye Reagent 
Concentrate 

Bio-Rad 500-0006 

Protein G agarose beads EMD Millipore 16-266 

Ponceau S Solution Sigma Aldrich P7170 

Quinacrine Sigma Life Science Q3251-100G 

Restore Plus Westen Blot Stripping 
Buffer 

Thermo Scientific 46430 

RPMI Sigma Life Science R8758-500ML 

Sodium chloride VWR 27810.295 

Sodium deoxycholate Sigma Aldrich D6750 

Sodium dihydrogen phosphate 
dihydrate 

Riedel de Haen 04269 

Sodium dodecyl sulfate (SDS) VWR UN1325 

Sodium fluoride Sigma Aldrich S7920 

Sodium hydrogen phosphate Analar Normapur 102494C 

Sodium hydroxide pellets Fisher Chemicals S/4920/53 

Sodium orthovanadate Sigma Aldrich S6508 

Sulfuric acid Sigma Aldrich 258105 

Tetramethylethylenediamine Sigma Aldrich T9281 
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Tris HCl Fisher Scientific BP 152-1 

0.05% Trypsin-EDTA 1X Gibco 25300-054 

Tween-20 Sigma Life Science P2287 

Western Bright ECL Advansa K12045 

Western Bright Sirius Advansa  K12043 

 

2.1.6 Buffers 

2.1.6.1 Lysis buffers 

Table 2.7: Cell lysis buffer recipes 

Buffer Ingredients 

Radioimmunoprecipitation assay 
(RIPA) 

50 mM Tris-HCl pH7.4 
0.1 – 1% NP-40 
0.25% sodium deoxycholate 
150 mM NaCl 
1 mM EDTA pH8 
1 mM PMSF* 
1 mM NaF* 
1 mM Na3VO4* 
2 μg/mL aprotinin* 
2 μg/mL leupeptin* 
1 μg/mL pepstatin* 

* Added to buffer immediately before use. 

 
 

2.1.6.2 Electrophoresis buffers for Western blotting 

Table 2.8: Western blot buffer recipes 

Buffer Ingredients 

1X Tris-glycine running buffer 25 mM Tris-HCl 
250 mM glycine 
0.1% SDS 
H2O 

1X Tris-glycine transfer buffer 28 mM Tris-HCl 
39 mM glycine 
0.038% SDS 
20 % methanol 
H2O 

 
 

2.1.6.3 SDS-PAGE loading buffer 

Table 2.9: SDS-PAGE loading buffer recipe 

2X SDS loading buffer 4X SDS loading buffer 

20% glycerol 40 % glycerol 

0.2% bromophenol blue 0.04% bromophenol blue 

4% SDS 8% SDS 

200 mM β-mercaptoethanol 5% β-mercaptoethanol 

100 mM Tris-HCl pH6.8 240 mM Tris-HCl pH6.8 

H2O H2O 
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2.1.6.4 Tris-borate-EDTA (TBE) buffer 

Table 2.10: Agarose gel electrophoresis buffer 

Ingredient 

5.4 g Tris  
2.75 g boric acid 
2 mL 0.5 M EDTA 

 

2.1.7 Tris-glycine SDS-polyacrylamide gels 

Table 2.11: SDS-PAGE gel recipes 

Ingredient Gel 

 5% stacking 
(1 mL) 

10% resolving 
(5 mL) 

8% resolving 
(5 mL) 

H2O 0.68 mL 1.9 mL  

30% acrylamide 0.17 mL 1.7 mL  

1 M Tris-HCl (pH 6.8) 0.13 mL - - 

1.5 M Tris-HCl (pH 8.8) - 1.3 mL  

10% SDS 0.01 mL 0.05 mL  

10% APS 0.01 mL 0.05 mL  

TEMED 0.001 mL 0.002 mL  

 
 

2.1.8 Electrophoresis gels 

Table 2.12: Agarose gel recipe 

Ingredient 

1.5 % agarose  
0.5X TBE buffer 
1X GelRed 

 
 

2.1.9 Mice 

WT C57BL6/J mice (Harlan, UK) aged between 8 and 12 weeks were sacrificed in 

order to generate bone marrow derived macrophages (BMDM). The University of 

Glasgow Ethical Review Committee under a United Kingdom Home Office Licence 

approved Mouse handling and experimental procedures. Licence and ethical 

approval number: 60/4314. 
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2.2 Methods 

2.2.1 Cell biology  

2.2.1.1 Cell culture maintenance 

RAW 264.7, 3T3, L929 and human embryonic kidney 293T (HEK293T) cells were 

obtained from in-lab stocks and maintained in high glucose Dulbecco’s Modified 

Eagle Medium (DMEM) (Gibco Life Technologies) containing 10% foetal bovine 

serum (FBS) (Gibco), L-glutamine (2 mM) (Sigma), and penicillin/streptomycin 

(100 units/mL) (Sigma) (complete DMEM). THP-1 cells were obtained from in-lab 

stocks and cultured in Roswell Park Memorial Institute (RPMI) 1640 media, 

supplemented with 10% heat-inactivated FBS, L-glutamine and 

penicillin/streptomycin. All cells were maintained at 37°C in a humidified 

environment with 5% CO2. Cells were sub-cultured three times per week either 

by mechanical (RAW 264.7, L929) or chemical detachment (3T3 and HEK 293T) 

with 0.05% Trypsin-EDTA solution (Gibco).  

2.2.1.2  THP-1 differentiation 

THP-1 cells were re-suspended and plated at a density of 1.5 x 106/mL as 

described in table 2.13. Following a protocol optimised in the lab, cells were 

treated with 25 ng/mL PMA for 72 hours. Following differentiation, PMA-

containing media was removed, cells were washed once in THP-1 culture media 

and fresh media was replaced. Cells either were treated immediately or were 

rested in culture for 4 days before treatment. 

2.2.1.3 Bone Marrow Derived Macrophage 

2.2.1.3.1 Isolation 

WT C57BL6/J mice (Harlan, UK) aged between 8 and 12 weeks were sacrificed in 

order to generate primary bone marrow derived macrophages (BMDM) in vitro. 

Mice were euthanized by exposure to a rising concentration of CO2 and cervical 

dislocation. Hind legs were then removed at the hip joint and surrounding tissue 

removed so that the femur and tibia bones were easily accessed. Under sterile 

conditions, the bones were cleaned in sterile phosphate buffered saline (PBS) (-

CaCl2 –MgCl2) (Gibco) and then cut at each end and flushed with cold PBS using a 
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21-gauge needle and syringe to extract the bone marrow. Bone marrow was then 

collected in sterile PBS and re-suspended to generate a single cell suspension. 

Debris was removed by passing the bone marrow through a 40 μM cell strainer. 

The bone marrow suspension was washed twice in complete DMEM and 

centrifuged at 4°C at 300 g for 5 minutes and re-suspended in complete DMEM 

for culture or in freezing media (complete DMEM and 10% DMSO) for 

cryopreservation. Generally, bone marrow was collected and pooled from three 

mice. The University of Glasgow Ethical Review Committee under a United 

Kingdom Home Office Licence approved Mouse handling and experimental 

procedures. Licence number 60/4314. 

2.2.1.3.2 Differentiation 

Once bone marrow was isolated from mice or recovered from cryopreservation it 

was cultured in complete DMEM supplemented with 30% L929 conditioned media 

(BMDM differentiation media) in sterile petri dishes for 7 days. Differentiation 

media was replaced on day 3 and non-adherent cells removed. By day 7 

adherent monocyte progenitors had differentiated into BMDM. BMDM were 

removed from petri dishes by incubating with 5 mM EDTA in sterile PBS at 37°C 

for 2 minutes. Cells were then washed twice in complete DMEM at 4°C at 300 g 

for 5 minutes. Cells were then re-suspended in complete DMEM without L929 

supplement and re-plated overnight at the appropriate density in tissue culture-

treated dishes for experimentation purposes (Yan et al., 2012). 

2.2.1.4 Cryopreservation 

Cells were centrifuged for 5 minutes at 300 g to form a pellet, which was then 

re-suspended in a solution of FBS containing 10% DMSO at a density of 2-4 x 106 

per mL. Re-suspended cells were frozen at -80°C for one day and then moved to 

liquid nitrogen for long-term storage. 
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2.2.1.5 Plating conditions 

Table 2.13: Plating conditions of different cell types 

Plate/dish Media 
volume 

No. HEK293T No. RAW 264.7 No. BMDM No. THP-1 

24 well 500 μL 1 x 105 2 x 105 1 x 105  

12 well 1 mL 2.5 x 105 5 x 105 2.5 x 105  

6 well 2 mL 5 x 105 1 x 106 5 x 105 1.5 x 106 

6 cm 5 mL 2 x 106 4 x 106 2 x 106  

10 cm 10 mL 5 x 106 1 x 107 5 x 106  

 

2.2.2 Molecular biology methods 

2.2.2.1 Agarose gel electrophoresis 

DNA samples were resolved by agarose gel electrophoresis, using the Mupid-One 

electrophoresis system (Eurogentect). Samples were diluted in 6X loading dye 

(New England Biolabs) and were resolved on GelRed-stained 1.5% agarose gels 

(table 2.12) at 100-135 V for 30 minutes in 0.5X TBE buffer (table 2.10). Gels 

were visualised using a UV transilluminator (Alpha Innotech). DNA size was 

determined using a 100 bp ladder (Promega). DNA that was required for further 

cloning steps was excised and purified using QIAquick gel extraction kit (Qiagen), 

according to the manufacturer’s instructions. 

2.2.2.2 Polymerase chain reaction (PCR) 

Primers for PCR were designed using Primer3 software. Genomic DNA was 

amplified using HotStarTaq Master Mix Kit (Qiagen) according to manufacturer’s 

instructions. If amplified DNA was required for restriction digest, PCR products 

were purified using QIAquick PCR purification kit (Qiagen) according to 

manufacturer’s instructions. Concentrations of purified PCR products were 

measures using a NanoDrop spectrophotometer (ThermoFisher Scientific). 

2.2.2.3 Restriction digest 

Restriction digests were prepared by mixing either 1 μg plasmid DNA or 500 ng 

purified PCR product with the required enzymes (NEB), according to 

manufacturer’s instructions, in a total volume of 20 μL. 
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2.2.2.4 Ligation 

Ligation reactions were prepared by mixing insert DNA and plasmid backbone at 

a molar ratio of 5:1 with T4 DNA ligase (NEB) according to manufacturer’s 

instructions, in a total volume of 20 μL. Ligation reactions were incubated for 1 

hour at room temperature. 

2.2.2.5 DNA transformation for routine plasmid preparation 

10 – 20 μL of competent bacteria (XL1-Blue, Agilent Technologies) was thawed 

on ice and 10 ng plasmid DNA (or 1 μL ligation reaction) was added. This mixture 

was incubated on ice for 2 minutes. Bacteria was then heat shocked at 37°C in a 

water bath for 1 minute and immediately returned to ice. Bacteria was 

recovered in 100 μL of super optimal broth with catabolite repression (SOC) 

media (Invitrogen) and transferred to luria broth (LB) agar plates containing the 

appropriate antibiotic (100 μg/mL ampicillin from Sigma Aldrich or 50 μg/mL 

kanamycin from Melford). Plates were then incubated overnight at 37°C 

inverted. 

2.2.2.6 Plasmid extraction 

2.2.2.6.1 Midiprep 

A single bacterial colony was inoculated in 2 mL L-Broth supplemented with the 

appropriate antibiotic and this starter culture incubated at 37°C shaking at 150 

rpm for 6 – 8 hours. 100 mL L-Broth supplemented with the appropriate 

antibiotic was spiked with 100 μL of the starter culture and incubated at 37°C 

shaking at 150 rpm for 16 – 20 hours. Plasmid DNA was extracted using the 

PureYield Plasmid Midiprep System (Promega) according to the manufacturer’s 

instructions and plasmid purity and concentration determined using a NanoDrop 

or Denovix DS-11+ Spectrophotometer. 

2.2.2.6.2 Miniprep 

2 mL of L-Broth supplemented with the appropriate antibiotic was inoculated 

with a single bacterial colony and incubated overnight at 37°C shaking at 150 

rpm. DNA was extracted using Qiaprep Spin Miniprep Kit (Qiagen) according to 

the manufacturer’s instructions. 
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2.2.2.7 DNA sequencing 

Plasmid DNA sequencing was performed by GATC Biotech Ltd. (Germany) using 

either common universal primers provided by the company or custom primers. 

Sequencing results were analysed using Geneious Molecular Biology and NGS 

Analysis Tools (Biomatters Ltd., New Zealand). 

2.2.2.8 Transfection 

HEK293T cells were transiently transfected using Turbofect transfection reagent 

(Thermo Scientific). Plasmids were incubated with serum-free media (SFM) and 

Turbofect for 15 minutes at room temperature and added drop-wise to the cells. 

The ratio of SFM (μL):DNA (μg):Turbofect (μL) was 100:1:2 (table 2.14). Within 

each experiment, total plasmid concentrations were kept constant between 

samples by the addition of an empty expression vector. 

Table 2.14: Transfection conditions. 

Plate/dish Cell no. SFM DNA Turbofect 

12 well 2.5 x 105 50 μL 0.5 μg 1 μL 

6 well 5 x 105 100 μL 1 μg 2 μL 

6 cm 2 x 106 300 μL 3 μg 6 μL 

10 cm 5 x 106 500 μL 5 μg 10 μL 

 

2.2.2.9 Gene expression analysis by RT-qPCR 

For real-time quantitative PCR (qPCR), total RNA was extracted from cells using 

a RNeasy Kit (Qiagen), Qiashredders (Qiagen) and RNase Free DNase Set (Qiagen) 

according to the manufacturer’s instructions. RNA was primed with random 

hexamer oligonucleotides and reverse-transcribed into complimentary DNA 

(cDNA) using a nanoScript RT Kit (Primerdesign) following the manufacturer’s 

instructions. RT-qPCR was performed using PerfeCta SYBR Green FastMix with 

ROX (Quanta Bioscience) using QuantiTect Primers (Qiagen) (table 2.15) in a 384-

well plate using a QuantStudio 7 Flex (Applied Biosystems by Life Technologies). 

Data were normalised to TATA-binding protein (TBP) and gene expression 

changes using the 2-ΔΔCt method (Livak & Schmittgen, 2001).  

  



75 
 
Table 3.15: RT-qPCR cycle settings 

Stage Cycle Rate Temperature Time 

Hold 1 (1.6°C/s) 
(1.6°C/s) 

50°C 
95°C 

2 min 
10 min 

PCR 40 (1.6°C/s) 
(1.6°C/s) 

95°C 
60°C 

15 sec 
1 min 

Melt curve 2 x 106 (1.6°C/s) 
(1.6°C/s) 
(1.6°C/s) 

95°C 
60°C 
95°C 

15 sec 
1 min 
15 sec 

2.2.3 Protein methods 

2.2.3.1 Protein extraction 

2.2.3.1.1 Non-denatured whole cell extraction 

Culture media was aspirated and tissue culture plates were washed gently with 

4°C PBS. Cells (HEK293T, RAW264.7, THP-1) were detached with 4°C PBS or with 

mechanical agitation and centrifuged at 11,000 g for 45 seconds at 4°C to create 

a pellet. Pellets were re-suspended in 20 – 200 μL radio-immunoprecipitation 

assay (RIPA) buffer (table 2.7) that was freshly supplemented with protease and 

phosphatase inhibitor cocktail (table 2.16). This was incubated on ice for 30 

minutes and vortexed every 5 minutes. Lysate was cleared by centrifugation at 

16,000 g for 10 minutes at 4°C. Supernatant was collected and analysed straight 

away or stored at -20°C or -80°C for long-term storage. 

Table 2.16: Non-denaturing lysis conditions 

Plate/dish RIPA volume 

12 well 40 – 50 μL 

6 well 80 – 100 μL 

6 cm 150 – 180 μL 

10 cm 300 – 350 μL 

 

2.2.3.1.2 Denatured whole cell extracts 

Cells were incubated with 10 mM n-ethylmaleimide (NEM) for 30 seconds before 

cells were harvested. Culture media was aspirated and tissue culture plates 

were washed gently with 4°C PBS with 10 mM NEM. Cells were detached with 

4°C PBS and centrifuged at 11,000 g for 45 seconds at 4°C to form a pellet. 

Pellets were re-suspended in 100 μL 1% SDS and heated at 95°C for 5 minutes. 

Cell pellet was disrupted by sonication for 10 seconds (30% amplitude, 50% duty 

cycle) (Bandolin SONOPULS Ultrasonic Homogeniser HD 2070 with MS 73 

Microtip). Lysate was cleared by centrifugation at 16,000 g for 10 minutes at 4°C 
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and supernatant collected and analysed straight away or stored at -20°C or -

80°C for long-term storage. 

2.2.3.2 Quantification 

Whole cell protein extracts were quantified by Bradford assay. 1 μL of cell lysate 

was diluted in 1 mL of 1X Bradford assay reagent (Bio-Rad) and assayed in 

triplicate on a spectrophotometric 96-well plate reader with absorbance 

measured at 595 nM. To determine unknown protein concentrations a standard 

curve was generated using bovine serum albumin (BSA) at concentrations of 0-9 

μg/mL. 

2.2.3.3 Western blotting 

Protein samples were separated by performing denaturing sodium dodecyl 

sulphate (SDS) polyacrylamide gel electrophoresis (PAGE) on the Mini-PROTEAN 

Tetra Cell System (Bio-Rad). Cell lysate was diluted in either 2X or 4X SDS 

loading buffer then boiled at 95°C for 5 minutes and resolved on 8% or 10% 

acrylamide gels (table 2.11). Gels were run at 120 V for 80-120 minutes in 1X 

tris-glycine running buffer (table 2.8).  

Once resolved, protein was transferred to Amersham Protran 0.45 µM 

nitrocellulose membrane (GE Healthcare) using the Mini Trans-Blot 

Electrophoretic Transfer System (Bio-Rad) and 1X Tris-glycine transfer buffer 

(table 2.8). Membranes were incubated in Ponceau solution (Sigma Aldrich) and 

washed with PBS-Tween 20 0.05% (PBS-T) to confirm proper transfer of protein. 

To block non-specific binding, membranes were incubated in 5% non-fat milk 

(Marvel)/PBS-T solution for 1 hour at room temperature. Membranes were 

probed with primary antibody in 5% milk/PBS-T or 5% BSA/PBS-T overnight at 

4°C or for 1-2 hours at room temperature with gentle agitation, then incubated 

with secondary antibody in 5% milk/PBS-T for 1 hour at room temperature. 

Three 5-minute washes were performed using PBS-T after incubation with 

antibody.  

Bound protein was detected using WesternBright ECL Chemiluminescent 

Substrate (Advansta), as all secondary antibodies used were horseradish 

peroxidase (HRP)-conjugated. For low abundance proteins, WesternBright Sirius 
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Chemiluminescent HRP substrate was used. Membranes were scanned using the 

LI-COR c-Digit Model 3600 (USA) on either standard or high sensitivity settings. 

For membranes requiring multiple antibody re-probes for proteins of similar size, 

they were stripped using Restore Plus Western Blot Stripping Buffer (Thermo 

Scientific) according to the manufacturer’s instructions. Protein sizes were 

determined by the addition of a protein ladder (Thermo Scientific) or a 

biotinylated ladder followed by the addition of an anti-biotin antibody (Cell 

Signalling Technologies). 

2.2.4  Functional assays 

2.2.4.1 Immunoprecipitation 

Non-denatured whole cell lysates were prepared as described above in section 

2.2.3.1.1. Equal amounts of protein (30 μg) were diluted in RIPA buffer (0.1% NP-

40) up to 20 μL and 20 μL 2X SDS loading buffer, boiled at 95°C for 5 minutes 

and kept frozen for subsequent analysis. To immunoprecipiate (IP) the desired 

protein, equal amounts of protein (1 mg) were diluted in 1 mL RIPA buffer (0.1% 

NP-40). Samples were pre-cleared for 30 minutes on a rotator at 4°C by the 

addition of 20 μL protein G agarose beads (EMD Millipore). Beads were discarded 

by centrifugation at 14,000 g at 4°C for 2 minutes. Samples were incubated with 

20 μL protein G agarose beads (Millipore) and 1 μL of the appropriate antibody 

overnight at 4°C on a rotator. Immunoprecipitated proteins were washed 3 times 

in 1 mL RIPA buffer and centrifuged at 11,000 g for 1 minute at 4°C. Proteins 

were eluted from the beads by the addition of 30 μL 2X SDS loading buffer and 

then boiled at 95°C for 5 minutes, incubated on ice for 2 minutes and 

centrifuged at 14,000 g for 2 minutes at 4°C. Samples were stored at -20°C or 

analysed immediately by Western blot. 

2.2.4.2 Ubiquitination assay 

Denatured whole cell lysates were prepared as described above in section 

2.2.2.1.2. Equivalent volumes of lysate (5 μL) were diluted in 5 μL 2X SDS 

loading buffer, boiled at 95°C for 5 minutes and used as input samples. The 

remaining volumes of lysate (95 μL) were diluted up to 1 mL with RIPA buffer (1% 

NP-40) supplemented with 20 mM NEM. Samples were pre-cleared by adding 20 

μL protein G agarose beads (Millipore) for 30 minutes on rotation at 4°C. Pre-
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cleared lysate was centrifuged for 2 minutes at 14,000 g and at 4°C and 

transferred to a new Eppendorf tube. 20 μL of fresh protein G agarose beads 

were added to pre-cleared lysate and immunoprecipitated with 1 μL antibody 

overnight rotating at 4°C. Immunoprecipitated protein was washed 3 times in 1 

mL RIPA buffer. To elute immunoprecipitates, beads were re-suspended in 30 μL 

of 2X SDS loading buffer and heated to 95°C for 5 minutes. Samples were 

vortexed for 10 seconds and centrifuged for 2 minutes at 16,000g at 4°C to 

isolate eluate. Eluate was stored at -20°C or -80°C, or analysed immediately by 

Western blot (see section 2.2.2.3). 

2.2.5 Bioinformatic methods 

Bioinformatic analysis was performed with the kind assistance of Dr. Domenico 

Somma and Mr John Cole (GLAZgo Discovery Centre). 

2.2.5.1 RNA sequencing (RNA-seq) 

WT and Ing4-/- and Socs1-/- RAW 264.7 cells were left untreated or were treated 

for 3 hours with 100 ng/mL LPS. Total RNA was extracted from the cells using 

the RNeasy kit (QIAGEN) according to the manufacturer’s instructions. Duplicate 

samples of each condition were sent to the University of Glasgow Polyomics 

facility for sample QC, polyA library preparation (Truseq stranded mRNA kit). 

Illumina NextSeq™ 500 platform was used to sequence single-end 75bp reads to a 

depth of 20 million. 

2.2.5.2 RNA-seq analysis 

2.2.5.2.1 CuffDiff pipeline 

Quality control of raw sequence reads was determined using the Fast QC tool. 

Reads were aligned to mouse reference sequence GRCm38.p6 using HISAT (v. 

2.0.3.2) (Pertea et al., 2016). Aligned reads were assembled into transcripts 

using Stringtie (v. 1.2.3). Significant differential fragments per million reads 

(FPKM) values were calculated using CuffDiff (v. 2.2.1.3) (Trapnell et al., 2010). 

The above analyses were performed using Glasgow University Galaxy server 

(http://heighliner.cvr.gla.ac.uk/). Clustering analysis was performed with 

default options (K-means clustering with Jensen-Shannon distance) using the 
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Bioconductor package CummeRbund. Visualisation of RNA-seq data was 

performed using Papillon (v. 0.1.1) developed by Dr. Domenico Somma 

(University of Glasgow) (http://github.com/domenico-somma/Papillon). 

2.2.5.2.2 DESeq2 pipeline 

Quality control and read alignment was performed as described in the section 

above. Aligned reads were counted using HTseq-count (v. 0.6.1) (Anders et al., 

2015) using Glasgow University Galaxy server. Read counts were used as input to 

SearchLite (Beta), an automated pipeline for analysis and visualisation of RNA-

seq data, developed by Mr John Cole and colleagues (GLAZgo Discovery Centre, 

University of Glasgow). Differential gene expression was calculated using DESeq2 

(Love et al., 2014). 

2.2.5.3 GEO submission details 

RNA-seq data is available in the NCBI Gene Expression Omnibus database with 

the following accession number: GSE 134456 

2.2.5.4 Transcription factor binding site (TFBS) analysis 

2.2.5.4.1 Motif analysis 

Motif analysis was based on the GREAT approach (McLean et al., 2010) which 

incorporates both proximal and distal regulatory regions for enrichment 

analyses. Regulatory regions for genes were obtained from the Ensembl 

Regulatory Build (Zerbino et al., 2015). Genomic locations were obtained using 

the ‘fetch closest non-overlapping feature’ tool. These analyses were performed 

using the Glasgow University Galaxy Server.  

De novo motif searches were performed using the motif search program HOMER, 

developed by C. Benner (Heinz et al., 2010), using the findMotifs.pl command 

with default parameters (promoter region 200bp upstream 50bp downstream of 

transcription start site). Custom motifs were generated using the seq2profile.pl 

command.  

 
  

http://github.com/domenico-somma/Papillon


80 
 

 

 

 

 

 

Chapter 3  

The effects of NF-κB E3 ligases on 

p50    
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3.1 Abstract 

NF-κB is a transcription factor family that controls the expression of hundreds of 

biologically important genes, many of which have essential roles in the immune 

response. Its dysregulation results in a number of pathologies and so it must be 

tightly controlled at all stages of its activation. The ubiquitin proteasome system 

(UPS) targets proteins for degradation and has long been established as 

important in the upstream activation of NF-κB. However, it has become clear in 

the last few years that ubiquitination of the NF-κB subunits themselves is also an 

important mechanism for the regulation of gene expression. Most studies have 

focussed on p65, with a number of E3 ligases identified that target this, and 

other subunits for ubiquitination. In comparison, little is known about p50. A 

particularly insightful piece of the puzzle would be the identity of the E3 ligase 

that is responsible for ubiquitinating p50, resulting in its proteasomal 

degradation. This would open up novel therapeutic targets that seek to stabilise 

p50 homodimers and reinforce their repressive effects on the transcription of 

pro-inflammatory genes. Within this chapter, we looked to the published studies 

and used a panel of putative E3 ligases that included SOCS1, ING4, PPARγ, 

PDLIM2 and UBR5 in a series of in vitro assays to determine whether any of these 

also promoted the ubiquitination of p50. Furthermore, the consequences of 

mutating a site of p50 ubiquitination are explored via the use of a mutant 

monocytic cell line. It was observed that SOCS1 and UBR5 are able to promote 

the ubiquitination of p50, whereas ING4 has no effect on p50 and so was ruled 

out as an E3 ligase for this subunit. Furthermore, the K130 site of human p50 is 

found to have influence over the abundance of the other NF-κB subunits, but did 

not affect the TLR-induced expression of certain cytokines. 
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3.2 Introduction 

NF-κB is an essential regulator of immune gene expression, in particular those 

critical for the inflammatory response. When dysregulated, this leads to the 

development of a number of diseases including cancer (Rayet and Gélinas, 

1999), neurodegenerative disease, viral infections and autoimmune diseases such 

as rheumatoid arthritis and multiple sclerosis (Baldwin, 2001; Kumar et al., 

2004). It is therefore crucial that NF-κB activity is tightly controlled to avoid 

these undesirable outcomes.  

The role of the ubiquitin proteasome system (UPS) in the upstream activation of 

both the canonical and non-canonical NF-κB pathways is well established (Wertz 

& Dixit, 2010; Kanarek & Ben-Neriah, 2012). However, it is emerging that 

ubiquitination of the NF-κB subunits themselves is a critical post-translational 

modification contributing to the degradation of NF-κB and the termination of its 

activity. Thus, it is an area that could lead to greater understanding of how to 

exert control over aberrant pro-inflammatory gene transcription in a gene-

specific, rather than signal-specific manner (Saccani et al., 2004; Bosisio et al., 

2006; Carmody et al., 2007). 

The majority of published work regarding the relationship between the UPS and 

NF-κB has focussed on the p65 subunit (Ryo et al., 2003; Maine et al., 2007; 

Tanaka et al.,  2007; Strebovsky et al., 2011; Hou et al., 2012; Hou et al., 2014; 

Shin et al., 2017). There have also been some studies published on c-Rel (Chang 

et al., 2011) and the precursor p105 (Kravtsova-Ivantsiv et al., 2015). Processing 

of p105 to p50 may occur constitutively or after induction, and whilst both are 

dependent on ubiquitination, they seem to be regulated by different 

mechanisms (Palombella et al., 1994; Orian et al., 1995). Phosphorylation of 

p105 at serine (Ser, S) 927 and 932 by IKKβ following stimulation creates a 

destruction motif that is recognised by the SCFβTrCP ubiquitin ligase and this leads 

to the complete proteolysis of p105 (Orian et al., 2000). KPC1 is the E3 ligase 

that monoubiquitinates p105 at multiple lysine residues, mediating its partial 

processing to p50 (Kravtsova-Ivantsiv et al., 2015). Ubiquitin-mediated 

degradation of p65 is induced by many TLR and TNFR ligands (Saccani et al., 

2004) and is a major limiting factor of pro-inflammatory gene expression 

(Carmody & Chen, 2007). In addition to the growing number of E3 ligases 
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identified for p65 so far, a number of target lysine (Lys, K) residues have been 

identified including K28, K62 and K310. Furthermore, non-degradative 

ubiquitination of p65 there has been demonstrated although its function remains 

unknown (Hochrainer et al., 2012; Li et al., 2012). Despite this increasing 

understanding of how the UPS regulates NF-κB activity through the targeting of 

p65 for degradation, much remains unknown. For example, it is not clear if a 

single p65 molecule is ubiquitinated at multiple K residues at the same time, or 

if modification occurs in isolation (Collins et al., 2016). There have been many K 

residues identified as acceptor sites on p65 from mass spectrometry analysis and 

perhaps this accounts for the binding specificities of the different E3 ligases that 

act upon the subunit. Thus far, there has been no overlap of ubiquitination sites 

for the E3 ligases identified for p65. It is also not known why there are so many 

E3 ligases that target p65 and why some NF-κB target genes such as IL-6 are 

regulated by multiple ligases, whereas others are regulated more selectively. It 

has been suggested that some E3 ligases might only target p65 when part of a 

specific dimer combination, or depending on the cell type or activating stimulus 

(Collins et al, 2016). 

Considering the growing body of work into the relationship between the UPS and 

NF-κB, relatively little is understood about the mechanisms that lead to the 

ubiquitination and degradation of p50. Due to its lack of transactivation domain, 

p50 is considered a repressor of the transcription of pro-inflammatory genes 

when present as a homodimer, competitively binding to κB sites of DNA and 

preventing transcriptionally active NF-κB dimers from doing so. In unstimulated 

macrophages, p50 homodimers occupy the promoters of Tnfa and Cxcl2, both 

pro-inflammatory genes. However, in Bcl3-/- cells that undergo hyper-

ubiquitination of p50, these promoters are occupied by the transcriptionally 

active p65 and c-Rel (Carmody et al., 2007), therefore resulting in increased NF-

κB transcriptional activity and pro-inflammatory gene expression. DNA binding is 

known to trigger p50 ubiquitination and degradation, so stabilisation of these 

p50:p50:DNA complexes would be a desirable objective to dampen the unwanted 

chronic inflammation that is characteristic of many human diseases. Indeed, in 

human head and neck tumours and glioblastoma, there is a significant decrease 

in p50 levels in the nucleus compared to healthy tissue (Kravtsova-Ivantsiv et 

al., 2015). One approach to increasing p50 homodimer stability would be to 
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prevent their ubiquitination and degradation. This will require a detailed 

understanding of the underlying mechanisms. Previously, the K128 residue of 

murine p50 (K130 in human p50) was identified as a site of its ubiquitination, 

although the function of ubiquitination at this site is unknown (thesis of Patricia 

Collins, 2014). Furthermore, the E3 ligases that mediate p50 ubiquitination have 

yet to be identified. 

In this chapter, the known E3 ligases for the other NF-κB subunits were used as a 

starting point to investigate the relationship between the UPS and p50. Since so 

little is known about how the UPS regulates p50, this was considered a 

reasonable starting point. Using a panel of putative E3 ligase constructs, a series 

of cell-based assays were conducted to explore the effects, if any, these had on 

p50. In addition, the function of the K130 site of ubiquitination of p50 is 

investigated using mutant cell lines that have this residue abolished. It is 

discovered in this chapter that an interesting relationship exists between p50 

and SOCS1, previously found to increase the ubiquitination and degradation of 

p65 (Ryo et al., 2003; J. Strebovsky et al., 2011). SOCS1 increases p50 

ubiquitination and promotes its degradation. Furthermore, ING4 is ruled out as 

having specificity for p50. Finally, it is clarified that the K130 residue does not 

regulate the pro-inflammatory gene expression of a number of genes analysed, 

as induced by LPS. However, it does affect the stability of other NF-κB subunits, 

both basally and following stimulation. The findings outlined here provide a basis 

on which additional avenues of work can be established, and indeed are 

explored further in later chapters. 

 



85 
 

3.3 Results 

3.3.1 Interaction between p50 and some putative E3 ligases 

To determine whether SOCS1, ING4, PPARγ or PDLIM2 could interact with, and 

therefore possibly have an effect on p50 stability, a co-immunoprecipitation (co-

IP) assay was performed. HEK293T (293T) cells were transiently transfected with 

plasmids previously generated within the lab to co-express wild-type p50-Xpress 

(p50-XP) and either GFP-tagged SOCS1 (eGFP-hSOCS1, herein referred to as GFP-

SOCS1), Flag-tagged ING4 (ING4-Flag) or PPARγ (PPARγ-Flag), or Myc-tagged 

PDLIM2 (PDLIM2-Myc), or not. Whole-cell lysates were used and XP-tagged p50 

was immunoprecipitated out using anti-XP antibody, and the E3 ligases detected 

via Western blot (WB) using antibodies against their respective protein tags. A 

clear interaction was detected between p50 and SOCS1, and p50 and PDLIM2. A 

weaker interaction was seen between p50 and PPARγ, and no interaction was 

observed between p50 and ING4 (figure 3.1). This may not rule out ING4 as a 

potential binding partner of p50, it might be the case that the interaction is 

short-lived and so not captured within the time course adopted in this assay. 

This data provides a foundation on which to proceed to investigate further the 

nature of the interactions these candidate E3 ligases have with p50. 
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Figure 3.1: Interaction between p50 and SOCS1, ING4, PPARγ and PDLIM2.  
HEK293T (293T) cells were co-transfected to express p50-XP and either GFP-SOCS1, ING4-
FLAG, PPARγ-FLAG or PDLIM2-MYC, or with empty plasmid (mock). Total amount of DNA 
transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest with empty 
vector. Cells were treated with 20 μM of proteasome inhibitor MG132 for 1 hour prior to harvest. 
Protein interaction was analysed via co-immunoprecipitation (co-IP) of XP and then Western blot 
(WB) against the respective tags of the putative E3 ligases. Figure is representative of three 
individual experiments. 
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3.3.2 SOCS1 causes most prominent degradation of p50 

Previous studies have demonstrated that SOCS1, ING4, PPARγ and PDLIM2 are 

able to affect the stability of their NF-κB subunit targets, by ubiquitinating them 

and directing them towards degradation by the proteasome. To determine 

whether the candidate E3 ligases had any such degradative effect on p50, 293T 

cells were co-transfected to express p50-XP, and either GFP-SOCS1, ING4-Flag, 

PPARγ-Flag or PDLIM2-Myc, or not. Following harvest, expression levels of p50 

were analysed via immunoblot using anti-XP antibody. There is a stark decrease 

in p50 stability when it is present with SOCS1 when compared to p50 alone. This 

is also the most marked decrease compared to the other candidate E3 ligases 

(figure 3.2). There is a slight loss of p50 stability in the presence of PDLIM2 as 

well. This interesting result indicates that SOCS1’s repertoire of roles within the 

regulation of the immune system extends to affecting the stability of the p50 

subunit of NF-κB, in addition to ubiquitinating p65 (Strebovsky et al., 2011) and 

as a JAK/STAT inhibitor (Liau et al., 2018). 
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Figure 3.2: Most prominent degradation of p50 observed in the presence of SOCS1.  
293T cells were co-transfected to express p50-XP and either GFP-SOCS, PPARγ-FLAG, PDLIM2-
MYC, or ING4-FLAG, or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50 and 0.5 
μg E3 ligase, making up the rest with empty vector Cells were lysed and expression levels of p50 
analysed via WB against XP. The figure is representative of three individual experiments. 
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3.3.3 SOCS1 most strongly promotes p50 ubiquitination 

It was important to discover more about the nature of the p50 degradation 

observed in the previous section. It was hypothesised that the putative E3 ligases 

might be promoting the ubiquitination of p50, and this was causing the observed 

degradation. To investigate if the E3 ligases increased p50 ubiquitination, 293T 

cells were co-transfected with plasmids expressing p50-XP, ubiquitin-HA (Ub-

HA), and the putative E3 ligases as described earlier, or not. 20 µM MG132 was 

added to inhibit proteasomal degradation because any ubiquitination activity 

might mediate such degradation. One hour after this, cell lysates were 

harvested and denatured prior to being immunoprecipitated with anti-XP 

antibody and immunoblotted with anti-HA to detect ubiquitin. Compared to 

controls, SOCS1 clearly promotes the ubiquitination of p50 (figure 3.3A), and this 

is further clarified by densitometry analysis (figure 3.3B). PDLIM2 appears to 

promote p50 ubiquitination although to a lesser extent. No promotion of 

ubiquitination is observed with PPARγ nor ING4, and indeed, they may reduce 

p50 ubiquitination. This is further indication that SOCS1 might be acting as an E3 

ligase for p50, promoting its ubiquitination and causing it to be degraded.  
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Figure 3.3: Effect of E3 ligases on p50 ubiquitination.  
(A) 293T cells were co-transfected to express p50-XP, Ub-HA and either GFP-SOCS1, PPARγ-
FLAG, ING4-FLAG or PDLIM2-MYC, or not. Total amount of DNA transfected was 3 μg, using 1 μg 
of p50, 1 μg of ubiquitin and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were 
treated with 20 μM MG132 for 1 hour prior to harvest. Ubiquitination of p50 was analysed via 
immunoprecipitation (IP) of XP and WB against the HA tag of ubiquitin. Data shown is 
representative of three individual experiments. (B) Densitometry analysis was performed using 
Image Studio Lite software and the level of ubiquitination (Ub) was normalised to the amount of 
p50 immunoprecipitated. Data shown indicates induction of ubiquitination relative to p50 alone. 
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3.3.4 UBR5 promotes ubiquitination of p50 

A previous mass spectrometry analysis performed in the lab identified UBR5 to 

be a binding partner of p50. UBR5 is an E3 ligase that has been identified as a 

key regulator of the UPS in cancer and development. Many substrates have been 

identified for this HECT domain-containing ligase, although the context of these 

substrates is elusive and it remains unknown if its activity is dependent upon 

particular circumstances within different cell types and in different health states 

(Shearer et al., 2015). For instance, it negatively regulates the stability of 

TIP60, a tumour suppressor, by targeting it for ubiquitination and degradation by 

the proteasome (Subbaiah et al., 2016). It has also been identified as a substrate 

of ERK2 in the MAPK signalling cascade (Eblen et al., 2003). Constructs that 

express WT UBR5 (UBR5WT) and a mutant that is missing the HECT domain 

(UBR5ΔHECT) were employed in a series of ubiquitination assays with p50 to 

explore the relationship between these two proteins. 293T cells were co-

transfected with plasmids expressing p50-XP, Ub-HA, and either GFP-UBR5WT or 

GFP-UBR5ΔHECT, or not. 20 µM MG132 was added to inhibit proteasomal 

degradation and one hour after this, cell lysates were harvested and denatured 

prior to being immunoprecipitated with anti-XP antibody and immunoblotted 

with anti-HA to detect ubiquitin. Due to the large molecular mass of UBR5 (309 

kDa) it was difficult to resolve this protein via SDS-PAGE alongside the other 

proteins of interest, so instead to determine its expression its GFP tag was 

visualised by fluorescence microscopy (figure 3.4C). Ubiquitination assays 

indicated that UBR5 is able to promote the ubiquitination of p50 compared to 

controls (figure 3.4A). As expected, a UBR5 mutant that lacked ubiquitination 

activity (ΔHECT) was unable to promote the ubiquitination of p50. Quantification 

by densitometry analysis confirmed that ubiquitination of p50 is increased by 

about 50% in the presence of UBR5, and reduced by about 75% with the mutant 

(figure 3.4B). Collectively, with previous UBR5-p50 binding data, these data 

suggest that UBR5 interacts with p50 and might act as an E3 ligase via its HECT 

domain. 
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Figure 3.4: UBR5 promotes ubiquitination of p50.  
(A) 293T cells were co-transfected to express p50-XP, Ub-HA and either GFP-UBR5WT or GFP-

UBR5ΔHECT, or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin 

and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were treated with 20 μM MG132 
for 1 hour prior to harvest. Ubiquitination of p50 was analysed via immunoprecipitation (IP) of XP 
and WB against the HA tag of ubiquitin. Figure is representative of two individual experiments. (B) 
Densitometry analysis was performed using Image Studio Lite software and the level of 
ubiquitination was normalised to the amount of p50 immunoprecipitated. Data shown indicates 
induction of ubiquitination relative to p50 alone. (C) Due to the large size of UBR5, it was difficult to 
resolve via SDS-PAGE. Instead, the GFP tag was observed under a fluorescent microscope to 
determine UBR5 expression.  
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3.3.5 ING4 does not promote ubiquitination of p50 

Although RING/U-box and HECT domains are the main types of E3s in eukaryotes, 

LIM and PHD domains have also been seen to have the ability to ubiquitinate 

substrates. It has been established that ING4, which contains a PHD domain, acts 

as an E3 ligase that induces the ubiquitination and degradation of p65 via its K62 

residue, and this is essential for the termination of NF-κB activity (Hou et al., 

2014). Although ING4 was not seen to interact with p50 (figure 3.1), this did not 

rule out the possibility that ING4 could have an effect on p50 ubiquitination via 

an indirect mechanism. To investigate further, 293T cells were co-transfected 

with plasmids expressing p50-XP, Ub-HA, and ING4-Flag, or not. A concentration 

gradient of MG132 was added to inhibit proteasomal degradation and one hour 

after this, cell lysates were harvested and denatured prior to being 

immunoprecipitated with anti-XP antibody and immunoblotted with anti-HA to 

detect ubiquitin, and the other antibodies as indicated. Across the three 

different MG132 concentrations, there is no observable increase of p50 

ubiquitination (figure 3.5A). When densitometry analysis is performed and the 

levels of ubiquitination normalised to the amount of p50 immunoprecipitated 

out, there is actually a decrease in the level of ubiquitination compared to p50 

alone at the higher MG132 concentrations (figure 3.5B). This data, coupled with 

the finding that ING4 does not appear to interact with p50 (figure 3.1) appears 

to rule out ING4 as an E3 ligase for p50 and instead suggests that ING4 may cause 

p50 to be deubiquitinated to some extent. 
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Figure 3.5: ING4 does not promote ubiquitination of p50.  
(A) 293T cells were co-transfected to express p50-XP, Ub-HA and ING4-FLAG, or not. Total 
amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin and 0.5 μg E3 ligase, 
making up the rest with empty vector. Cells were treated with increasing concentrations of MG132 
for 1 hour prior to harvest, as indicated. Ubiquitination of p50 was analysed via immunoprecipitation 
(IP) of XP and WB against the HA tag of ubiquitin. (B) Densitometry analysis was performed using 
Image Studio Lite software and the level of ubiquitination was normalised to the amount of p50 
immunoprecipitated. 
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3.3.6 Investigating the functional impact of the p105K130 mutation 
in THP-1 cells on TLR-induced gene expression 

Previous data generated in the lab identified lysine 130 (K128 mouse) of p50 was 

a site of ubiquitination. In this unpublished study, 293T cells were transfected 

with plasmids expressing murine p50-XP or p50-XP in which K128 of p50 was 

mutated to arginine (R), as well as Ub-HA. This mutation dramatically reduced 

p50 ubiquitination when measured by immunoprecipitation and immunoblot. It 

also had a repressive effect on transcription, as observed in an IL-23p19 reporter 

luciferase assay. Transfection of p105 and p105 in which K128 was mutated to R 

into mouse embryonic fibroblast (MEF) cells that lacked Nfkb1 resulted in 

reduced TNFα-stimulated reporter activity. THP-1 is a human monocytic cell line 

that is an in vitro model of LPS-activated gene expression and so is an excellent 

tool for investigating the immune response. Using a retroviral vector approach, 

two THP-1 mutants were created that had the K130 residue mutated to an 

alanine (K130A) and an arginine (K130R). K130 in human is analogous to K128 in 

mouse. Although it eliminates the site of ubiquitination, a K to A mutation 

changes a positively charged amino acid to a hydrophobic one and this could 

have other effects on the protein such as a structural change. K and R on the 

other hand are both positively charged so it is highly unlikely that such a 

mutation will have any biochemical effect other than the elimination of the site 

of ubiquitination, and is thus the more biologically relevant mutant. However, 

both give insight into the role of this residue. In these experiments, WT THP-1s 

were not transduced with a virus and instead expressed endogenous p105/p50. It 

was hypothesised that the loss of this site of p50 ubiquitination may result in 

changes in NF-κB target gene expression. More specifically, if p50 is no longer 

ubiquitinated and degraded by the proteasome, then its stability is increased 

which might result in a greater abundance of repressive p50 homodimers within 

the nucleus causing a reduction in pro-inflammatory gene expression. To explore 

this, WT, p105K130A- and p105K130R-expressing THP-1 cells were left either 

undifferentiated or differentiated into macrophages by treatment with 25 ng/mL 

PMA for 72 hours as described in section 2.2.1.2 of Materials and Methods. They 

were then stimulated with LPS over a time course or left unstimulated and NF-

κB target gene expression measured by performing RT-qPCR and fold changes 

analysed using the 2-ΔΔCt method. RT-qPCR revealed no differences that could be 

reproduced in the expression of TNFα, IL6, or CXCL2 (figure 3.6), which are all 
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pro-inflammatory genes controlled by NF-κB following TLR activation, either in 

the undifferentiated or differentiated state.  

 

Figure 3.6: p105K130A/R THP1 mutation does not affect cytokine expression.  
WT, p105K130A and p105K130R THP-1 cells were either left undifferentiated or differentiated by 
treatment with 25 ng/mL PMA for 72 hr as described above and then stimulated with 100 ng/mL 
LPS for the indicated time. Gene expression levels were determined by real-time quantitative PCR 
(RT-qPCR). Data shown are representative of three independent experiments showing fold change 
with corresponding standard deviation. TNF: Tumour necrosis factor alpha.  
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3.3.7 K130 mutation in p50 may influence other NF-κB subunit 
abundance and ratio 

Considering the lack of any noticeable effects on NF-κB target gene transcription 

as outlined above, the consequence, if any, of the K130 mutation of p50 

remained unknown. We next assessed the impact on p50 protein levels and those 

of the other NF-κB subunits. To determine this, undifferentiated WT, p105K130A 

and p105K130R THP-1 cells were left either untreated, or treated with 100 ng/mL 

LPS for 4 hours. Cells were harvested and protein levels measured via 

immunoblot using antibodies specific for the proteins of interest. There was 

little change in the levels of p50 across WT and either mutant, either basally or 

after induction with LPS (figure 3.7A). The levels of p105 were increased in both 

unstimulated mutants, and p105 is still processed to p50. There is a stark 

decrease in the levels of RelB and c-Rel in the unstimulated mutants compared 

to WT. There is a decrease in IκBα levels in the p105K130R mutant in the resting 

state. The more biologically relevant mutant, p105K130R has lower levels of p65 

both with and without treatment with LPS (figure 3.7B). To determine whether 

the decrease in the protein levels of both RelB and c-Rel was also seen at the 

transcriptional level for the biologically relevant p105K130R mutant, relative gene 

expression was measured by performing RT-qPCR. The results revealed that the 

decrease in expression occurs at the mRNA level, with a smaller fold change 

seen in the expression of both genes in the mutant compared to WT over the 

indicated time course (figure 3.7C), and in untreated cells (figure 3.7D). This 

indicates that it is not the effect of a post-translational modification of p50 

causing the marked decrease in RelB and c-Rel abundance since it occurs before 

transcription both basally and after induction. K130 of p50 may therefore have a 

regulatory role in NF-κB subunit abundance and dynamics, repressing the 

transcription of some subunits. 
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Figure 3.7: K130R mutation of p105/p50 may influence NF-κB subunit dynamics at the 
transcriptional as well as protein level.  
(A) Undifferentiated WT, p105K130A  and p105K130R THP-1 cells were treated with 100 ng/mL LPS for 
4 hours or left untreated and then whole cell extracts were analysed for endogenous levels of 
components of the NF-κB pathway via WB with the antibodies indicated. Data shown is 
representative of two individual experiments. (B) Densitometry analysis was performed using 
Image Studio Lite software. Data was not normalised due to the poor detection of α-tubulin in the 
last lane that was likely due to uneven incubation of the blot in antibody. (C) Undifferentiated WT 
THP-1 cells (black) or p105K130R THP-1 cells (red) were stimulated with 100 ng/mL LPS for the 
indicated time. Gene expression levels were determined by RT-qPCR. Data shown are 
representative of two independent experiments showing fold change with corresponding standard 
deviation. (D) Bar graphs indicating fold change in gene expression in untreated cells as before. 
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3.4 Discussion 

The results in this chapter indicated that SOCS1 is the most promising candidate 

to be an E3 ligase for the p50 subunit of NF-κB. This is the focus of the following 

chapter where an in-depth discussion is conducted, so will not be addressed in 

detail here. There were, however, two other interesting results to emerge from 

the initial investigations on p50 ubiquitination, and that was concerning PDLIM2 

and UBR5. PDLIM2 was shown to interact with p50 (figure 3.1), it decreased its 

stability (figure 3.2) and promoted its ubiquitination (figure 3.3), although to a 

lesser extent than SOCS1. PDLIM2 contains a PDZ and a LIM domain, and it is via 

the latter that PDLIM2 has been shown to function as an E3 ligase as it is 

structurally similar to the RING domain (Capili et al., 2001). The ability of p50 to 

interact with PDLIM2 is in direct contrast to a previously published study that 

established PDLIM2 as an E3 ligase that targets p65 for ubiquitination and 

degradation (Tanaka et al., 2007). This study was unable to detect 

overexpressed PDLIM2 binding to endogenous p50 in 293T cells. This discrepancy 

might be explained by PDLIM2 only being able to bind p50 when it is present in 

abundance in cells, such as in an overexpression assay. Endogenously, perhaps 

PDLIM2 has greater affinity for p65 than p50 so will preferentially bind it, 

whereas the interaction can only be detected when there is no competition for 

p50.  

UBR5 has emerged as an E3 ligase that is a key regulator in cancer and 

development. Localised in both the cytoplasm and nucleus, overexpressed UBR5 

is reported in many cancer types however the mechanisms by which it is thought 

to control DNA damage responses, metabolism, transcription and apoptosis 

remain poorly understood (Shearer et al., 2015). Although NF-κB is most 

commonly considered to promote inflammatory cancers (DiDonato et al., 2012), 

repressive p50 homodimers can act as tumour suppressors, for example in 

neutrophil-driven hepatocellular carcinoma (Wilson et al., 2015). Additionally, 

lower levels of KPC1, the E3 ligase responsible for the partial processing of p105 

into p50 have been reported in human tumour tissues from head and neck and 

glioblastoma cancers (Kravtsova-Ivantsiv et al., 2015). It was observed in the 

current study that UBR5 increased p50 ubiquitination, whereas a mutant that 

lacked the HECT domain did not (figure 3.4). With high levels of UBR5 and low 

levels of p50 homodimers reported in some cancers, it is possible that UBR5, 
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acting as an E3 ligase for p50, promotes its ubiquitination and degradation and 

this leads to the development of tumours. There are some challenges in 

exploring this relationship further given the large size of the protein, however 

future experiments to determine the stability of p50 in the presence of UBR5 

could be performed to shed more light on the situation. 

ING4 is an established E3 ligase for p65. It has been demonstrated to induce p65 

degradation, to interact with the RHD of p65 via its PHD domain and to increase 

the K48-linked polyubiquitination of p65 at residue K62 (Hou et al., 2014). Our 

data shows that ING4 does not appear to interact with p50, nor promote its 

ubiquitination and degradation. In fact, over three different concentrations of 

MG132, ubiquitination p50 was observed to decrease with the addition of ING4. 

Although it is anticipated that p50 is being ubiquitinated by more than one E3 

ligase, there appears to be no overlap in the function of ING4 as an E3 ligase for 

both p65 and p50. 

As mentioned in the introduction to this chapter, residue K130 of p50 has been 

identified as a site of ubiquitination. A mutant that had the residue mutated to 

arginine was not ubiquitinated when overexpressed in HEK293T cells however, 

the functional consequences of ubiquitination at this site were not known. It was 

hoped that the consequences of eliminating this site in a monocytic cell line 

would shed light on the role of this residue in the context of the inflammatory 

response. It was therefore unexpected that this mutation appeared to elicit no 

distinct phenotype in the context of NF-κB target inflammatory gene expression. 

A previous luciferase reporter assay conducted in the lab had indicated that this 

mutation resulted in reduced activity of the BCL-3-regulated and NF-κB-

dependent IL-23p19 gene as stimulated by TNFα, although this was a 

reconstitution assay in MEF cells that lacked Nfkb1 (thesis of Patricia Collins, 

2014), and so represent a different species and different activating stimulus. 

Expression of the pro-inflammatory genes TNFα, IL6 and CXCL2 was not greatly 

affected by this mutation in THP-1 cells. It is possible that this mutation does 

affect the inflammatory response to TLR activation in a gene-specific manner, 

but a wider transcriptional analysis such as RNAseq is required to detect the 

profile, or the response is dependent on cell type, time-point or activating 

stimulus.  
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On the other hand, the effects observed on the stability of the other NF-κB 

subunits were intriguing. For both mutants, an increase in the basal level of 

p105 was detected. This suggests that K130 might be important for the 

processing of p105 to p50 in resting cells, with its loss resulting in less 

degradation. The E3 ligase SCFβTrCP is responsible for the ubiquitination and 

complete degradation of not only IκB proteins but also p105 (Heissmeyer et al., 

2001), and KPC1 was recently identified as the E3 ligase that promotes the 

ubiquitination and partial processing of p105 to p50 (Kravtsova-Ivantsiv et al., 

2015). These studies also highlighted that all 30 lysine residues in the IκBγ 

domain of p105 are involved in its ubiquitination by SCFβTrCP (Cohen et al., 2004). 

However, they focussed only on the residues that reside downstream of the 

glycine rich domain (GRR) which are degraded when p105 is processed into p50 

and did not examine the lysine residues within the p50 domain of p105. Perhaps 

K130 is also important for the functioning of these E3 ligases. The more 

biologically relevant mutant, p105K130R, had lower levels of p65 than WT, 

particularly compared to baseline levels. However, the most prominent effects 

were observed for RelB and c-Rel, particularly in unstimulated cells. This is 

curious because levels of p50 in the mutants did not vary greatly compared to 

WT, both unstimulated and following LPS stimulation, with densitometry analysis 

only revealing a slight increase in expression levels. These data may indicate a 

role for K130 in regulating the relative abundance of NF-κB subunits that are 

available in both resting and stimulated cells. RelB and c-Rel are little studied 

although both are transcriptionally active subunits, with RelB being activated by 

the non-canonical NF-κB pathway and c-Rel the canonical. Both RelB and c-Rel 

are implicated in lymphoid organogenesis so this is worth bearing in mind should 

an in vivo mouse model of p105K130R be considered (Weih et al., 1995). The 

relative mRNA levels of both RelB and c-Rel are reduced in the mutant compared 

to WT, which demonstrates that K130 affects the regulation of these subunits on 

the transcriptional level. There have been few studies into the regulation of 

RelB transcription, although it has been shown to be dependent on p65 and 

possibly other transcription factors such as CREB as well (Bren et al., 2001). 

Evidence exists that the genes of the NF-κB family, and its inhibitors, are 

transcriptionally regulated by the NF-κB members themselves, including c-Rel by 

p65, and c-Rel by c-Rel itself (Hannink & Temin, 1990; Ten et al., 1992; Liptay 

et al., 1994). The degradative effect of the K130R mutation of p105 on the other 
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subunits of NF-κB indicates that the loss of this site of ubiquitination has 

implications for the other members of the NF-κB family. It is possible that RelB 

and c-Rel are now the focus for increased ubiquitination and degradation in lieu 

of p105/p50, however the inhibition seems to occur at the transcriptional level. 

p50 is able to promote transcription as a dimer partner for p65, c-Rel and RelB 

or repress it as a homodimer, therefore the composition of NF-κB dimers is 

critical in the progression of the inflammatory response. The choice of p50 dimer 

partner may occur co-translationally (Lin & Kobayashi, 2003) but there is also 

evidence that it is a dynamic process that is signal-dependent (Cartwright et al., 

2016). Many mutations and PTMs have been identified that regulate the 

functionality or stability of NF-κB1 proteins, such as  K274A:V275S, F320A and 

H326A:R327S which disrupt heterodimerisation with RelB (Bressler et al., 1993). 

A future study might examine the composition of NF-κB dimers following 

mutation of K130 in p105, as it is possible this mutation affects the dynamics of 

dimer partner choice, perhaps favouring p50 homodimerisation, or altering the 

duration and affinity p50 has for the other subunits. 

The results from this chapter provide a foundation on which the next 

experimental steps can be based. ING4 can be eliminated from consideration 

whereas other putative E3 ligases have generated interesting results, in 

particular SOCS1, which most noticeably promoted the ubiquitination and 

degradation of p50. Furthermore, the K130 residue of p105/p50 demonstrated 

unexpected influence over the stability of not only these subunits, but of other 

members of the NF-κB transcription factor family. This might have a 

consequence for NF-κB dimer composition, stability and possibly gene 

expression, and opens up avenues for future research.  
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Chapter 4  

An investigation into the role of 

SOCS1 as a regulator of p50    



104 
 

4.1 Abstract 

When present as a homodimer, the p50 subunit of NF-κB acts to repress the 

transcription of pro-inflammatory genes. Stabilising p50:p50:DNA 

immunosuppressor complexes therefore, would be a desirable outcome of any 

therapeutic intervention that seeks to treat chronic inflammatory diseases. The 

ubiquitin proteasome system (UPS) targets proteins for degradation. Most of the 

studies on the relationship between NF-κB and the UPS thus far have focussed on 

the p65 subunit whilst the molecular mechanisms that lead to p50 ubiquitination 

and degradation are yet to be determined. Preventing p50 from being targeted 

for degradation would be advantageous in stabilising p50 homodimers and thus 

reinforcing their repressive effects on pro-inflammatory gene expression. Based 

on the results of the previous chapter and studies identifying SOCS1 as an E3 

ligase for p65, we hypothesised that SOCS1 was a putative E3 ligase responsible 

for ubiquitinating and degrading p50 via the proteasome and so a series of in 

vitro assays were performed to investigate this relationship further. Instead, a 

novel function for SOCS1 was discovered, whereby it causes the ubiquitination 

and degradation of p50 by some mechanism outside of its capacity as an E3 

ligase. This study extends the list of functions that SOCS1 has in the regulation 

of the immune response, and further highlights its importance as a potential 

target for therapeutics that mean to repress dysregulated inflammatory gene 

expression. 
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4.2 Introduction 

In the previous chapter, the growing body of work surrounding the relationship 

between the ubiquitin proteasome system (UPS) and NF-κB was outlined. Most of 

what is known so far is based on studies on the p65 subunit, with p50 receiving 

relatively little attention. However, identifying the components of the UPS that 

target p50 for ubiquitination and degradation is critical for stabilising p50 

homodimers and thus reinforcing their repressive effects on the transcription of 

pro-inflammatory genes during periods of immune system dysregulation. 

Suppressor of cytokine signalling 1 (SOCS1) is one member of a family of eight 

related proteins. All members share a central Src homology 2 (SH2) domain, a C-

terminal SOCS box that is ~40 amino acids long and a variable length N-terminal. 

SOCS1 also has a kinase inhibitory region (KIR) domain. SOCS1 has a number of 

roles within the immune system. Initially, it was found to act as a negative 

regulator in the JAK/STAT cytokine signalling pathway (Davey et al., 2006) by 

binding to JAK via the SH2 domain and inhibiting its kinase activity and signalling 

via the KIR domain (Narazaki et al., 1998). This is a classical negative feedback 

loop whereby cytokine signalling induces SOCS1 that can inhibit the pathways 

that stimulated its production. Additionally, SOCS1 is able to modulate cytokine 

production via its SOCS box. Mice expressing a mutant form of SOCS1 that lacked 

the SOCS box exhibited prolonged JAK/STAT signalling in response to cytokines 

(Zhang et al., 2001). This was reinforced by the finding that SOCS1 acts to 

ubiquitinate and degrade JAK2 by way of its SOCS box (Frantsve et al., 2001).  

More recently, SOCS1 was identified as an E3 ligase for the p65 subunit of NF-κB 

(Ryo et al., 2003; Strebovsky et al., 2011). Via its SOCS box domain, it functions 

to polyubiquitinate p65 leading to its proteasomal degradation within the 

nucleus. This has the effect of terminating the prolonged expression of NF-κB 

inducible genes (Saccani et al., 2004). It has also been shown to function as part 

of a multi-subunit complex containing elongin c, cullin2 and rbx1, known as 

ECS(SOCS1), and this cooperates with COMMD1 to ubiquitinate p65. In this case, the 

SOCS box domain of SOCS1 functions as the substrate recognition component, 

whilst COMMD1 stabilises the interaction between SOCS1 and p65 promoting its 

ubiquitination. 
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The data presented in the previous chapter strongly suggested that SOCS1 

promotes the ubiquitination and degradation of p50 as well, therefore in this 

chapter this relationship was explored in greater detail. A series of in vitro 

assays were performed in cells that had the proteins of interest overexpressed so 

that the fundamental mechanisms of p50 ubiquitination and degradation in the 

presence of the putative E3 ligase SOCS1 could be better understood. These data 

demonstrated that SOCS1 promotes the ubiquitination and degradation of p50, 

but this is independent of its E3 ligase activity because a SOCS1 mutant that 

lacks a functional SOCS box is still able to promote degradation and a 

proteasome inhibitor did not prevent it. Furthermore, SOCS1 and p50 are 

demonstrated to interact even when SOCS1 has a defective nuclear localisation 

signal and SOCS box. Ultimately, the promotion of ubiquitination and 

degradation of p50 might be due to SOCS1 being one component of a larger, 

unidentified complex. Regardless, SOCS1 is established as an important factor in 

the maintenance of p50 stability. SOCS1 could prove to be a desirable target for 

future therapies that aim to reinforce the repressive effects p50 homodimers 

have on the expression of pro-inflammatory genes. 
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4.3 Results 

4.3.1 SOCS1 promotes the degradation of p50 

To determine what effect, if any, SOCS1 has on the stability of p50, HEK293T 

(293T) cells were transiently transfected with plasmids previously generated 

within the lab to co-express wild-type p50-Xpress (p50-XP) and wild-type human 

GFP-tagged SOCS1 (eGFP-hSOCS1, herein referred to as GFP-SOCS1). Cells were 

harvested and expression levels of p50 analysed by Western blotting with anti-XP 

antibody. This revealed a marked decrease in the level of p50 when co-

expressed with SOCS1 in comparison to p50 expressed on its own (figure 4.1). 

This result indicates that the presence of SOCS1 causes p50 to be degraded 

although the mechanism is yet unknown. 
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Figure 4.1: SOCS1 promotes degradation of p50.  
HEK293T (293T) cells were co-transfected to express WT p50-XP and WT GFP-SOCS1 or not. 
Total amount of DNA transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the 
rest with empty vector. Cells were lysed and expression levels of p50 were analysed via Western 
blotting (WB) against XP. The figure is representative of three individual experiments.  
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4.3.2 SOCS1 promotes ubiquitination of p50 

Given its ability to induce p50 degradation, it was important to determine 

whether SOCS1 is able to poly-ubiquitinate p50 in vitro, and whether this might 

be the mechanism causing p50 to be degraded. To achieve this, a cellular 

ubiquitination assay was performed. 293T cells were co-transfected with 

plasmids expressing p50-XP, GFP-SOCS1 and ubiquitin-HA (Ub-HA). 20 µM MG132 

was added to inhibit proteasomal degradation because any ubiquitination 

activity might mediate such degradation. One hour after this, cell lysates were 

harvested and denatured prior to being immunoprecipitated with anti-XP 

antibody and immunoblotted with anti-HA to detect ubiquitin, and the other 

antibodies as indicated. Compared to the controls, there is a noticeable increase 

in the level of ubiquitination of p50 in the presence of SOCS1 (figure 4.2), which 

suggests that SOCS1 is promoting p50 ubiquitination. 
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Figure 4.2: SOCS1 promotes ubiquitination of p50.  
293T cells were co-transfected to express p50-XP, Ub-HA and GFP-SOCS1 or not. Total amount 
of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin and 0.5 μg E3 ligase, making up 
the rest with empty vector. Cells were then treated with 20 µM of the proteasome inhibitor MG132 
for 1 hour before harvest. Ubiquitination of p50 was analysed via immunoprecipitation (IP) of XP 
and WB against the HA tag of ubiquitin. Figure is representative of three individual experiments. 
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4.3.3 SOCS1 interacts with p50 

To determine whether the effect SOCS1 has on p50 stability is due to an 

interaction between the two, a co-immunoprecipitation (Co-IP) experiment was 

performed. 293T cells were transiently transfected to co-express p50-XP and 

GFP-SOCS1. Next, whole cell lysates were used and XP-tagged p50 was 

immunoprecipitated and immunoblotted using anti-GFP to detect SOCS1. This 

analysis revealed the interaction of p50 and SOCS1 (figure 4.3). At this stage, it 

is not known what domain of SOCS1 or p50 is important for this interaction, or in 

what sub-cellular location it occurs. 
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Figure 4.3: SOCS1 interacts with p50.  
293T cells were co-transfected to express p50-XP and GFP-SOCS1 or not. Total amount of DNA 
transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest with empty 
vector.Cells were treated with 20 μM MG132 for 1 hour before harvest. Protein interaction was 
analysed via co-immunoprecipitation (co-IP) of XP and then WB against the GFP tag of SOCS1. 
Figure is representative of three individual experiments.  
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4.3.4 SOCS1 promotes ubiquitination of p50 more strongly than 
p65 

293T cells were co-transfected with plasmids expressing p50-XP, p65, GFP-SOCS1 

and Ub-HA. It was decided to increase the concentration of MG132 that was used 

to treat the cells due to the level of p50 degradation that was still observed with 

the addition of 20 µM. Therefore, cells were treated with 80 µM MG132 and after 

1 hour lysates were harvested and an ubiquitination assay performed as 

described above. SOCS1 is able to induce more strongly the ubiquitination of p50 

than it can p65, and the degradative effect on p50 appears more pronounced 

than p65 (figure 4.4A). The baseline level of ubiquitination of p65 is already 

much greater than p50 (figure 4.4B), however when normalised to the amount of 

p50 and p65 that is immunoprecipitated, SOCS1 induces a greater relative 

increase in the ubiquitination of p50 compared to p65, although both are 

increased by SOCS1 (figure 4.4C). Densitometry analysis was employed because 

the relative levels of ubiquitination of p50 and p65 are so different that it is 

difficult to discern by eye the increase that is induced by SOCS1. This finding 

indicates that not only is SOCS1 important for repressing the NF-κB response by 

causing the degradation of p65, but it may also have a role to play in promoting 

its activity by de-stabilising p50. 
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Figure 4.4: SOCS1 promotes ubiquitination of p50 more strongly than p65.  
(A) 293T cells were co-transfected to express p50-XP, p65, Ub-HA, and either GFP-SOCS1 or not. 
Total amount of DNA transfected was 3 μg, using 1 μg of NF-κB subunit, 1 μg of ubiquitin and 0.5 
μg E3 ligase, making up the rest with empty vector. Cells were then treated with 80 µM MG132 for 
1 hour before harvest. Ubiquitination of p50 and p65 was analysed via IP of XP and p65 and WB 
against the HA tag of ubiquitin. (B) Densitometry analysis was performed using Image Studio Lite 
software and the baseline level of p65 measured as compared to p50. (C) Densitometry analysis 
was performed as above. Levels of p50 and p65 ubiquitination were normalised to the amount of 
p50 and p65 that was immunoprecipitated and compared to p50 or p65 without SOCS1. Figure is 
representative of two individual experiments. 
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4.3.5 SOCS1 does not ubiquitinate p50 at a single lysine residue 

Lysine (Lys, K) residues are the target sites for ubiquitination. Ubiquitination can 

consist of one single moiety of ubiquitin (mono-) or multiple moieties linked via 

K residues within ubiquitin (poly-), and these attachments can occur at single or 

multiple K residues on the substrate protein. Previous data generated in the lab 

demonstrated that p50 is K48-linked poly-ubiquitinated (Carmody et al., 2007), 

and that this occurs at a single K residue because ubiquitination assays using a 

mutant of ubiquitin incapable of forming K48-linked chains produced a single 

ubiquitination band at 58 kDa, which is the size of p50 modified with one 

ubiquitin molecule. However, this refers to constitutive p50 ubiquitination, 

which may be different from SOCS1-induced ubiquitination. If SOCS1 is 

responsible for ubiquitinating p50 then it would be doing it at one or more of the 

29 K residues present on p50. It has already been demonstrated in our lab that 

K128 is an important site of murine p50 ubiquitination but the E3 ligase 

responsible remains unknown. To determine if SOCS1 ubiquitinates p50 at a 

single specific lysine, we next used a series of K to arginine (Arg, R) mutants of 

p50 that had been generated previously in the lab and employed them in 

ubiquitination and expression assays in the presence and absence of SOCS1 as 

described previously (figure 4.5A). Arginine is also a positively charged, polar 

amino acid, and so most of the biochemical properties are retained but R cannot 

be ubiquitinated. Therefore, it was hypothesised if a target K residue was 

identified, there would be a dramatic decrease in p50 ubiquitination in the 

presence of SOCS1, or the degradation would not be observed. The results of this 

analysis allowed for no conclusion to be drawn with regards to the levels of 

ubiquitination of the p50 lysine mutants compared to wild-type (figure 4.5B). 

However, there is the obvious degradation of wild-type and all p50 mutants in 

the presence of SOCS1 compared to without it (figure 4.5C). This might be 

indicative of a mechanism separate from the UPS that is causing SOCS1 to 

degrade p50. However, our library covers 18 of the 29 total K residues of p50 so 

it could also be that the relevant residue has not yet been tested.  
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Figure 4.5: SOCS1 does not ubiquitinate p50 at a single lysine residue.  
(A) Schematic of p50 with all lysine residues highlighted. Residues above are those tested using in-
lab library of p50 mutants and those below are yet to be tested. RHD: Rel homology domain. GRR: 
Glycine rich region. (B) 293T cells were co-transfected to express WT or mutant p50-XP, Ub-HA 
and GFP-SOCS1 or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of 
ubiquitin and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were then treated with 
80 µM MG132 for 1 hour before harvest. Ubiquitination of p50 was analysed via IP of XP and WB 
against the HA tag of ubiquitin. Figure is representative of more than three individual experiments. 
(C) 293T cells were co-transfected to express WT or mutant p50-XP and GFP-SOCS1 or not. Total 
amount of DNA transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest 
with empty vector. Cells were lysed and expression levels of p50 were analysed via WB against 
XP.  Figure representative of more than three experiments. 

 
  



117 
 

4.3.6 GFP tag of SOCS1 is not responsible for degradation of p50 

It has previously been reported that the enhanced GFP tag, which is what SOCS1 

in this study is tagged with, can inhibit NF-κB activation perhaps due to an 

ability to interfere with both K48- and K63-linked poly-ubiquitination (Baens et 

al., 2006). There has also been a link reported between expression of GFP and 

cell apoptosis (Liu et al., 1999), impaired actin-myosin interaction in heart 

muscle cells (Zhang et al., 2003), and the induction of HSP70 causing up-

regulation of COX2 (Agbulut et al., 2006). To rule out any adverse effects the 

tag might have had on the experimental outcomes, a FLAG-tagged SOCS1 

plasmid was purchased and employed in a series of cellular ubiquitination and 

expression assays, performed as described previously. No discernible difference 

was seen between the ubiquitination levels of p50 when co-expressed with GFP-

SOCS1 or SOCS1-FLAG (figure 4.6A), however more revealing was the expression 

level of p50 in the absence of a proteasome inhibitor. When either GFP-SOCS1 or 

SOCS1-FLAG is present, the expression level of p50 is decreased compared to 

controls (figure 4.6B) indicating that it is SOCS1 itself, and not any associated 

protein tag, that promotes the degradation of p50.  
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Figure 4.6: GFP tag not responsible for degradation of p50.  
(A) 293T cells were co-transfected to express p50-XP, Ub-HA and GFP-SOCS1 or SOCS1-FLAG 
or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin and 0.5 μg 
E3 ligase, making up the rest with empty vector. Cells were then treated with 80 µM MG132 for 1 
hour before harvest. Ubiquitination of p50 was analysed via IP of XP and WB against the HA tag of 
ubiquitin. Figure is representative of two individual experiments. (B) 293T cells were co-transfected 
to express p50-XP and GFP-SOCS1 or SOCS1-FLAG or not. Total amount of DNA transfected 
was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were 
lysed and expression levels of p50 were analysed via WB using anti-p50.  
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4.3.7 SOCS1 interacts with and promotes degradation of DNA-
binding mutant of p50 

The binding of p50 homodimers to DNA is an essential step that triggers their 

ubiquitination and subsequent proteasomal degradation (Carmody et al., 2007). 

The p50:p50:DNA complex is inherently unstable for this reason. A mutant of p50 

wherein the tyrosine at position 57 (Y57A) was substituted for alanine and 

glycine at position 60 substituted for aspartate (G60D), herein referred to as 

p50Y57A,G60D, had previously been generated in the lab. These mutations in the 

DNA-binding domain of p50 render it unable to interact with DNA, but still able 

to bind to other protein partners. It was previously demonstrated that 

ubiquitination of this mutant is diminished compared to wild-type, and this 

translated to a longer half-life and greater stability. Therefore, it was relevant 

to investigate if SOCS1 had any noticeable effect on the ubiquitination status or 

stability of this DNA-binding mutant compared to wild-type. 293T cells were co-

transfected with plasmids expressing p50WT-XP, p50Y57A,G60D-XP, Ub-HA and GFP-

SOCS1 or not and a cellular ubiquitination assay performed as described 

previously. The results indicate that SOCS1 expression degrades this mutant. p50 

is noticeably degraded compared to the mutant alone, and even compared to 

wild-type p50 in the presence of SOCS1 (figure 4.7A). Furthermore, although 

baseline levels of ubiquitination of the DNA-binding mutant are less than WT as 

expected, SOCS1 is able to ubiquitinate p50 even when it is unable to bind to 

DNA (figure 4.7B). Additionally, a co-immunoprecipitation assay revealed that 

there is a weak interaction between SOCS1 and the DNA-binding mutant of p50 

(figure 4.7C). This is intriguing because it suggests SOCS1 interacts with and has 

an effect on the stability of non-DNA-bound p50, thus having an impact on the 

dynamic pool of p50 that is available to form dimers within the cell. 
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Figure 4.7: SOCS1 interacts with, ubiquitinates and promotes degradation of DNA-binding 
mutant of p50. 
(A) 293T cells were co-transfected to express p50WT-XP or p50Y57A,G60D-XP, Ub-HA and GFP-
SOCS1 or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin and 
0.5 μg E3 ligase, making up the rest with empty vector. Cells were then treated with 80 µM MG132 
for 1 hour before harvest. Ubiquitination of p50 was analysed via IP of XP and WB against the HA 
tag of ubiquitin. (B) Densitometry analysis was performed using Image Studio Lite software and the 
levels of ubiquitination were normalised to the amount of p50 that was immunoprecipitated. Figure 
is representative of two individual experiments. (C) 293T cells were co-transfected to express 
p50WT-XP or p50Y57A,G60D-XP and GFP-SOCS1WT or not. Total amount of DNA transfected was 3 
μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were 
treated with 80 μM MG132 for 1 hour before harvest. Protein interaction was analysed via co-IP of 
XP and then WB against the GFP tag of SOCS1.  
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4.3.8 Nuclear localisation signal-defective SOCS1 mutant 
promotes the degradation of p50 

SOCS1 localises to the nucleus because of its nuclear localisation sequence (NLS) 

situated between the SH2 domain and the SOCS box (Baetz et al., 2008). This 

was a hitherto unexpected property of SOCS1 because of its prominent role as an 

inhibitor of JAK activity in the cytoplasm. However, the finding opened up the 

potential repertoire of activity of SOCS1. Previous studies had demonstrated that 

SOCS1 was able to limit NF-κB activity by mediating nuclear degradation of p65 

(Strebovsky et al., 2011). However, this effect was not seen when a NLS mutant 

of SOCS1 was employed. This mutant was also shown not to bind to p65 in the 

cytoplasm.  Leading on from the findings in the previous section, it was of 

interest to determine whether SOCS1 was able to exert any effect on p50 

outside of the nucleus. For this purpose, a NLS mutant of SOCS1 was generated 

and kindly donated by the Dalpke lab, referenced previously (GFP-SOCS16R/A). 

This mutant had 6 basic arginine-to-alanine residues substituted within the NLS 

and exhibited predominant if not exclusive cytoplasmic localisation. To 

determine what effect, if any, this mutant had on the ubiquitination status of 

p50, a cellular ubiquitination assay was conducted. 293T cells were co-

transfected with plasmids expressing p50-XP, Ub-HA and GFP-SOCS1WT or GFP-

SOCS16R/A or not and a cellular ubiquitination assay performed as previously 

described. No discernible effects on p50 ubiquitination by the non-nuclear SOCS1 

mutant were observed (figure 4.8A). However, it proved challenging to quantify 

any changes in the level of p50 ubiquitination due to its degradation in the 

presence of SOCS1, even with the addition of high concentrations of MG132. 

Therefore, expression of p50 was investigated instead by performing an 

expression assay. As previously observed, there is a decrease in the expression of 

p50 in the presence wild-type SOCS1, although an even more noticeable 

decrease in the presence of the NLS mutant can be seen (figure 4.8B). 

Furthermore, to determine if this mutant interacts with p50, a co-

immunoprecipitation assay was conducted and performed as previously outlined. 

As seen in figure 4.8C, a clear binding was detected between p50 and both wild-

type and the SOCS1 mutant that cannot access the nucleus. This is surprising 

considering the previous finding that wild-type SOCS1 binds to p65 within the 

nucleus and this leads to p65 degradation, but the NLS mutant did not.  
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Figure 4.8: NLS mutant of SOCS1 promotes the degradation of p50 but may not promote 
ubiquitination.  
(A) 293T cells were co-transfected to express p50-XP, Ub-HA and GFP-SOCS1WT or GFP-
SOCS16R/A or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin 
and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were then treated with 80 µM 
MG132 for 1 hour before harvest. Ubiquitination of p50 was analysed via IP of XP and WB against 
the HA tag of ubiquitin. Figure is representative of three individual experiments. (B) 293T cells were 
co-transfected to express p50-XP and GFP-SOCS1WT or GFP-SOCS16R/A, or not. Total amount of 
DNA transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest with empty 
vector. Cells were lysed and expression levels of p50 were analysed via WB against XP. Figure 
edited to remove unrelated sample but image is taken from one scan using one exposure. 
Densitometry analysis was performed using Image Studio Lite software and the levels of p50 were 
normalised to β-actin. (C) 293T cells were co-transfected to express p50-XP and GFP-SOCS1WT or 
GFP-SOCS16R/A not. Total amount of DNA transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 
ligase, making up the rest with empty vector. Cells were treated with 80 μM MG132 for 1 hour 
before harvest. Protein interaction was analysed via co-IP of XP and then WB against the GFP tag 
of SOCS1. Figure edited to remove unrelated sample but image is taken from one scan using one 
exposure. Figure is representative of three individual experiments.  
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4.3.9 SOCS1 promotes the ubiquitination of p50 in the presence 
of BCL-3 

It has been established that the atypical IκB protein, BCL-3, is an essential 

regulator of NF-κB during TLR and TNFR signalling. It stabilises DNA-bound p50 

homodimers by preventing their ubiquitination and subsequent degradation 

(Carmody et al., 2007). Thus, the repressive effect of p50 homodimers on pro-

inflammatory gene expression is reinforced. Furthermore, a direct interaction 

between p50 and BCL-3 is necessary and sufficient for this stabilising effect and 

for the anti-inflammatory role of BCL-3 (Collins et al., 2014). p50 that is unable 

to interact with BCL-3 is hyper-ubiquitinated and therefore has a reduced half-

life compared to wild-type. Thus far, it has been observed that SOCS1 has a de-

stabilising effect on p50. To determine whether SOCS1 promotes p50 

ubiquitination in the presence of BCL-3, a ubiquitination assay was performed as 

previously described. Ubiquitination of p50 is increased in the presence of 

SOCS1, and as expected is inhibited in the presence of BCL-3. In the presence of 

both SOCS1 and BCL-3, some ubiquitination of p50 appears to be restored (figure 

4.9A). Interestingly, when p50, SOCS1 and BCL-3 are co-expressed, the 

degradation of BCL-3 was observed. The mechanism causing this remains 

unknown. 
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Figure 4.9: The interplay between SOCS1 and BCL-3 when present with p50.  
(A) 293T cells were co-transfected to express p50-XP, Ub-HA and GFP-SOCS1 or not, and BCL-3-
FLAG or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin and 
0.5 μg E3 ligase and 0.5 g BCL-3. Cells were then treated with 80 µM MG132 for 1 hour before 
harvest. Ubiquitination of p50 was analysed via IP of XP and Western blotting against the HA tag of 
ubiquitin. Figure is representative of three individual experiments. (B) Densitometry analysis was 
performed using Image Studio Lite software and the levels of ubiquitination were normalised to the 
amount of p50 that was immunoprecipitated. 
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4.3.10 Degradation of p50 occurs in the presence of a SOCS1 
 mutant that lacks SOCS box domain 

Based on the data gathered thus far in this investigation, it was hypothesised 

that SOCS1-bound p50 was ubiquitinated and degraded due to the SOCS box of 

SOCS1, which is known to mediate E3 ligase activity.  To test this hypothesis, a 

truncated mutant that had been generated previously in the lab, and which 

lacked a functional SOCS box, was used (GFP-SOCS1R172X) (figure 4.10A). A 

mutant with this same mutation had been employed in a separate study and had 

been unable to mediate the ubiquitination of p65 (Strebovsky et al., 2011). In 

the first instance, a cellular ubiquitination assay was performed as previously 

described. Unexpectedly, the presence of the R172X mutant was still able to 

induce some ubiquitination of p50 (figure 4.10B). When this was quantified by 

densitometry and normalised to the amount of p50 immunoprecipitated, it 

appeared that p50 was more ubiquitinated in the presence of the mutant SOCS1 

than the wild-type (figure 4.10C). This surprising result led us to determine 

whether the mutant was able to cause the degradation of p50 and so an 

expression assay was performed as described before. Surprisingly again, there 

was a detectable level of degradation of p50 in the presence of the SOCS box 

mutant of SOCS1 compared the controls, and even in comparison to p50 with 

wild-type SOCS1 (figure 4.10D and E). Considering the other mutants of SOCS1 

had demonstrated clear binding to p50 this property was also investigated for 

this mutant. A co-immunoprecipitation assay was conducted as described 

earlier. A clear binding of SOCS1R172X to p50 was detected, which demonstrates 

that this interaction is not dependent upon the SOCS box (figure 4.10F). 

However, taken together, these data indicate that the interaction between 

SOCS1 and p50 promotes the ubiquitination and degradation of p50 

independently of the E3 ligase activity of SOCS1. 
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Figure 4.10: Degradation of p50 occurs in the presence of a SOCS1 mutant that lacks a 
SOCS box domain.  
(A) Schematic drawing of SOCS1 and SOCS-box mutant. Numbers represent amino acid location. 
(B) 293T cells were co-transfected to express p50-XP, Ub-HA and GFP-SOCS1WT or GFP-
SOCS1R172X or not. Total amount of DNA transfected was 3 μg, using 1 μg of p50, 1 μg of ubiquitin 
and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were then treated with 80 µM 
MG132 for 1 hour before harvest. Ubiquitination of p50 was analysed via IP of XP and Western 
blotting against the HA tag of ubiquitin. Figure is representative of three individual experiments. (C) 
Densitometry analysis was performed using Image Studio Lite software and the levels of 
ubiquitination were normalised to the amount of p50 that was immunoprecipitated. (D) 293T cells 
were co-transfected to express p50-XP and GFP-SOCS1WT or GFP-SOCS1R172X or not. Total 
amount of DNA transfected was 3 μg, using 1 μg of p50 and 0.5 μg E3 ligase, making up the rest 
with empty vector. Cells were lysed and expression levels of p50 were analysed via Western 
blotting against XP. (E) Densitometry analysis was performed using Image Studio Lite software and 
the levels of p50 were normalised to β-actin. (F) 293T cells were co-transfected to express p50-XP 
and GFP-SOCS1WT or GFP-SOCS1R172X not. Total amount of DNA transfected was 3 μg, using 1 
μg of p50 and 0.5 μg E3 ligase, making up the rest with empty vector. Cells were treated with 80 
μM MG132 for 1 hour before harvest. Protein interaction was analysed via co-IP of XP and then 
Western blotting against the GFP tag of SOCS1. Figure is representative of three individual 
experiments.  



127 
 

4.4 Discussion 

The results in this chapter indicate that SOCS1 interacts with p50 (figure 4.3), 

and that SOCS1 causes p50 to de-stabilise (figure 4.1). It is unclear how this 

interaction causes p50 degradation, because although SOCS1 increases p50 

ubiquitination and degradation (figure 4.2), this also occurred in the presence of 

a SOCS1 mutant that lacked a functional SOCS box meaning it was independent 

of its E3 ligase activity (figure 4.10). Furthermore, this degradation did not seem 

to be proteasomal because treatment with a proteasome inhibitor did not 

prevent it. These data therefore suggest that the effect SOCS1 has on p50 

stability is not due to its capacity as an E3 ligase, ubiquitinating it and directing 

it towards proteasomal degradation.  

SOCS1 might be acting in concert with an unidentified mediator(s) that induces 

the increased ubiquitination of p50. The presence of the SOCS box confers E3 

ligase capacity on SOCS1, allowing it to promote the ubiquitination and 

degradation of p65 to which it binds within the nucleus (Strebovsky et al., 2011). 

However, SOCS1 also functions as part of larger complexes that have ubiquitin 

ligase ability. For example, SOCS1 forms a heterodimeric E3 ligase with the 

protein von Hippel-Lindau (VHL) that targets phosphorylated JAK2 for ubiquitin-

mediated degradation (Russell et al., 2011). It interacts with elongins B and C, 

cullin2 and Rbx1 to form a multimeric ubiquitin ligase (ECSSOCS1). COMMD1 was 

shown to accelerate the ubiquitination and degradation of p65 and this was due 

to its association with the ECSSOCS1 (Maine et al., 2007). In the complex SOCS1 is 

the probable substrate recognition component. In the current investigation, a 

SOCS box mutant of SOCS1 was still able to bind to p50 so it is possible that 

SOCS1 recognises and binds to p50 via a different domain, and another 

component that interacts with the ubiquitin ligase complex is responsible for 

increasing its ubiquitination. Alternatively, SOCS1 may have a degradative effect 

on p50 due to it interfering with a different PTM of p50. Phosphorylation of the 

NF-κB subunits has a number of consequences, one of which is stabilisation. For 

instance phosphorylation of p65 on serine (S) 276 by Pim-1 kinase was shown to 

protect it from degradation by preventing SOCS1-mediated ubiquitination (Nihira 

et al., 2010). Phosphorylation of p50 is less understood and to date, no residue 

has been identified that leads to increased p50 stability. However, this does not 

preclude the possibility that one exists and that SOCS1 is preventing such a 
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stabilising step from happening, perhaps by binding to p50 in such a way that the 

pertinent phosphorylation (or other PTM) site is inaccessible by the kinase. On 

the other hand, instead of ubiquitinating p50, SOCS1 could be preventing p50 

from being deubiquitinated by inhibiting the action of a deubiquitinase (DUB). 

Ubiquitination is a reversible modification, and to counteract the action of E3 

ligases, DUBs mediate the removal of ubiquitin from substrate proteins (Komada, 

2008; Clague et al., 2009). USP7 has been shown to interact with p50 but its 

deubiquitinase activity has only been demonstrated for p65 (Colleran et al., 

2013). Perhaps USP7, or another yet unidentified DUB, is being blocked by SOCS1 

from hydrolysing ubiquitin moieties, which has the effect of increased p50 

ubiquitination and degradation when SOCS1 is present. 

Had time not been a limiting factor in the current investigation, an appropriate 

experiment would have been to separate the nuclear and cytoplasmic fractions 

of the cells and determine where the interaction between SOCS1 and p50 was 

occurring, and where the degradative effect was predominantly observed. This 

question was somewhat addressed by the finding that the NLS SOCS1 mutant is 

able to interact with SOCS1 and that p50 is degraded in its presence (figure 4.8). 

This is in contrast with Strebovsky and colleagues’ finding (2011) that SOCS1 was 

able to limit NF-κB activity by binding to and mediating p65 degradation only 

within the nucleus. They speculated this was because SOCS1 has no access to 

p65 in the cytoplasm due to it being bound by IκB proteins there. Although their 

study also indicated that IκBα and SOCS1 might bind at different sites on p65 

because SOCS1 was still able to negatively influence p65 when nuclear export of 

both SOCS1 and IκBα were blocked. The ability of SOCS1 to bind p50 outside the 

nucleus might indicate that the binding site of SOCS1 and p50 is inherently 

different from that of SOCS1 and p65. Whilst p50 is also bound by IκBα in the 

cytoplasm in such a way that blocks the NLS of p50 (Beg et al., 1992), SOCS1 

might interact at a different domain that is still accessible. To identify the 

specific amino acid regions of p50 essential for interaction with SOCS1, a 

computational structural analysis followed by an immobilized peptide array 

could be employed. This would facilitate the generation of a p50 mutant that 

was unable to interact with SOCS1 but would retain its DNA binding, nuclear 

localisation and dimerization ability, allowing insight into whether a direct 
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interaction with SOCS1 is required for the degradative effect on p50 that is 

observed.  

The effect SOCS1 has on p50 may occur both constitutively and upon activation 

by an external stimulus. Without information on the endogenous proteins 

involved, this is difficult to deduce. When p50 is overexpressed, it moves into 

the nucleus without the need for TLR activation because there are not enough 

IκB proteins in the cytoplasm to retain it there. Furthermore, there is a 

significant number of p50 homodimers in the nuclei of unstimulated cells 

indicating that p50 is important for both basal and inducible transcription of 

target genes (Cheng et al., 2011). In the current study, it was observed that 

SOCS1 promotes the degradation of a DNA-binding mutant of p50, and some 

ubiquitination is seen. Furthermore, a weak interaction between p50Y57A and 

SOCS1 was detected which is in contrast to previous published studies on p65 

whereby a DNA binding mutant was unable to interact with SOCS1 (Strebovsky et 

al., 2011). This suggests SOCS1 may mediate p50 degradation under basal 

conditions. To confirm or refute this, a possible approach would be to silence 

the expression of SOCS1 using small interfering RNA (siRNA) and observe the 

effects on p50 in both unstimulated and TLR stimulated cells. If SOCS1 is able to 

cause p50 to be ubiquitinated and degraded even under basal conditions, then 

SOCS1 may have role in directing p50 degradation via basal autophagy. Although 

it has been demonstrated that degradation of ubiquitinated proteins is not 

dependent on basal autophagy (Takayama et al., 2017), in this case 

ubiquitination of p50 by SOCS1 does not appear to be the mechanism directing it 

for degradation. This may implicate a novel role of ubiquitination in p50 

regulation that is not dependent upon DNA-binding, nor directs it towards the 

proteasome.  

An interesting feature is the relationship between SOCS1 and the atypical IκB 

protein, BCL-3, when both are present with p50. BCL-3 is predominantly a 

nuclear protein and is not degraded upon activation of the IKK complex. It has 

been demonstrated to interact with and stabilise p50 homodimers, preventing 

their ubiquitination and subsequent degradation by the proteasome and thus 

inhibiting NF-κB transcriptional activity. For this reason, BCL-3 is essential for 

establishing TLR tolerance – a state characterised by diminished expression of 
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pro-inflammatory genes and is critical for limiting the inflammatory response 

(Carmody et al., 2007). In this study, BCL-3 was degraded when present with 

both p50 and SOCS1, and this restored some of the ubiquitination of p50 that 

was blocked by BCL-3 (figure 4.9). Although BCL-3 has the effect of stabilising 

p50 homodimers, p50 is also required for the stabilisation of BCL-3 (Wessells et 

al., 2004). Therefore, it cannot be assumed that SOCS1 causes BCL-3 to be 

degraded as it does p50. Rather, it might be that SOCS1 prevents p50 from 

stabilising BCL-3 in some manner. This may have an implication for TLR 

tolerance since both p50 homodimers and BCL-3 are necessary for establishing 

this cellular state.  

Treatment with MG132, a proteasome inhibitor, did not prevent SOCS1-induced 

degradation of p50 despite it being able to promote p50 ubiquitination, 

suggesting a different mechanism is responsible. A recent study identified that 

the DUB Cezanne is essential for regulating the degradation of the transcription 

factor HIF-1α, but this action is independent of the proteasome (Bremm et al., 

2014). Furthermore, a study identified that the zinc metalloprotease NleC 

targets IκBα, p65 and p50 for degradation by a proteasome-independent 

mechanism (Mühlen et al., 2011). The researchers demonstrated that NleC 

inhibits NF-κB activity both basally and after TNFα stimulation and this is due to 

it causing a decrease in both p65 and p50 levels. In this case, although SOCS1 is 

an established E3 ligase for p65, perhaps it regulates the degradation of p50 in a 

capacity that is independent of its E3 ligase activity. 

The ability of SOCS1 to interact with and destabilise p50 is a novel role for this 

multifaceted protein, which is already an established mediator of the 

inflammatory response. The finding that ubiquitination of p50 is increased in its 

presence, but this does not appear to be reliant on SOCS1’s capacity as an E3 

ubiquitin ligase, has not been described previously and generates questions that 

future lines of enquiry might seek to answer. It is established that p50 stability is 

controlled by the UPS. However, it remains to be seen if the degradation of p50 

in the presence of SOCS1 is due to an indirect effect that subsequently 

facilitates p50 ubiquitination and guides it toward a degradative pathway that is 

distinct from the proteasome. The observation that SOCS1 is able to interact 

with and cause the degradation of p50 when SOCS1 is not able to access the 
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nucleus and when p50 is unable to bind to DNA is in direct contrast to previous 

published data on p65. SOCS1 is therefore an essential regulator of NF-κB 

subunit stability and may influence subunit turnover and abundance in a subunit 

specific manner. 
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Chapter 5  

Mapping the transcriptional 

landscapes of Ing4-/- and Socs1-/- 

macrophages  
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5.1 Abstract 

ING4 and SOCS1 are both known to act as E3 ubiquitin ligases for the p65 subunit 

of NF-κB, causing it to be degraded by the proteasome and this terminates NF-κB 

activity. Furthermore, our data suggests that SOCS1 also promotes the 

degradation of the p50 subunit. ING4 and SOCS1 are therefore essential 

regulators of NF-κB activity. However, their function extends well beyond this 

and so to explore the changes that occur in the transcriptional landscape of cells 

that lack each of these components, knock-out RAW 264.7 macrophages were 

generated using CRISPR/Cas9 technology and RNAseq analysis was performed on 

both unstimulated and TLR-activated conditions. This revealed distinct clusters 

of genes that are differentially expressed between wild-type and mutant cells, 

and highlighted that NF-κB target genes are regulated in a gene-specific manner 

by each of these E3 ligases. Anti-inflammatory genes such as Il10 are 

significantly upregulated in Ing4-deficient cells, and pro-inflammatory genes 

including Ccl2 and Ccl7 are significantly downregulated in cells that lack SOCS1. 

Gene ontology analysis of biological processes also provides insight into the 

functions of the differentially expressed genes. Therefore, these mutant cell 

lines are useful tools to identify the wider roles that ING4 and SOCS1 have in 

macrophages, both in an immune context and within other biological systems.  
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5.2 Introduction 

ING4 is a member of the inhibitor of growth (ING) family, of which there are five 

evolutionarily conserved members, all characterized by a C-terminal plant-

homeodomain-like zinc finger (Campos et al., 2004; Coles & Jones, 2009). Like 

SOCS1, ING4 has a number of roles within many biological processes. It interacts 

with acetylation and de-acetylation complexes therefore having a role in 

chromatin remodelling and gene expression (Doyon et al., 2006; Soliman & 

Riabowol, 2007). It is also a proposed tumour suppressor as its expression is 

reduced in human cancers and the gene mutated in cancer cell-lines (Coles & 

Jones, 2009). ING4 interacts with the p65 subunit of NF-κB and its inhibition in 

U87MG glioblastoma cells led to increased tumour vascularization in 

immunocompromised mice and the downregulation of many NF-κB-target genes 

involved in angiogenesis (Garkavtsev et al., 2004). It was later revealed that 

ING4 functions as an E3 ligase for p65, inducing its ubiquitination and 

proteasomal degradation, and this inhibits NF-κB transcriptional activity (Hou et 

al., 2014). In the previous chapter, SOCS1 was shown to promote the 

ubiquitination and degradation of p50 in some capacity that is independent of its 

E3 ligase activity, and its wider role was covered in depth there so will not be 

discussed again here to avoid repetition. Therefore, they are both important 

regulators of NF-κB activity and it is of interest to determine what effect their 

loss has in macrophages. 

The use of knock-out macrophages is a powerful tool to explore the function of 

certain genes in an immune context. Previous studies have used knock-out mice 

to examine the roles that ING4 and SOCS1 play in various biological processes, 

however the generation of knock-out RAW macrophages provides a novel and 

straight-forward way to perform a number of in vitro assays to give researchers 

a fundamental understanding of what these genes do in different contexts. A 

previous study that used Ing4-/- mice found that they were fully viable, although 

they were highly sensitive to LPS (Coles et al., 2010). Socs1-/- mice die within 3 

weeks of birth due to severe inflammation (Naka et al., 1998; Starr et al., 1998) 

however heterozygous knock-outs and Ifng-/-Socs1-/- double knock-outs are also 

highly sensitive to LPS (Kinjyo et al., 2002). 
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Exploratory gene expression analyses that compare different populations under 

different conditions allows researchers to gain a deeper understanding of gene 

functions in both health and disease states. High-throughput assays such as 

RNAseq can identify candidate target genes that are significantly differentially 

expressed between groups that can be further explored in molecular biology 

experiments. It can detect genes that are expressed at very low or high levels, 

and is not limited by prior knowledge of the genome of the organism, which are 

drawbacks of other transcriptome analyses such as microarrays. 

Two RAW 264.7 (RAW) macrophage mutants were generated via CRISPR/Cas9 by 

lab technician, Mr David Kerrigan: one that lacks ING4 (Ing4-/-) and one that 

lacks SOCS1 (Socs1-/-), so that the physiological roles of these two E3 ligases in 

an inflammatory context could be explored. Although their function in relation 

to the expression of NF-κB target genes was of particular interest, it was kept in 

mind that these two components play multiple roles within the immune and 

other biological systems in addition to their E3 ligase activity, so the broader 

landscape of transcriptional changes was considered as analysis was performed. 

To this end, RNAseq analysis was carried out on unstimulated and LPS stimulated 

samples, so that the changes in the genetic landscapes of these populations 

could be mapped. Comparing the knock-outs not only to wild-type RAW cells, 

but to each other, revealed whether any redundancies exist between which gene 

sets are controlled by either or both of these components under both basal and 

inducible conditions. The results of this chapter demonstrate that cells that lack 

ING4 or SOCS1 express some pro-inflammatory genes to a lesser extent than 

wild-type, and some anti-inflammatory genes are indeed upregulated in these 

knock-outs, which is a desirable phenotype in the quest for chronic inflammatory 

disease gene therapies. The loss of these components also highlights that some, 

but not all NF-κB target genes are differentially expressed following LPS 

challenge, indicating that these E3 ligases influence NF-κB activity in a gene-

specific manner. The RNAseq analysis also reveals that, although some 

inflammatory genes are differentially expressed in the knock-out populations, 

the wider effects of these mutations on biological processes such as 

development and viability mean that these would not be target mutations in any 

therapy that sought to treat chronic inflammatory disease in a precise manner 

with few detrimental side effects.  
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5.3 Results 

The results of this chapter are separated into three distinct groups. Firstly, the 

Ing4-/- cells are compared to wild-type. Secondly, the Socs1-/- cells are compared 

to wild-type, and lastly, the two mutant cell lines are compared with each other 

to discern what genes are uniquely differentially expressed by each knock-out, 

and which are common to both. This should highlight genes that are under the 

direct influence of each E3 ligase, and where redundancy lies between the two. 

The bioinformatic analyses in this chapter were performed with the great 

assistance of Mr John Cole of the GLAZgo Discovery Centre, and Dr. Domenico 

Somma. WT, Ing4-/- and Socs1-/-RAW cells were left either untreated or treated 

with 100 ng/mL LPS for 3 hours. Cells were harvested and RNA extracted as 

described previously. Duplicate samples of each condition were sent to the 

University of Glasgow Polyomics facility for sample QC and polyA library 

preparation. Single-end 75bp reads were sequenced to a depth of 20 million. 

5.3.1 WT vs Ing4-/- RAW 264.7 macrophages 

5.3.1.1 Principal component analysis 

Principal component analysis (PCA) was performed on the RNAseq data to 

determine what factors caused the greatest variability between the samples. 

The principal components that cause the greatest difference between samples is 

the treatment with LPS (57%) and the loss of ING4 (21%) (figure 5.1). This 

indicates there is indeed a difference between WT and mutant cells, and the 

mutation is the cause.  
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Figure 5.1: Principal component analysis (PCA) plot and significantly differentially 
expressed genes between wild-type and Ing4-/- RAW 264.7 macrophages.  
Gene expression variances between wild-type (WT) and Ing4-/- RAW macrophages both 
unstimulated and stimulated by 100 ng/mL LPS for 3 hours are displayed as PCA plots. Each dot 
represents a sample. The percentage of total variation explained by each component is given. The 
expression values were pre-transformed under the formula log10(n+1). 
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5.3.1.2 Heatmap of differentially expressed genes 

The heatmap combines the two replicates from each condition to create a 

mean. This makes it clear where the significantly differentially expressed (DE) 

genes are and identifies clusters of genes (figure 5.2A). For instance, in cluster I 

are genes that are constitutively expressed in WT, but are decreased in both the 

unstimulated mutants and mutants stimulated with LPS. Cluster II are genes that 

are off in both WT and mutant when unstimulated and turned on in the WT 

following stimulation with LPS, but are lowly expressed in the mutant when 

stimulated. Cluster III are genes that are constitutively expressed at low levels in 

WT, but are changed to being constitutively expressed at higher levels in the 

mutant. Finally, cluster IV are genes that change from being constitutively 

expressed at low levels in the WT, but that are induced by LPS in the mutant 

cells. This indicates that ING4 is instrumental for the expression and control of 

many genes. Some insight is given by identifying the ten most highly up and 

down regulated genes following TLR activation by LPS. Of particular interest is 

Il10 at position ten in the list (figure 5.2B). IL-10 is an anti-inflammatory 

cytokine, which in macrophages represses MHC class II expression and strongly 

inhibits cytokine expression following LPS stimulation. This is a desirable 

outcome of any therapeutic strategy seeking to reduce chronic inflammation. 

Similarly, Pf4 is among the top most downregulated genes, which is a cytokine 

thought to have a role in inflammation. 
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Figure 5.2: Heatmap of significantly differentially expressed genes between WT and Ing4-/- 
RAW macrophages.  
(A) Heatmap of significantly differentially expressed (p.adj < 0.05, absolute log2 fold > 1.0) genes 
between WT control and Ing4-/- macrophage, both unstimulated and stimulated for 3 hours with 
LPS. Colour intensity represents expression level, with red high expression and blue low 
expression. (B) Table indicating the ten most highly upregulated and downregulated genes by log2 
fold change in the Ing4-/- cells compared to WT. 
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5.3.1.3 Significantly upregulated genes in Ing4-/- RAW macrophages 

A number of genes are significantly upregulated in the mutant cells compared to 

WT, at both the basal level and following TLR activation by LPS. Thirty-three 

genes are upregulated in the Ing4-/- cells under resting conditions. Ten genes are 

uniquely upregulated only in untreated cells such as Cxcl16 and Trip6, meaning 

the absence of ING4 turns these genes on in resting cells but they are not 

expressed following activation by LPS (figure 5.3). Due to the low number of 

significantly differentially expressed genes, the method of Gene Set Enrichment 

Analysis (GSEA) deemed appropriate on this gene set was the Enrichr tool (Chen 

et al., 2013; Kuleshov et al., 2016). Gene ontology (GO) of the biological 

processes of the 10 unique genes indicate they are involved in metabolic 

pathways (figure 5.4A). The number of upregulated genes in the Ing4-/- mutant 

following stimulation by LPS is 35, with 12 of these being uniquely upregulated 

only in stimulated cells, including Il10, Six1 and Bcl6. The most common role for 

these 12 genes is the regulation of B cell apoptosis (figure 5.4B), therefore loss 

of Ing4-/- may lead to aberrant B cell function following TLR activation. 

Furthermore, cytoplasmic sequestering of NF-κB is a biological process of this 

gene set, although to a lesser extent. Of the 45 genes that are significantly 

upregulated overall, 23 are common to both untreated and LPS-treated cells, 

meaning they are constitutively turned on regardless of receiving an activating 

stimulus. GO analysis of their biological processes suggest roles in cardiac 

function (figure 5.4C).   
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Untreated (10) LPS (12) All conditions (23) 

Arhgef40 Il10 Aldh1l1 

Cbfa2t3 Col15a1 Zic2 

Cacna1s Trim36 Cpq 

Zdhhc2 Six1 Sp8 

Xkr5 Dst Slc22a17 

Ppm1e Zs3h12c Cds1 

Cxcl16 Fam126b Sort1 

Trip6 Rpl3l Slc8a1 

Chka Bcl6 Agap2 

Zmynd15 Adgb Tmem26 

 Ocstamp Ank2 

 Shisa3 2610528A11RIK 

  Pltp 

  Rnls 

  Plcb2 

  Sema5a 

  Peg12 

  AC166344.1 

  Hoxc4 

  Adgrl1 

  Palm3 

  Mkx 

  Tmem246 

Figure 5.3: Significantly upregulated genes in Ing4-/- RAW macrophages.  
Venn diagram indicating the number of genes that are significantly upregulated in the Ing4-/- cells 
compared to WT at the basal level, after stimulation with LPS for 3 hours, and under both 
conditions. These genes are listed in the table below. 
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Figure 5.4: Enrichment analysis of Gene Ontology (GO) biological processes of the 
significantly upregulated genes in Ing4-/- RAW macrophages using Enrichr.  
The classification terms and their serial numbers are displayed within the bars. Bars are ordered 
and coloured in descending p-value cutoffs. 
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5.3.1.4 Significantly downregulated genes in Ing4-/- RAW macrophages 

More genes are downregulated in the mutant cell line than upregulated. Overall, 

100 genes are significantly downregulated in the mutants, either unstimulated, 

LPS stimulated or under both conditions. Eighteen genes are downregulated only 

in unstimulated cells including Dusp9 and Dcstamp (figure 5.5) and GO analysis 

of their biological processes indicate roles in positive regulation of monocyte 

differentiation and the response to IL-4 (figure 5.6A). In response to LPS, 29 

genes are uniquely downregulated in the mutant cells including Ccl2 and Ccl7, 

and these have roles in a number of immune-related biological processes (figure 

5.6B). Fifty-three genes are downregulated in both untreated and LPS activated 

cells. Of all the 100 genes that are significantly downregulated in Ing4-/- cells 

regardless of activation status, the most common biological processes are 

related to natural killer cell chemotaxis and chemotaxis generally, leukocyte 

differentiation, and positive regulation of the ERK1/2 cascade. These suggest 

the loss of Ing4-/- results in the repression of the immune response.  
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Untreated (18) LPS (29) All conditions (53) 

Tnfrsf10b Adgrl2 Ccl2 Ppic Nes 

Acy1 Klf9 Trim47 Map6 Epb41l1 

Abhd14a Dner  Gypc Maf 

Zfp2 Chst11  Qpct Odc1 

Antrx1 Trpv4  Kif21a E330009J07RIK 

Layn Jund  Pcbp4 Tmsb10 

Hpgd Ehd2  Coro2a Ptgs1 

Fbxo15 Anxa6  Lamb2 Mgl2 

Shc2 Sash3  Cep170b Flt1 

Afp Tnc  Arhgap25 Eid2 

9130008F23RIK Mamld1  Fat3 Prkg2 

Dusp9 Cd276  Mmp12 Igsf11 

Zbtb46 Prkd3  Nsd1 Nkain1 

Dcstamp Evl  Il11ra1 Gpr179 

Ccdc127 Ccl12  Vopp1 Ctse 

Car2 Slc6a9  Abtb2 Ccr1 

Acot1 Ccl7  Pf4 Cd24a 

Dmwd Stard10  Ier3 Btbd3 

 Fam149a  Glipr2 Ccdc69 

 Zfp984  Icosl Col18a1 

 Ggta1  Sdr39u1 Itpr2 

 Mapk11  Enpp4 H2-m3 

 Cebpe  Tanc1 Emp2 

 Abcg2  Notch1 Mindy1 

 Osm  Tmem98 Chchd10 

 Ptger2  Cers4 Acap1 

 Serpinb2  Pkd1l2  

Figure 5.5: Significantly downregulated genes in Ing4-/- RAW macrophages.  
Venn diagram indicating the number of genes that are significantly downregulated in the Ing4-/- 
cells compared to WT at the basal level, after stimulation with LPS for 3 hours, and under both 
conditions. These genes are listed in the table below. 
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Figure 5.6: Enrichment analysis of GO biological processes of the significantly 
downregulated genes in Ing4-/- RAW macrophages using Enrichr.  
The classification terms and their serial numbers are displayed within the bars. Bars are ordered 
and coloured in descending p-value cutoffs. 
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5.3.1.5 RNAseq analysis of NF-κB target genes in Ing4-/- RAW macrophages 

Due to the function of ING4 as an E3 ligase for the p65 subunit of NF-κB, the 

effect its absence has on the expression of NF-κB targets was of interest. A 

number of genes that are under the direct control of NF-κB were chosen for 

further analysis, and which have various roles within the immune system. Their 

normalised read counts following TLR activation by LPS were extracted from the 

RNAseq data and plotted. It is clear that the loss of ING4 affects the expression 

of NF-κB target genes selectively (figure 5.7). There is no blanket promotion or 

suppression of transcription. Instead, some genes are expressed to a greater 

level in the Ing4-/- cells, such as Baff, Bcl3¸and Fas, whereas others are 

repressed, for instance Cd80, Cd86 and Il1b. Others are not affected by the loss 

of ING4, such as Il1a and Irf1. Transcript levels of the NF-κB subunits themselves 

vary to some extent, with slight increases in the expression of Nfkb1 and Nfkb2, 

and greater increases in Rela and Relb. The expression of Nfkbia (IκBα) is 

decreased in the knock-out.  



147 
 

 

Figure 5.7: Expression of a selection of NF-κB target genes in WT and Ing4-/- macrophages 
after 3-hour LPS stimulation from RNAseq data.  
WT and Ing4-/- cells were prepared for RNAseq analysis as described above. A number of NF-κB 
target genes with various roles within the immune system were chosen and their expression levels 
analysed following stimulation with LPS for 3 hours by plotting their copy number. Means 
represented with whiskers denoting minimum and maximum values.  
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5.3.1.6 Validation of RNAseq by RT-qPCR 

Validation of the RNAseq data was performed by RT-qPCR of a number of NF-κB 

target genes involved in the inflammatory response, as well as genes that were 

highlighted as being significantly differentially expressed. WT and Ing4-/- cells 

were left either untreated or treated with 100 ng/mL LPS for 3 hours. Relative 

fold change was calculated using the 2-ΔΔCt method. This not only confirmed the 

RNAseq data but again demonstrated that the loss of ING4 causes selective 

changes in the way NF-κB controls the transcription of its target genes (figure 

5.8). Some pro-inflammatory cytokines are repressed in the mutant, such as 

TNFα and Cxcl2, whereas Il6 expression is increased. Ccl2 and Ccl7 are 

chemokines that attract monocytes and other immune cells to sites of 

inflammation and both are significantly downregulated in Ing4-/- RAW cells 

following stimulation with LPS for 3 hours. The anti-inflammatory cytokine, Il10, 

is expressed much more in the mutant following LPS stimulation than WT, which 

was highlighted in section 5.3.1.2 as a significantly upregulated gene. 
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Figure 5.8: Validation of RNAseq by RT-qPCR.  
(A) WT and Ing4-/- cells were prepared for RNAseq analysis as described above. RNAseq data 
graphed using the mean of normalised read counts from the two replicates (n=2). (B) WT and Ing4-

/- cells were left either untreated or treated with 100 ng/mL LPS for 3 hours. RT-qPCR data shows 
combined results from three independent experiments indicating fold change calculated using the 

2-ΔΔCt method with corresponding standard deviation (n=3). 
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5.3.1.7 Expression of NF-κB subunits in WT and Ing4-/- RAW macrophages 

It was essential to determine whether the loss of ING4 resulted in any changes in 

the protein levels of the NF-κB subunits, or of their upstream regulator IκBα. 

Some variation was observed in their mRNA levels in section 5.3.1.5, so to 

determine whether this was translated at the protein level, WT and Ing4-/- RAW 

macrophages were left either untreated, or treated with 100 ng/mL LPS for the 

time course indicated. Cells were harvested and protein levels measured via 

Western blot (WB) using antibodies specific for the indicated proteins. No great 

differences in the expression levels of the NF-κB components were detected 

(figure 5.9). Importantly, no changes in the expression pattern of IκBα were 

observed, which confirms that the changes in NF-κB target gene expression 

observed in section 5.3.1.5 are not due to any upstream effects.  
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Figure 5.9: Expression levels of NF-κB proteins in WT and Ing4-/- RAW macrophages.  
WT and Ing4-/- RAW cells were treated with 100 ng/mL LPS for the indicated time (minutes) or left 
untreated (unt). Whole cell extracts were analysed for levels of the indicated proteins via Western 
blot (WB). Figure representative of three individual experiments. 
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5.3.2 WT vs Socs1-/- RAW 264.7 macrophages 

5.3.2.1 Principal component analysis 

Principal component analysis (PCA) was performed on the RNAseq data to 

determine what factors caused the greatest variability between the samples. 

The principal components that cause the greatest difference between samples is 

the treatment with LPS (52%) and the loss of SOCS1 (19%) (figure 5.10). This 

indicates there is indeed a difference between WT and mutant cells, and the 

mutation is the cause. Unfortunately, this analysis revealed a discrepancy 

between the two Socs1-/- mutant replicates, which do not cluster together in the 

same quadrant. Validation was performed by RT-qPCR and outlined in section 

5.3.2.6 below and based on these results, replicate 1 was discarded from further 

analysis because it varied greatly from the RT-qPCR measurements whereas 

replicate 2 corresponded with the RT-qPCR results more accurately.  
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Figure 5.10:  PCA plot and significantly differentially expressed genes between wild-type 
and Socs1-/- RAW macrophages.  
Gene expression variances between wild-type (WT) (blue) and Socs1-/- (pink) RAW macrophages 
both unstimulated and stimulated by 100 ng/mL LPS for 3 hours are displayed as PCA plots. Each 
dot represents a sample. The percentage of total variation explained by each component is given. 
The expression values were pre-transformed under the formula log10(n+1). 
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5.3.2.2 Heatmap of differentially expressed genes 

Due to the discrepancy between the two mutant replicates, only replicate 2 

from the Socs1-/- mutants is represented in the heatmap below. Again, distinct 

clusters of genes can be identified (figure 5.11A). Cluster I are genes that 

change from being expressed highly in untreated WT to being expressed at low 

levels after LPS stimulation and under all conditions in the Socs1-/- mutant. 

Cluster II includes genes that are induced by LPS stimulation in the WT, but are 

lowly expressed after stimulation in the mutant. Cluster III are genes that are 

expressed under all conditions in WT only but are downregulated under all 

conditions in the mutant. Cluster IV represents genes that are expressed at low 

levels under all conditions in the WT, but are expressed more highly under all 

conditions in the mutant. In cluster V are genes that either are off or 

constitutively expressed at low levels in WT and in untreated mutants but whose 

expression is induced following LPS stimulation. Finally, cluster VI represents 

genes that expressed at low levels in all groups except untreated mutants where 

there is high expression. Identifying the ten most highly up and down regulated 

genes following TLR activation by LPS also provides some insight into the 

consequence of losing SOCS1. Amongst the ten most highly upregulated genes 

following TLR activation is H2-aa and H2-Eb1, which encode histocompatibility 

antigens important in adaptive immunity (figure 5.11B). In the list of most 

downregulated genes is Prkg2, which is a protein kinase, and Ccr1, a chemokine 

receptor. 
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Figure 5.11: Heatmap of significantly differentially expressed genes between WT and Socs1-

/- RAW macrophages.  
(A) Heatmap of significantly differentially expressed (p.adj < 0.05, absolute log2 fold > 1.0) genes 
between WT control and Socs1-/- macrophage, both unstimulated and stimulated for 3 hours with 
LPS. Colour intensity represents expression level, with red high expression and blue low 
expression. (B) Table indicating the ten most highly upregulated and downregulated genes by log2 
fold change in the Socs1-/- cells compared to WT.  
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5.3.2.3 Significantly upregulated genes in Socs1-/- RAW macrophages 

In untreated cells, there are 61 genes that are significantly upregulated in the 

Socs1-/- cells compared to WT. Of these, 24 are uniquely upregulated in 

untreated cells including Tlr8 and Il1a, whereas the remaining 37 are also 

significantly upregulated after LPS stimulation for 3 hours as well. 81 genes are 

significantly upregulared following LPS stimulation , and of these, 44 are more 

greatly expressed only in LPS stimulated cells including Mreg and Cpq. Overall, 

105 genes are significantly upregulated in the mutant RAW cells, whether under 

resting conditions or following activation by LPS (figure 5.12). Again, due to the 

low number of significantly differentially expressed genes, the Enrichr tool was 

deemed the most appropriate for gene ontology analysis. GO analysis of the 

biological processes revealed that the genes that are significantly upregulated 

only in untreated cells appear to have roles in the positive regulation of IL-6 

secretion (figure 5.13). It also indicates roles in the negative regulation of NF-κB 

signalling, and other immune functions. The upregulation of genes involved in 

these processes in the Socs1-/- mutant is feasible given SOCS1’s prominent role as 

a suppressor of cytokine signalling. The genes that are significantly upregulated 

only after TLR activation by LPS have roles in T helper cell function. However, 

SOCS1 has been previously demonstrated as being important for differentiation 

of T cells into Th17, so for genes relating to the regulation of the Th17 response 

to be upregulated in the Socs1-/- mutant is intriguing. Overall, the genes that are 

significantly upregulated in the knock-out cells regardless of stimulation with 

LPS or not are mainly associated with cytoplasmic translation and the general 

inflammatory response.  
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Untreated (24) LPS (44) All conditions (37) 

Cpeb1 Dio2 Cd48 Mreg Csf3r 

Card14 Prdm1 Siglece Fam49a Slamf7 

Greb1 Gfi1 Peli1 H2-Aa Ms4a7 

Fabp4 Edn1 Ms4a6d H2-Ea-ps Ccdc85c 

Stc2 Adra1a Fam126b H2-Eb1 Trem3 

Ctdspl Rap1gap2 Ms4a6b P2ry13 Adgb 

Tlr8 Zfp334 Plxna2 Arhgap27os3 Mfsd2a 

Ubxn11 Bambi-ps1 Ly9 Gm973 Traf3ip3 

Cytip Pdcd1 Flcn Treml2 Sort1 

Arhgef40 Adora2a Ppp1r15a Hal BE692007 

Il1a Il6 Slc43a3 Ccbe1 Cyfip2 

Cd33 Zfp579 Bcl6 Pilrb1 Clec4a3 

Clec4n F630028O10Rik Cpeb4 Treml4 Lsp1 

Plaat3 Fgd4 Tmem273 H2-Ab1 Csf3r 

Cd84 Ctsc Tnfrsf1b Tspan10  

Nlrc3 Tanc2 Syk Clec4a1  

Slc5a3 Gm6377 Irak3 Ocstamp  

Nlrp10 S1pr1 Sowahc Ppfibp2  

Rab32 Ms4a6c D030028A08Rik Slc22a17  

Trip6 Clec4a2 Rapgef5 Cpq  

Rhoq Slpi  Plpp3  

Neurl3 Ldlrad3  Lair1  

Pou2f2 Itgal  Nxf7  

Smpdl3a Zfp703  Pilrb2  

Figure 5.12: Significantly upregulated genes in Socs1-/- RAW macrophages.  
Venn diagram indicating the number of genes that are significantly upregulated in the Socs1-/- cells 
compared to WT at the basal level, after stimulation with LPS for 3 hours, and under both 
conditions. These genes are listed in the table below. 
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Figure 5.13: Enrichment analysis of GO biological processes of the significantly 
upregulated genes in Socs1-/- RAW macrophages using Enrichr.  
The classification terms and their serial numbers are displayed within the bars. Bars are ordered 
and coloured in descending p-value cutoffs. 
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5.3.2.4 Significantly downregulated genes in Socs1-/- RAW macrophages 

Overall, 289 genes are significantly downregulated in the Socs1-/- cells compared 

to WT, under both basal and LPS stimulated conditions. 156 genes are 

significantly downregulated in unstimulated cells, and of these 53 are uniquely 

downregulated only in unstimulated cells and include Ccl4, Irak2 and Il1rn 

(figure 5.14). After performing GO analysis using the Enrichr tool, the biological 

processes of these 53 genes are associated with calcium ion transport. Following 

LPS treatment, 236 genes are significantly downregulated in the knock-out cells, 

with 133 genes being uniquely downregulated after TLR activation, such as 

Dusp9, Mindy1 and Pf4. GO analysis suggests that these genes have roles in cell 

migration and wound healing. As a whole, the genes that are significantly 

downregulated in the Socs1-/- cells compared to WT regardless of LPS stimulation 

or not, are associated with biological processes that include cell migration, NK 

cell chemotaxis and the positive regulation of the ERK1/2 cascade (figure 5.15).  
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Untreated 
(53) 

LPS (133) All conditions (103) 

Rab15 Scarf1 Gm28875 Nes Csf2rb2 

Egr2 Cers4 Eps8 Abtb2 Slc30a4 

Spp1 Layn Cd200r1 Sulf2 H2-Q5 

Egr1 Prkg2 Vegfa Dner Adssl1 

Egr3 B3galnt1 Tmem171 Nkain1 Atxn1 

Dpys Ccr1 Procr Gm17928 Ninj1 

Src Cd200r2 Ptchd1 Pf4 Rab7b 

Ranbp3l Ccl2 Bhlhe40 Morc4 Clic1 

Ccl4 Pkd1l2 Hilpda Rassf8 Dok2 

Slc22a4 Emp2 Nubpl Runx2 Gm23935 

Il1rn Tpbg Mical2 H2-M3 Ifitm6 

C5ar1 Lpar1 Dusp7 Gypc Hmga1 

Eid2 Gm9260 Gm2a Btbd3 CT010467.1 

Flt1 Serpinb2 Irf4 Car12 Snx9 

Oasl1 Nptxr Cyth4 Map3k15 Actn1 

Pgm5 Chst11 Serpinb1c Slc17a6 Cd9 

Ccl9 Axl Pip5k1c Tnc Hmga2 

Plk2 Mamld1 Lasp1 Sdc1 Lyz1 

Rhoc Plau Car5b Gm29340 Kif3c 

Rgs1 Carmil1 Zdhhc14 Lims2 Abcb4 

Gm10419 Mmp12 Rasgrp3 Atp6v0d2 Ncs1 

Dgkh Gm22748 Smim3 Efr3b Fxyd2 

Micall2 Vopp1 Lyl1 Olfr99 Psmb8 

Bcl2l1 H2-M2 Lmna Coro2a Hmga1b 

Zfhx4 Plek2 Susd3 Cyp2s1 Glrx 

Rasal1 Acsbg1 Gmpr Dcstamp Gm26917 

Siglec1 F3 Inf2 Fosl1 Dab2 

Epop Gm7993 Slc48a1 Qpct Nrp1 

Etv1 Ptgs1 Smox Acap1 Pdgfa 

A230028O05Rik Vegfc Nrm Svil Dhrs9 

Ndrg1 Ccl7 Heatr5a Gm17749 H2-DMa 
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Tnfsf9 Mcam Cebpa Dusp9 Igf2bp2 

Ccl3 Gm7278 S100a6 Cd36 Bcar3 

Zfp651 Mmp14 Slc36a1 Rhoj Clec7a 

Agrn Rnf183 Ica1 Cd93 Fat1 

Slc30a1 Angptl2 Cd300lb Pcdh7 Kcnn4 

Ercc1 Gm9115 Orai1 Spink5 Pxdn 

Pdgfb Gm42635 Nek6 Map6 Ppic 

Klf6 E330009J07Rik Arpin Gfod1 Plxdc1 

Cass4 Mt2 Tnfrsf12a Zfp462 4932441J04Rik 

H2-Q6 Xirp1 Ahi1 Tfcp2l1 Cst7 

Pip5k1b Irf2bp2 St8sia4 Chst3 Bcl6b 

Mpzl1 Ptpn5 St14 Slamf8 Prkar2b 

Fosl2 Arhgap31 Sema4b Col18a1 Epb41l1 

Lpl Cadps Cdc42se2 Mindy1 Dusp5 

Ube2l6 Ptpn22 Rnf19b Slc24a5 Edil3 

Pmm1 Dync2li1 Mt1 Padi2 Odc1 

Sdc4 Nr1d1 Irx2 Slc7a4 Ctsl 

Thap7 Ier3 Phlda1 Ndrg4 Xylt1 

Irak2 Ccnd1 Tnni2 Hbegf Adam8 

Gnl1 Gm49774 Dyrk3 Adamts1 Sema4g 

Mir6236 Eef2k Jarid2 S100a11  

Rbpj Tiam1 Slc43a2   

 Eepd1 Hpcal1   

 Gm38158 Eif4ebp1   

 Elk3 Kbtbd11   

 Hhex Rab11fip5   

 AA414768 Fut4   

 Abcd2 Rnasel   

 Notch1 Tec   

 Epm2a Klf10   

 Gm16201 Mgst2   

 Tlr4 Cuedc1   

 Zfp36l2 Syne3   

 Endod1 Emp1   

 3300005D01Rik Gm18445   

  Apbb2   

Figure 5.14: Significantly downregulated genes in Socs1-/- RAW macrophages.  
Venn diagram indicating the number of genes that are significantly downregulated in the Socs1-/- 
cells compared to WT at the basal level, after stimulation with LPS for 3 hours, and under both 
conditions. These genes are listed in the table below. 
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Figure 5.15: Enrichment analysis of GO biological processes of the significantly 
downregulated genes in Socs1-/- RAW macrophages using Enrichr.  
The classification terms and their serial numbers are displayed within the bars. Bars are ordered 
and coloured in descending p-value cutoffs. 
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5.3.2.5 RNAseq analysis of NF-κB target genes in Socs1-/- RAW 
macrophages 

Again, considering the role of SOCS1 as an E3 ligase for the p65 subunit of NF-κB, 

and its destabilising effects on p50 as outlined in the previous chapter, the 

effect its absence has on the expression of NF-κB targets was of interest. A 

number of genes that are under the direct control of NF-κB were chosen for 

further analysis, and which have various roles within the immune system. Their 

normalised read counts following TLR activation by LPS were extracted from the 

RNAseq data and plotted, using only sample 2 from the mutants due to the 

discrepancy between samples as mentioned above. As with the loss of ING4, the 

loss of SOCS1 affects the expression of NF-κB target genes selectively (figure 

5.16). Some genes are expressed to a greater level in the Socs1-/- cells, such as 

Fas, Il1a¸and Il1b, whereas others are repressed, for instance Cd80, Cd86 and 

Baff. Others are not affected by the deletion of SOCS1, such as Bcl3 and 

Caspase11. Transcript levels of the NF-κB subunits themselves vary to some 

extent, with increases in the expression of Nfkb1 and Rela. The expression of 

Nfkb2 and Nfkbia (IκBα) remains relatively unchanged.   
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Figure 5.16: Expression of selection of NF-κB target genes in WT and Socs1-/- cells after 3-
hour LPS stimulation from RNAseq data.  
A number of NF-κB target genes with various roles within the immune system were chosen and 
their expression levels analysed following stimulation with LPS for 3 hours by plotting their copy 
number. Means represented with whiskers denoting minimum and maximum values.  
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5.3.2.6 Validation of RNAseq by RT-qPCR 

Validation of the RNAseq data and the confirmation that replicate 2 was the 

reliable sample was performed by RT-qPCR of a number of NF-κB target genes 

involved in the inflammatory response, as well as genes that were highlighted as 

being significantly differentially expressed. WT and Socs1-/- cells were left either 

untreated or treated with 100 ng/mL LPS for 3 hours. Relative fold change was 

calculated using the 2-ΔΔCt method. This not only confirmed the RNAseq replicate 

2 data but also again demonstrated that the loss of SOCS1 causes selective 

changes in the way NF-κB controls the transcription of its target genes (figure 

5.17). Some pro-inflammatory cytokines are repressed in the mutant, such as 

Ccl2 and Ccl7, whereas Tnfa expression is increased. The anti-inflammatory 

cytokine, Il10, is expressed much more in the mutant following LPS stimulation 

than WT. The results from RT-qPCR largely mimic those from the RNAseq, which 

confirms their validity. Furthermore, these results are not the same as those 

seen in the Ing4-/- RAW cells, and indicates that each of these components has 

control over the expression of different NF-κB genes, with some overlap of 

control between genes. 
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Figure 5.17: Validation of RNAseq by RT-qPCR.  
(A) WT and Socs1-/- cells were prepared for RNAseq analysis as described above. RNAseq data 
graphed using the normalised read count from replicate 2 (n=1). (B) WT and Socs1-/- cells were left 
either untreated or treated with 100 ng/mL LPS for 3 hours. RT-qPCR data shows combined results 
from three independent experiments indicating fold change calculated using the 2-ΔΔCt method with 

corresponding standard deviation (n=3). 
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5.3.2.7 Expression of NF-κB subunits in WT and Socs1-/- RAW macrophages 

As with the Ing4-/- cells, it was essential to determine whether the loss of SOCS1 

resulted in any changes in the protein levels of the NF-κB subunits, or of their 

upstream regulator IκBα. Some variation was observed in their mRNA levels in 

section 5.3.2.5, so to determine whether this was translated at the protein 

level, WT and Socs1-/- RAW macrophages were left either untreated, or treated 

with 100 ng/mL LPS for the time course indicated. Cells were harvested and 

protein levels measured via Western blot (WB) using antibodies specific for the 

indicated proteins. As with the Ing4-/- cells, no great differences in the 

expression levels of the NF-κB components were detected (figure 5.18). 

Importantly, no changes in the expression pattern of IκBα were observed, which 

confirms that the changes in NF-κB target gene expression observed in section 

5.3.2.5 are not due to any upstream effects.  
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Figure 5.18: Expression levels of NF-κB proteins in WT and Socs1-/- RAW macrophages.  
WT and Socs1-/- RAW cells were treated with 100 ng/mL LPS for the indicated time (minutes) or left 
unstimulated. Whole cell extracts were analysed for levels of the indicated proteins via WB. Figure 
representative of three individual experiments. 
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5.3.3 Ing4-/- vs Socs1-/- RAW 264.7 macrophages 

Both ING4 and SOCS1 are known E3 ligases for the p65 subunit of NF-κB so it was 

of interest to compare directly the genes whose expression is uniquely affected 

by the deletion of each element, and which are common to both knock-out cell 

lines. This will reveal the overlap in transcriptional control between the two E3 

ligases 

5.3.3.1 Genes significantly upregulated in untreated mutant RAW 264.7 
macrophages 

By creating a Venn diagram of the 89 genes that are significantly upregulated in 

the mutant cell lines compared to WT, it becomes apparent where overlaps in 

transcriptional control fall. Overall, 33 genes are significantly upregulated in 

untreated Ing4-/- cells compared to WT, and of these, 28 are unique to Ing4-/- 

cells, such as Agap2 and Tmem26. There are 5 genes that are significantly 

upregulated in both untreated Ing4-/- and Socs1-/- cells (figure 5.19). In total, 61 

genes are significantly upregulated in untreated Socs1-/- cells and of these, 56 

are unique to this mutant including Ocstamp and Cd33. Therefore, in untreated 

cells, there is little overlap between the genes that are upregulated in the 

absence of ING4 and SOCS1.  
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Ing4-/- only Both Socs1-/- only 

Aldh1l1 Cpq Mreg Csf3r 

Zic2 Slc22a17 Fam49a Tlr8 

Sp8 Arhgef40 H2-Aa Ubxn11 

Cds1 Sort1 H2-Ea-ps Slamf7 

Slc8a1 Trip6 H2-Eb1 Cytip 

Cbfa2t3  P2ry13 Ms4a7 

Agap2  Arhgap27os3 Ccdc85c 

Tmem26  Gm973 Trem3 

Cacna1s  Treml2 Il1a 

Zdhhc2  Hal Cd33 

Ank2  Ccbe1 Clec4n 

2610528A11RIK  Pilrb1 Plaat3 

Pltp  Cpeb1 Adgb 

Xkr5  Card14 Mfsd2a 

Rnls  Treml4 Traf3ip3 

Ppm1e  H2-Ab1 Cd84 

Cxcl16  Tspan10 BE692007 

Plcb2  Clec4a1 Cyfip2 

Sema5a  Greb1 Nlrc3 

Peg12  Ocstamp Slc5a3 

Ac166344.1  Ppfibp2 Nlrp10 

Hoxc4  Plpp3 Rab32 

Adgrl1  Lair1 Clec4a3 

Palm3  Nxf7 Lsp1 

Mkx  Fabp4 Rhoq 

Tmem246  Stc2 Neurl3 

Chka  Ctdspl Pou2f2 

Zmynd15  Pilrb2 Smpdl3a 

Figure 5.19: Significantly upregulated genes in unstimulated knock-out RAW macrophages.  
Venn diagram indicating the number of genes that are significantly upregulated in either the Ing4-/- 
cells alone, Socs1-/- cells alone, or in both knock-outs, at the basal level. These genes are listed in 
the table underneath. Unt = untreated/unstimulated. 
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5.3.3.2 Genes significantly upregulated in mutant RAW macrophages treated 
with LPS 

The Venn diagram depicting the 109 genes that are significantly upregulated in 

the mutant cell lines compared to WT following 3 hours of stimulation with LPS 

indicates that overall, 35 genes are significantly upregulated in Ing4-/- cells 

compared to WT and of these, 28 are unique to this mutant such as Il10 and 

Ank2 (figure 5.20). In total, 81 genes are significantly upregulated in Socs1-/- 

cells stimulated with LPS, and of these, 74 are unique to this mutant including 

Il6, Dio2 and Bcl6. Of the 109 genes in total that are significantly upregulated in 

the knock-out cells compared to WT, 7 are common to both Ing4-/- and Socs1-/- 

cells. Therefore, there again is very little overlap between genes that are 

upregulated in the absence of ING4 or SOCS1 following LPS stimulation.  
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Ing4-/- only Both Socs1-/- only 

Aldh1l1 Slc22a17 Dio2 Il6 Siglece 

Zic2 Sort1 P2ry13 Plpp3 Peli1 

Sp8 Cpq Fam49a Ms4a7 Ms4a6d 

Il10 Fam126b H2-Ea-ps Cyfip2 Ms4a6b 

Col15a1 Bcl6 H2-Aa Zfp579 Plxna2 

Trim36 Adgb H2-Eb1 Nxf7 Ly9 

Cds1 Ocstamp Prdm1 Trem3 Flcn 

Six1  Ppfibp2 Ccdc85c Ppp1r15a 

Dst  Gm973 F630028O10Rik Slc43a3 

Slc8a1  Mreg BE692007 Cpeb4 

Agap2  Gfi1 Fgd4 Tmem273 

Tmem26  Treml2 Ctsc Tnfrsf1b 

Zc3h12c  Slamf7 Ccbe1 Syk 

Ank2  Hal Clec4a3 Irak3 

2610528A11RIK  Clec4a1 Traf3ip3 Sowahc 

Pltp  Edn1 Tanc2 D030028A08Rik 

Rnls  Pilrb1 Gm6377 Lsp1 

Plcb2  Pilrb2 S1pr1 Rapgef5 

Sema5a  Tspan10 Ms4a6c  

Peg12  Arhgap27os3 Csf3r  

Ac166344.1  Adra1a Clec4a2  

Hoxc4  Rap1gap2 Lair1  

Adgrl1  Zfp334 Slpi  

Palm3  H2-Ab1 Ldlrad3  

Mkx  Bambi-ps1 Itgal  

Rpl3l  Pdcd1 Mfsd2a  

Tmem246  Treml4 Zfp703  

Shisa3  Adora2a Cd48  

Figure 5.20: Significantly upregulated genes in knock-out macrophages stimulated for 3 
hours with LPS.  
Venn diagram indicating the number of genes that are significantly upregulated in either the Ing4-/- 
cells alone, Socs1-/- cells alone, or in both knock-outs, following stimulation with LPS for 3 hours. 
These genes are listed in the table below. 
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5.3.3.3 Genes significantly downregulated in untreated mutant RAW 
macrophages  

By creating a Venn diagram of the 214 genes that are significantly 

downregulated in the mutant cell lines compared to WT, it is clear overall, 71 

genes are significantly downregulated in untreated Ing4-/- cells compared to WT 

and of these, 45 genes are uniquely downregulated in the Ing4-/- macrophages 

including Lamb2 and Notch1 (figure 5.21). In total, 169 genes are significantly 

downregulated in untreated Socs1-/- cells and 143 are unique to the Socs1-/- cells, 

such as Dusp5, Ccl2 and Ccl9. Of the 214 genes in total that are significantly 

downregulated in the knock-out cells compared to WT, 26 are common to both 

Ing4-/- and Socs1-/- macrophages. Therefore, in untreated cells, there is some 

overlap between the genes that are downregulated in the absence of ING4 and 

SOCS1.  
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Ing4-/- only Both Socs1-/- only 

Tnfrsf10b Ppic Axl Adam8 Mpzl1 

Kif21a Map6 Scarf1 Sema4g Fosl2 

Pcbp4 Gypc Chst11 Pxdn Lpl 

Acy1 Qpct Nptxr Ccl9 Gm23935 

Abhd14a Coro2a Ccl2 Plxdc1 Ifitm6 

Lamb2 Mmp12 B3galnt1 4932441J04Rik Hmga1 

Zfp2 Layn Cd200r2 Plk2 Ube2l6 

Cep170b Abtb2 Sulf2 Cst7 Etv1 

Arhgap25 Pf4 Dner Rhoc Snx9 

Fat3 Btbd3 Gm17928 Bcl6b Pmm1 

Nsd1 Col18a1 Morc4 Prkar2b Actn1 

Il11ra1 Cers4 Rassf8 Rgs1 Cd9 

Vopp1 Nes Runx2 Dusp5 Hmga2 

Antxr1 Epb41l1 Car12 Gm10419 Lyz1 

Hpgd Odc1 Map3k15 Dgkh Sdc4 

Ier3 Dusp9 Slc17a6 Edil3 Thap7 

Fbxo15 Flt1 Tnc Micall2 Kif3c 

Glipr2 Eid2 Sdc1 Ctsl Abcb4 

Icosl Dcstamp Rab15 Xylt1 Irak2 

Cd24a Nkain1 Gm29340 Bcl2l1 Ncs1 

Ccdc127 Ccr1 Lims2 Zfhx4 Gnl1 

Ccdc69 Emp2 Egr2 Gm26917 Fxyd2 

Car2 Mindy1 Atp6v0d2 Dab2 Psmb8 

Itpr2 Acap1 Spp1 Rasal1 Hmga1b 

Sdr39u1 Pkd1l2 Egr1 Nrp1 Mir6236 

Enpp4 H2-m3 Efr3b Pdgfa Rbpj 

Tanc1  Olfr99 Siglec1 Glrx 

Shc2  Cyp2s1 Dhrs9 Slc7a4 

Notch1  Fosl1 Epop Ndrg4 

Tmem98  Egr3 H2-DMa Oasl1 

Maf  Svil CT010467.1 Pgm5 

E330009J07RIK  Gm17749 A230028O05Rik Hbegf 
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Afp  Cd36 Ndrg1 Adamts1 

Tmsb10  Rhoj Igf2bp2 S100a11 

9130008F23RIK  Dpys Bcar3 Rab7b 

Ptgs1  Cd93 Tnfsf9 Klf6 

Mgl2  Pcdh7 Ccl3 Clic1 

Zbtb46  Spink5 Clec7a Cass4 

Prkg2  Src Fat1 H2-Q6 

Igsf11  Ranbp3l Kcnn4 Dok2 

Gpr179  Ccl4 Csf2rb2 Pip5k1b 

Ctse  Gfod1 Zfp651  

Acot1  Zfp462 Agrn  

Chchd10  Slc22a4 Slc30a1  

Dmwd  Il1rn Ercc1  

  Tfcp2l1 Pdgfb  

  Chst3 Slc30a4  

  Slamf8 H2-Q5  

  C5ar1 Adssl1  

  Slc24a5 Atxn1  

  Padi2 Ninj1  

Figure 5.21: Significantly downregulated genes in unstimulated knock-out macrophages.  
Venn diagram indicating the number of genes that are significantly downregulated in either the 
Ing4-/- cells alone, Socs1-/- cells alone, or in both knock-outs, at the basal level. These genes are 
listed in the table below. 
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5.3.3.4 Genes significantly downregulated in mutant RAW macrophages 
treated with LPS 

The Venn diagram depicting the 317 genes that are significantly downregulated 

in the mutant cell lines compared to WT following 3 hours of stimulation with 

LPS indicates that overall, 82 genes are significantly downregulated in Ing4-/- 

cells compared to WT and of these, 81 genes are uniquely downregulated in the 

Ing4-/- macrophages, including Ccl2 and Ccl7 (figure 5.22). In total, 236 genes are 

significantly downregulated in Socs1-/- cells stimulated with LPS and 235 are 

unique to the Socs1-/- cells, such as Tlr4 and Dusp9. Of the 165 genes in total 

that are significantly upregulated in the knock-out cells compared to WT, only 

33 are common to both Ing4-/- and Socs1-/- macrophages. Therefore, in cells 

treated with LPS, there again is some overlap between the genes that are 

upregulated in the absence of ING4 and SOCS1.  
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Ing4-/- only Both Socs1-/- only 

Adgrl2 Dner Hbegf Eef2k Lyl1 

Klf9 Ppic Scarf1 Kcnn4 Lmna 

Kif21a Map6 Layn Tiam1 Susd3 

Pcbp4 Gypc Car12 Eepd1 Gmpr 

Lamb2 Qpct B3galnt1 Gm38158 Inf2 

Cep170b Chst11 Cd93 Elk3 Slc48a1 

Trpv4 Coro2a Cd200r2 Hhex Ncs1 

Arhgap25 Prkg2 Morc4 AA414768 Smox 

Fat3 Pf4 Slc17a6 Dcstamp Hmga2 

Nsd1 Mmp12 Tpbg Dhrs9 Nrm 

Jund Vopp1 Sulf2 Rab7b Lyz1 

Il11ra1 Tnc Lpar1 Sema4g Heatr5a 

Ehd2 Mamld1 Rassf8 Abcd2 Cebpa 

Anxa6 Abtb2 Lims2 Dusp5 S100a6 

Sash3 Ier3 Padi2 Epm2a Slc36a1 

Gpr179 Notch1 Atp6v0d2 Pxdn Ica1 

Cd276 Ccl7 Gm9260 Gm16201 Cd300lb 

Prkd3 Cers4 Nptxr Tlr4 Orai1 

Glipr2 Nes Gm17928 Clic1 Fosl1 

Icsol Epb41l1 Svil Adssl1 Nek6 

Evl Odc1 Sdc1 Gm17749 Arpin 

Sdr39u1 Ptgs1 Zfp462 Cst7 Fxyd2 

Ccl12 Nkain1 Cyp2s1 Zfp36l2 Fat1 

Slc6a9 Ccr1 Map3k15 Endod1 Kif3c 

Enpp4 Btbd3 Axl Kbtbd11 Tnfrsf12a 

Tanc1 Col18a1 Bcl6b Rab11fip5 Ahi1 

Cd24a Serpinb2 Plau Fut4 St8sia4 

Stard10 Emp2 Adamts1 Rnasel St14 

Tmem98 Ccl2 Tfcp2l1 Tec Sema4b 

Fam149a Mindy1 Carmil1 Slc7a4 Cdc42se2 

Maf Acap1 Gm22748 Klf10 Atxn1 

Zfp984 Pkd1l2 H2-M2 Spink5 Rnf19b 
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E330009J07RIK H2-m3 Plek2 Mgst2 Mt1 

Tmsb10  Runx2 Cuedc1 Xylt1 

Mgl2  Acsbg1 Syne3 Psmb8 

Flt1  Rhoj Emp1 Irx2 

Eid2  Pdgfa Dab2 Cd9 

Igsf11  F3 Gm18445 Dok2 

Ggta1  Gm7993 Apbb2 H2-Q5 

Mapk11  Slc24a5 3300005D01Rik Phlda1 

Cebpe  Dusp9 Glrx Tnni2 

Ctse  Pcdh7 Gm28875 Dyrk3 

Abcg2  Slamf8 Gm23935 Jarid2 

Ccdc69  Plxdc1 Eps8 Slc43a2 

Osm  Vegfc H2-DMa Hpcal1 

Ptger2  Mcam Clec7a Eif4ebp1 

Itpr2  Adam8 Cd200r1 Chst3 

Chchd10  Gm7278 Vegfa Ptpn22 

Trim47  Mmp14 Hmga1 Dync2li1 

  Rnf183 Tmem171 Nr1d1 

  Gfod1 Procr Edil3 

  Ndrg4 Ptchd1 Bcar3 

  4932441J04Rik Gm26917 Ccnd1 

  Angptl2 Bhlhe40 Ctsl 

  S100a11 Hilpda Gm49774 

  Gm29340 Nrp1 Prkar2b 

  Gm9115 Nubpl Pip5k1c 

  Cd36 Csf2rb2 Lasp1 

  Gm42635 Mical2 Snx9 

  E330009J07Rik Abcb4 Car5b 

  Mt2 Dusp7 Zdhhc14 

  Olfr99 CT010467.1 Rasgrp3 

  Xirp1 Gm2a Actn1 

  Irf2bp2 Irf4 Ninj1 

  Ptpn5 Cyth4 Hmga1b 

  Efr3b Igf2bp2 Smim3 

  Arhgap31 Serpinb1c  

  Cadps Slc30a4  

Figure 5.22: Significantly downregulated genes in knock-out macrophages stimulated for 3 
hours with LPS.  
Venn diagram indicating the number of genes that are significantly down regulated in either the 
Ing4-/- cells alone, Socs1-/- cells alone, or in both knock-outs, following stimulation with LPS for 3 
hours. These genes are listed in the table below. 
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5.4 Discussion 

The results of this chapter represent the first comparative analysis of the role of 

two known E3 ligases of NF-κB in the regulation of transcription. They provide 

insight into the functional consequences of ING4 and SOCS1 in a high-throughput 

manner, as well as the ability to focus on specific genes as required. Indeed 

looking at certain genes in detail reveals a number of interesting observations. 

The observation from both the RNAseq and RT-qPCR analysis that expression 

levels of Il6, Il10 and Ccl5 (RANTES) are increased in Ing4-/- cells following 

activation with LPS concurs with a previous study conducted in Ing4-null mice 

(Coles et al., 2010). The researchers identified a role for ING4 in negatively 

regulating a subset of NF-κB responsive genes following macrophage exposure to 

LPS. They detected an increased amount of nuclear p65 in non-stimulated Ing4-/- 

macrophages and increased Il6 promoter occupancy at 0 and 1 hour of LPS 

stimulation, which correlated with increased levels of promoter histone H4 

acetylation. In contrast, they also found that occupancy of the TNFα promoter 

by p65 was increased in Ing4-/- macrophage but there was far less H4 acetylation 

following LPS stimulation than in WT cells, which tied in with the lower levels of 

TNFα expression they observed, and that were also detected in this investigation 

(figure 5.8). This indicated that a subset of NF-κB-responsive cytokine promoters 

require ING4 for promoter activation following p65 binding. This might explain 

the variances in the expression of NF-κB target genes observed in the current 

study, whereby the genes that are upregulated in the mutant cells do not 

require ING4 for H4 acetylation of their promoters, and those that are 

downregulated do require ING4 for this acetylation to occur. To confirm this, 

chromatin immunoprecipitation (ChIP) could be performed to determine how 

much promoter occupancy by p65 and H4 acetylation is detected in the Ing4-/- 

macrophages compared to WT. Analysis of the NF-κB subunit protein levels did 

not reveal a detectable increase in p65 expression in the Ing4-/- cells (figure 5.9), 

however transcript levels were increased (figure 5.7). The nuclear and 

cytoplasmic fractions were not analysed separately in the current study, 

however, so this may reveal differences in future experiments. The study 

mentioned above also detected a slower re-synthesis of IκBα (Nfkbia) in the Ing4-

/- macrophages following LPS stimulation and both protein and gene levels 

remained lower overall. The reduced expression of Nfkbia in LPS stimulated Ing4-
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/- cells was due again to decreased H4 acetylation of the Nfkbia promoter in the 

absence of ING4. In this study, transcript levels of Nfkbia were reduced in the 

Ing4-/- macrophages 3 hours after stimulation with LPS, although no great change 

in protein re-synthesis dynamics was observed over the shorter time course. 

Future investigations should incorporate a 3-hour time point and re-measure 

IκBα protein levels to determine if they are lower overall in the Ing4-/- RAW 

macrophages. The current data indicates that a reduction in IκBα levels and thus 

more NF-κB subunits translocating to the nucleus is not the cause of the 

increased expression of some NF-κB target genes. If it were then all NF-κB target 

genes would be upregulated and this is not what is seen. Upstream effects of 

ING4 on IκBα levels can therefore be ruled out as affecting NF-κB expression, 

and instead it appears that ING4 is affecting transcription when NF-κB has 

already moved into the nucleus.  

It is not possible to perform in vivo experiments using Socs1-/- mice because they 

die within 3 weeks after birth due to severe inflammatory responses in almost all 

organs resulting from excessive action of IFNγ (Naka et al., 1998; Starr et al., 

1998; Alexander et al., 1999). Therefore, studies have used heterozygous or 

double knock-outs with IFNγ, which have demonstrated hypersensitivity of these 

mice to challenge with LPS (Hashimoto et al., 2009). Indeed, in this 

investigation, levels of pro-inflammatory Tnfα, Il1b and Cxcl1 are increased 

following LPS stimulation compared to WT, as is the expression of anti-

inflammatory Il10, although not to as great an extent as in the Ing4-/- cells. 

However, as with the Ing4-/- macrophages, this attenuation is only detected in 

some and not all pro-inflammatory cytokines, suggesting that SOCS1 does not 

merely function as part of a negative feedback loop, but affects transcription on 

a gene-specific level. Of course, TLR activation by LPS does not only lead to the 

activation of the NF-κB pathway, but other signalling cascades as well. SOCS1 is 

a well-known suppressor of the JAK/STAT pathway (Sakamoto et al., 1998; 

Yasukawa et al., 1999), as well as of the p38 MAPK signalling cascade (Souma et 

al., 2012) so the variations in gene expression observed in the Socs1-/- 

macrophages may be due to aberrations in these signalling pathways. Indeed, GO 

analysis of the biological processes of the genes significantly downregulated in 

the Socs1-/- cells includes those involved in the ERK1/2 pathway and LPS 

signalling generally (figure 5.16). For both knock-outs, had time not been a 
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limiting factor in the current investigation an important experiment would be to 

measure the levels of phosphorylated STAT1, ERK, p38, JNK, IκBα and p65 to 

determine the signal transduction in response to LPS in the knock-out. 

Additionally, the re-introduction of ING4 and SOCS1 into each of the cell lines to 

determine if this rescues the phenotype and mimics the WT transcriptional 

landscape would also be insightful.  

Selective targeting of inflammatory genes as observed within this chapter is 

desirable in the treatment of chronic inflammatory disease as it retains some 

immune system functionality rather than current therapeutics that result in 

widespread immunosuppression and can result in greater susceptibility to 

infection and injury for the host. The selectivity in which genes are controlled 

by which E3 ligase might be achieved by a number of mechanisms. Perhaps a 

prior post-translational modification determines which E3 ligase ubiquitinates 

NF-κB, acting as a molecular switch. For example, phosphorylation of p65 at 

S468 as induced by TNFα allows the binding of COMMD1 and cullin 2 resulting in 

the inducible ubiquitination and degradation of p65, whereas this was not a pre-

requisite for SOCS1 binding (Geng et al., 2009). Alternatively, as mentioned 

above, perhaps certain E3 ligases cause increased occupancy of certain gene 

promoters by NF-κB, or some genes require the presence of an E3 ligase for H4 

acetylation of their promoters and others do not. The data outlined in this 

chapter opens many avenues for future research. 

Considering the multitude of roles ING4 and SOCS1 play within the immune 

system and other biological processes, in addition to their function as E3 ligases 

for p65 and effects on the other NF-κB subunits, knocking out either component 

will unavoidably have far-reaching effects on the phenotype of the host 

organism. In this case, whilst the expression of some pro-inflammatory genes are 

repressed and pro-resolution genes increased in the knock-outs, there are other, 

less desirable effects. For example, in the Ing4-/- cells, there is increased 

expression of Agap2 and Peg12 that are associated with tumour development, 

and Sema5a, which is linked to autism. Many of the downregulated genes in the 

Socs1-/- cells had roles in cardiac development and wound healing. There is a 

plethora of genes whose expression is altered in the knock-outs that, whilst not 

of interest from the point of view of the immune response, are still critical to 
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cellular development and viability. Therefore, in the case of chronic 

inflammatory diseases, whilst therapeutically it would be desirable to lose 

SOCS1 so that its degradative effect on repressive p50 homodimers is avoided, 

the consequences are not precise enough and could be considered the molecular 

equivalent of removing a patient’s brain to treat Alzheimer’s. Indeed, knocking 

out either of these components would not be the aim of any therapy that sought 

to terminate p65-driven transcription since both ubiquitinate and degrade p65. 

Rather, the use of these knock-out macrophages provides an in-depth picture of 

the genes that are directly influenced by each of these components, identifies 

where the redundancy between ING4 and SOCS1 lies by comparing the two 

knock-outs, and therefore gives researchers a deeper understanding of their 

function.  
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Chapter 6  

General discussion   
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6.1 Overview of findings 

The ubiquitination of NF-κB is an important mechanism that regulates its 

transcriptional activity. Although much is known about the relationship between 

the ubiquitin-proteasome system and the p65 subunit of NF-κB, relatively little is 

understood about the mechanisms that lead to the ubiquitination and 

degradation of p50. In this thesis, we sought to fill some of the gaps in our 

knowledge of how p50 is de-stabilised. By using a variety of biochemical and 

molecular approaches, it was revealed that SOCS1 is able to promote the 

ubiquitination and degradation of p50 in some capacity that is independent of its 

activity as an E3 ligase. By using a panel of putative E3 ligases, we were able to 

rule out ING4 as being an E3 ligase for p50, and others such as UBR5 provided 

interesting results that future lines of enquiry would seek to explore. A site of 

ubiquitination of p50 was examined in detail using mutant THP-1 cells that had 

the lysine residue at position 130 of p105 mutated to arginine. It was found that 

this site does not affect the expression of TNFα, IL-6 or CXCL2 in response to TLR 

activation, although a wider transcriptional analysis might reveal genes that are 

regulated by this site. However, mutation of this site causes a stark reduction in 

the levels of RelB and c-Rel. This is intriguing as it indicates that the post-

translational modification of p50 directly affects the abundance and cellular 

dynamics of the other NF-κB subunits. Finally, transcriptomic analysis of mutant 

macrophages that had either ING4 or SOCS1 knocked-out, both of which are 

known E3 ligases for p65, revealed that different gene sets are directly 

influenced by each of these components, and that they affect the expression of 

NF-κB target genes in a gene-specific manner. Overall, the data presented 

within this thesis furthers our understanding of the mechanisms that regulate 

NF-κB activity, in particular the role of p50 and how it is affected by post-

translational modifications. 

 

6.2 Identifying further E3 ligases of NF-κB 

Most of the studies into how ubiquitination controls the activity of NF-κB have 

focussed their attention on the p65 subunit. Understanding how p65 activity is 

terminated through ubiquitin-mediated proteasomal degradation is critical 

because this subunit is the main driver of transcription. However, p50 has a dual 
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role as both a promoter of transcription when dimerised with p65, and as a 

repressor when present as a homodimer due its lack of transactivation domain, 

and so discerning the mechanisms underlying its ubiquitination and degradation 

is equally as important. This investigation employed some of the known E3 

ligases for the other NF-κB subunits as a starting point in determining whether 

any also had the ability to ubiquitinate p50. A combinatorial approach using this 

as well as high-throughput screening techniques such as yeast two hybrid (Y2H) 

or affinity purification coupled to mass spectrometry (MS) would be a robust 

next step to identify further candidates.  

 

6.3 Exploring the NF-κB ubiquitin code 

During this study, the exact sites of p50 ubiquitination were explored using 

constructs that express p50 with different lysine residues mutated to arginine. 

This approach is feasible in the case of p50, which is a relatively small protein 

that has few lysine residues. However, without the prior knowledge of the 

identity of the E3 ligase that ubiquitinates p50, the possible combinations of 

mutants with putative E3s in co-transfection assays is large. To gain a wider 

perspective of the ubiquitome of NF-κB as a whole, future lines of enquiry might 

employ the use of screens using antibodies that provide information on the exact 

sites of ubiquitination following MS. For example, the K-ε-G-G antibody 

recognises peptides with the diglycine remnant that is present on ubiquitinated 

lysines following tryptic digestion (Xu et al., 2010). However, it has been 

reported that it has a bias toward certain amino acid contexts near to the 

ubiquitinated lysine (Wagner et al., 2012), it does not recognise N-terminal 

ubiquitination, and it cannot distinguish between ubiquitin and other ubiquitin-

like proteins (UBLs). A newly emerging technology is UbiSite, which is a 

monoclonal antibody that specifically recognises the unique ubiquitin that 

remains on protein targets after proteolytic digestion with LysC, an 

endopeptidase (Akimov et al., 2018), which could be taken advantage of to 

identify sites of ubiquitination of p50. Wide scale screens such as MS can return 

false positive results when certain protease and deubiquitinase inhibitors are 

used as they can cause the formation of protein adducts that have the same 

mass as ubiquitin (Nielsen et al., 2008), so this should be kept in mind. 
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Indeed, proteins display great promiscuity in respect of ubiquitination, receiving 

ubiquitin at multiple residues and from multiple E3 ligases. Already, many E3 

ligases have been identified for p65 and their target sites do not overlap (Collins 

et al., 2016). This could result in heterogeneous populations of differentially 

ubiquitinated NF-κB within cells, further highlighting the complexity of NF-κB 

regulation. It takes the mutation of almost all lysine residues of p65 to abolish 

its ubiquitination (Li et al., 2012). Although thus far, K130 of human p50 is a 

known site of ubiquitination, it is likely that there are a number of others. In 

this investigation, mutation of K130 to R did not result in a reproducible pro- or 

anti-inflammatory phenotype in monocytes, at least not one that was detectible 

from the genes tested, but a wider transcriptomic screen may reveal otherwise. 

Instead, the loss of this site of ubiquitination led to changes in the abundance of 

other NF-κB subunits both basally and after LPS stimulation. The ubiquitin code 

describes the multitude of configurations of ubiquitin modifications that are 

possible on a protein. Historically, it was thought that K48-linked ubiquitin 

chains are proteolytic and K63-linked chains are non-proteolytic. However, it is 

now known that the situation is more complex than this, and K63-linkages can 

drive degradation and K48-linkages can function non-proteolytically, for example 

in transcription factor regulation (Flick et al., 2006). Additionally, other 

ubiquitin linkages are possible through the other lysine residues or N-terminal 

methionine, and these can form number of different topologies. This, along with 

other factors such as deubiquitination, localisation and timing, has influence 

over the functional outcome of ubiquitination (Komander & Rape, 2012), and 

may explain the results seen in this investigation. Future experiments might 

explore the composition of NF-κB dimers in cells that have the K130R mutation 

in p105 and measure the ratios, as this might have some influence over which 

genes are ultimately being transcribed. Analogous to the proposed 

phosphorylation of NF-κB barcode hypothesis (Moreno et al., 2010), it is possible 

that the individual ubiquitination events on p50 (and the other NF-κB subunits) 

lead to transcriptional outcomes that are highly gene specific. This hypothesis 

seeks to explain how different NF-κB activating stimuli causes the expression of 

distinct gene sets. Identifying the patterns of ubiquitination induced by 

particular E3 ligases and their target sites on p50 and their transcriptional 

consequences is an important task in cracking the ‘ubiquitination code’, and 

would allow targeting of NF-κB to specifically downregulate the expression of 
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pro-inflammatory genes during chronic inflammation. There is evidence 

emerging that phosphorylation at specific sites of p50 causes gene-specific 

transcriptional effects and this is mediated by the differential binding of 

phosphorylated p50 to κB sites of DNA, so it is possible that ubiquitination at 

different sites has a similar effect.  

Indeed, this effect was observed during the RNAseq analysis of the specific E3 

ligase-deficient RAW 264.7 macrophages in chapter 5. Some sets of NF-κB target 

genes were up or downregulated in Ing4-/- cells compared to WT, some were up 

or downregulated in Socs1-/- cells compared to WT, and these genes were not the 

same between the two mutants indicating that differential ubiquitination of NF-

κB results in distinct transcriptional outcomes. However, also apparent was that 

these two components have wide-ranging roles in not only the ubiquitin pathway 

but many other biological processes as well. It must be kept in mind for both 

these mutants and in particular, the p105K130R THP-1 mutant, that the possibility 

exists that genetic compensation is occurring. This mechanism leads to 

‘transcriptional adaptation’ resulting in increased expression of related genes 

that are able to assume the function of the mutated gene and leads to 

observations whereby engineered mutants do not exhibit an obvious phenotype 

(El-Brolosy et al., 2019).  

 

6.4 Unravelling the relationship between SOCS1 and p50 

The unexpected observation that SOCS1 is able to promote the ubiquitination 

and degradation of p50 in some capacity that is outside of its E3 ligase activity 

has provided a basis for further lines of enquiry. Due to the limitations of time, 

the exact nature of the mechanism of degradation was not deduced. The use of 

a proteasome inhibitor did not prevent p50 degradation which is at odds with 

previous studies carried out on p65 (Ryo et al., 2003), but other degradative 

pathways are possible. The use of inhibitors such as quinacrine, Z-VAD-FMK or 

bafilomycin might shed light on whether SOCS1 promotes p50 degradation via 

the lysosome, caspases or by autophagy. In fact, ubiquitin-tagging has also been 

observed to route proteins towards these pathways as well as its prototypical 

role within the UPS (Clague & Urbé, 2010). Additionally, the expression of NF-κB 

target genes could be measured by RT-qPCR following the over-expression of 
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SOCS1 and TLR activation to determine what effect its presence or absence has 

on the transcriptional activity of NF-κB. This would perhaps be better performed 

in cells such as RAW 264.7 macrophages rather than HEK293Ts as these are more 

relevant from an inflammatory perspective, although they are more difficult to 

transfect. It must be borne in mind that overexpression assays may not 

accurately represent what is happening biologically. SOCS1 could be silenced 

using siRNA in future experiments to determine the effect it has endogenously 

on levels of p50. Similarly, the endogenous levels of p50 ubiquitination could be 

measured using an approach like tandem ubiquitin-binding entities (TUBEs), 

which is a ‘molecular trap’ that binds to and protects polyubiquitinated proteins 

(Hjerpe et al., 2009). This would overcome issues that surround the study of 

ubiquitination such as the fact that the modification is highly reversible and that 

the act of ubiquitination itself marks proteins for degradation, and would 

reinforce the effects of deubiquitinase and proteasome inhibitors. It is apparent 

that SOCS1, in affecting the stability of both p65 and p50, highlights the layers 

of complexity in regulating not only the abundance and ratio of NF-κB subunits 

in cells, but its transcriptional activity as well.  

 

6.5 Concluding remarks 

In the context of the innate immune response, during which dysregulated gene 

expression can cause catastrophic damage to the host, the role of transcriptional 

repressors such as the p50 homodimer are of particular importance. 

Understanding the mechanisms that underlie the degradation of this and the 

other subunits of NF-κB will allow researchers to exert control over its activity 

and intervene when it becomes dysregulated. The ubiquitin-proteasome system 

is a major pathway that has implications on protein homeostasis and many other 

cellular signalling processes. Biotechnological approaches are being developed 

that harness this natural housekeeping ability of cells. Proteolysis-targeting 

chimeras (PROTACs) are synthetic small molecules that recruit proteins into 

proximity with E3 ligases to induce degradation of the target (Toure & Crews, 

2016). Already, this has been demonstrated to utilize CRL2VHL and CRL4CRBN to 

induce the degradation of the epigenetic regulators BRD2, BRD3, BRD4 and ERRα 

both in vitro and in vivo (Winter et al., 2015; Zengerle et al., 2015). This 

provides great potential for future therapeutics and target validation as 
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PROTACs could be used to hijack the E3 ligases of NF-κB, or potential E3 ligases, 

and either degrade the subunits in a directed manner to control transcription, or 

to discover the identity of more NF-κB E3 ligases, in particular those which 

target p50. From an inflammatory disease perspective, stabilising repressive p50 

homodimers through the manipulation of the ubiquitin proteasome system 

remains a promising avenue for the development of novel therapeutics.  
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Chapter 7  

Appendix   
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7.1 Socs1-/- RAW 264.7 macrophage validation 

 

Figure 7.1: Socs1-/- RAW  264.7 macrophage validation 
WT and Socs1-/- clones were left either untreated or treated with 100 ng/mL LPS for 6 or 16 hours. 
Whole cell lysate was harvested and expression levels of Socs1 was measured via Western blot 
using anti-SOCS1 antibody.  
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