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Abstract

This Ph.D thesis focuses on two applied frameworks of stochastic con-

trolling and optimisation in financial economics. The first focus (Chapter

1) is on the convergence trading with testing cross-listed stock arbitrage.

The second (Chapter 2 to Chapter 4) is on the sequential studies of wealth

inequality.

In Chapter 1, the convergence trading is established by dynamic pro-

gramming, by setting objective at maximising trading utility function

with constraint characterising the mean-reversion between price spread.

Compared to past research that Liu and Timmermann (2013), the cointe-

grating vector has been inserted inside, meanwhile the volatility factor has

been split into multiple layers attributed by the relevant information sets.

A wide range of empirical tests have been conducted for the cross-listed

stock trading, including both in-the-sample and out-of-sample tests for

Eurozone, UK, US and China stock exchanges based on shares and CFD

trading. The testing result is convincing that stochastic optimal control

has the potentiality to amplify statistical arbitrages.

Chapter 2, initiates the research of wealth inequality. It first replicates

the consumption-saving framework proposed by Karatzas (1991) under

stochastic general equilibrium, by applying convex duality optimisation.

This is to study the influence from a household’s homogenous preference

of consumption on the dynamical evolutions of wealth and concentration.

Assuming that the household’s income is exogenously given and adopting

simulation. The simulation results suggest that consumption preference

has no significant impact on wealth inequality but on the volatility of



wealth inequality.

Chapter 3 simplifies the endogenous price density dependent on an agent’s

risk aversion. Meanwhile the standard (Pareto) optimal consumption is re-

modified by maximising the utility for both household’s consumption and

the expected saving the end of the dynasty, other than maximizing con-

sumption only. The simulation illustrates that although the homogenous

(heterogenous) risk aversion of a household’s consumption could affect the

progression of wealth concentration but it has no obvious association with

wealth inequality. Moreover the discreteness of heterogenous risk aversion

has no significant impact on wealth inequality throughout the dynastic

horizon, when each household’s income exogenously given.

Chapter 4 endogenizes the labour income and capital gain into the house-

hold revenue. Wage is endogenous from the technology progress (Total

Factor Productivity) of the industry. While capital gain is endogenous

from a completed competitive financial market with zero-profit condi-

tion for financial intermediates. Each household’s income is endogenously

driven by technology progress following the neoclassical economic growth

framework. At each development stage, the attributions of wage and capi-

tal gain follow contingent claim analysis and the consumptions satisfy the

Pareto optimal, inherited from the solution in Chapter 3 with convex du-

ality optimisation. Our structural model not only endogenously features

agent risk aversion but also the productive factor growth, human capital,

TFP and labor force, which further makes it possible the analysis of the

effects of all these factors on wealth inequality as a whole
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Chapter 1

Optimal convergence trading

1.1 Introduction to convergence trading

With the goal of maximizing investors’ terminal utility, we construct a non-threshold

based trading model within which the analytical solution of the optimal trading

weights for daily rebalancing has been derived via stochastic optimal controlling.

Having released the constraint that the cointegrating vector equals to one, we have

proposed a more practical trading strategy that is applicable to much wider range

categories of cointegrated assets. This paper is the first stochastic optimization paper

that carries on extensive out-the-sample experiments on the cross-listed stock portfo-

lios, which facilitates the comparative studies among Chinese and European, UK and

US stock markets. We further test the time-delay arbitrage of the cross-listed stocks

by employing two paralleled trading mechanisms, respectively equity-based contracts

for difference (CFD) and real shares trading. Our empirical results illustrate that

the time-delay arbitrage of the cross-listed stocks strategy based on the analytical

solution of weights yields relatively stable and better performance than that of the

home market index.

Convergence trading strategies have been applied for capturing arbitrage opportuni-

ties of the temporary anomalies between the relative-value of two assets. Which are

proposed to converge to the long-term equilibrium based on the historical repeating.

Follow the studies of Alexander (1999), Jurek and Yang (2007) and Liu and Tim-

mermann (2013) that the individual asset price is random walking although, some
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sorts of their combined price show the cointegration relationship. It implies the coin-

tegration error series (hereafter, relative-price discrepancies) between the asset pair

is stationary around the cointegration equilibrium proposed by Engle and Granger

(1987).

One of the simple pair trading strategy is arguably profitable based on the histori-

cal price dynamics and simple contrarian principles, tested by Gatev et al. (2006).

However, they assert the risk-adjusted returns of convergence trading will converge

to zero accompanying the stock market turns to be more and more efficient. Also,

these arbitrageurs may suffer big losses by the unforeseen permanent anomalies of the

price equilibrium, which is attributed by the significant changes of stock fundamen-

tals. Therefore, on the bilateral developed market, the simultaneous price arbitrage1

of cross-listed stocks attract the increasingly number of funds. It can effectively relief

the unforeseen permanent anomalies of the price equilibrium because of the law of one

price. Also, arbitrageurs profit from the short-lived price discrepancy attributed by

the information spill-over between markets, explained by Gagnon and Karolyi (2010).

However, the information spill-over has been shrunk accompanying the accelerating

evolution of the information technique. It keeps squeezing the available profitability

of the simultaneous price arbitrage of cross-listed stocks. On the contrary, intuitively

the information technique progress seemly cannot easily erase the relative-price dis-

crepancies between cross-listed stocks. Because the noisy trading activities during the

non-overlap time between bilateral markets cannot stop intuitively2. Therefore, it is

such worthy for this study to check whether the time-delay arbitrage of cross-listed

stocks is feasible or not by utilising stochastic optimal control. Probably it may be

one of feasible arbitrage patterns in the nearly strong efficient market.

1The simultaneous price arbitrage can be adopted in an easy way. Because numbers of large cap-
italized stocks express their quotation through American Depositary Receipts (ADRs) and Global
Depositary Receipts (GDRs). Meanwhile the liquidity of the 24-hour over-the-counter (OTC) mar-
kets have being progressed to adequate for trading, liquidity risk to be less.

2In often there is no significant public information released beyond the working time of headquar-
ter of the cross-listed corporate in the home market. The discrepancy of the closing prices between
the home and foreign market is majorly attributed by the time-delay and noise information. The
closing prices of cross-listed stock pair may show (logarithm) cointegration relationship in the long-
run. Therefore, the stock price of home market in 24-hour Over-the-Counter (OTC) market usually
fluctuate around the last closing price until the next day morning auction.
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Despite that Griffin et al. (2010) show that the data-snooping is helpless to profit in

the emerging markets because of the volatile fundamentals. It is also worthy to check

whether the differential market microstructures and noise trading of the time-delay

between emerging markets (e.g. Shanghai and Hong Kong stock exchange) can con-

tribute the profit for their cross-listed stock arbitrage.

Liu and Timmermann (2013) argue that the simple contrarian principles3 is failed

to exploit the short-term trade-off between risk and return in the consequential and

optimal way. Moreover, the equilibrium model shown by Kondor (2009) indicates

that the available profit tends to be eliminated by the intensive competition among

arbitrageurs. They rely on the simple contrarian thresholds, competitively seek to

position them at the largest price discrepancy point. However, most of them neglect

their current fleeting arbitrage opportunities. While this drawback can be released

by the analytical solution of trading weight in this paper. Because it can continu-

ally and dynamically advise investors to positions where required to be rebalance to,

throughout the whole trading horizon.

Without capital constraints, the relative-price arbitrageurs tend to be over aggressive

when the relative-price discrepancy diverge further and further, Grossman and Miller

(1988). In addition, the empirical evidence of He and Krishnamurthy (2011) shows

that the weak credit or liquidity may crash the financial positions of trade brokers.

Therefore, the common relative-price arbitrageur might be enforcedly wind up their

positions because of lacking spare capitals for margin call. Therefore, we involve the

risk aversion level in the exponential utility function to scale the capital constrain to

control the liquidity risk, similarly as the works of Tourin and Yan (2013) and Liu

and Timmermann (2013).

Comparing with the recent stochastic optimal convergence trading models such as

the studies of Mudchanatongsuk et al. (2008) and Liu and Timmermann (2013), we

extend the cointegrating vector of asset pairs from one to any figure. It theoretically

3One example of simple contrarian principles, is to position by setting 2 times standard deviations
of the relative-price discrepancy series. The fixed threshold leads the aggregated portfolio wealth
and trading weights piecewise changes.
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solids the stochastic optimal convergence trading is potentially suitable for a wide

range of asset categories (e.g. relative-price arbitrage between the paralleled stocks

under the same industrial index). Also it is the rare study related to time-delay

arbitrage of cross-listed stocks with abundant empirical analysis that covers major

developed and emerging stock markets. Both in-the-sample and out-the-sample tests

with their pivotal performance indicators have been presented.

The section 2.1 interprets and clarifies the assumption that stock volatility can be de-

composed to three components reflecting market, index (industrial) and firm-specific

information. The section 2.2 shows the stochastic differential equation on expressing

cointegrated asset dynamic with corresponding discrete form as well. The section

2.3 presents the analytical solution of daily trading weight which can be adopted on

the relative-price arbitrage. Section 3 carries on one complete empirical experiment

of the analytical solution obtained in 2.3 on the time-delay arbitrage of cross-listed

stocks. In specific, the section 3.1 express the wide range of portfolios with specific

stock selection criteria. The section 3.2 and 3.3 explain the feasible mechanisms of

real trading applications and the constrained capital utilization. At last but not least,

the section 3.4 shows each cross-listed stock portfolio performance of their time-delay

arbitrage by employing the analytical solution, also the key indicators can benchmark

index have been supplied.

1.2 Volatility Decomposition

According to Efficient Market Hypothesis (EMH) Fama (1970) stock return reflects

all available information related to the specific firm, index and market level. The

abnormal returns of stocks can be decomposed into systematic and idiosyncratic

components based on the CAPM augured by Sharpe (1964) and the five-factor asset

pricing model Fama and French (2017). The idiosyncratic component of volatility

is driven by the firm level information while market and index information steer the
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systematic volatility component. Let us define

σ2
s = β2σ2

sys + σ2
idi (1.1)

where σ2
sys is the systematic risk component and σ2

idi is the idiosyncratic risk compo-

nent. Extending (1.1) to be

σ2
s = (1− wx)σ2

sys + wxσ
2
sys + (β2 − 1)σ2

sys + σ2
idi (1.2)

where (1 − wx)σ2
sys is the stock return volatility component driven by market level

information, wxσ
2
sys is the volatility component driven by index level information, and

(β2−1)σ2
sys and σ2

idi are driven by firm level information. (β2−1)σ2
sys and σ2

idi can be

respectively treated as exogenous and endogenous volatility component correspond-

ing the firm level information. Specifically, (β2 − 1)σ2
sys is the systematic volatility

component is transmitted to the firm level component based on the intrinsic charac-

teristics of the firm through the adapter coefficient β2 − 1.

It can be argued that the stock return volatility component driven by market level

information is heavily influenced by the current state and the expectations of the

macroeconomics factors of the economy, Engle and Rangel (2008) and Conrad and

Loch (2015). This argument is represented by factor (1−wx)σ2
sys. On the other hand,

it has been shown the industry (index) level information also possesses sizeable power

on stock returns wxσ
2
sys, Roll (1988) and Piotroski and Roulstone (2004).

Let us assume a cross listed stock. The firm level information can be assumed to have

the similar effect to the stock volatility in the two markets. However, this cannot be

said for the other components. Regional cultures, the market participant charac-

teristics (e.g. the proportions of institutional and retailing investors) and structural

factors (e.g. currency fluctuation, ex-dividend-date and tax-induced heterogeneity)

differ between markets. Thus, the same news can derive differential magnitudes of

sentiment and volatility of stock returns Froot and Dabora (1999), Baker et al. (2012)

and Corredor et al. (2013). Additionally, there is information spillover (lead-lag ef-

fects) among the indices and the markets explained by Singh et al. (2010). In case

of different stocks that belong to the same index the same logic applies and there is

5



also information spillover between these stocks King (1966), Ramnath (2002), Hou

(2007) and Kelly and Ljungqvist (2012).

Consequently, we assume that the observable stock price St assumed compositing

three components, S(t) = f(t) + in(t) + M(t). M(t) is the observable whole market

that stock price belonging to (e.g FTSE ALL Share Index), f(t) is the price part

purely reflecting the endogenous (unique) information of the firm fundamentals and

in(t) reflects the endogenous information derived by the fundamentals of each firm

in the index f(t) and in(t) are unobservable at time t. The cross-sectional informa-

tion transmitted from other firms under the identical index is excluded in f(t) but

involved in in(t). Similarly, the cross-sectional information transmitted from other

indexes under the same stock market is not contained in in(t) but in M(t). If define

IN(t) as the observable index price (e.g. FTSE100) then this can be decompose to

IN(t) = in(t) +M(t).

Based on the above exposition, each stock price can be presented as

dS(t)

S(t)
= µdt+ σfdZ1(t) + σindZ2(t) + σMdZ3(t) (1.3)

where µ is drift rate of price dynamics, σf and σin are the volatility factors related

to the endogenous information from the fundamentals of the specific firm and in-

dex respectively. σM is the volatility factor related to the composite information of

the whole market. σfdZ1(t), σindZ2(t) and σmdZ3(t) are the diffusion components

corresponding to the information set reflected by series f(t), in(t) and M(t) respec-

tively. They mutually determine the stochastic fluctuation of each stock return, the

cross-sectional information transmitted from other firms (indexes) under the identical

index (market) is excluded in f(t), (in(t)). In addition, the information of the specific

firm (index) spilling into the in(t), (M(t)) can be effectively diluted if there are many

stocks (indexes) paralleled under the same index (market), this convinces the three

diffusion components can be independent at least in a large volume market. Hence it

results Z1(t), Z2(t) and Z3(t) are independent Brownian motions.

Following (1.3) the information of the specific firm (index) transmitted to in(t), (M(t))

can be effectively diluted if there are large number of stocks (indexes) trading under

6



the same index (market). Then σf and σin can be approximated as the
√
N fold

volatility of the change rates of the unobservable processes f(t) and in(t). They can

be estimated through formulas (1.4) and (1.5) (the formal proof see Apeendix)

σin =
√
N · | Var(RIN)− Var(RM) | (1.4)

σf =
√
N · | Var(RS)− Var(RIN) | (1.5)

where RS, RIN and RM are the price returns of the observable series S(t), In(t) and

M(t) and N is the length of the sample estimation. The diffusion terms σfdZ1(t),

σindZ2(t) at each continuous time point could switch between a positive and neg-

ative. If V ar(RS) < V ar(RIN) < V ar(RM) then these two diffusions expectation

are negative. This means that the intrinsic properties (endogenous information) of

the fundamentals of the specific firm and index weaken the volatility transmitted

from the market level. If V ar(RS) > V ar(RIN) > V ar(RM) then then the two

diffusions expectation are positive. In that scenario, the intrinsic properties of the

specific firm and index strengthen the volatility transmitted from the market level.

If V ar(RIN) > V ar(RM) and V ar(RIN) > V ar(RS), then the expectation diffusion

σfdZ1(t) in that specific period is negative but that of σindZ2(t) is positive. This im-

plies the intrinsic properties of the fundamentals of the index strengths the volatility

transmitted from the market (e.g. the performance of the Dow Jones U.S. Financials

Index during the 2008 financial crisis) while the endogenous information from the

firm fundamentals of the stabilize their fluctuation.

1.3 Optimal trading on mean-reverted spread

1.3.1 Mean-reverted spread

A stock pair is probably cointegrated when both stock absorbing the aligned informa-

tion from their similar fundamentals. The linear combination of cointegrated series

is a stationary process as described by Engle and Granger (1987). The logarithms of
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stock prices A(t) and B(t) are cointegrated if they satisfy

x(t) = ln(A(t))−Q ln(B(t)) (1.6)

dx(t) = k(θ(t)− x(t))dt+ ηdW (t) (1.7)

x(t) is the cointegration error (relative price changing) while (1,−Q) is the cointegrat-

ing vector. The equation (1.7) ensures the spread x(t) as a stationary process, it keeps

fluctuating around the cointegrating equilibrium θ in the long-term horizon. The dis-

tance θ−x(t) is the equilibrium error correction term. θ(t)−x(t) > 0 (θ(t)−x(t) < 0)

implies the price-spread between asset A(t) and B(t) going to be larger (smaller). k

is the moving speed of price spread around the cointegration equilibrium, η is the

volatility factor and W (t) is a standard Brownian motion. The process (1.7) captures

the feature of mean reversion with stochastic fluctuations4

Rewriting (1.6) as

A(t) = ex(t)B(t)Q (1.8)

By applying Itô formula on Eq.(1.8), it gives

dA(t) = ex(t)B(t)Qdx(t) +
1

2
ex(t)B(t)Q(dx(t))2 +Qex(t)B(t)Q−1dB(t)

1

2
Q(Q− 1)ex(t)B(t)Q−2(dB(t))2 +Qex(t)B(t)Q−1dx(t)dB(t)

(1.9)

Denoting the asset B satisfies expression in Eq.(1.3) as

dB(t)

B(t)
= µdt+ σfdZ1(t) + σindZ2(t) + σMdZ3(t) (1.10)

The fact that the cross-sectional information is being transmitted between stocks

(indexes) over the relevant index (market) is evidenced by Singh et al. (2010), King

(1966), Hou (2007) and Ramnath (2002). Assuming that the relative changing rate

of price (spread x(t)) can reflect the information transmission between cointegrated

4Alternatively, instead of the equation (1.3) the Cox-Ingersoll-Ross, the GARCH diffusion, Non-
Gaussian Ornstein-Uhlenbeck processes can be similarly applied by Gregory et al. (2010). In this
study, we follow the classic Ornstein-Uhlenbeck processes to easily maintain the analytical tractabil-
ity.
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stocks over firm, index and market levels. The correlations between the diffusion

terms in the SDE (1.7) and every diffusion of SDE (1.10) are defined by

E(dZi(t)dW (t)) = ρidt, i = 1, 2, 3 (1.11)

In addition the relationship among volatility factors of the SDE (1.10) does satisfy

σ2
B = σ2

f + σ2
in + σ2

M (1.12)

By plugging (1.7), (1.10) and (1.12) into (1.9), it yields

dA(t)

A(t)
=

[
k(θ(t)− x(t)) +Qµ+

1

2
η2 +

1

2
Q(Q− 1)σ2

B

]
dt

+ηQ(σfρ1 + σinρ2 + σMρ3)dt+ ηdW (t)

+Q(σfdZ1(t) + σindZ2(t) + σMdZ3(t))

(1.13)

Suppose that the cointegration relationship between a stock pair is consistent with

the volatility decomposition (1.1) and (1.2) and stock B is the lead stock (host).

Each stock price change is incorporated on the fundamental information referred to

the specific firm, index and market levels. The volatility factors are related to the

endogenous fundamental information from the firm, index and market levels. Except

σ2
B (the N fold of variance of the return rate of stock B) and ρi, the rest parameters

of the SDE (1.13) are linked from the process (1.3), (1.6) and (1.7). The lag stock

price A can be presented by (1.13) and their cointegration relationship with stock B.

If writing the relative price dynamics of stock A in a discrete format, it can benefit us

more obviously to see the relationship between stock pair based on their cointegration

relationship. Reordering (1.13) and plugging (1.7), (1.10) and (1.12) into (1.9), obtain

dA(t)

A(t)
= dx(t) +Q

dB(t)

B(t)
+Q(σfρ1 + σinρ2 + σMρ3)dt

+
1

2
η2dt+

1

2
Q(Q− 1)σ2

Bdt

(1.14)

Following the maximized log-likelihood estimation, the estimator of η in the process

(1.7) can be given as

η =

√√√√ T∑
t=0

[(x(t+ 1)− x(t))− 1

T
k(θ − x(t))]2 (1.15)
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It can be approximated in further as

η =

√√√√ T∑
t=0

(x(t+ 1)− x(t))2 − 1√
T
k

(
θ − 1

T

T∑
t=0

x(t)

)

=

√√√√ T∑
t=0

T · Var(∆x(t))− 1√
T
k

(
θ − 1

T

T∑
t=0

x(t)

) (1.16)

In the long horizon T , x(t) fluctuates around its long-term equilibrium θ, it has

θ ≈ 1

T

T∑
t=0

x(t) (1.17)

Therefore, combining (1.16) and (1.17) yield us that

η ≈

√√√√ T∑
t=0

T · Var(∆x(t)), ∆x(t) ∼ 0 (1.18)

The volatility factor can be approximated as (see appendix)

σB ≈
√
N · Var(Ri

B(t)) (1.19)

σB can be estimated through a log likelihood estimator. However, the estimation will

lack accuracy (diffusion ambiguity). Based on the leading-lag effect the recent short-

term information can be transmitted between the cointegrated stocks and influence

their price. We can use the short-term process of return rate of stock B, Ri
B(t)

to estimate σB following (1.19). The subscript i stands for the most recent short

term with sampling length N . Recent data should provide computationally efficient

superior estimations on the volatility factor.

The estimation of η will be based on the long-term process ∆xj(t), subject to (1.18).

The subscript j denotes the long-term process with sampling length T . In addition,

the appendix shown that

σM =
√
T · Var(RM(t)) (1.20)

|σf | =
√
T · |Var(RS(t))− Var(RIN(t))| (1.21)

|σin| =
√
T · |Var(RIN(t))− Var(RM(t))| (1.22)
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Subject to (1.20), (1.21) and (1.22), it can be approximated that

ρ1σfη = Tρ1

√
Var(Rj

f (t)) ·
√

Var(∆xj(t)) = T · Cov(Rj
f (t),∆x

j(t)) (1.23)

ρ2σinη = Tρ2

√
Var(Rj

in(t)) ·
√

Var(∆xj(t)) = T · Cov(Rj
in(t),∆xj(t)) (1.24)

ρ3σMη = Tρ3

√
Var(Rj

M(t)) ·
√

Var(∆xj(t)) = T · Cov(Rj
M(t),∆xj(t)) (1.25)

Overall, substituting (1.18)∼(1.25) into (1.14), the discrete form of changing rate of

stock A can be expressed by the return rate of stock B and the cointegration error,

Rc
A(t) = (∆xc(t) +QRc

B(t)) +
N

2
Q(Q− 1)Var(Ri

B(t)) +
T

2
Var(∆xj(t))

+QT
[
Cov(Rj

f (t),∆x
j(t)) + Cov(Rj

in(t),∆xj(t)) + Cov(Rj
M(t),∆xj(t))

]
j = 1, 2, 3 · · · c︸ ︷︷ ︸

T

i = t−N + 1, t−N + 2, t−N + 3 · · · c︸ ︷︷ ︸
N

, N � T

Cov(Rj
f (t),∆x

j(t)) = ρ1

√
Var(∆Xj(t)) ·

√
| Var(Rj

B(t))− Var(Rj
IN)(t) |

Cov(Rj
in(t),∆xj(t)) = ρ2

√
Var(∆Xj(t)) ·

√
| Var(Rj

IN(t))− Var(Rj
M)(t) |

(1.26)

where RA(t), RB(t) and RM(t) are the observable return rates of the stock A, stock

B and the market index, that stock B belongs to. ∆x(t) is the changing rate of the

cointegration error where Rf (t) and Rin(t) are the return rates of the unobservable

processes f(t) and in(t), discussed in section (1.2). The subscript c denotes the cur-

rent step and j indicates the long-term process up to the current step c with sampling

length T . The subscript i indicates the short-term process up to current step with

sampling length N .

In (1.26), there are four components dominating the current-step return rate Rc
A(t).

The first one is ∆xc(t)+QRc
B(t) implies that ∆xc(t) and Rc

B(t) mutually synchronizes

Rc
A(t) in the current step. If considering the long-term case where E(∆xj(t)) ∼ 0,

then E(∆xj(t) + QRj
B(t)) = QE(Rj

B(t)). That reveals RA is approximately Q times

of RB in the long run.

The second term Var(Ri
B(t)) is the short-term lead-lag factor. It implies the current

step return rate of stock A, Rc
A(t) is affected by the volatility of the latest N steps

return rate process of stock B, Ri
B(t). This is consistent with the price lead-lag effect
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mentioned by Hou (2007) that it takes a few steps for the endogenous information of

stock B to be transmitted to A and influencing its return rate.

The third term Var(∆xj(t)) is the long-term cointegration volatility factor. The co-

efficient T/2 illustrates the longer (more durable) is the cointegration relationship

between two stocks, the more influential will be the volatility of the long-term pro-

cess of the cointegration error (relative price) to the current-step return rate of stock

A.

The last component Cov(Rj
f (t),∆x

j(t)) + Cov(Rj
in(t),∆xj(t)) + Cov(Rj

M(t),∆xj(t))

is a long-term commovement factor, refeclting the long-term commovement between

Rj
f (t), R

j
in(t) and Rj

M(t) with ∆xj(t) affect the current step return Rc
A(t). This is

consistent to the empircal evidence provided by King (1966), Ramnath (2002) and

Kelly and Ljungqvist (2012). The long-term unique information of stock B (stock B

hosts these information) from the fundamentals of the firm, index and market level

strengthens the changes of relative price spread ∆xj(t). The greater Q reflects the

more significant influencing power.

1.3.2 Optimal trading weight

The pair trading is consistent to the self-financing, h(t) and −h(t) respectively refers

to the trading weight of stock A and B. The wealth dynamics of each trading pair

follows
dv(t)

v(t)
= h(t)

(
dA(t)

A(t)
− dB(t)

B(t)

)
(1.27)

By substituting (1.10) and (1.13) into (1.27), the wealth dynamic of trading pair is

specified as

dv(t)

v(t)
= h(t)

[
k(θ(t)− x(t)) + µ(Q− 1) +

1

2
η2 +

1

2
Q(Q− 1)σ2

B

]
dt

+h(t)ηQ(σfρ1 + σinρ2 + σMρ3)dt+ h(t)ηdW (t)

+h(t)(Q− 1)(σfdZ1(t) + σindZ2(t) + σMdZ3(t))

(1.28)

In addition, the utility at the trading termination requires to be maximized

u(t, T ) = max
h(t)

Et

[
1

1− γ
V (T )1−γ

]
(1.29)
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where γ denotes the coefficient of risk aversion.

Although the specific form of utility function is unknown at current position. It can

be treated as a continuous stochastic optimisation problem. In specific, denoting the

each current step as t and the forward step as τ . The spread x(t) and stock price A(t)

and B(t) reflect the whole available information adaptive to t, denoted as Ft. Due to

forthcoming information is unknown, we continuously target the utility of next step

achieving to the level that equals to the maximization of current step

u(τ) = max
h(t)

Et [u(t) | Ft] , t < τ t ∈ (0, T ) (1.30)

Investor’s utility u at each time point should be decided by the portfolio wealth v and

the spread price x, subject to Eq.(1.7) and (1.28) and following dynamic program-

ming, it contributes the Hamilton-Jacobi-Bellman (HJB) that

∂u

∂t
+max

h
E{1

2

∂u

∂2v
ϕ3h

2v2 +
∂u

∂v∂x
ϕ1hv + [k(θ − x) + ϕ2]

∂u

∂v
hv

+k(θ − x)
∂u

∂x
+

1

2

∂u

∂2x
η2} = 0

ϕ1 = η2 + (Q− 1)(σfρ1 + σinρ2 + σMρ3)η

ϕ2 = µ(Q− 1) +
1

2
η2 +

1

2
Q(Q− 1)σ2

B +Q(σfρ1 + σinρ2 + σMρ3)η

ϕ3 = η2 + (Q− 1)2σ2
B + 2(Q− 1)(σfρ1 + σinρ2 + σMρ3)η

(1.31)

Taking the first-order condition on the HJB, obtain the initial solution of optimal

trading position of stock A

h∗ = −
ϕ1

∂u
∂v∂x

+ [k(θ − x) + ϕ2]∂u
∂v

vϕ3
∂u
∂2v

(1.32)

Plugging (1.32) back into the HJB

1

2

{
ϕ1

∂u

∂v∂x
+ [k(θ − x) + ϕ2]

∂u

∂v

}2

− ϕ3[
∂u

∂t
+ k(θ − x)

∂u

∂x

+
1

2

∂u

∂2x
η2]

∂u

∂2v
= 0

(1.33)

The solution of ∂u
∂v∂x

, ∂u
∂v

and ∂u
∂2v

cannot be obtained directly from (1.33). Thus, as

similar as Korn and Kraft (2002), the separation of variables approach requires to be
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adopted.

Initially conjecturing

u(t, x, v) = v1−γξ(t)eα(t)x+β(t)x2 (1.34)

where α(t), β(t) and ξ(t) are the separated variables which at termination α(T ) =

β(T ) = 0 and ξ(T ) = (1 − γ)−1, to recover the utility function to be identical as

(1.29).

Substituting (1.34) and corresponding derivatives ∂u
∂t

, ∂u
∂v

, ∂u
∂x

, ∂u
∂v∂x

, ∂u
∂2v

and ∂u
∂2x

into

(1.33), it gives

[ϕ3γ
∂β

∂t
+ 2ϕ2

1(1− γ)β2 − 2ϕ3γkβ + 2ϕ3γη
2β2 − 2ϕ1(1− γ)kβ

+
1

2
(1− γ)k2]x2 + [ϕ3γ

∂α

∂t
+ 2ϕ2

1(1− γ)αβ − ϕ3γkα + 2ϕ3γη
2αβ

+2ϕ1(1− γ)kθβ + 2ϕ3γkθβ + 2ϕ1ϕ2(1− γ)β − (1− γ)k2θ

−ϕ2(1− γ)k − ϕ1(1− γ)kα]x+ [
1

2
(1− γ)(k2θ2 + ϕ2

2 + 2kϕ2θ)

+(1− γ)ϕ1αkθ + (1− γ)ϕ1ϕ2α +
γ

ξ
ϕ3
∂ξ

∂t
+ ϕ3γkθα +

1

2
(1− γ)ϕ2

1α
2

+γϕ3η
2β +

1

2
γϕ3η

2α2] = 0

(1.35)

Subjected to (1.35), the polynomial corresponding to the coefficient of x2 can be

re-arranged to be

∂β

∂t
+

2ϕ2
1(1− γ) + 2ϕ3γη

2

ϕ3γ
(β − β+)(β − β−) = 0 (1.36)

it is an Riccati equation and β roots satisfy an quadratic equation

β2 − ϕ1(1− γ)k + ϕ3γk

ϕ2
1(1− γ) + ϕ3γη2

β +
(1− γ)2k

4ϕ2
1(1− γ) + 4ϕ3γη2

= 0 (1.37)

The roots can be generated by(
β+

β−

)
=
ϕ1(1− γ)k + ϕ3γk ±

√
ϕ3γ2(ϕ3 − 2ϕ1 + η2) + ϕ3γ(2ϕ1 − η2)

2ϕ2
1(1− γ) + 2ϕ3γη2

(1.38)

(1.36) can be rewritten to be

d ln | β − β+

β − β−
| = −2ϕ2

1(1− γ)− 2ϕ3γη
2

ϕ3γ
(β+ − β−)dt (1.39)
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Integrating bothside of (1.39) and exsiting β(T ) = 0, it gives∫ T

0

d ln | β − β+

β − β−
| =

∫ T

0

−2ϕ2
1(1− γ)− 2ϕ3γη

2

ϕ3γ
(β+ − β−)dt (1.40)

ln | β − β+

β − β−
| − ln | β+

β−
| = 2ϕ2

1(1− γ) + 2ϕ3γη
2

ϕ3γ
(β+ − β−)(T − t) (1.41)

From (1.41), the expression of β(t) can obtained as

β(t) =
1− e

2ϕ21(1−γ)+2ϕ3γη
2

ϕ3γ
(β+−β−)(T−t)

β−
β+
− e

2ϕ21(1−γ)+2ϕ3γη
2

ϕ3γ
(β+−β−)(T−t)

β− (1.42)

By substituting β(t) roots, (1.38) into (1.42), β(t) is solved out as

β(t) =
k(a1 − a3)

a3

[1 +
2a2

a1 − a2 − (a1 + a2)e2a2a4k(T−t) ]

a1 = (1− γ)ϕ1 + γϕ3

a2 =
√
γ2ϕ3(ϕ3 − 2ϕ1 + η2) + γϕ3(2ϕ1 − η2)

a3 = 2(1− γ)ϕ2
1 + 2γϕ3η

2

a4 =
γ

ϕ3

(1.43)

On another side of (1.35), the polynomial corresponding to the coefficient of x can be

re-arranged to be

γϕ3
∂α

∂t
+ b1α + b2 = 0

b1 = 2ϕ2
1(1− γ)β + 2ϕ3γη

2β − ϕ3γk − ϕ1(1− γ)k

b2 = [2ϕ3γkθ̂ + 2ϕ1(1− γ)kθ̂ + 2ϕ1ϕ2(1− γ)]β − ϕ2(1− γ)k − (1− γ)k2θ̂

(1.44)

rewritting (1.44) as

dα = (− b1

γϕ3

α− b1

γϕ3

)dt (1.45)

multiplying e
∫ t
0

b1
γϕ3

ds
both side, it gives

e
∫ t
0

b1
γϕ3

ds
dα = − b1

γϕ3

e
∫ t
0

b1
γϕ3

ds
αdt− e

∫ t
0

b1
γϕ3

ds b2

γϕ3

dt (1.46)

Thus,

de
∫ t
0

b1
γϕ3

ds
α = −e

∫ t
0

b1
γϕ3

ds b2

γϕ3

dt (1.47)
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integrating bothside of (1.47) from t to T

α(T )e
∫ T
0

b1(s)
γϕ3

ds − α(t)e
∫ t
0
b1(s)
γϕ3

ds
= −

∫ T

t

b2(τ)

γϕ3

e
∫ τ
0
b1(s)
γϕ3

ds
dτ (1.48)

Subjected to (1.48), recognizing α(T ) = 0, then it yields

α(t) =

∫ T

t

b2(τ)

γϕ3

e
∫ τ
t
b1(s)
γϕ3

ds
dτ, t < s < τ < T (1.49)

As α(t) and β(t) are solved out, Eq. (1.43) and (1.49), then subjected to (1.34), the

specific form of partial derivatives can given by

∂u

∂v∂x
= (1− γ)(α + 2βx)ξeαx+βx2v−γ (1.50)

∂u

∂v
= (1− γ)ξeαx+βx2v−γ (1.51)

∂u

∂2v
= −γ(1− γ)ξeαx+βx2v−γ−1 (1.52)

Finally, taking (1.50), (1.51) and (1.52) back into (1.32), the closed-form solution of

optimal trading weight of stock A is obtained

h∗(t) =
k(θ − x(t)) + (α(t) + 2β(t)x(t))ϕ1 + ϕ2

γϕ3

(1.53)

At current position, beyond the convergence speed k and error correction term θ−x(t),

other factors involving in the obtained solution h∗ still have no tangible economic

meaning, aim for this the discrete form is to attempt.

Plugging the specific form of ϕ1, ϕ2 and ϕ3 into (1.53), gives

h∗(t) =
(Q− 1)(σfρ1 + σinρ2 + σMρ3)η + η2

γ[2(Q− 1)σ1η + η2 + (Q− 1)2σ2
s ]

(α + 2βx(t))

+
k(θ − x(t)) + 1

2
η2 + µ(Q− 1) + 1

2
Q(Q− 1)σ2

B +Q(σfρ1 + σinρ2 + σMρ3)η

γ[2(Q− 1)σ1η + η2 + (Q− 1)2σ2
s ]

(1.54)
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Substituting the equation substituting (1.18)∼(1.25) into (1.54), after arrangements,

the discrete expression of the optimal trading weight can be obtained

h∗(t) = {γ[Nπ2
2Var(Ri

B(t)) + TVar(∆xj(t))

+2Tπ2(Cov(Rj
f (t),∆x

j(t)) + Cov(Rj
in(t),∆xj(t)) + Cov(Rj

M(t),∆xj(t)))]}−1

·{k(θ − xc(t)) + Tπ1Var(∆xj(t)) + π2µi +Nπ3Var(Ri
B(t))

+Tπ4(Cov(Rj
f (t),∆x

j(t)) + Cov(Rj
in(t),∆xj(t)) + Cov(Rj

M(t),∆xj(t)))}

π1 =
1

2
+ α(t) + 2β(t)xc(t), π2 = Q− 1

π3 =
1

2
Q(Q− 1), π4 = Q+ (Q− 1)(α(t) + 2β(t)xc(t))

(1.55)

(1.55) reveals the coefficient of risk aversion, γ, the long-term cointegration volatility

factor Var(∆xj(t)), the short-term trend of stock B return µi, the short-term lead-

lag factor Var(Ri
B(t)) and the long-term commovement factor Cov(Rj

f (t),∆x
j(t)) +

Cov(Rj
in(t),∆xj(t)) + Cov(Rj

M(t),∆xj(t))) are determinants of the optimal trading

weight on stock A at each step. Although the price changing component attributed

by fundamental and industrial index level Rj
f (t) and Rj

in(t) are unobservable, the

long-term commovement factors can be estimated via (1.26).

Usually in the cross market arbitrage trading, the cointegrating vector Q ∼ 1 then

(1.55) can be simplified to be

h∗(t) =
π1

γ
+

1

γVar(∆xj(t))
[
k(θ − xc(t))

T
+ Cov(Rj

f (t),∆x
j(t))

+Cov(Rj
in(t),∆xj(t)) + Cov(Rj

M(t),∆xj(t)))]

(1.56)

Comparing (1.56) with (1.55), the short-term trend of return rate of stock B and the

short-term lead-lag factor no longer affect the optimal weight. This implies that cross

market trading pair converge every fast. Implicitly, the spill-over effect between in-

traday prices related to firm-level cross-sectional information almost disappears. Q is

approximately equal to one for the stock pair that have the unanimous fundamentals.

This is supported by the studies such as Alsayed and McGroarty (2012) referring to

cross-listed stocks in US. The literature also supports the firm-level cross-sectional

information of the host stock can be transmitted to the lag stock in an extremely
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short time when it comes to cross-listed stocks evidenced by Chen et al. (2009), they

suggest if the cross-listed stocks are observed with a delay above 30 minutes, then the

lead-lag effect is not statistically significant by Granger causality test. In addition

Gagnon and Karolyi (2010) estimate through panel-regression analysis to show the

daily-lead-lag coefficient is almost zero. Based on these studies, it is safe to assume

that for cross-listed stocks, setting Q = 1. Subject to (1.56) it is worth to note when

the cointegration relationship Var(∆xj(t)) is more volatile, the optimal weight will be

reduced. The similar condition will be taken place when investor is more risk averse

(the relative lower coefficient of risk aversion γ) or when the long-term commovement

factor between two stocks Cov(Rj
in(t),∆xj(t)) + Cov(Rj

M(t),∆xj(t)) is decreasing.

1.4 Trading test data

In this section an empirical application of the previous methodology is presented. The

application is focused on cross-listed stock pairs between Eurozone vs. US, UK vs.

US and the Shanghai vs. Hong Kong Stock Exchanges. The host stock is named as

lead stock and the foreign listed stock is named lag stock. Three different portfolios

consisted by the cross-listed stocks (Eurozone-US, UK-US and China A-H share) will

be constructed and evaluated through the proposed methodology. The periods of

trading test under study are presented below in

Table 1.1: The first period of trading test

Cross-listed trading portfolio In-Sample Out-of-Sample
UK-US 14/07/2009-26/07/2011 27/07/2011-12/08/2013
Eurozone-US 14/07/2009-19/07/2011 20/07/2011-29/07/2013
China A-H share 13/07/2009-31/08/2011 01/09/2011-14/10/2013

Table 1.2: The second period of trading test

Cross-listed trading portfolio In-Sample Out-of-Sample
UK-US 27/07/2011-12/08/2013 13/08/2013-24/08/2015
Eurozone-US 20/07/2011-29/07/2013 30/07/2013-13/08/2015
China A-H share 01/09/2011-14/10/2013 15/10/2013-16/11/2015
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In each pair the same amount of capital will be dedicated. The selected cross-

listed stocks satisfy two main criteria. Their historical closing price data are available

for the examined period under study, their average daily trading volumes is greater

than 150000, to avoid the trading crash on prices attributed by this strategy (for the

historical trading volume of each stock during In-the-sample period, see the Appendix

C) . The second criteria is the log-price of each cross-listed stock pair are cointegrated

during the relevant in-sample periods, keep matched to process (1.6) and (1.7). The

cointegration test has been done through the Engle-Granger approach at 0.05 signif-

icant level.

Concerning the Eurozone-US portfolio, the lead stocks are listed on DAX, CAC40,

FTSE-MIB, AEX or ESTX50 stock indices and are denominated in Euros. The EU-

RONEXT 100 index will represent the Eurozone host market. The lag stocks are

listed either on NYSE or the NASDAQ stock indices and are traded through the

ADR denoted in US dollars. Concerning the UK-US portfolio, the UK stocks are

listed on FTSE 100, priced in GBP and the FTSE All-Share index represents the

host market. The US stocks are similar with the Eurozone - US portfolio. In the last

portfolio, the A shares listed on the Shanghai Stock Exchange 180 index (SSE180) is

the lead stock denominated in CNY while the Shanghai Stock Exchange Composite

Index (SSE) represents the host market. Their lag stocks are traded in the Hong

Kong Stock Exchange and are priced in Hong Kong dollars, they are named as H

shares. The selected cross listed stocks that constructed by the three portfolios are

presented in the Table 1.3 ∼ 1.6
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Table 1.3: Cross-listed stock trading in Eurozone-US portfolio

Stock Name Ticker(lead) Ticker(lag)
AEGON AGN.AS AEG
Alcatel-lucent ALU.PA ALU
Anheuser-Busch InBev SA ABI.BR BUD
ArcelorMittal SA MT.AS MT
Eni SpA ENI.MI E
Fresenius Medical Care FME.DE FMS
Orange ORA.PA ORAN
RELX NV REN.AS RENX
Sanofi SAN.PA SNY
SAP SE SAP.DE SAP
STMicroelectronics NV STM.MI STM
Telecom Italia S.p.A TIT.MI TI
Tenaris S.A TEN.MI TS
TOTAL S.A FP.PA TOT
Unilever UNA.AS UN
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Table 1.4: Cross-listed stock trading in UK-US portfolio

Stock Name Ticker(lead) Ticker(lag)
ARM holdings plc ARM.L ARMH
AstraZeneca plc AZN.L AZN
Barclays plc BARC.L BCS
BHP Billiton plc BLT.L BBL
BP plc BP.L BP
British American Tobacco plc BATS.L BTI
BT Group plc BT-A.L BT
Carnival plc CCL.L CUK
Diageo plc DGE.L DEO
GlaxoSmithKline plc GSK.L GSK
HSBC Holding plc HSBA.L HSBC
InterContinental Hotels Group IHG.L IHG
Lloyds Banking Group plc LLOY.L LYG
National Grid plc NG.L NGG
Pearson plc PSON.L PSO
Prudential plc PRU.L PUK
Randgold Resources Ltd RRS.L GOLD
Rio Tinto plc RIO.L RIO
Royal Bank of Scotland Group RBS.L RBS
Royal Dutch Shell plc-A RDSA.L RDS-A
Royal Dutch Shell plc-B RDSB.L RDS-B
Shire plc SHP.L SHPG
Smith&Newphew plc SN.L SNN
Unilever plc ULVR.L UL
Vodafone Group plc VOD.L VOD

Table 1.5: Cross-listed stock trading in China A-H share portfolio

Stock Name Ticker(lead) Ticker(lag)
Air China Ltd 601111 0753
Aluminum of China Co Ltd 601600 2600
Anhui Conch Cement Co Ltd 600585 0914
Bank of China Ltd 601988 3988
Bank of Communication Co Ltd 601328 3328
China CITIC Bank Co Ltd 601998 0998
China Eastern Airlines Co Ltd 600115 0670
China Life Insurance Co Ltd 601628 2628
China Merchants Bank Co Ltd 600036 3968
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Table 1.6: Cross-listed stock trading in China A-H share portfolio

Stock Name Ticker(lead) Ticker(lag)
China Shenhua Energy Co Ltd 601088 1088
China Southern Airlines Co Ltd 600029 1055
Industrial&Commercial Bank of China 601398 1398
Tsingtao Brewery Co Ltd 600600 0168
Zijin Ming Group Co Ltd 601899 2899

In this trading application, the stock prices of the US and H shares have been

converted back to the currencies of their relevant host market based on the relevant

exchange rate. After converting the currency exchange rate, the lag stock price series

also need to be adjusted by the convert ratio. Convert Ratio shows how many shares

of the lag stock trade as a single share of the host stock during corresponding in-the-

sample trading period.

Table 1.7: Convert Ratio of trading stocks in Eurozone-US portfolio

Stock Name Convert Ratio(1st perriod) Convert Ratio(2nd period)
AEGON 0.98 0.98
Alcatel-lucent 1.04 1.04
Anheuser-Busch InBev SA 1.01 1.02
ArcelorMittal SA 0.95 0.97
Eni SpA 0.49 0.49
Fresenius Medical Care 1.96 1.96
Orange 0.98 0.98
RELX NV 0.90 0.94
Sanofi 2.00 1.99
SAP SE 1.01 0.99
STMicroelectronics NV 0.91 0.93
Telecom Italia S.p.A 0.10 0.10
Tenaris S.A 0.49 0.50
TOTAL S.A 0.97 0.97
Unilever 0.99 1.00
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Table 1.8: Convert Ratio of trading stocks in UK-US portfolio

Stock Name Convert Ratio(1st perriod) Convert Ratio(2nd period)
ARM holdings plc 32.89 33.12
AstraZeneca plc 196.43 198.7
Barclays plc 24.66 24.90
BHP Billiton plc 43.41 45.25
BP plc 16.27 16.40
British American Tobacco plc 50.10 50.12
BT Group plc 19.66 19.88
Carnival plc 96.17 98.29
Diageo plc 24.57 24.67
GlaxoSmithKline plc 50.04 50.42
HSBC Holding plc 18.87 19.50
InterContinental Hotels Group 104.58 104.69
Lloyds Banking Group plc 24.61 25.17
National Grid plc 19.38 19.86
Pearson plc 98.59 99.25
Prudential plc 49.49 49.71
Randgold Resources Ltd 98.18 98.61
Rio Tinto plc 95.23 95.68
Royal Bank of Scotland Group 48.89 49.90
Royal Dutch Shell plc-A 49.33 49.39
Royal Dutch Shell plc-B 48.56 49.26
Shire plc 33.20 33.21
Smith&Newphew plc 48.38 48.53
Unilever plc 98.47 99.34
Vodafone Group plc 10.46 10.26

Table 1.9: Convert Ratio of trading stocks in China A-H share portfolio

Stock Name Convert Ratio(1st perriod) Convert Ratio(2nd period)
Air China Ltd 1.68 1.24
Aluminum of China Co Ltd 1.84 2.08
Anhui Conch Cement Co Ltd 0.91 0.82
Bank of China Ltd 1.10 1.09
Bank of Communication Co Ltd 0.94 0.98
China CITIC Bank Co Ltd 1.26 1.21
China Eastern Airlines Co Ltd 2.25 1.62
China Life Insurance Co Ltd 0.85 1.00
China Merchants Bank Co Ltd 0.84 0.92
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Table 1.10: Convert Ratio of trading stocks in China A-H share portfolio

Stock Name Convert Ratio(1st perriod) Convert Ratio(2nd period)
China Shenhua Energy Co Ltd 0.94 0.91
China Southern Airlines Co Ltd 2.48 1.42
Industrial&Commercial Bank 0.89 0.98
of China
Tsingtao Brewery Co Ltd 1.01 0.92
Zijin Ming Group Co Ltd 1.54 1.80

If regarding each portfolio as one two-year closed-end fund, then following the

proposed methodology section the trading horizon T is set as 504 trading days. The

trading weights of lead-lag stocks is suggested by the equation (1.53) and (1.56), the

inside parameter ϕ1, ϕ2, ϕ3 and π1 are generated with (1.31) and (1.55), with detailed

parameter estimation in (1.20) ∼ (1.26) and the Appexdix B. The short-term window

N is 15 trading days and the long-term window T is 504 trading days, both of them

are sliding windows, with daily rolling frequency.

1.5 Trading application

The optimal trading weights are established on the self-financing assumption, namely,

the cross-listed stock pair should be kept equal weight with opposite positions through-

out whole trading. Majorly our strategy can be applied by either trading shares or

trading CFDs. In the comparison CFDs trading has a few advantages than trading

shares.

Firstly, CFDs trading has the relatively lower initial margin requirement rate (e.g.

5%), which benefits the capital utilisation is more efficient than that of share trading.

Secondly CFDs trading does not charge the stamp duty and levy (Financial Trans-

action Tax). This implies CFDs trading has the lower transaction cost than Share

trading. The Table 1.11 and Table 1.12 completely summaries the transaction cost

components charged5.

5The transaction cost is based on the open sources of Interactive Broker
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Table 1.11: Transaction costs summary for share trading (Basis points)

Market Commission Exchange fee Clearing Duties Algorithm fee Sum
US 50 0.30 0.02 0.002 - 50.32
Eurozone 8 0.16 - 10 - 18.16
UK 8 0.45 - 25 - 33.45
China A 8 0.70 6 10 - 24.70
China H 8 0.50 0.2 10.27 - 18.97

Table 1.12: Transaction costs summary for CFD trading (Basis points)

Market Commission Exchange fee Clearing Duties Algorithm fee Sum
US 10 - - - - 10
Eurozone 5 - - - 10 15
UK 5 - - - 15 20
China A 5 - - 10.27 10 25.27
China H 5 - - - 10 15

Based on the above tables it can be approximated that the transaction costs of

the relevant equity CFDs for the UK-US cross-listed pairs, Eurozone-US and China

A-H share is 15bps, 12.5bps and 20bps respectively. On the contrary, the transaction

costs of trading shares for these three portfolios is 42.5bps, 35bps and 22.5bps.

Thirdly CFDs trading is more flexible than shares because it is traded over the OTC

markets. In specific our strategy requires the cross-listed pair should be rebalanced

to the optimal trading weight at the end of each day theoretically. In addition, is

computed by using the closing prices of cross-listed pair. While it is unachievable in

the real trading. We cannot rebalance their weight simultaneously on both market

sides because the foreign stock market is closed delayed to the host market (e.g. Lon-

don Stock Exchange closing time is UTC 16:30 but New York Stock Exchange closes

at UTC 21:00).

In the real trading the above problem can be more easily solved by trading CFDs.

OTC markets offer major institutional investors the eligibility to trade equity CFDs

throughout 24 hours. Thus traders do not need to rebalance the CFD weight of the

lead stock at the host market closing time but need to rebalance the lag stock CFD

25



weight at the closing time of foreign market in the first. After that, during the in-

terval time from the foreign market closing to the next day pre-market auction time

of the host market, traders required to gradually rebalance the weight of lead equity

CFD to the optimal position h∗ by executing the orders that emerging at the closing-

price of the lead stock. In specific, Major information can drive the significant price

movement are origin from the host market. In often the formal information are not

released beyond official working time of host market countries. This ensures the price

of lead stock CFD in the OTC market keeps fluctuating around the closing-price of

lead stock during the interval time between foreign market closing and the next day

pre-market auction time of the host market. Moreover, the stocks we selected are

blue-chip equity in the representative index (e.g. FTSE100), this guarantees their

trading liquidity of the equity CFDs in the OTC market is sufficient. Therefore,

above two premises can ensure institutional investors to execute the orders at the

closing-price of lead stock by 24-CFDs trading. On the other hand, this applying

strategy also can be achieved through the similar approach (24 hours OTC market)

with trading shares. But the less trading liquidity in trading share over OTC market

may attribute it is harder than trading equity CFDs.

The optimal weights h∗ is a closed-form solution with computing efficiency, it is feasi-

ble in applying on bar-frequency trading with synchronous prices between cross-listed

stock pair. However, for the simplicity we use the daily closing price in this test. More

importantly comparing with the synchronous price, the cointegration relationship be-

tween the closing prices of stock pair is the special point. Because this relationship is

leaded not only by the differential market regions (structures) but also leaded by the

time overlap. This section aims to check whether this trading application can profit

substantially or not, by utilising this special cointegration relationship of closing price

pair from the time overlap.
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1.6 Constrained Capital Utilisation

This application chooses to trade both shares and equity-based CFDs without lever-

aging. To the shares trading approach that we proposed to split the whole initial

endowment of each trading pair to be the equal half. Half is reserved for trading the

lead stock and another half for the lag stock. The optimal trading weight formula

(1.56) demonstrates that investor’s coefficient of risk aversion γ is one of crucial deter-

minants on the size of h∗. Therefore it is essential to locate one particular coefficient

of risk aversion γ∗, to guarantee the sum of maximized capital maintained in every

trading day from both sides, cannot exceed % of the capital owned by the investor,

throughout the whole trading horizon of the in-sample period. After that we carry

on using the γ∗ in the corresponding Out-the-Sample test.

In respect with trading equity CFDs, the 5% initial margin requirement rate allows

us can traded 20 times higher capitals than the capital owned. In addition, for sim-

plicity we do not consider risk managing issues by using adequately lower capital

for trading. Specifically, the maximized capital we allocated into the CFDs trading

account is lower than 15% of the capitals of each trading pair (7.5% for each side of

one pair). On the other hand, we reserved higher than 85% of total capital in case

the margin call problem. As similar as trading shares above, we rely on this trading

capital restriction to pick up the specific coefficient of risk aversion γ during the In-

the-Sample period, which should guarantee the capital used in CFDs trading cannot

be greater than 15% of the total capital owned. Thereby this γ∗ will be carried on in

the corresponding CFDs trading in Out-the-Sample test period.

The percentages of capital utilization throughout trading tests in all periods and

portfolio (CFDs&Shares) are presented below:

27



Table 1.13: Capital utilizing rate of UK-US portfolio in the 1st period

CFDs Shares

Capital utilization In-Sample Out-of-Sample In-Sample Out-of-Sample
Mean 2.57% 2.41% 23.93% 21.57%
Std. 1.60% 1.18% 17.70% 14.56%

Maximum 11.11% 6.00% 85.76% 64.70%
Minimum 0.02% 0.03% 0.08% 0.14%

Table 1.14: Capital utilizing rate of UK-US portfolio in the 2nd period

CFDs Shares

Capital utilization In-Sample Out-of-Sample In-Sample Out-of-Sample
Mean 2.82% 3.14% 20.58% 22.16%
Std. 2.04% 1.35% 17.24% 13.14%

Maximum 11.03% 11.20% 82.89% 85.49%
Minimum 0.04% 0.08% 0.12% 0.30%
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(a) CFD trading (b) CFD trading

(c) Share trading (d) Share trading

Figure 1.1: Capital utilizing rate of UK-US portfolio in Out-of-Sample

Table 1.15: Capital utilizing rate of Eurozone-US portfolio in the 1st period

CFDs Shares

Capital utilization In-Sample Out-of-Sample In-Sample Out-of-Sample
Mean 3.16% 1.17% 23.07% 13.91%
Std. 1.80% 0.70% 15.60% 9.16%

Maximum 10.20% 3.40% 82.77% 41.80%
Minimum 0.03% 0.01% 0.09% 0.11%
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Table 1.16: Capital utilizing rate of Eurozone-US portfolio in the 2nd period

CFDs Shares

Capital utilization In-Sample Out-of-Sample In-Sample Out-of-Sample
Mean 3.04% 3.37% 23.11% 26.14%
Std. 1.72% 1.39% 16.63% 14.89%

Maximum 8.29% 6.69% 71.54% 61.77%
Minimum 0.04% 0.06% 0.15% 0.27%

(a) CFD trading (b) CFD trading

(c) Share trading (d) Share trading

Figure 1.2: Capital utilizing rate of Eurozone-US portfolio in Out-of-Sample

The Table 1.13 ∼ Table 1.16 and Figure 1.1 and Figure 1.2 illustrate throughout

the whole In-Sample and Out-of-Sample tradings, all the maximum capital percent-

ages of UK-US portfolio and Eurozone-US portfolio are lower than the 15% (CFDs

trading) and 100% (shares trading). That implies the portfolio diversification play
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the role in enhancing capital utilisation efficiency. In process of trading UK-US and

Eurozone-US portfolios with either CFDs or shares, the average trading capital per-

centage do not show the obvious difference between the In-sample and Out-of-Sample

period trading.

The capital percentage carried on tend to gradually shrink accompanying the time

to maturity. This benefits the Profit&Loss to reduce the influence from the decay of

mean-reversion of price spread. More specific this kind of convergence trading default

the cointegration relationship illustrated in the in-sample periods (the parameters are

estimated since In-Sample horizon with rolling window) can be continually maintained

in the corresponding Out-of-Sample periods. However, along the trading time pass-

ing in Out-of-Sample period, the older cointegration relationships are suffering the

erosions. Overall it can be suggested that the strategy stability is acceptable on the

viewpoint of portfolio trading capital for UK-US and Eurozone-US portfolio.

Table 1.17: Capital utilizing rate of China A-H share portfolio in the 1st period

CFDs Shares

Capital utilization In-Sample Out-of-Sample In-Sample Out-of-Sample
Mean 3.63% 7.12% 29.42% 60.96%
Std. 1.73% 1.90% 15.58% 19.78%

Maximum 11.03% 10.51% 92.96% 113.47%∗

Minimum 0.71% 1.61% 4.93% 11.41%

Table 1.18: Capital utilizing rate of China A-H share portfolio in the 2nd period

CFDs Shares

Capital utilization In-Sample Out-of-Sample In-Sample Out-of-Sample
Mean 3.55% 7.17% 27.52% 54.04%
Std. 1.61% 2.56% 14.70% 24.35%

Maximum 9.40% 11.85% 85.01% 102.35%∗

Minimum 0.89% 1.94% 5.62% 11.22%
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(a) CFD trading (b) CFD trading

(c) Share trading (d) Share trading

Figure 1.3: Capital utilizing rate of China A-H share portfolio in Out-of-Sample

The Table 1.17, Table 1.18 and Figure 1.3 show that in the China A-H portfolio,

their maximized utilization rate of capital of Share trading in the Out-of-Sample for

both two periods, exceed the 100% of total owned capital, nevertheless the specific

coefficient of risk aversion picked up γ∗ in the In-sample period can ensuring the

maximum capital required is lower than 100%. This implies during the share trading

of China A-H share portfolio, there a few trading days the strategy has to borrow up

to 13.47% and 2.35% over owned equity to maintain the position, it could be one ner-

vous of risk management. Comparing with share trading for applying this strategy,

the capital CFDs trading illustrates its stability, the capital utilization percentage in

both two Out-of-Sample are lower enough than 15%, that is the capital using celling

in CFDs trading. However it should be cautionary about both CFDs trading and
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shares, portfolio trading capital used during the out-sample periods are nearly twice

of that used in the in-sample periods. Therefore, it can be suggested that standing on

the angle of trading capital percentage, China A-H share portfolio requires the higher

capital requirement and the more skilled risk management technique than that re-

quired by the UK-US and European-US portfolios.

1.7 Trading Performance

Table 1.19: UK-US CFDs portfolio performance in the 1st period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 40.03% 25.03%
Annualized return 29.36% 14.74%
Volatility (ex.TC) 12.35% 4.09%
Volatility 12.19% 3.80%
Sharpe ratio (ex.TC) 3.08 5.63
Sharpe ratio 2.24 3.35
Information ratio (ex.TC) 1.00 0.91
Information ratio 0.49 0.35
Maximum drawdown(ex.TC) 0.80% 0.47%
Maximum drawdown 0.95% 0.61%
Maximum drawdown duration (ex.TC) 4 2
Maximum drawdown recovery duration (ex.TC) 3 2
Annualized Transaction Cost 10.67% 10.29%
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Table 1.20: UK-US Shares portfolio performance in the 1st period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 15.08% 8.38%
Annualized return 4.58% -0.99%
Volatility (ex.TC) 5.03% 2.00%
Volatility 4.72% 1.86%
Sharpe ratio (ex.TC) 2.60 3.18
Sharpe ratio 0.55 -1.61
Information ratio (ex.TC) -0.23 0.00
Information ratio -0.84 -0.53
Maximum drawdown(ex.TC) 0.50% 0.43%
Maximum drawdown 1.98% 4.13%
Maximum drawdown duration (ex.TC) 4 3
Maximum drawdown recovery duration (ex.TC) 3 2
Annualized Transaction Cost 10.50% 9.37%

Figure 1.4: Trading performance of UK-US portfolio in the 1st period
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Table 1.21: UK-US CFDs portfolio performance in the 2nd period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 47.23% 30.78%
Annualized return 30.19% 16.36%
Volatility (ex.TC) 7.29% 5.20%
Volatility 6.77% 4.74%
Sharpe ratio (ex.TC) 6.20 5.54
Sharpe ratio 4.16 3.03
Information ratio (ex.TC) 2.03 2.68
Information ratio 1.16 1.56
Maximum drawdown(ex.TC) 0.75% 0.94%
Maximum drawdown 0.95% 1.04%
Maximum drawdown duration (ex.TC) 2 3
Maximum drawdown recovery duration (ex.TC) 2 2
Annualized Transaction Cost 17.04% 14.42%

Table 1.22: UK-US Shares portfolio performance in the 2nd period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 12.78% 7.29%
Annualized return -0.45% -2.72%
Volatility (ex.TC) 2.53% 1.58%
Volatility 2.24% 1.46%
Sharpe ratio (ex.TC) 4.26 3.34
Sharpe ratio -1.09 -3.24
Information ratio (ex.TC) 0.28 0.88
Information ratio -0.47 0.05
Maximum drawdown(ex.TC) 0.43% 0.54%
Maximum drawdown 5.31% 5.57%
Maximum drawdown duration (ex.TC) 3 3
Maximum drawdown recovery duration (ex.TC) 2 2
Annualized Transaction Cost 13.23% 10.01%
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Figure 1.5: Trading performance of UK-US portfolio in the 2nd period

Table 1.23: Eurozone-US CFDs portfolio performance in the 1st period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 57.09% 17.27%
Annualized return 37.72% 12.40%
Volatility (ex.TC) 5.99% 2.40%
Volatility 5.56% 2.22%
Sharpe ratio (ex.TC) 9.20 6.36
Sharpe ratio 6.42 4.68
Information ratio (ex.TC) 2.23 0.46
Information ratio 1.25 0.24
Maximum drawdown(ex.TC) 0.49% 0.12%
Maximum drawdown 0.71% 0.14%
Maximum drawdown duration (ex.TC) 3 2
Maximum drawdown recovery duration (ex.TC) 2 2
Annualized Transaction Cost 19.37% 4.87%
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Table 1.24: Eurozone-US Shares portfolio performance in the 1st period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 13.06% 9.78%
Annualized return 0.45% 2.20%
Volatility (ex.TC) 2.00% 1.44%
Volatility 1.81% 1.19%
Sharpe ratio (ex.TC) 5.52 5.40
Sharpe ratio -0.86 0.17
Information ratio (ex.TC) 0.00 0.12
Information ratio -0.65 -0.23
Maximum drawdown(ex.TC) 0.33% 0.09%
Maximum drawdown 1.85% 1.18%
Maximum drawdown duration (ex.TC) 3 2
Maximum drawdown recovery duration (ex.TC) 2 2
Annualized Transaction Cost 12.61% 7.58%

Figure 1.6: Trading performance of Eurozone-US portfolio in the 1st period
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Table 1.25: Eurozone-US CFDs portfolio performance in the 2nd period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 49.25% 25.75%
Annualized return 35.25% 15.14%
Volatility (ex.TC) 6.00% 3.10%
Volatility 5.64% 2.97%
Sharpe ratio (ex.TC) 7.87 7.65
Sharpe ratio 5.89 4.42
Information ratio (ex.TC) 1.83 0.75
Information ratio 1.21 0.07
Maximum drawdown(ex.TC) 0.36% 0.47%
Maximum drawdown 0.46% 0.63%
Maximum drawdown duration (ex.TC) 3 4
Maximum drawdown recovery duration (ex.TC) 2 4
Annualized Transaction Cost 14.00% 10.61%

Table 1.26: Eurozone-US Shares portfolio performance in the 2nd period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 15.18% 6.76%
Annualized return 3.78% -0.91%
Volatility (ex.TC) 2.44% 1.18%
Volatility 2.16% 1.11%
Sharpe ratio (ex.TC) 5.40 4.04
Sharpe ratio 0.82 -2.62
Information ratio (ex.TC) 0.33 -0.47
Information ratio -0.19 -0.97
Maximum drawdown(ex.TC) 0.21% 0.18%
Maximum drawdown 1.11% 2.32%
Maximum drawdown duration (ex.TC) 2 4
Maximum drawdown recovery duration (ex.TC) 2 5
Annualized Transaction Cost 11.40% 7.67%
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Figure 1.7: Trading performance of Eurozone-US portfolio in the 2nd period

Table 1.27: China A-H share CFDs portfolio performance in the 1st period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 34.64% 13.09%
Annualized return 27.09% 6.39%
Volatility (ex.TC) 7.04% 7.83%
Volatility 7.05% 7.78%
Sharpe ratio (ex.TC) 4.35 1.16
Sharpe ratio 3.28 0.31
Information ratio (ex.TC) 1.60 0.94
Information ratio 1.31 0.59
Maximum drawdown(ex.TC) 2.49% 6.17%
Maximum drawdown 2.84% 7.43%
Maximum drawdown duration (ex.TC) 11 20
Maximum drawdown recovery duration (ex.TC) 10 35
Annualized Transaction Cost 7.56% 6.70%
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Table 1.28: China A-H share Shares portfolio performance in the 1st period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 14.45% 5.73%
Annualized return 10.72% 2.40%
Volatility (ex.TC) 3.20% 4.77%
Volatility 3.12% 4.65%
Sharpe ratio (ex.TC) 3.27 0.36
Sharpe ratio 2.15 -0.35
Information ratio (ex.TC) 0.85 0.58
Information ratio 0.70 0.40
Maximum drawdown(ex.TC) 1.16% 3.66%
Maximum drawdown 1.33% 4.20%
Maximum drawdown duration (ex.TC) 9 6
Maximum drawdown recovery duration (ex.TC) 10 6
Annualized Transaction Cost 3.73% 3.33%

Figure 1.8: Trading performance of China A-H share portfolio in the 1st period
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Table 1.29: China A-H share CFDs portfolio performance in the 2nd period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 24.92% 15.16%
Annualized return 17.38% 8.17%
Volatility (ex.TC) 5.08% 8.22%
Volatility 4.99% 8.24%
Sharpe ratio (ex.TC) 4.12 1.36
Sharpe ratio 2.68 0.51
Information ratio (ex.TC) 1.58 -0.41
Information ratio 1.18 -0.63
Maximum drawdown(ex.TC) 3.81% 9.91%
Maximum drawdown 4.36% 10.30%
Maximum drawdown duration (ex.TC) 10 19
Maximum drawdown recovery duration (ex.TC) 7 46
Annualized Transaction Cost 7.54% 6.99%

Table 1.30: China A-H share Shares portfolio performance in the 2nd period

Performance indicator In-Sample Out-of-Sample
Annualized return (ex.TC) 10.31% 6.48%
Annualized return 6.95% 3.48%
Volatility (ex.TC) 2.50% 3.05%
Volatility 2.44% 3.03%
Sharpe ratio (ex.TC) 2.53 0.81
Sharpe ratio 1.21 -0.17
Information ratio (ex.TC) 0.84 -0.73
Information ratio 0.66 -0.83
Maximum drawdown(ex.TC) 1.50% 3.04%
Maximum drawdown 1.71% 3.21%
Maximum drawdown duration (ex.TC) 8 23
Maximum drawdown recovery duration (ex.TC) 5 25
Annualized Transaction Cost 3.36% 3.00%
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Figure 1.9: Trading performance of China A-H share portfolio in the 2nd period

The trading performances of each cross-listed trading portfolio and period including

(excluding) transaction cost (TC) are given by the Table 1.19 ∼ Table 1.30 and the

Figure 1.4 ∼ Figure 1.9. CFDs trading with our strategy for UK-US, Eurozone-US

and China A-H share portfolio all possess earning ability throughout out-samples of

both two periods. It roughly spends 13.91%-26.14% of total capital to maintain the

CFDs trading for UK-US and European-US portfolios, which are much lower than

that spent by China A-H share from 54.04% to 60.9% of the total capital. Nev-

ertheless, the following table shows that during the out-sample periods the CFDs

trading of UK-US and Eurozone-US portfolios yield them the annualized profits from

the 12.40% to 16.36% (incl. TC). Those are approximately twice higher than the

CFDs trading profitability 6.39% to 8.17% (incl. TC) for China A-H share portfolio.

Therefore, it can be argued the CFDs trading of UK-US or Eurozone-US portfolios
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have the much higher capital utilisation efficiency than that of China A share-H share

portfolio to obtain the equal profits.

Without considering transaction cost, the shares trading of the whole portfolios has

the earning abilities namely annualized return from 5.73% to 9.78% (ex.TC) in the

out-sample trading periods. However, three out of the four return rates after deduct-

ing the transaction costs for both UK-US and Eurozone-US portfolios show the losses

-0.99%, -2.72% and -0.91%. The above result indirectly demonstrates the transaction

costs charged in share trading of UK-US and Eurozone-US portfolio are higher than

that of China share portfolio. Their profits have been offset to be the loss because of

the higher transaction cost. Moreover, the annualized transaction cost figures of share

trading directly show UK-US and Eurozone-US portfolio spend around 7.58%-10.01%

of total capitals to pay the transaction cost. On the contrary China A-H share just

pay 3.00%-3.33% of total capitals as transaction cost. Overall we proposed it is better

to adopt CFDs trading for UK-US and Eurozone-US portfolios in the real trading.

The riskless interest rate is assumed as 2% (2% is higher than the whole historical

12 month-LIBOR rate in the past 6 years) and 4% (4% is higher than the whole his-

torical 12month-SHIBOR rate in the past 6 years) to compute the Sharpe ratios for

UK-US, Eurozone-US portfolios and China A share -H share portfolio respectively.

All the Sharpe ratios of their CFDs trading are positive and much higher than zero,

from1.21-4.68 (incl.TC). However, their share trading shows the negative Sharpe ra-

tios from -0.17 to -3.24 (incl.TC). Above result illustrates the share trading approach

for the whole three portfolios are failed to lead the earning ability to beat up the

LIBOR or SHIBOR rates. However, CFDs approach can guarantee that.

From results shown that in all cases the proposed methodology is profitable. The

only exemption is for the UK-US and the Eurozone-US portfolios based on the share

approach. The transaction costs reduce but do not diminish the profitability of the

algorithm. It is interesting to note that the CFD approach is far more profitable than

the shares trading. This can be explained by the lower transaction cost and more

effective use of capital. The maximum drawdown figures are considerably low in all

cases under study. In the next graphs, we benchmark the performance of our models
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against the relevant home market indices before and after transaction costs. More

specifically for the UK-US portfolio we benchmark the results against the FTAS-ALL

SHARE (FTAS) index, for the Eurozone-US portfolio against the EURONEXT100

(N100) and for the China portfolio against the Shanghai Stock Exchange composite

index (SSE).

In addition, the composite index of FTAS-ALL SHARE (FTAS) index, EURONEXT100

(N100) and Shanghai Stock Exchange composite index (SSE) are respectively set

as the benchmark market indices to compute the information ratio of the UK-US,

Eurozone-US and China A-H share portfolios. Excluding the second period (15/10/2013

to 16/11/2015) of the China A-H share portfolio, all the Out-the-Sample information

ratios of three portfolios show positive figures. That means all these three portfo-

lios after deducting out the transaction costs still perform better than the index of

their located stock markets, by shown directly in the Figure 1.4 ∼ Figure 1.9. To

the Out-the-Samples of second period of the China A-H share portfolio, its negative

information ratio -0.83 (incl. TC) does not implies it unprofitable. Which could be

attributed by the policy bull market performed in the Shanghai stock market.

This paper proposes a novel trading approach for relative-price arbitrage. Through

setting the objective of maximising investor utility with the constraint that relative-

price discrepancy series is mean reverted by the cointegrated stocks, we have derived

the optimal trading weights which is to be adaptively and continually advised for

practical purpose. The proposed method can effectively liberate arbitrageurs from

the fierce competition of current traditional statistically arbitrage. This research

illustrates the particular form of investor utility function during the consequential

trading of relative-price arbitrage, which not only contributes to relax the restriction

that cointegrating vector is near one to be any figure but also to get an analytical

form solution of daily trading weights. Intuitively this implies the stochastic optimal

control could be potentially applied to relative-price trading with much wider cate-

gories of assets.

We have conducted extensive empirical analysis on cross listed stocks in US, UK, Eu-

rozone and Chinese markets based on the analytical solution of daily trading weight.
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It contains both in-sample and out-sample tests from July 2009 to November 2015.

Our results illustrate the effectiveness of our proposed approach, especially for CFDs

trading. Our method performs better than that of the home market index without

significant bullishness, which further provides evidence that the time-delay arbitrage

of cross-listed stocks could be profitable. The superiority of the proposed approach

simply comes from avoiding the permanent anomalies of relative-price discrepancy of

and the shrinking spill- over impact on more and efficient global financial markets.

Our model has further implications on bilateral trading over the newly established

Shanghai-London Stock Connect and the forthcoming China’s Nasdaq as well. The

proposed trading strategy could be easily applied to the bilateral markets for cross

market arbitrage. It would be interesting and worthwhile to test the effectiveness of

our method on these bilateral market, which we leave for future research.
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Chapter 2

Implementing the Karatzas (1997)
stochastic general equilibrium
model to study wealth inequality

2.1 Introduction

Despite many researches have been done about wealth inequality such as wolff (1992),

Aiyagari (1994), Hugget (1996), Castaneda et al. (2003), De Nardi (2004, 2009) and

Piketty and Saez (2013, 2014) on the perspectives of dynastic models and overleap-

ing generation models (will be discussed later). Their researches mostly focus on

calibrating the inequality trajectories over time passing. Beyond current studies, on

perspective of theoretical, our research put more concentration on the evolution pro-

cess of wealth concentration, that is the key driver of inequality.

The wealth inequality was reversed to decline during the middle of the last century

due to a few particular causes, such as the two world wars, the Great Depression and

debt-fuel recession, which destroyed much wealth accumulated by the elite class, thus

reducing the inequality level at that time.

The world today is returning toward “patrimonial capitalism”, in which the inherited

wealth has a dominant portion of the economy, meanwhile the progressive income

tax and inheritance tax are not high enough to rebalance the social redistribution.

Piketty proposes that a progressive income tax reaching as high as 80%, would reduce

the wealth inequality, although this is “politically impossible”, thereby study on in-

heritance issue and income taxation are not the main focus in this thesis. Compared
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to the infeasibility of greater high taxation, a few other potential determinants of

wealth inequality, which have relative modest influences on the elite’s income and

inheritance, have been investigated by quantitative modelling. These potentially fea-

sible determinants that consumption risk aversion, the financial structure between

equity-financing and debt-financing, labor force’s welfare, they may light a way for-

ward, to relieve the extreme concentration of wealth.

Among these possible determinants, if it can be confirmed that consumption prefer-

ence has influential power on wealth concentration, then government could advocate

better consuming habits for households, to prevent wealth gap from the continuous

extensions. While whether the consumption preference has impact on inequality (

distribution of wealth) or not? It is still an controversial topic. Cagetti (2001) shows

that wealth concentration should be sensitive to the variation of the preference pa-

rameter in consuming utility function, conversely Krusell and Smith (1998) evidence

that risk averse coefficient in consumption does not affect the distribution of wealth.

Therefore it is essential to have a systematic investigation on the theoretical view-

point, to confirm whether (homogenous) heterogenous preferences of consumption

have impacts on wealth inequality, it would be one determinant of that.

Beyond the consumption preference, there may be existing other determinants in-

fluencing the evolution of wealth inequality, such as the labor-capital ratio, corpo-

rate capital structure, technology-specific investment (human capital), technological

progress (Total Factor Productivity) and labour force’s welfare. As an example,

intuitively the labor-capital ratio, capital structure respectively determines the attri-

bution level to capital suppliers (especially elite class) from the value-added. Thus it

is useful to check their influential power on the evolutions of wealth inequality from

a theoretical viewpoint. These tasks will be carried on step by step in the following

three chapters.
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2.2 Trend of wealth inequality

The US wealth inequality declined significantly from 1920 to 1970s, as evidenced by

Wolff and Marley (1989), Davies and Shorrocks (2000) and Piketty and Saez (2014).

Wolff (1992) indicates the share of total wealth held by the top 1% richest dropped

from 38% in 1922 to 19% in 1976. In the United States, the wealth inequality decrease

was likely led by the Great Depression and also the increased tax burden prevented

the richest from recovering after World War II, Kopczuk and Saez (2004). A similar

decrease of wealth inequality has been observed in the UK, Sweden and France, as

observed by Davies and Shorrocks (2000) and Piketty et al. (2006). However, their

inequality declined for years longer than the US, until the 1980s.

Since 1979, US income and wealth have been concentrating accompanying market

boom, the rise of internet fortunes and the financial crisis, based on the investigation

by Piketty and Saez (2003), Piketty and Saez (2014) and Wolff (2016). Generally, the

top 1% richest households in the United States hold around 40% of the total wealth,

and the top 5% hold more than half. At the other extreme that more than 10%

household have little or no assets. The share of total net private wealth owned by

the top 10% of wealth holders has been roughly rising from 67% to 75% since 1980 in

the United States. On the other hand, the top decile’s income share has been rising

from 36% to 50% of the total. The Gini coefficient of net wealth 1rose from 0.80

to 0.83 during 1979-1989. It was virtually stable at 0.83 around from 1989 to 2007.

Conversely it has been sharply elevating to 0.87 from 2007 to now. Although the Gini

coefficient of income has two falling periods respectively 2001-2004 and 2009-2010, it

has been rising from 0.48 to 0.58 roughly since 1979. Although delayed in years than

that of the US, the income and wealth in Europe have been starting to concentrate

again since the 1980s.

In the past century, the inequality of income and wealth fluctuated up and down in

the international perspectives. While in the recent 40 years, the top decile’s share

1Household’s net wealth (wealth per capita) after deducting liability.
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and Gini coefficient both imply the inequality of income and wealth has been ex-

tending. The wealth share owned by the top decile and Gini coefficient of wealth

are much greater than their corresponding income. This characterises that wealth is

more extremely concentrated than income; the deterioration of wealth inequality has

been more intractable than that of income throughout these 40years and seems set

to continue.

2.3 Existing models in wealth inequality studies

It is a stylized fact that wealth is more extremely concentrated than income, has

been highlighted by numerous studies, such as Wolff (1992), Castaneda et al. (2003),

Piketty and Saez (2014) and others. Economists attempt various sorts of model trying

to better understand the wealth inequality and its determinants as well. Quite a few

fruitful economic models exist to uncover the myth of wealth inequality, however,

most of which have limited empirical implications with regard to real observed income

inequality around the world. These models can be categorised as dynastic models, life-

cycle models, overlapping-generation models among others, which will be discussed

in details below.

2.3.1 Dynastic models

Here we first consider an infinitely-lived agent model with the objective

V (x) = max
(c,a′)
{u(c) +H0E[v(a′, z′) | (a, z)]} (2.1)

where c is agent’s consumption, a is the agent’s asset holdings carried, that is the

only asset choice that agents can use to self-insure against earning risk. a′ is the

saving for next period and u(c) is consumption utility. H0 is discounter, z is the

labor income shock generated exogenously. E[v(a′, z′) | (a, z)] is the agent’s expected

wealth conditional on the state (a, z).

The objective of maximising consumption and wealth is subjected to the following
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constraint:

c+ a′ = (1 + r)a+ zw (2.2)

where r is interest rate and w is the exogenous labor income.

The main framework of dynastic model is established by recursively maximising

agent’s consumption and expected discounted wealth with the consuming constraint

inclusive of labor income after the endowment shock, referring to Bewley (1977),

Aiyagari (1994) and Huggett (1996) among others for specific descriptions of this

framework. Moreover, it follows stationary equilibrium in that the aggregate capital

equals the aggregate labor. The aggregate capital and aggregate labor respectively

stands for the total saving and total labor supplied by all of the households of the

economy. This equilibrium assumes all households’ saving is accumulated by labor

income, but does not consider market clearing between aggregate output and con-

sumption.

Dynastic models have one drawback in that the wealth is significantly less concen-

trated than the observed data, as stated by Carroll (1997) that the intrinsic of this

model is the agent creating a buffer stock of asset to self-insure against income fluc-

tuations. However this model demonstrates that once the richer households have

reached high levels of wealth (save to buffer stock), they do not save in higher (even

zero) rates than the poorer. Following the argument by Dynan et al. (2004), it is

inconsistent with the empirical studies on saving rates and incapable of explaining

the creation of large fortunes.

Krusell and Smith (1998) add heterogeneity in discounter and consuming preference

to the general dynastic model. They found it is feasible to use specific stochastic

process for the discounter to replicate the variance of the cross-sectional distribution

of wealth, as risk aversion cannot. However Cagetti (2001) shows that distribution of

wealth should be associated with the risk averse coefficient in the utility function2.

2Lawrance (1991) and Cagetti (2003) empirically evidence that heterogenous preference has effect
on wealth inequality but the discounter is more significant.
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2.3.2 Overlapping generations models

As the cornerstone of overlapping generations models (OLG), the life-cycle theory

of consumption was developed by Modigliani and Brumberg (1954). Their frame-

work exposes that the finitely-living agent chooses consumption by maximising the

accumulating discounted utility of consumption (homogenous utility function for con-

sumption), subject to the remaining earnings (resources) up to the life end, while their

settings are deterministic, hereafter named as consumption constraint

at +
N∑
τ=t

yτ
(1 + r)τ+1−t =

aL+1

(1 + r)L+1−t +
L∑
τ=t

cτ
(1 + r)τ+1−t (2.3)

where ct and yt respective denote the current consumption and income of the agent,

while cτ and yτ , for τ > t, denote expected income and planned consumption at the

τ th stage. at is assets at beginning of stage t. L is the finitely life span and N is the

agent’s earning span, N < T .

Assuming at = 0, aL+1 = 0, implies that agents have no inherited assets at the

beginning of its life, also do not receive any inheritance (gift) at any stage point of

life and that whole asset are only accumulated by saving. In addition, the current

and future planned consumption should be a homogenous function of current and ex-

pected income plus initial assets. This framework has intuitions for wealth inequality,

households keep on saving accompanying working, reach the maximum wealth level

just at the beginning of retirement, and then accumulate their savings to the life end.

Comparing with dynastic models, OLG models add intergeneration transfer on the

life-cycle theory of consumption with constant probability distribution of births and

deceases and labor income shock. That inheritance could be one significant cause of

wealth inequality was empirically checked by Davies (1982). After that, the OLG

model was updated about inequality of wealth. Its objective function is similar to

that of the dynastic (2.1)

V (x, t) = max
(c,a′)
{u(c) +H0E[v(a′, z′, t+ 1) | (a, z, t)]} (2.4)

taking the life-cycle into the considering is one difference, subject to

c+ a′ = (1 + r)a+ e(z, t)w + h+ b (2.5)
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it is consistent to the consumption constraint (2.3). Firstly, h denotes the accidental

bequests which are assumed to be redistributed by planner to the alive, and b is so-

cial security benefits to the retirees. Secondly, the fraction of population at different

age range are constant. Thirdly, the e(z, t) implies wage after labor income shock is

described by a probability distribution associated with age. The above three points

are the differences in the framework between dynastic models and OLG modes.

Comparing with dynastic models, OLG has an extra constraint on the stationary equi-

librium for the economy. Namely, the total lump-sum transfers to the alive households

equal accidental bequest by the deceased, under an balanced planner’s budget con-

straint during each stage.

The benchmark OLG models refer being to the ones shown by Huggett (1996) and

De Nardi (2004). Despite the population being inadequate of concentrating wealth in

the fat tails of wealth distribution by the OLS model. Its calibration results succeeds

in matching the observed Gini coefficient of wealth.

2.3.3 Other models

Under the main framework of dynastic, OLG models and beyond bequest, a few other

determinants of wealth inequality have been studied. Portfolio investment choice, one

of the most important determinants, has been treated heterogeneously by earning,

preference and age. Heaton and Lucas (2000) evidence that the value of a house-

hold’s business asset has effects on investment portfolio choice and asset pricing. In

addition, Yao and Zhang (2004) find that housing investment plays a significant role

in influencing the household’s investment portfolio. The various portfolio choices

linked with heterogenous wealth levels should lead recursively wealth to concentrate

over investment earnings not only labor incomes. Lusardi et al. (2017) show that

financial knowledge influences on portfolio choice, consequently being a key determi-

nant of wealth inequality in a stochastic life-cycle model with endogenous financial

knowledge accumulation, where financial knowledge enables individuals to make wiser
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investment choices when facing uncertainty and imperfect insurance market.

It is useful to study the wealth concentration by considering human capital ac-

cumulation, to disentangle the whole sets of transitory sources of inequality. Becker

and Tomes (1986) modelled that parents are altruistic in transfering to their chil-

dren, where both human capitals and bequests are characterised as the transferring

resources across generations. They show human capital transferring is relatively more

important than monetary (physical) assets transferring, the bequest takes place only

after an optimal threshold of human capital has been reached. Huggett et al. (2006)

modelled that human capital investment in presence of heterogeneous learning capa-

bilities and exogenous shocks, which could lead to determine the earning and wealth

inequality through life-cycle.

Income inequality is one directive cause of wealth inequality. Each agent’s revenue

contains earnings on business (financial) assets and labor incomes. In the income

portal, the taxation policy has dramatical effects on income inequality. In addition,

taxation boundary on inheritances could lead to wealth concentration. Using wealth

inequality data from China and India Piketty and Qian (2009) find that the pro-

gressive taxation is one of the distortionary policy tools in rising inequality. Cagetti

and De Nardi (2009) show that estate taxation does distort investment decision of

larger firms, thereby reducing aggregate output and savings. Removing the estate tax

by raising other taxation on households to reestablish fiscal balance, can benefit top

wealth quantile in a large welfare gain, but most of the population would suffer loss,

reflecting the wealth concentration. In addition, if inheritance has been considered

as one source of incomes, the inheritance taxation can also determine the wealth in-

equality. Piketty and Saez (2013) show the existence of optimal inheritance taxation

under maximising the long-run steady state social welfare; they assert the optimal

inheritance tax rate increase with the concentration of bequest received to balance

the wealth concentration and welfare.
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2.4 Motivation and structure

In this chapter, similar as the work done by Karatzas and Shreve (1998), an optimal

consumption will be solved out under general equilibrium with continuous stochastic

form. We will extend their work to the differing risk aversion owned by each house-

hold’s consumption. We obtain the solution of heterogenous individual’s consumption

level for simultaneously maximizing each household’s utility in both consumptions and

their final savings. Each household’s endowment is completely exogenous in a market

clearing economy with no financial investment activity setting directly. How does risk

aversion of consumption has impact on the level of wealth inequality will be studied.

2.5 Modelling setting

This chapter is to investigate whether household’s consumption preference influences

the wealth concentration and its volatility or not, during a finite dynasty where an

agent’s risk aversion is homogenous. We apply the framework introduced by Karatzas

et al. (1997) that one general equilibrium is established within a market clearing con-

dition between aggregated income and aggregated consumption3. Each household’s

income is heterogenous and exogenously given by stochastic processes assumed to be

progressively measurable with respect to the augmentation of the natural filtration

generated by an Rd valued Brownian motion W = (W1, ...,Wd)
′ with a filtration as

(Ft). The main result of Karatzas et al. (1997) is that the closed-form solution of

optimal consumption is existing to implement a Pareto allocating rule (maximizing

household’s consumption utility simultaneously) in an completed market, 4 under the

market clearing condition in goods. In this framework, each household’s consump-

tion through the whole dynasty is consistent with the consumption constraint set by

3They also implicitly assume market clearing between aggregated investment and perishable
commodity.

4Under the market completeness of the first welfare theorem that economic planner can implement
a rule to satisfy the weak Pareto efficiency of resource allocation. Where the planner is able to
improve upon a decentralised market outcome, because all information are available to them and
market participant’s information are symmetric, no moral hazard or adverse selection possibility.
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Modigliani and Brumberg (1954).

2.5.1 Exogenous household’s income and the aggregation

There are K households, each of their income level5 is εk(t), k = 1, 2, 3, · · · , K, which

is assumed to follow the dynamics

dεk(t) = εk(t)

(
µk(t)dt+

d∑
i=1

σkj(t)dWj(t)

)
. (2.6)

These processes, alongside the utility functions Uk(x) and consumptions of good are

the principal building blocks of the economy. Everything else is derived from these.

To proceed it is useful to introduce the aggregated income level process

ε(t) =
K∑
i=1

εk(t). (2.7)

It follows the form, Eq. (2.6) that the dynamics of the aggregated income level is

given by

dε(t) = ε(t) (ν(t)dt+ ρ(t)′dW(t)) , (2.8)

with

ν(t) =
K∑
k=1

εk(t)

ε(t)
µk(t) (2.9)

ρ(t)′ =

(
K∑
k=1

εk(t)

ε(t)
σk,1(t), · · · ,

K∑
k=1

εk(t)

ε(t)
σk,d(t)

)
. (2.10)

For the numerical tractability it is helpful to assume that the income changes are

independent on the past, i.e.

E
(
εi(t)

εi(s)

∣∣∣∣Fs) = E
(
εi(t)

εi(s)

)
. (2.11)

Otherwise the solution of the model will require more sophisticated methods of Monte

Carlo simulation.

5The salary level εk(t) is defined as the expected total salary of the whole life [0, T ] at the filtration
Ft. At each time stage, based on the adaptive salary level εk(t), the individual receives salary can
be computed as εk(t)dt.
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2.5.2 Market clearing constraints

Karatzas et.al.(1997) consider the three market clearing constraints ensure the finan-

cial market equilibrium.

Clearing between aggregated consumptions and aggregated incomes:

K∑
k=1

ck(t) = ε(t), (2.12)

Clearing of households’ investment weights:

K∑
k=1

πkj(t) = 0, (2.13)

Clearing of households’ wealths:

K∑
k=1

Xk(t) = 0. (2.14)

2.6 Problem solving under CRRA Utility

It is difficult that using general constant relative risk aversion (CRRA) utility to

analytically solve out the optimal consumption. The particular form of CRRA utility

is helpful in solving this problem:

Uk(x) =

(
γ1−α

α

)
xα, γ > 0 (2.15)

where α plays the role of different risk aversion coefficient of household’s, α ∈

{−∞, 1}\{0}. Defining I(·) as the inverse function of the first derivative of the

k-th household’s utility:

Ik(x) = (U ′k(x))−1 = (γ1−αxα−1)−1 (2.16)

= (γα−1x)
1

α−1 (2.17)

then it exists

Ik

(
ε(t)

λk

)
=

(
γα−1 ε(t)

λk

) 1
α−1

(2.18)

where λk is a “Lagrange multiplier” in the problem that maximizing utility from

consumption, which is used in the 2.2.1 Proposition, 2.2.2 Theorem and 2.3.1 Theorem
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of Karatzas (1997).

Subject to the three market clearing conditions (2.12)-(2.14), Karatzas (1997) shown

in 3.4.1 Proposition that:

ε(t) = I(H0(t)e
∫ t
0 β(s)ds; Λ) (2.19)

where setting

I(x; Λ) =
K∑
k=1

Ik

(
x

λk

)
(2.20)

for any given Λ = (λ1, ..., λk) ∈ (0,∞)K . The function I(·; Λ) is continuous and

strictly decreasing, and maps (0,∞) onto itself with I(0+; Λ) =∞ and I(∞; Λ) = 0;

therefore, it has a continuous, strictly decreasing inverse H(·; Λ) projecting (0,∞)

onto (∞, 0), with H(0+; Λ) =∞ and H(∞; Λ) = 0, namely

I(ε(t); Λ) = H(ε(t); Λ)−1 (2.21)

and exists

I(H(ε(t); Λ); Λ) = ε(t) (2.22)

Substituting (2.18) into (2.20), it gives

I(ε(t); Λ) =
K∑
k=1

(
γα−1 ε(t)

λk

) 1
α−1

(2.23)

= ε(t)
1

α−1

K∑
k=1

γλ
1

1−α
k (2.24)

Subject to (2.21) and (2.24) yields

H(ε(t); Λ) =

 ε(t)∑K
k=1 γλ

1
1−α
k

α−1

. (2.25)

In addition, the (2.19) and (2.22) gives

H0(t) = e−
∫ t
0 β(s)dsH(ε(t); Λ) (2.26)

Aligned with Theorem 2.3.1 of Karatzas et al. (1997) and (2.26) the following equation

existing

E
∫ T

0

e−
∫ t
0 β(s)dsH(ε(t); Λ)Ik(

H(ε(t); Λ)

λk
)dt

= E
∫ T

0

e−
∫ t
0 β(s)dsH(ε(t); Λ)εk(t)dt

(2.27)
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Overall, by plugging (2.17) and (2.25) into (2.27), after a few arrangements, we obtain

each household’s optimal consumption level:

c∗k(t) = (λ∗k)
1

1−αγ

(
ε(t)

ε(0)

)
, (2.28)

where

(λ∗k)
1

1−α =
ε(0)

γ

E
∫ T

0
e−

∫ t
0 β(s)ds(ε(t))α−1εk(t)dt

E
∫ T

0
e−

∫ t
0 β(s)ds(ε(t))αdt

. (2.29)

Each household’s wealth at the start and end of the dynasty is zero, the Xk(0)+ = 0

and has no capital accumulated after this dynasty Gk = 0 . To be matched to

Karataz’s work in this, subject to the generalised expression of household’s wealth

Appendix. E, (E.14) the wealth framework of each household’s in this section satisfies

Xk(t) =
1

H0(t)
Et
[∫ T

t

H0(s) [ck(s)− εk(s))] ds
]

(2.30)

where εk(t) is exogenously generated by process (2.6), each household’s income is

completely from labor income, in absence of capital investment. The state price den-

sity Ho(t) is given by (2.29), (2.25) and (2.26), with the exogenously given discounter

of money time value β(t).

2.7 Simulation and Analysis

The objective in this research is to investigate whether the homogenous preference

of household’s consumptions could influence wealth inequality or not in the economy

through out the whole finite-lived dynasty. In this section, the corresponding simu-

lation result for the model established in the section (2.5) and (2.6) is going to be

demonstrated. For the simplicity of the particular CRRA utility, the consumption

preference is driven by the risk aversion α but the γ in consumption utility keeps

constant, and the money discounter β is also time-invariant. By reordering the co-

efficient of risk aversion α range from -6 to -0.1 with the incremental -0.1, it allows

us to see whether the simulated averaging figure and the standard deviation of the
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wealth inequality (Gini coefficient process) is varing or not. The specific parameters

employed in this simulation test are given in the Table (2.1),

Table 2.1: Summary of key parameters in case 1

Parameter Symbol Value
Household number K 100
Terminal stage T 80
Number of income risk resources d 6
Initial income level εk(0) 1
Income growth rate µ 1
Income volatility averaging σ̄kj 0.12
std.of income volatility σρ 0.02
Money discounter β 0.03
Invariant coefficient of risk aversion γ 2
Nonhomothetic coefficients of risk aversion α [−6.0 : −0.1 : −0.1]

Note: [a : b : c] denote the series on the closed interval from a to c with increment b.

Considering the form of net wealth could be negative, this issue can be solved by

employing the measurement of normalized Gini coefficient proposed by Chen et al.

(1982) that

G(t, ·) = 1−
1
K

∑K
ν=ω(t)+1[1 + 2(K − ν)]xν(t)

1 + 2
K

∑ω(t)
ν=1 νxν(t)

(2.31)

xν =
Xν(t)∑K
ν=1Xν(t)

(2.32)

{Xν(t), ν = 1, · · · , Kx} is the ascending order series of household’s wealth {Xk(t), k =

1, · · · , K} generated by (2.30) at each stage. To the first ω(t)th 6 lower xν(t) satisfies∑ω(t)
ν=1 xν(t) = 0 and

∑ω(t)+1
ν=1 xν(t) > 0, the ω(t)th is time-variant. The Normalised

Gini coefficient is also the measurement of wealth inequality in the following chapters.

There are 100 households assumed living throughout the dynasty. Each household’s

labor income is following the geometric Brownian motion process subject to Eq. (2.6).

Every household’s initial income level and income growth rate are assumed to be in

homogeneity, namely εk(0) = 1 and µk = µ = 1. Consequentially, their labor incomes

turn to be in heterogeneity because their income volatility factor are different. In

6ω(t) is to identify each household’s wealth ranking at each stage t, it is time-variant.
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simplicity, their various income volatility factors in all satisfy the distribution that

σkj ∼ N(σ̄kj, σρ), (2.33)

although it is strengthen that every household’s income shouldering the identical risk

resources under the differing magnitude dependent on the different volatilities. These

households’ incomes are given in the Figure 2.17:

Figure 2.1: Household’s labor income process throughout the whole dynasty, they are
generated following Eq. (2.6), parameters used in simulation are given in Table 2.1

7These exogenously given labor incomes also will be used in the simulation analysis of the next
chapter.

60



Figure 2.2: consumption scatter accompanying the varying coefficients of risk aversion
and time passing, each consumption scatter is generated following Eq. (2.28) with
Eq. (2.29), parameters used in the simulation is shown in Table 2.1.
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(a) α = -6.0

(b) α = -0.1

Figure 2.3: consumption spectrum with the differing coefficients of risk aversion, α

The Figure 2.2 and Figure 2.3 together illustrate that under the homogenous con-

suming preference, the heterogenous income levels lead each household’s consumption

to be different at each stage. Their consumptions 8 have similar trends accompanying

8Subject to Eq. (2.28), the smooth of consumption spectrum is attributed by the comparative

smooth of the aggregated income ε(t) =
∑K
k=1 εk(t), nevertheless each household’s income process

is stochastic.
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the increase of their incomes. The coefficient of risk aversion α has influence on the

concentration of households’ consumptions at each stage. The higher α implies the

more concentrated consumptions among households.

Figure 2.4: Wealth scatter along the varying coefficients of risk aversion and time
passing

63



(a) α = -6.0

(b) α = -0.1

Figure 2.5: wealth trajectories through time passing with different coefficients of risk
aversion, α

The Figure 2.4 and Figure 2.5 illustrate that risk aversions in consumption across

households could have impacts on the wealth trajectories. Specifically, the majority of

wealth series demonstrates the regime-switching from a converging trend to diverging,

then recover back to be converging till household’s wealth near to be zero. However
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this regime-switching status tend to disappear accompanying the coefficieints of risk

aversion α decreasing from -0.1 to -6.0.

(a) highest wealth surface

(b) lowest wealth surface

Figure 2.6: highest & lowest wealth surface corresponding differing risk aversion and
time stage
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The Figure 2.6 shows the highest wealth and lowest wealth under the same risk

aversion α in consumption are around symmetric. At a comparatively high α from

-0.1 to -6, the evolution trajectories for the highest (lowest) wealth by time passing

is regime-switching, it firstly diverges from the averaging wealth level 9 and then

converge back to the average wealth again. Other other hand, if the coefficient of risk

aversion α is a comparatively low such as −6, the initial wealth gap between top rich

(poor) with wealth averaging could be very large, this gap is converging back to the

averaging level to the end of dynasty. In addition, by observing the dimension that

highest (lowest) wealth level vs. risk averse coefficient alpha, the lower α implies that

the highest (lowest) wealth level deviates further from the averaging level (roughly

zero) at the initial stage.

Figure 2.7: Gini coefficient averaging vs. alpha

9subject to Figure 2.6, the averaging wealth is around zero during the whole dynastic life.
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Figure 2.8: Gini coefficient std. vs. alpha

Figure 2.7 illustrates that there is no significant effect of the risk aversion in

consumption on wealth inequality of the dynasty. However Figure 2.8 shows the

risk aversion could have impacts on the volatility of wealth inequality, these impacts

roughly follow the U-shaped relationship shown by the Gini std. fit line. This simula-

tion of the specific scenario may suggest that the coefficient of risk aversion α ranging

from -4 to -5 could be an optimal interval to reduce the volatility of the dynastic

inequality on wealth.

2.8 Conclusion and future research

This chapter explores the consumption-saving framework explained by Karatzas (1997)

which is under stochastic general equilibrium, by applying convex duality optimisa-

tion. Each household’s income is exogenously given with implicated financial market

exchanging economy. There is a pair of comparative studies has been implemented,

the simulations illustrate the risk aversion level in homogenous consumption prefer-

ences have no obvious impacts on the evolutions of wealth. However, the theoreti-

cally modelling suggests the homogenous risk aversion could influence the evolution

patterns of wealth concentration, the simulations shown the less risk averse, the evo-

lutions of wealth more probably show regime-switch during a dynasty, this implies a

weaker stratification of the wealth inequality.

In respect to the future robustness check, subject to the Table 2.1, the risk invariant
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coefficient of risk aversion γ could be adjusted to other varying level, to check whether

the regime-switch of wealth concentration trend through the dynasty is still existing

or not. More further, the real calibration could be applied, by estimating the income

growth rate, money discounter with classifying the different risk stems.
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Chapter 3

Optimal consumption under
quadratic utility

3.1 Introduction

Comparing with Karatzas (1997), this chapter we worked out an equilibria state price

density, that is endogenously determined by risk aversion, deposit rate and house-

hold?s revenue level. This also simplify the whole modelling in describing the wealth

concentration progress. In addition, each household’s optimal consumption is set as

maximising the utility for their accumulative consumptions as simultaneous as their

utilities in terminal wealth at the end of dynasty. Also, we release the constraint on

the clearing that aggregated investment weights are zero. We are adopting quadratic

utility function benefits us to extend the problem from homogenous consumption

preference to the heterogeneous, although the whole optimisation framework is still

under convex duality approach. The simulation is also carried out on the premise

of household?s income being exogenously given and implicating no financial capital

gain flow from business sectors. Meanwhile we release the constraint on the equilib-

rium where aggregated wealth and investment weight are both zero. Also the optimal

consumption solution is to maximises household’s utilities in consumption as well as

their terminal wealth utilities of the dynasty. This chapter illustrates the homogenous

(heterogeneous) risk aversion can affect the progressing of wealth concentration, re-

mind us that just employing wealth inequality measure could let us neglect the social

stratification problem as worse than we think.
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3.2 Modelling setting

3.2.1 State Price Density and wealth framework

For convenience in using the state price density of wealth hereafter, one sort of its

generalised form has been denoted. When evaluating each individual’s wealth, it is

essential to adjust the extra risk and money time value. The extra risk adjustor is

according to

dZ(t) = −Z(t)θ(t)′dW (t), Z(0) = 1, (3.1)

where θ(t) is the price of market risk and W (t) = (W1(t) · · ·Wz(t))
′ is a z-dimensional

independent Brownian motion vector, standing for z risk sources on asset prices.

Denoting the state-price density of individual’s wealth as H0(t) involves a money time

value discounter and the extra risk adjustor. The generalised form of H0(t) can be

expressed as

H0(t) = e−rtZ(t)

= e−(rt+
∫ t
0 θ(τ)′dW (τ)+ 1

2

∫ t
0 ‖θ(τ)‖2dτ), 0 < τ < t,

(3.2)

and its dynamics follows

dH0(t) = −H0(t)

(
rdt+ θ(t)′dW (t)

)
(3.3)

Each individual’s wealth satisfies the dynamics

dXk(t) = (rXk(t) + εk(t)− ck(t)) dt, (3.4)

where ck(t) is the individual’s consumption level at the filtration Ft, ck(t)dt is individ-

ual’s consumption at t. Each individual wealth is consistent with the measure of net

worth, it includes all assets (real estate, financial wealth and vehicles) and liabilities

(mortgages and other debts) held by the household, all of these taking place through

an exchange economy.

In this section, it is highlighted that each household’s investment has still not been

considered. Therefore, each household’s income source is just their labor incomes.
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Financial investment activity condition imposing the issue of the price of market risk

does not need to be considered, this is a particular case of Eq. (3.2) in absence of

stochastic terms. Then, the state price density for individual’s wealth in absence of

investing, is equivalent to a money time value discounter

H1
0 (t) = e−rt. (3.5)

Subject to the generalized expression of wealth, Appendix E. (E.14) and Eq. (3.4),

Eq. (3.5), also assuming that each household’s wealth just at the start of the initial

stage is zero Xk(0)+ = 0 and no capital accumulated throughout the whole dynasty

Gk = 0 , then each individual’s wealth is

Xk(t) =
1

H1
0 (t)

Et
∫ T

t

H1
0 (s) (ck(s)− εk(s)) ds (3.6)

It is stressed that the state price density is exogenously dependent on the interest

rate r at current position as shown in Eq. (3.5), but it turns to be endogenously

dependent on the risk averse coefficient γ and household’s income level after below

modelling, illustrated by Eq. (3.31) forthcoming.

3.3 Optimal consumption under quadratic utility

For the tractability in solving the heterogenous optimal consumption level, we choose

a quadratic form of consumption utility

Uk(ck(t)) = ck(t)−
1

2
γkc

2
k(t), γk > 0, ck(t) ∈

(
0, γ−1

k

)
, (3.7)

where γk is heterogenous risk aversion in consumption, which varies among different

households.

Its derivative U ′k(ck(t)) = 1 − γkck(t) and the inverse of the derivative, denoted as

Ik(ck(t)) = [U ′k(ck(t))]
−1 = (1 − ck(t))/γk are both strictly decreasing with ck(t) ∈(

0, γ−1
k

)
. In a general form

Ik(x) =
1− x
γk

. (3.8)
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Based on the Legendre-Fenchel transform (Rockafellar (1970) Karatzas and Shreve,

1998),

Ũk(λk)
∆
= max

ck(t)∈(0,γ−1
k )
{Uk(ck(t))− λkck(t)} = Uk(Ik(λk))− λkIk(λk), (3.9)

the domain of λk should be identical to that of ck(t), namelyλk ∈
(
0, γ−1

k

)
. Ũk(λk) is

a convex decreasing function and satisfies

Ũ ′k(λk) = (λk − 1)/γk, λk ∈
(
0, γ−1

k

)
, (3.10)

Uk(ck(t)) = min
λk∈(0,γ−1

k )

{
Ũ(λk) + ck(t)λk

}
, ck(t) ∈

(
0, γ−1

k

)
(3.11)

= Ũ ((λk − 1)/γk) + ck(t)(λk − 1)/γk , (3.12)

Ũk(γ
−1
k ) = U(0), Ũk(0) = U(γ−1

k ). (3.13)

Solving the optimal consumption level c∗k(t), this problem can be treated as one

stochastic controlling with,

the objective function1 :

G = argmax
ck(t)

E
[∫ T

0

Uk(ck(t))dt+ Uk(Xk(T ))

]
= argmax

ck(t)

E
[∫ T

0

(ck(t)−
1

2
γkc

2
k(t))dτ +Xk(T )− 1

2
γkX

2
k(T )

] (3.14)

s.t.

Constraint 1:

E
[∫ T

0

H0(t)ck(t)dt+H0(T )Xk(T )

]
≤ Xk(0), (3.15)

Intuitively, it is one budget constraint that the expected discounted terminal wealth

plus the expected discounted total consumptions cannot exceed each individual’s

initial endowment. The discounting is accomplished by the state price density H0(t).

Also it almost surely exists by the proof in Appendix A.

Constraint 2:

dXk(t) = [rXk(t) + Ek(t, ·)− ck(t)] dt+ σ(t,Xk, ·)dW (t), (3.16)

1The optimal consumption should benefit the individual achieving the highest expectation of
total consumption utility throughout the whole life long. If the household’s revenue exceeds the
rational consumption, then they saves (invests) the retained revenue (to earn more) for the future
consumption. Conversely, if they are confident for their future earning ability, nonetheless current
revenue is less than their rational consumption. They may choose an overdraft consumption.
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where Ek(t, ·) is each individual’s whole revenue level at the filtration Ft from all feasi-

ble revenue resources. σ(t, Ek, Xk, ·)) is an diffusion factor, W (t) is the z-dimensional

independent Brownian motion vector as that of Eq. (3.1)

Subjected to Eq. (3.1), Eq. (3.2) and Eq. (3.16) by applying Ito’s formula on

Z(t)e−rtXk(t), it can offer one generalized expression of adjusted individual’s wealth

dynamics

dH0(t)Xk(t) = H0(t) (Ek(t, ·)− ck(t)) dt+H0(t)Ω(t, σ,Xk, θ, ·)dW (t), (3.17)

where the diffusion term Ω has different form up to particular scenarios.

Constraint 3:
K∑
k=1

c∗k(t) = E(t, ·), (3.18)

It is market equilibrium between aggregated production level and consumption level.

where E(t, ·) is the produce level of total goods at filtration Ft in the whole economy.

Subject to Eq. (3.12) and imposing constraint 1, Eq. (3.15) to the objective, Eq.

(3.14) with optimization multiplier λk ∈
(
0, γ−1

k

)
, yields

E
[∫ T

0

Uk(ck(t))dt+ Uk(Xk(T ))

]
+λk

{
Xk(0)− E

[∫ T

0

H0(t)ck(t)dt+H0(T )Xk(T )

]}
= E

∫ T

0

[Uk(ck(t))− λkH0(t)ck(t)] dt

+E [Uk(Xk(T ))− λkH0(T )Xk(T )] + λkXk(0)

≤ E
∫ T

0

Ũk(λkH0(t))dt+ EŨk(λkH0(T )) + λkXk(0).

(3.19)

Following Eq. (3.12), to achieve the objective, Eq. (3.14), namely leading Eq. (3.19)

to equality, the following conditions should be satisfied:

ck(t) = Ik (λkH0(t)) =
1− λkH0(t)

γk
, (3.20)

X∗k(t) = Ik (λkH0(T )) =
1− λkH0(T )

γk
, (3.21)
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thus it can be primarily confirmed that

c∗k(t) ∈
{
ck(t) =

1− λkH0(t)

γk

}
. (3.22)

Further, subject to constraint 2, Eq. (3.16) and Eq. (3.2), temporally setting Z(t) = 1

and integrating dZ(t)e−rtXk(t) from 0 to T and taking expectation, obtain

E
∫ T

0

H0(t)ck(t)dt = E
∫ T

0

H0(t)Ek(t, ·)dt+Xk(0)−H0(T )E(Xk(T )). (3.23)

Substituting Eq. (3.22) into Eq. (3.23) gives

1

γk
E
∫ T

0

H0(t)dt− λk
γk

E
∫ T

0

H2
0 (t)dt =

E
∫ T

0

H0(t)Ek(t, ·)dt+Xk(0)−H0(T )E(Xk(T )),

(3.24)

this switches the problem from solving c∗k(t) to solving λc,∗k ∈ {λk} which satisfies Eq.

(3.24).

Plugging Eq. (3.20) into the constraint 3, Eq. (3.18), gives

E(t, ·) =
K∑
k=1

Ik (λc,∗k H0(t)) , (3.25)

additionally, assuming state price density is dependent on every household’s income

level and their risk aversion in consumption, satisfies the intermediated form that

H0(t) = H(E1(t, ·), ..., EK(t, ·);λc,∗1 , ..., λc,∗K ), (3.26)

Then plugging Eq. (3.26) back into Eq. (3.25) the aggregated income (output) can

be temporarily written with the intermediated form H as

E(t, ·) =
K∑
k=1

Ik(λ
c,∗
k H), (3.27)

Simultaneously Eq. (3.8) and Eq. (3.27) lead

E(t, ·) =
K∑
k=1

1

γk
(1− λc,∗k H) (3.28)

H(E1(t, ·), ..., EK(t, ·);λc,∗1 , ..., λc,∗K ) =

∑K
k=1

1
γk
− E(t, ·)∑K

k=1

λc,∗k
γk

. (3.29)
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Subjected to Eq. (3.26) and Eq. (3.29) and H0(0) = 1, they contribute us

K∑
k=1

λc,∗k
γk

=
K∑
k=1

1

γk
− E(0, ·), (3.30)

H0(t) =

∑K
k=1

1
γk
− E(t, ·)∑K

k=1
1
γk
− E(0, ·)

. (3.31)

Substituting Eq. (3.31) into Eq. (3.24)

1

γk
E
∫ T

0

∑K
k=1

1
γk
− E(t, ·)∑K

k=1
1
γk
− E(0, ·)

dt− λc,∗k
γk

E
∫ T

0

(∑K
k=1

1
γk
− E(t, ·)∑K

k=1
1
γk
− E(0, ·)

)2

dt

= E
∫ T

0

∑K
k=1

1
γk
− E(t, ·)∑K

k=1
1
γk
− E(0, ·)

Ek(t, ·)dt+Xk(0)−H0(T )E(Xk(T )),

(3.32)

by re-ordering, we obtain the solution of optimal multiplier λc,∗k for maximising each

household’s utility in consuming as

λc,∗k =
Γ− E(0, ·)

E
∫ T

0
[Γ− E(t, ·)]2dt

{E
∫ T

0

[Γ− E(t, ·)][1− γkEk(t, ·)]dt

+γkGk[Γ− E(0, ·)]},
(3.33)

where Γ =
∑K

k=1
1
γk

and Gk = E(H0(T )Xk(T )) −Xk(0) is the desired growth rate of

wealth by each household, up to stage T.

Subject to Eq. (3.22), Eq. (3.31) and Eq.(3.33), it yields us an generalised solution

of each household’s optimal consumption level

c∗k(t) =
1

γk
− Γ− E(t, ·)

γkE
{∫ T

0
[Γ− E(t, ·)]2dt

}E{∫ T

0

[Γ− E(t, ·)][1− γkEk(t, ·)]dt
}

−GkXk(0)
[Γ− E(0, ·)][Γ− E(t, ·)]

E
{∫ T

0
[Γ− E(t, ·)]2dt

}
(3.34)

Each household’s revenue purely stems from the salary generated exogenously by

Eq. (2.6), because there is no financial investment activity in this economy, the

consequence is that no extra market risk to be borne in evaluating wealth. Then

isolated exogenous incomes and aggregation are matched to the element of generalised

form solution of optimal consumption:

Ek(t, ·) = εk(t),

E(t, ·) = ε(t),
(3.35)
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Each household’s rational consumption level can simultaneously maximise the utilities

of consumptions and terminal wealth saving satisfying

c∗k(t) =
1

γk
− Γ− ε(t)

γkE
{∫ T

0
[Γ− ε(t)]2dt

}E{∫ T

0

[Γ− ε(t)][1− γkεk(t)]dt
}

−GkXk(0)
[Γ− ε(0)][Γ− ε(t)]

E
{∫ T

0
[Γ− ε(t)]2dt

}
(3.36)

Considering each household’s wealth just at the start and the termination of the dy-

nasty to be both zero, Xk(T ) = Xk(0) = 0, then is subject to Gk = E(H0(T )Xk(T ))−

Xk(0), it gives us the expected growth rate of wealth Gk = 0. In addition, subject to

Γ =
∑K

k=1
1
γk

and ε(t) =
∑K

k=1 εk(t), setting 1
γk
< εk(t), can guarantee Γ − ε(t) < 0

also equivalents 1
εk(t)

< γk ensures 1 − γkεk(t) < 0. Therefore, based on the over-

all condition, c∗k(t) will be positive. Otherwise, the sign of c∗k(t) cannot be analysed

unless by using numerical experiment.

3.4 Simulation and Analysis

Following the solution of optimal consumption under the quadratic utility function

Eq. (3.36), there are a few simulated tests going to be taken, namely whether the ho-

mogenous coefficient of risk aversion (γ) can influence the wealth concentration (both

averaging Gini and its volatility) along the dynasty or not. The rest respect of the

heterogenous risk averse in consumption to determine whether or not the magnitude

of difference among household’s risk aversions (different standard deviations on the

heterogenous risk averse coefficients, γk) have impacts on wealth concentration.

3.4.1 The effect of homogenous consuming preference on wealth
inequality

Each household’s income process still employs the identical one in the last chapter,

as shown in Figure 2.1. The coefficient of risk aversion is γ under the quadratic

utility function described in the modelling section (3.3) but it is homogenous in this
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simulation. In oder to check whether or not this homogenous risk averse γ could

determine wealth inequality, it ranges from 0.05 to 0.35 with the incremental 0.005.

Table 3.1: Summary of key parameters in case 2

Parameter Symbol Value
Household number K 100
Terminal stage T 80
Number of income risk resources d 6
Initial income level εk(0) 1
Income growth rate µ 1
Income volatility averaging σ̄kj 0.12
std. of income volatility σρ 0.02
Expected growth rate on wealth Gk 0
Variant coefficients of risk aversion γ [0.05 : 0.005 : 0.35]

Figure 3.1: spectrum of state price density with gamma domain 0.05 to 0.35

The Figure 3.1 graphs the spectrum of state price endogenously generated by the

household’s incomes and their corresponding homogenous risk averse in consumption,

by following Eq. (3.31). This spectrum shows that state price density is increasing

by a higher risk averse γ with reasonable characteristics. Eq. (3.5) and Eq. (3.31)

contribute
∑K
k=1

1
γk
−E(t,·)∑K

k=1
1
γk
−E(0,·) = e−rt, this implicates that the interest rate r is endogenously

77



driven by aggregated income level E(t, ·) and the set of risk averse γk.

Figure 3.2: Consumption scatter along the varying of risk averse coefficient and time
stage
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(a) γ = 0.05

(b) γ = 0.35

Figure 3.3: consumption spectrum with differing gamma

From Figure 2.1, Figure 3.2 and Figure 3.3 demonstrate that each household’s con-

sumption level is roughly positive to their income level under the optimal consumption

under quadratic utility. In addition, accompanying the risk averse γ increasing and

dynasty life passing, households’ consumptions tend to be more concentrated.
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Figure 3.4: Wealth scatter along the varying of risk averse coefficient and time stage
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(a) γ = 0.05

(b) γ = 0.35

Figure 3.5: wealth trajectory through time with differing gamma

Figure 3.4 and Figure 3.5 show under optimal consumption with quadratic util-

ity, the risk aversion γ has determine power on wealth concentration. The lower γ

attributes households’ wealths converging more steeply to the averaging wealth level

(zero) among households. Additionally, results illustrate that the discrete magnitude

among households’ wealth is highest at the just starting point of the dynasty.
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(a) highest wealth surface

(b) lowest wealth surface

Figure 3.6: highest & lowest wealth surface corresponding to differing gammas and
stage

Figure 3.6 illustrate the highest and lowest wealth at each dynastic stage symmet-

rically converging to zero along time passing. By rising the risk averse γ, both the

highest and lowest converging speeds turn to be faster. In addition, the higher risk
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averse γ implies the deviation of highest (lowest) household’s wealth is greater from

the common wealth level (zero in this case, because it default no capital accumulated

throughout the whole dynasty).

Figure 3.7: Gini coefficient averaging vs. γ

Figure 3.8: Gini coefficient std. vs. γ

Although Figure 3.7 shows a negative correlation between risk averse γ and Gini

mean of the dynasty, it is not observable to suggest the risk averse in household’s con-

sumption has a significant influencing power on wealth inequality. Figure 3.8 cannot

confirm a clear relationship between risk aversion in consumption and the volatility

of wealth inequality throughout the dynasty. However, under the second-order Taylor

polynomial fitting, there is one U-shaped relationship existing between them.
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3.4.2 Effect of heterogenous consuming preference on wealth
inequality

In this section, the risk averse coefficient in consumption utility will be switched from

the homogenous to be heterogenous among households. The differing risk averse

coefficient is set as γk satisfies the normal distribution that

γk ∼ N(γ, σ2
γk), (3.37)

the risk averse coefficient mean is located as γ = 0.2 in this simulation. σγk is the

standard deviation, it stands for the discreteness of the different risk averse coefficient

in consumption. This simulation is to investigate whether or not the discreteness of

the differing risk averse coefficient γk in consumption is one of determinants of the

wealth concentration of households.

Household income is still exogenously given and identically matched to the result

generated in the simulation section (2.7, Figure 2.1) by the process, Eq. (2.6). All the

other parameters are the same as the previous two simulations, only the heterogenous

risk averse coefficient set. The standard deviation of risk averse coefficient ranges from

0.0105 to 0.04 with the incremental 0.0005.

Table 3.2: Summary of key parameters in case 3

Parameter Symbol Value
Household number K 100
Terminal stage T 80
Number of income risk resources d 6
Initial income level εk(0) 1
Income growth rate µ 1
Income volatility averaging σ̄kj 0.12
std. of income volatility σρ 0.02
Expected growth rate on wealth Gk 0
Risk averse coefficient averaging γ 0.2
Std. of risk averse coefficient σγk [0.0105 : 0.0005 : 0.04]
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Figure 3.9: Consumption scatter along the varying std. of risk averse coefficient and
stage
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(a) gamma std. = 0.01

(b) gamma std. = 0.04

Figure 3.10: consumption spectrum with differing std. of averaging gamma 0.20

Figure 3.9 and Figure 3.10 reflect that the consumption level of households’ are

changing from “parallelized” consumptions with their income level, to the switching-

styled among consumptions, accompanying the widening (diverging) discreteness of

risk aversion in consumption (the standard deviation of gamma moving from 0.01 to

0.04).
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Figure 3.11: simulated wealth scatter along the varying std. of constant gamma 0.2
and time stage

Figure 3.11 and Figure 3.12 shown it could not prevent household’s wealth from

converging to zero at the end, with adjusting the differentiation magnitude of het-

erogenous consumption preference (the discreteness of differing risk aversion coeffi-

cient, γk). However, if risk aversions are more discrete among households, then the

smoother their wealth converging to the same level along time passing. In addition,

the results show that the averaging level (common level) of wealth distribution at each

time stage is not roughly zero anymore as similar in previous simulations. It could

be argued that the discreteness of risk aversion in consumptions may have effects on

the averaging level of households’ wealth.
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(a) gamma std. = 0.01

(b) gamma std. = 0.04

Figure 3.12: wealth trajectory through time with differing std. of fixed gamma 0.20
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(a) highest wealth surface

(b) lowest wealth surface

Figure 3.13: highest & lowest wealth surface corresponding differing std. of constant
gamma 0.20

Figure 3.13 illustrates that the higher discreteness of risk aversion of household’s

consumption leads the higher highest-wealth (lowest-wealth) level. The highest and

lowest wealth are symmetrically converging to the zero value of capital accumulated
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at the end of the dynasty.

Figure 3.14: Gini coefficient averaging vs. std. of gamma

Figure 3.15: Gini coefficient std. vs. std. of gamma

The wealth inequality roughly is positive to discreteness of risk aversion in con-

sumption, however it cannot significantly influence the inequality. Similarly, there is

no obvious impact of discreteness of the differing risk aversion in consumption on the

volatility of wealth inequality.

3.5 Conclusion and future research

This chapter we improved it is more consistent to reality that the state price density

satisfies the equilibrium level endogenously driven by risk aversion, deposit rate and

household’s revenue levels jointly. This also simplify the whole modelling in describing
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the wealth concentration progress. In addition, each household?s optimal consump-

tion is set as maximising the utility for their accumulative consumptions and their

utility in terminal wealth at dynasty end. We are adopting quadratic utility function

benefits us to extend the problem from homogenous consumption preference to the

heterogeneous. This chapter illustrates the homogenous (heterogeneous) risk aver-

sion can affect the progressing of wealth concentration, however cannot affect wealth

inequality obviously. On the other hand, this result is equivalent to previous chap-

ter conclusion, as one of robustness comparing. Moreover, the deviation magnitude

among differing risk aversion has no significant impact on wealth inequality, however

can influence the evolution of wealth concentrations.

For the robustness check planned in the future, subject to the Table 3.1, the expected

growth rate on wealth could be set as varying in different, it could be comparing

calibrations among multilateral nations, they have differentiated GDP growth rate,

treating them as equivalent as the wealth growth rate. On the other hand, the in-

come growth rate should be set as differentiated and consistent to its real trend.

Thereby, subject to the Figure 3.5, we may check whether the economic growth (in-

come progress level) is one important determinant causing the regime-switch of wealth

concentration trend through the dynasty is still existing or not.
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Chapter 4

Determinants of wealth inequality
with endogenous income

4.1 Introduction

This chapter is still consistent to general equilibrium framework with maximizing

social welfare, achieve the Pareto optimality of household’s consumption, produc-

tive factors and structures at each stage, simultaneously maximizing terminal wealth.

Hesitating from previous chapter, the market clearing condition just keep the aggre-

gated incomes equal to the aggregated consumption.

In the previous chapters, household’s income is given exogenously and only stems

from labor incomes. However, the real household’s income should constitute labor

wage and financial capital gain, because households contributing their labor forces

and savings to different kinds of business sectors in an exchanging economy with fi-

nancial market. Thus, it could be essential to see whether dynamics of factors and

structures during business sector’s development have influences or not, on the evolu-

tions of wealth inequality, initiated from an economic complex system.

Moreover, comparing with the previous two chapters and Karatzas (1997), we en-

dogenote the wage and capital gain under a complex economic system which is not

only compatible with neoclassical economic growth framework. Also, the complex

economic system built in this chapter, it let us glance on if the latecomer’s advantage

advocated have powerful effect on inequality on the multilateral country sides. The

latecomer’s advantage is advocated by Lin (2011) to the global technological frontier,
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can be adoptable for the developing counties in the globalised open trade environ-

ment.

The real household’s income should constitute labor wage and financial capital gain,

because households contributing their labor forces and savings to different kinds of

business sectors in an exchanging economy with financial market. Contingent claim

analysis is crucial for our system, it enables the allocation of output (industrial value-

added) to capital suppliers and labor suppliers are dynamically varying, adaptive

to the technological gap shrinking (catching up) between developing and developed

countries.

4.2 Modelling

This chapter builds a theoretical model to see whether some endogenously productive

factors and structures could influence the wealth inequality or not? Comparing with

the previous chapters, this chapter will embed the wealth inequality study into a neo-

classical economic growth model, whose labor incomes and financial capital gain are

heterogeneously and endogenously driven by business sector’s progress in labor (tech-

nological) productivity. Moreover, each household’s consumption still satisfies the

Pareto optimality as shown as previous chapter, meanwhile household dynamically

invest their savings (after consumings) into an incomplete financial market following

general strategies.

By utilising the approach of contingent claim analysis, the closed-form solution for

the labor and financial capital have been obtained, and several dimensions have been

involves inside, such as total factor productivity (TFP), productive factors and out-

put. Furthermore, household income stems from wage and financial capital gain,

compensating them for supplying labor and capital to business sectors. Moreover, at

each stage, the financial asset available for each household’s investment is determined

after their optimal consumption, which is consistent with the work in the Chapter 3.

Based on these premises , we check whether a few factors have influential power on
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the evolution of wealth inequality or not, by using simulating experiments, it obtains

a few innovative answers.

4.2.1 Individual’s wealth within investment gain

Each individual act as a productive factors (capital and labor) supplier. They con-

tribute labor and financial capital (equity, lending etc., physical capital is capitalised

to be financial capital) to various kinds of business sectors. Each household may sup-

ply either one or simultaneously supply both two kind of productive factors. In return

they receive revenue from the business sector working for. The revenue is constituted

by the wage (basic salary and bonus) by supplying the labor force to sectors, also

include financial capital gain (equity gain and interest) by supplying financial capital.

Households reply on their revenue to maintain the daily consumption in priority. For

consuming more in the future, they reinvest the retained savings on different busi-

ness sectors via a completed financial market at each period end, following general

investing strategies.

There are n + 1 securities trading continuously in the market, corresponding to the

n business entities1 and one money market B(t), such as the treasury bill. For sim-

plicity, the riskless interest rate is constant r, money price evolves according to

dB(t) = rB(t)dt (4.1)

The evolutions of the price-per-share of the security Pi(t) of the ith business entity at

stage t satisfy:

dPi(t) = Pi(t)dt

(
bi(t) +

z∑
j=1

σij(t)dWj(t)

)
, i = 1, ..., n. (4.2)

where bi(t) is the drift of the ith risky security, in vector {b(t) = (b1(t), ..., bn(t))′} and

σijdWj(t) are the risk sources driven by the independent z-dimensional Brownian mo-

tions W (t) = (W1(t), · · · ,Wz(t))
′. With this interpretation, the volatility coefficient

1A few business sectors have subordinate or joint relationships. Nonetheless juxtaposing them
as completely securitised

94



σij(t) reflects the intensity of the jth source of uncertainty influences the price of the

ith risky security, in vector process σ(t) = {σij(t)}n×z.

In absence of labor income from business sectors, financial capital gain from their

investment (putting their savings into the correspond physical capital in different

business sectors) could be the only source for households to maintain their consump-

tions. Under this circumstance every household’s wealth Xk(t) at time t can be

presented as:

dXk(t) =
n∑
i=1

πk,i(t)
dPi(t)

Pi(t)
+

(
Xk(t)−

n∑
i=1

πk,i(t)

)
dB(t)

B(t)
− ck(t)dt

=
n∑
i=1

πk.i(t)

(
bi(t) +

z∑
j=1

σij(t)dWj(t)

)
+

(
Xk(t)−

n∑
i=1

πk,i(t)

)
rdt− ck(t)dt

= π′k(t)[(b(t)− r1n)dt+ σ(t)dW (t)]− ck(t)dt+ rXk(t)dt

(4.3)

where 1n = (1, ..., 1)′, πk,i(t) denotes how much money the kth household invests in

each of the available securities, πk(t) = (πk,1(t), · · · , πk,n(t))′ and the term Xk(t) −∑n
i=1 πk,i(t) is each household’s investment in money market.

After inserting the wage part εk(t) into the revenue and rewriting Eq.(4.3) with matrix

forms. The household’s wealth dynamic satisfies

dXk(t) = [εk(t) + rXk(t)− ck(t)]dt+ πk(t)
′[(b(t)− r1n)dt+ σ(t)dW (t)]. (4.4)

Following portfolio theory, Markowitz (1952), the specific form of the price of market

risk θ(t), can be presented as

θ(t) = σ(t)′(σ(t)σ(t)′)−1(b(t)− r1n).

b(t) =
(
b1(t) · · · bi(t) · · · bn(t)

)
1×n

σ(t) =


σ11(t) · · · σ1j(t) · · · σ1z(t)

...
. . .

...
σi1(t) σij(t) σiz(t)

...
. . .

...
σn1(t) · · · σnj(t) · · · σnz(t)


n×z

(4.5)
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b(t) is the matrix of capital return rate covering the whole categories of business sec-

tors. σ(t) is a market risk matrix fully covering the risk sources from all financings

for the whole physical capitals in the business sectors2.

4.2.2 Household’s revenue

Each household’s salary level εk(t) can be regarded as the varying labour value Li(t, ·)

accumulative throughout the whole dynasty. For simplicity, the salary payment fol-

lows equalitarianism inside each business sector i, where mi,L is the constant number

of employees working for it:

εk(t)dt
∆
= dLi(t)/mi,L, (4.6)

On the other side, the earning rate bi(t) for each unit financing security of sector i is

denoted as

bi(t)dt
∆
= dFi(t)/

(
ni,FPi(t)

)
, (4.7)

where Pi is the endogenous security price and ni,F is fixed number of securities issued

by the sector i. Li(t, ·) and Fi(t, ·) are determined by the changes of different specific

factors will be shown by Eq. (4.49) and Eq. (4.50) later.

Subject to Eq, (4.6) and Eq. (4.9), their discrete form can be written as

εk(t)∆t
∆
= ∆Li(t)/mi,L (4.8)

bi(t)∆t
∆
= ∆Fi(t)/

(
ni,FPi(t)

)
, (4.9)

It is crucial to solve out the set containing every household’s investment portfolio on

each security at time stage, {πk,i(t)}n×K . It is strength that πk,i(t), t = 0, 1, 2, · · · , T

should meet the below constraints simultaneously.

The constraint of the sum of each row, corresponds the market value of each business

sector at stage t:
K∑
k=1

πk,i(t+ ∆t) = ni,FPi(t), (4.10)

2In this research, the physical capital is assumed equivalent to the financial capital.
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intuitively, among the K households, the aggregation of their investment weights on

the business sector i during stage t+ ∆t is roughly equal to the unit security price of

the sector i multiplied by its security amount ni,F .

The constraint of the sum of each column, corresponds to each household’s wealth

figure at stage t:

subject to Eq. (4.4) in discrete form,

if the kth order household’s net wealth is positive, Xk(t) + [εk(t) + rXk(t) −

ck(t)]∆t +
∑n

i=1 πk,i(t)[bi(t)∆t +
∑z

j=1 σij
(
Wj(t) − Wj(t − ∆t)

)
] > 0, then at the

start of stage t + ∆t, the sum of his investments on the whole range of n business

sectors, {πk,i(t+ ∆t), i = 1, · · · , n} should equal his total wealth available at the end

of stage t:

n∑
i=1

πk,i(t+ ∆t) = Xk(t) + [εk(t) + rXk(t)− ck(t)]∆t

+
n∑
i=1

πk,i(t)[bi(t) +
z∑
j=1

σij
(
Wj(t)−Wj(t−∆t)

)
], 3

(4.11)

if the kth order household’s net wealth is non-positive at the end of stage t, Xk(t)+

[εk(t) + rXk(t)− ck(t)]∆t+
∑n

i=1 πk,i(t)[bi(t)∆t+
∑z

j=1 σij
(
Wj(t)−Wj(t−∆t)

)
] ≤ 0,

then he cannot participate investing on anyone of business sectors:

πk,i(t+ ∆t) = 0, i =, 1, 2, · · · , n. (4.12)

where Pi(t) and Xk(t) can be recursively solved out according to Eq. (4.2) and

Eq. (4.4) respectively,

Pi(t+ ∆t) = Pi(t)[1 + bi(t)∆t+
z∑
j=1

σij
(
Wj(t+ ∆t)−Wj(t)], Pi(0) =

Fi(0)

ni,F
(4.13)

Xk(t+ ∆t) = Xk(t) + [εk(t) + rXk(t)− ck(t)]∆t+ πk(t)
′[b(t)∆t+ σ

(
W (t+ ∆t)−W (t)

)
],

(4.14)

with the initial conditions that Xk(0) =
∑n

i=1 Fi(0)/K, εk(0) = 0, bi(0) = 0, πk,i(0) =

Fi(0)/K, πk(0)′ = (πk,1(0), · · · , πk,i(0), · · · , πk,n(0)). The investment portfolio of each

household’s stands on the same starting line, the capitalised value of the whole busi-

ness sectors, equally belong to each household at the initial condition of the dynasty.
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4.2.2.1 Economic system with general investment strategy

This chapter is to investigate the evolution of wealth inequality under an economic

system where households make investment decisions at each time stage following

General Strategies (GS) in a completed market. The GS satisfies:

{πk,i(t)} =


π1,1(t) · · · πk,1(t) · · · πK,1(t)

...
. . .

...
π1,i(t) πk,i(t) πK,i(t)

...
. . .

...
π1,n(t) · · · πk,n(t) · · · σK,n(t)


n×K

(4.15)

Be consistent to Eq. (4.10), the sum of each GS’s elements in row meets

K∑
k=1

πk,i(t) = ni,FPi(t−∆t), (4.16)

it presents the sum of all household’s investments at just start of time t equal to the

capitalized value of the ith business sector at just end of time t−∆t, namely its unit

stock price Pi(t−∆t) multiplying the time-invariant number of stocks ni,F .

Be consistent to Eq. (4.11), the sum of each GS’s elements in column satisfies

n∑
i=1

πk,i(t) = Xk(t−∆t) + [εk(t−∆t) + rXk(t−∆t)− ck(t−∆t)]∆t

+
n∑
i=1

πk,i(t− 1)[bi(t−∆t) +
z∑
j=1

σij
(
Wj(t−∆t)−Wj(t− 2∆t)

)
],

(4.17)

it presents the sum of the kth household’s investments on the full range of business

sectors at just start of time t, equal to his available wealth at the just end of time t−∆t.

His available wealth at end of t−∆t are constituted by the just start wealth at t−∆t,

Xk(t−∆t) plus his after-consumption saving [εk(t−∆t)+rXk(t−∆t)−ck(t−∆t)]∆t,

then plus his financial capital again during t −∆t, by investing on business sectors,∑n
i=1 πk,i(t−∆t)[bi(t−∆t) +

∑z
j=1 σij

(
Wj(t−∆t)−Wj(t− 2∆t)

)
].

Further more, this household’s labor income level and financial capital gain level at

t−∆t, εk(t−∆t) and bi(t−∆t) respectively follow Eq. (4.6) and Eq. (4.9), namely,

εk(t−∆t)
∆
=
T [Li(t−∆t, ·)− Li(t− 2∆t, ·)]

mi,L

(4.18)
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bi(t−∆t)
∆
=
T [Fi(t−∆t)− Fi(t− 2∆t)]

ni,FPi(t− 2∆t)
(4.19)

where aggregated labor value and financial capital value Li and Fi are endogenously

driven by this business sector’s Total Factor Productivity (TFP), Ai,t and a few

other factors, these will be explained in Section (4.2.2.2). The analytical formulas to

compute Li and Fi at each time stage will be shown in Eq. (4.49) and Eq. (4.50)

later. Each business sector’s stock price Pi(t − 2∆t) can be computed following Eq.

(4.13) as that

Pi(t−2∆t) = Pi(t−3∆t)[1+bi(t−3∆t)∆t+
z∑
j=1

σij
(
Wj(t−2∆t)−Wj(t−3∆t)], (4.20)

subject to Eq. (4.19) and Eq. (4.20), it can be known that each business sector’s

earning rate of unit capital investment, bi and its stock price Pi can be recursively

iterated out, namely bi(t−∆t) is computed by the known Pi(t−3∆t) and bi(t−3∆t).

Moving back to the Eq. (4.17), the kthhousehold’s consumption ck(t − ∆t) is the

optimal consumption level obtained from the previous chapter, which is solved out

under general equilibrium framework. The specific solution of the ck(t) will be shown

later in Eq. (4.57) with the aggregated incomes from both labor income and capital

accumulation across the whole economy, Ek, Eq. (4.55) and Eq. (4.56).

Subject to the GS matrix, Eq. (4.15), it is a problem solving a few general strategies

chosen by household at the starting time of each stage t. It can be known that there

could be n × K − (n + K) + 1 groups of general strategies can be solved out for

each stage GS, with the n constraints Eq. (4.16) and the K constraints Eq. (4.17).

In addition, our target is to check the inequality evolution accompanying different

kind of factor changes, therefore, it had better to make expectation for the whole

n × K − (n + K) + 1 groups of general strategies, it means we find out the most

possible investment decision made by each household in the economy in expectation,

and their expected general strategies comprehensively leading the wealth inequality

evolution throughout the dynastic development.

In addition, be consistent to Eq. (4.14), the Xk(t −∆t) required by Eq. (4.17) can
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be computed by

Xk(t−∆t) = Xk(t− 2∆t) + [εk(t− 2∆t) + rXk(t− 2∆t)− ck(t− 2∆t)]∆t

+πk(t− 2∆t)′[b(t− 2∆t)∆t+ σ
(
W (t−∆t)−W (t− 2∆t)

)
],

(4.21)

Thus, the Eq. (4.21), Eq. (4.17) and Eq. (4.15) together illustrate that the process

of each household’s wealth Xk and their general investment strategies πk,i(t) can be

recursively simulated out step by step.

4.2.2.2 Endogenous Labor income and Financial Capital

Subject to the Solow-Swan model with human capital improved by Mankiw et al.

(1992) that

Yi,t = Fα
i,tH

β
i,t

(
Ai,tLi,t

)1−α−β
(4.22)

where Yt is the business sector’s output at stage t (hereafter, omit i for all of param-

eters), Ft is physical capital (financial capital), Ht is human capital, At stands for

technique level (Total Factor Productivity, TFP among business sectors), Lt is labor

and α and β respectively are the elasticity of output with respect to physical capital

and labor. Subject to Eq. (4.22)

ln
(
Yt/Yt−1

)
=α ln

(
Ft/Ft−1

)
+ β ln

(
Ht/Ht−1

)
+
(
1− α− β

)
ln
(
At/At−1

)
+
(
1− α− β

)
ln
(
Lt/Lt−1

) (4.23)

with an implicit assumption that the sector’s TFP progresses uniformly through each

stage E ln
(
At+1/At

)
= E ln

(
At/At−1

)
. Reordering Eq. (4.23) to be

ln
(
At/At−1

)
=

ln
(
Yt/Yt−1

)
1− α− β

− ln
(
Lt/Lt−1

)
− α

1− α− β
ln
(
Ft/Ft−1

)
− β

1− α− β
ln
(
Ht/Ht−1

) (4.24)

after release the implicit assumption, by adding a noise term

ln
(
At
)

= ln
(
At−1

)
+

ln
(
Yt−1/Yt−2

)
1− α− β

+
1

2
σ2 − 1

2
σ2 − ln

(
Lt/Lt−1

)
− α

1− α− β
ln
(
Ft/Ft−1

)
− β

1− α− β
ln
(
Ht/Ht−1

)
+ σZt

(4.25)
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Subject to Eq. (4.25), the dynamics of TFP can be presented by

dAt
At

=
[
µt − lt − (ωt + dt − r)− δt

]
dt+ σdZt (4.26)

with

µt
∆
=

ln
(
Yt−1/Yt−2

)
1−α−β − 1

2
σ2 (4.27)

lt
∆
= ln

(
Lt−1/Lt−2

)
(4.28)

ωt + dt − r
∆
= α

1−α−β ln
(
Ft−1/Ft−2

)
(4.29)

δt
∆
= β

1−α−β ln
(
Ht−1/Ht−2

)
(4.30)

where σdZ1 is innovation risk of TFP dynamics, Z is Brownian motion. The drift

component of TFP dynamics is linearly composited by the changes of endowment

structure, µt, lt, wt + dt − r and δt respectively correspond to the changes of output,

labor, capital and human capital. wt and dt separately imply the proportion of At

dynamics attributed by equity-financing and debt-financing.

Intuitively, Eq.(4.24) exposits TFP At as the driver to create residual profit de-

ducting physical capital, labor and human capital from output, for each business

sector during producing. A few studies represented by Griliches (1979) clarifies the

TFP At evolution associated to technological research and development risk (R&D),

expressed by the diffusion term σdZt of the Eq. (4.24). On the other hand, some

studies represented by Lin (2011) finds developing economies may have a latecomer

advantage in productive technology, because their technology has not achieved the

global technological frontier. Thereby the latecomer advantage benefits the business

sectors in emerging nations almost shouldering minor R&D risk than that of na-

tions whose industrial sectors on the global technological frontier. Accordingly, the

Eq.(4.26) can be treated equivalently as the business sector’s profitability dynamics

of Developing Economies, comparing with Eq. (4.24), the R&D risk can be neglected,

the business sector’s profitability (or TFP) AD could be much stable and smoothy

than the profitability on technological frontier, and satisfies

dAD
t = (µt + r − lt − ωt − dt − δt)AD

t dt, (4.31)
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In addition, an theoretical background should be existing in this research that, the

markets among among economies are open no trade barrier between developed and

developing countries, the industrial location (division) of each kind of business sector

is freely determined by the competitive equilibrium for the open trade, similar as the

explanation by Hertel (1997) .

Subject to Eq. (4.26) and Eq. (4.31), conventional economic analysis expresses

the expected gross salary rate (wage rate and labor welfare) according to

[lt + k(µt + r − lt − ωt − dt − δt)]dt. (4.32)

However, Eq. (4.32) ignores the reserved part of residual profit under a budget

management policy for the incremental activities of the business sector, such as a

forthcoming project. Therefore, being consistent with the budget management, the

gross salary (or financial capital gain)4 available at each time stage, ϕ(t, ·) should

be treated as the difference between the adjacent contingent claims adaptive to the

prospect of the sector development

ϕt+1 = Vt+1 − Vt, (4.33)

Vt = Et
∫ T

t

Ht,τGτdτ +Ht,TVT , (4.34)

the G is the continuously periodical payment flow expected to be attributed to ei-

ther the labor force or financial capital suppliers, conditional on the business sector

progress adaptive to each time sage t. In the conventional economic aspect, under

the single closed economy, the retaining profit and the periodical payment attributed

to labor force or financial capital suppliers is linear relationship in simplicity, denoted

by

G
(
A, t
)

= ξ(·)A (4.35)

where, ξ is the linear adaptor.

Moreover, between the bilateral economies with open trade condition, under the

4When ϕ(t, ·) corresponds the business sector’s gross salary at each period, it could be denoted
by Lt, alternatively when ϕ(t, ·) corresponds financial capital gains (no matter direct financing or
indirect financing, it could be denoted by Ft .
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competitive equilibrium between the identical industrial sector in developed econ-

omy (technological frontier) and developing economy (own latecomer advantage in

producing technology), the periodical payment attributed to labor force or financial

capitals suppliers should be linear to the differential level of technology of the identical

business sector:

G
(
A,AD, t

)
= ξ1(·)A+ ξ2(·)AD (4.36)

where ξ1 and ξ2 are the linear adaptors respective for A and AD. However, the

emerging economic perspective from new economic thinking begin regarding its could

be nonlinear between them, also the attribution relationship for the value added of

each business sector to its labor and financial capital suppliers could be endogenously

driven by relative difference between the technology in developed economy and the

in developing economy, AD

A
:

G
(
A,AD, t

)
= ξ1

(AD
A
, ·
)
A+ ξ2

(AD
A
, ·
)
AD + Ω

(
A,AD, t

)
(4.37)

where Ω
(
A,AD, t

)
is the nonlinear component, its architecture is still unsure and it

will be solved out in the end of derivation as shown as Eq. (4.49) and Eq. (4.50).

Lets calling back Eq. (4.33), subject to the nonlinearity in Eq. (4.37), the adaptive

payoff Vt should be endogenously driven by A, AD and t in nonlinearity. Moreover Ht,τ

is the time discounter5. The Ht,TVT presents the terminal payment by the business

sector to its stakeholders, for labor force, it is the dismissal compensation fee for

employment, on the other side for financial capital suppliers, it is the asset collateral

priority for loan lenders and then residuals for shareholders. The Vt is the expected

payoff accumulative from t to T conditional on each development stage t by this

business sector, equivalently, Vt can be treated as the expected total outputs from t

to T by this business sector, and nothing left at the end of liquidation stage.

Similar to employee payment, investor payment also satisfies Eq. (4.33) and Eq.

(4.34). We use Lt and Ft to express Vt respectively for the labor and capital for the

5Following Eq. (3.2), the state price density at τ conditional to t, τ < c < t < T , can be written

as Ht,τ = e−[r(τ−t)+
∫ τ
t
θ(c)′dW (c)+ 1

2

∫ τ
t
‖θ(c)‖2dc]
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business sector at t.

Under the competitive equilibrium among open economies, each specific business

sector’s salary and capital payoff should be variant upon on time stage, technological

frontier TFP At and latecomer advantage TFP AD, namely V(t, A,AD), for simplicity

written as Vt, subject to Eq. (4.26) and Eq. (4.31) applying Ito’s formula on H0,τV

yields

dH0,tVτ = −H0,t[rdt+ θ(t)′dW (t)]Vτ +H0,t {(µ+ r − l − ω − d− δ)

·AD ∂Vτ
∂ADdt+ (µ+ r − l − ω − d)A

∂Vτ
∂A

dt+
1

2
σ2A2∂

2Vτ
∂A2

dt

+A
∂Vτ
∂A

σdZ } .

(4.38)

Integrating on both sides with the conditional expectation up to t

Et[H0VT − Vτ ] = −rEt
∫ T

t

H0,τVτdτ + Et
∫ T

t

H0,τ (µ+ r − l − ω − d− δ)AD ∂Vτ
∂AD

+Et
∫ T

t

H0,τ

[
(µ+ r − l − ω − d)A

∂Vτ
∂A

+
1

2
σ2A2∂

2Vτ
∂S2

]
dτ,

(4.39)

and plugging Eq. (4.34) into Eq. (4.39), the below PDE can be obtained

0 = −rVτ + (µ+ r − l − ω − d)A
∂Vτ
∂A

+
1

2
σ2A2∂

2Vτ
∂A2

+(µ+ r − l − ω − d− δ)AD ∂Vτ
∂AD + G.

(4.40)

The Vτ can be assumed as homogenous of degree one in A and AD, the solution could

be structured as V = ADQ(x), where x is a nonlinear adapter between the business

sector’s value attributable to labor (or financial capital supplier) and the sector’s

residual profitability contributed by the latecomer productive advantage in emerging

economy, namely xAD = A. Comparing with Eq. (4.32), the Q(x) is dynamical frac-

tion of the aggregated payments occupied in AD. Q(x) involves the paying change

term attributed by the differential prospects adaptive to the adjacent time stages.

Substituting V = ADQ(x) and the relevant derivatives ∂V/∂AD = Q, ∂V/∂A =

∂Q/∂x and ∂2V/∂A2 = (AD)−1∂2Q/∂x2 into (4.40), the below ODE can be obtained

(µ− l − ω − δ)Q+ (δ + d)x
∂Q

∂x
+

1

2
σ2x2∂

2Q

∂x2
+ θx = 0, (4.41)
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for the employees’ gross salary case, existing θ = l + kAD/A contains the linearity

percentage of both basic salary and welfare benefit on the entity value. In respect to

the business sector’s investor side, existing θ = d + ω is the linearity proportion of

the payment to them. Conjecturing the specific form of Q(x) in (4.41) as

Q(x) =
θx

l + ω + kA
Q(t)
A

+ d− µ
+B1x

y1 +B2x
y2 (4.42)

where the fraction is the linear component of the Q(x). It indicates the linear part of

the payments to employees or investors occupied in the whole payment flows of the

entity. The B1x
y1 and B2x

y2 are the curvature parts of the Q(x), they correspond the

nonlinear various parts of payments inferenced by the contingent prospects. y1 and

y2 are the real root pair follow the quadratic equation

1

2
σ2y(y − 1) + (δ + d)y + (µ− l − ω − µ) = 0 (4.43)

imposing the condition that the rigid paying (basic salary and equity withdraw)

proportion µ <
(δ+d− 1

2
σ2)2

2σ2 + l+ ω + δ to ensure existence of two real roots. Then the

roots can be sorted as

(
y1

y2

)
=

(1
2
σ2 − δ − d)±

√
(δ + d− 1

2
σ2)2 + 2σ2(l + ω + δ − µ)

σ2
(4.44)

In order to solve out the specific form of B1 and B2 in Eq.(4.42), two boundary con-

ditions are required. One boundary condition is that the labor requirement converges

to zero at the end of development T , accompanying the TFP AT progress to be very

high. This tendency is consistent with that explained by Mankiw et al. (1992) Jones

(1995), the TFP (aggregated labour productivity) growth is driven by human capi-

tal accumulation, accompanying the share of human capital participating larger and

larger share in economic growth, then the intensity of labor and physical capital tend

to shrink. The physical (financial) capital relative to technique reaches an upper limit

D at T :

QL,T (xT ) = LT (AT , A
D
T )/AD

T = 0

QF,T (xT ) = FT (AT , A
D
T )/AD

T = D
(4.45)
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the subscript L and F of Q respectively identifies that they correspond to VLt or VFt ,

because in previously, we simply denoted both VLt and VFt sharing the homogenous

form as V(t, At).

On the other side, at the just start stage t0 of economic development, the intensity

of labor initiates from the whole, there is no R&D component involved in TFP, then

there is no technological risk at start stage, xt0 = At0/A
D
t0

= 1. At just starting t0,

there is no demand for labor and capital, namely Lt0 = 0 and Ft0 = 0. Thereby, the

incremental Q′L,t0 and Q′F,t0 stand for the actual requirements for labor and capital

at the just end of t0. By considering the labor welfare has not yet been given, then

it existing

QL,t0(xt0 = 1) = (1 + k)Q′L,t0(xt0 = 1)− k

QF,t0(xt0 = 1) = (1 + k)Q′F,t0(xt0 = 1)
(4.46)

based on the two boundaries of the Eq. (4.45) and Eq. (4.46), the simultaneous

equations sets can be respectively established:
l+k

AD(t)
A

l+k
AD(t)
A

+d+ω−µ
D +B1,L ·Dy1 +B2,L ·Dy2 = 0

B1,L +B2,L = k

[
l+k

AD(t)
A

l+k
AD(t)
A

+d+ω−µ
+ y1B1,L + y2B2,L − 1

] (4.47)

and 
ω+d

l+k
AD(t)
A

+d+ω−µ
D +B1,F ·Dy1 +B2,F ·Dy2 = D

B1,F +B2,F = k

[
ω+d

l+k
AD(t)
A

+d+ω−µ
+ y1B1,F + y2B2,F

] (4.48)

where B1,L and B2,L, B1,F and B2,F separately correspond to the coefficients B1, B2 of

QL and QF . Their specific forms can be solved out from the simultaneous equations,

Eq. (4.47) and Eq. (4.48). After that plugging them back into Eq. (4.42), based on

the homogeneous expression V = ADQ(x), the analytical solutions of the endogenous
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labor and financial capital Lt(At, ·), Ft(At, ·) at t satisfy

Lt(At, ·) =
lAt + kAD

t

l + ω + k
AD
t

At
+ d− µ

−{
k(ω + d− µ)Dy2−y1 + [y2(1 + k)− 1][l + k

AD
t (t)

At
]D1−y1

}
AD
t (t)1−y1Ay1t

(l + ω + k
AD
t (t)

At
+ d− µ) {y2(1 + k)− 1−Dy2−y1 [y1(1 + k)− 1]}

+

{
k(ω + d− µ) + [y1(1 + k)− 1](l + k

AD
t (t)

At
)D1−y1

}
AD
t (t)1−y2Ay2t

(l + ω + k
AD
t (t)

At
+ d− µ) {y2(1 + k)− 1−Dy2−y1 [y1(1 + k)− 1]}

,

(4.49)

Ft(At, ·) =
(ω + d)At

l + ω + k
AD
t

At
+ d− µ

+{
k(ω + d)Dy2−y1 + [y2(1 + k)− 1](l + k

AD
t (t)

At
− µ)D1−y1

}
AD
t (t)1−y1Ay1t

(l + ω + k
AD
t (t)

At
+ d− µ) {y2(1 + k)− 1−Dy2−y1 [y1(1 + k)− 1]}

−

{
k(ω + d) + [y1(1 + k)− 1](l + k

AD
t (t)

At
− µ)D1−y1

}
AD
t (t)1−y2Ay2t

(l + ω + k
AD
t (t)

At
+ d− µ) {y2(1 + k)− 1−Dy2−y1 [y1(1 + k)− 1]}

,

(4.50)

Subject to Eq. (4.27) ∼ (4.30), the solutions Eq. (4.49) and Eq. (4.50) release that

at stage t, each business sector’s demands on labor Lt and physical (financial) capital

Ft are endogenously driven by the technological progress At, the adaptively growth

rate of output and productive factors, ln
(
Yt−1/Yt−2

)
, ln

(
Lt−1/Lt−2

)
, ln

(
Ft−1/Ft−2

)
and ln

(
Ht−1/Ht−2

)
, the labor welfare k and the technical innovation risk σ.

4.2.3 Optimal consumption with financial investment

Eq.(4.4) shows each household’s revenue contains the gross salary and financial capital

gain from different business sectors. Follows the optimal consumption level under

quadratic utility function, matching Eq. (4.4) with Eq. (3.16), gives

Ek(t, ·) = εk(t) + π′k(t)(b(t)− r1n), t = 0, 1, 2, · · · , T.6 (4.51)

6subject to εk(0) = 0, bi(0) = 0, πk(0)′ = (πk,1(0), · · · , πk,i(0), · · · , πk,n(0)) , πk,i(0) = Fi(0)/K ,

leads that Ek(0) = −r
∑n
i=1 Fi(0)

K

107



Originally, the aggregate revenue level of the whole economy is

E(t, ·) =
K∑
k=1

εk(t, ·) +
K∑
k=1

π′k(t)(b(t)− r1n) + r
K∑
k=1

Xk(t), t = 0, 1, 2, · · · , T, (4.52)

the assumption no individual saving for interest for (4.11) and (4.14) shows

n∑
i=1

πk,i(t) = Xk(t) (4.53)

substituting Eq. (4.53) into Eq. (4.52) yields

E(t, ·) =
K∑
k=1

εk(t, ·) +
K∑
k=1

π′k(t)b(t), t = 0, 1, 2, · · · , T, (4.54)

furthermore, based on K =
∑n

i=1 mi,L, Eq. (4.6), Eq. (4.9) and Eq. (4.10) results

E(0, ·) = 0 and Eq. (4.54) can be rewritten as

E(t, ·) =
n∑
i=1

mi,Lεk(t, ·) +
n∑
i=1

K∑
k=1

πk,i(t)bi(t)

=
n∑
i=1

T [Li,t(At, ·)− Li,t−1(At−1, ·)] +
n∑
i=1

T [Fi,t(At, ·)− Fi,t−1(At, ·)]

= T
n∑
i=1

[Âi,t(At, ·)− Âi,t−1(At−1, ·)], t = 1, 2, · · · , T

(4.55)

where Âi,t(At, ·) = Li,t(At, ·) + Fi,t(At, ·), in respect to Eq. (4.49) and Eq. (4.50), it

can be presented as

Âi,t(At, ·) =
l + ω + kA

D(t)
A(t)

+ d

l + ω + kA
D(t)
A(t)

+ d− µ
Ai,t(At, ·)

+
µ {kDy2−y1 − [y2(1 + k)− 1]D1−y1}AD(t)1−y1A(t)y1

(l + ω + kA
D(t)
A(t)

+ d− µ) {y2(1 + k)− 1−Dy2−y1 [y1(1 + k)− 1]}

− µ {k − [y1(1 + k)− 1]D1−y1}AD(t)1−y2A(t)y2

(l + ω + kA
D(t)
A(t)

+ d− µ) {y2(1 + k)− 1−Dy2−y1 [y1(1 + k)− 1]}
(4.56)

Along each stage of economic development, heterogenous households’ optimal con-

sumptions satisfy the result we obtained in the last chapter, Eq. (3.34), which max-

imizing the social welfare ( household’s consumptions) and their heritage wealth at
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the end of dynasty, recalling Eq. (3.34) that

c∗k(t) =
1

γk
− Γ− E(t, ·)

γkE
{∫ T

0
[Γ− E(t, ·)]2dt

}E{∫ T

0

[Γ− E(t, ·)][1− γkεk(t)

+γkπ
′
k(t)(b(t)− r1n)]dt} − GkXk(0)

[Γ− E(0, ·)][Γ− E(t, ·)]

E
{∫ T

0
[Γ− E(t, ·)]2dt

} (4.57)

In this chapter, household’s revenue has been endogenously given by Eq. (4.55) and

Eq. (4.56). At each stage, the optimal consumption level c∗k(t) will be substituted

to the Eq. (4.11), recursively yielding the solution of household’s investment weight

{πk,i(t+ 1)} rebalancing to the next stage. After that, it permits recursively solving

out the trajectories of households’ net wealth along the whole dynasty and investi-

gating the key determinants embedded in the endogenous revenue flow impacting on

inequality.

4.3 Simulation and Analysis

In this simulation, we attempt to investigate whether changes of productive factors

and structures can influence wealth inequality or not, such as the changes of sector’s

output, labor, financial capital, human capital, the capital structure (between equity

and debt-financing fraction), worker’s welfare from residual profit. Moreover, the cap-

ital gain has been regarded as one of income sources for household’s saving, which is

endogenously generated by the operating business sector to contribute output. Under

this circumstance that labor and investment earning are endogenously generated, it

is worthy to re-check if the homogenous risk averse in household’s consumption can

determine the wealth inequality or not.

The analytical solutions have been obtained. However the simulation load is

still astonished attributed by the endogenous structures for both revenue resources

and heterogenous consumption among households. In specific revenue resources con-

tains the labor income distributed by their affiliated sector and the capital gain from
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their investment in kinds of sectors. Each business sector makes differently partic-

ular decision in allocating the wage and capital financing return to their labor and

capital-supplier, at each stage. Simultaneously each household’s investment decision

is endogenously driven by their differing consumptions at each stage. Moreover each

household’s optimal consumption level is adjusted by their revenue status. These

endogenous structures are dynamically and recursively carried on, stage by stage

throughout the whole dynasty.

Fortunately, the high performance computing7 can realise this simulation experi-

ment.

In respect to the fixed parameter adopted in the simulation, they are shown in Ta-

ble 4.1 and the parameter corresponds the potential determinants of wealth inequality,

is to be stated in Table 4.2:

Table 4.1: Summary of fixed parameters

Parameter Symbol Value
Household number K 30
Terminal stage T 80
Initial technique Ai,t0 1.1
riskless rate r 0.05
Upper limit of physical capital over technique at T D 6
Change of labor l 0.3
Technological progress volatility factor σ 0.05
Correlation between technique and product innovation ρ 0.1

Table 4.2: Potential determinants of wealth inequality

Parameter Symbol Value
debt-financing share of output ω 0.1
equity-financing share of output d [0.05: 0.35]
change of human capital δ 0.1
change of sector output µ 0.02
worker’s welfare in residual profit k 0.2
household’s risk aversion γ 0.25

7The simulations are achieved by employing Alibaba Cloud High Performance Computing Server.

110



Figure 4.1: equity fraction vs. Gini coefficient along time

Figure 4.1 illustrates this model is capable to describe the inequality deteriorating

along time passing, this is consistent with the fact that the wealth keeps on con-

centrating. There is approximately “ smile ” relationship between equity-financing

fraction and the wealth inequality at each stage. This simulation suggests that the

share of equity-financing ωt is one determinant in wealth concentrating. The over-

loading or shortage of equity-financing could further accelerate the wealth inequality.

Table 4.3: Potential determinants of wealth inequality

Parameter Symbol Value
debt-financing share of output ω [0: 0.5]
equity-financing share of output d 0.2
change of human capital δ 0.1
change of sector output µ 0.02
labor’s welfare in residual profit k 0.2
household’s risk aversion γ 0.25
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Figure 4.2: debt-financing fraction vs. Gini coefficient along time

The Figure 4.2 illustrates the inequality of wealth could be negatively correlated

to the debt-financing share. Theoretically, in absence of thinking the efficiency of

equity/debt capital financing and financial market frictions, if the economy is more

bank-orientated, then the inequality of wealth expanses more fiercely.

Table 4.4: Potential determinants of wealth inequality

Parameter Symbol Value
debt-financing share of output ω 0.2
equity-financing share of output d 0.2
change of human capital δ 0.1
change of sector output µ [0 : 0.20]
worker’s welfare in residual profit k 0.2
household’s risk aversion γ 0.25
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Figure 4.3: Output changes vs. Gini coefficient along time

Figure 4.3 exposits that business sector’s output growth is seemly not a cause for

the expansion of wealth inequality, by controlling other factors or economic structures

as invariant.

Table 4.5: Potential determinants of wealth inequality

Parameter Symbol Value
debt-financing share of output ω 0.2
equity-financing share of output d 0.2
change of human capital δ 0.1
change of sector output µ 0.02
worker’s welfare in residual profit k [0.1:0.8]
household’s risk aversion γ 0.25
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Figure 4.4: labor welfare share vs. Gini coefficient along time

Figure 4.4 shows the labor welfare level in the business sectors could be negative

associated with wealth inequality. Intuitively, if the labor welfare level occupied an

larger proportion of the risk-adjusted retained profit. If their retained earnings have

a great difference among business sectors, then this leads the households who working

for the high-profitable sector obtaining comparatively higher welfare than those who

work for the low-profitability sector, amplifying their inequality of wealth. It can

be suggested that increasing the labor welfare cannot relieve the wealth inequality

but widen that. It may be not a reasonable approach to improve wealth inequality

by rising labor welfare. Alternatively, improving the secondary distribution through

fiscal aid or taxation system perhaps can be considered.
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Table 4.6: Potential determinants of wealth inequality

Parameter Symbol Value
debt-financing share of output ω 0.2
equity-financing share of output d 0.2
change of human capital δ [0.05:0.30]
change of sector output µ 0.02
worker’s welfare in residual profit k 0.2
household’s risk aversion γ 0.25

Figure 4.5: human capital vs. Gini coefficient along time

It shows that human capital accumulation insignificantly affects on inequality of

wealth.
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Table 4.7: Potential determinants of wealth inequality

Parameter Symbol Value
debt-financing share of output ω 0.2
equity-financing share of output d 0.2
change of human capital δ 0.1
change of sector output µ 0.02
worker’s welfare in residual profit k 0.2
household’s risk aversion γ [0.05:0.35]

Figure 4.6: risk-averse coefficient of consumption vs. Gini coefficient along time

Figure 4.6 demonstrates that under the optimal consumption level, Eq. (4.57), if

the homogenous risk aversion of consumptions is higher (less risk-averse), the wealth

inequality in the economy tends to be larger. It may be explained that under less

risk aversion, the richer prefers to consume more luxury good, however if they are

high-risk averse, then they will spend on luxury good and accumulate wealth faster

that other households. This illustration is opposite to the result shown in the previous

116



chapter (Figure 3.7) that risk averse level in household’s consumption has no signif-

icant impacts on wealth inequality. The intrinsic reason why the simulated results

between two chapters are opposite, could caused by the household’s income source

has been switched from the exogenously given to the endogenous progressing from the

technological progress, productive factors and output growth. Intuitively, the higher

risk aversion coefficient (γ) in the quadratic form utility function, corresponds to that

households obtain higher utility at the same consumptions, corresponding less risk-

averse. Assuming all households are centralised to one fixed utility targeting level in

consumption, then the less γ benefits richer spend relatively less share of wealth to

maintain the averaging utility target, and so have more wealth left for saving. There-

fore, it leads to the wealth inequality deteriorating more fiercely when households are

less risk averse in consumption.

4.4 Conclusion and future studies

In this chapter, a complex economic system has been built, where satisfies the op-

timal consumption framework to an economic system with a completed financial

market where investor following general investment strategies, among the industrial

productions have distances to or on the global technological frontier, with industrial

allocation under competitive equilibrium. Household?s revenues is constituted by

both labour income and financial capital by allocating their saving to the range of

business sectors, adaptively during each development stages. Moreover, based on

the neoclassical economic growth developed by Mankiw et al. (1992), both financial

capital gains and labor income are endogenously driven by the technological progress

(TFP) of each business sectors, the growth rate of output, productive factors and

human capital. At each development stage, the attributions of labor income and

financial capital gain follows the contingent claim analysis. The simulated analysis

in the Chapter 4 illustrates that the evolution of wealth inequality is endogenously

driven by the financial structure (equity financing vs. debt financing), labor force’s
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welfare level and household’s risk aversion in consumption, conversely the output

and human capital accumulation illustrate no significant effects on wealth inequality.

Moreover, the whole sets of simulations, indicating wealth in- equality issues should

be more and more fierce, accompanying economic development throughout the whole

dynasty. If we believe the technological progress promotes the economic growth, then

it can be suggested technological progress could be one of intrinsic cause raising in-

equality.

In respond to the robustness of the results suggested in this chapter, prospectively

for each simulation from under Table 4.3 to Table 4.6, beside the incremental interval

of varying economic variable, such as the change rate of sector output in Table 4.4,

the other economic parameters have also segmentally been adjusted, to see whether

the observed result could be sensitive to the freezing parameters or not. Our finding

is that the mainstream has not been influenced. However, it should be highlighted,

the historical parameters require to be calibrated inside the economic complexity in

the future work.

118



Appendix A

Estimation of decomposed
volatility

The observable price of stock S(t), index IN(t) and market M(t) respectively satisfy

dS(t)

S(t)
= µdt+ σsdZs(t) (A.1)

dIN(t)

IN(t)
= µINdt+ σINdZIN(t) (A.2)

dM(t)

M(t)
= µMdt+ σMdZ3(t) (A.3)

where µ, µIN and µM are the drift rate of each process. σs, σIN and σM are the volatil-

ity factor corresponding to the dynamics of S(t), IN(t) and M(t). Zs(t), ZIN(t) and

Z3(t) are the Brownian motions.

In section 2.1, the stock retrun volatility is decomposed into three components re-

spectively attributed by the firm, index and market level information. Therefore,

the diffusion σsdZs(t) of stock price dynamic can be split to be three independent

diffusions as
dS(t)

S(t)
= µdt+ σfdZ1(t) + σindZ2(t) + σMdZ3(t) (A.4)

where σfdZ1(t) is the endogenous diffusion driven by the firm level information,

σindZ2(t) and σMdZ3(t) are the exogenous diffusions driven by the index and market

level information. Following the similar procedure, splitting index volatility into two

parts driven by index and market level information. Thus the diffusion σINdZIN(t)
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can be split to be two as

dIN(t)

IN(t)
= µINdt+ σindZ2(t) + σMdZ3(t) (A.5)

where σindZ2(t) and σMdZ3(t) motivated by the endogenous information from index

and exogenous information from market level respectively.

If subtract (A.1) from (A.4) and (A.2) from (A.5) and write the result in a discrete

form, it gives

σsZs(t)
√

∆t = σfZ1(t)
√

∆t+ σinZ2(t)
√

∆t+ σMZ3(t)
√

∆t (A.6)

σINZIN(t)
√

∆t = σinZ2(t)
√

∆t+ σMZ3(t)
√

∆t (A.7)

Taking variance on (A.6) and ( A.7) give

Var(σsZs(t)
√

∆t) = Var(σfZ1(t)
√

∆t) + Var(σinZ2(t)
√

∆t)

+Var(σMZ3(t)
√

∆t) + 2σfσinCov(Z1(t)Z2(t)
√

∆t)

+2σinσMCov(Z2(t)Z3(t)
√

∆t) + 2σfσMCov(Z1(t)Z3(t)
√

∆t)

(A.8)

Var(σINZIN(t)
√

∆t) = Var(σinZ2(t)
√

∆t) + Var(σMZ3(t)
√

∆t)

+2σinσMCov(Z2(t)Z3(t)
√

∆t)
(A.9)

The independent Brownian motions contributes their covariances are zero but Var(ZIN(t)) =

Var(Z2(t)) = Var(Z3(t)), then (A.8) and (A.9) can be rewritten to be

σ2
s = σ2

f + σ2
in + σ2

M (A.10)

σ2
IN = σ2

in + σ2
M (A.11)

By taking variance on the discrete form of (A.1), (A.2) and (A.3), after reordering,

offers

σs =
√
N · Var(RS(t)) (A.12)

σIN =
√
N · Var(RIN(t)) (A.13)

σM =
√
N · Var(RM(t)) (A.14)

Subjected to (A.10), (A.11), (A.12) and (A.13), it yields

σf =
√
| σ2

s − σ2
IN | =

√
N · | Var(RS(t))− Var(RIN(t)) | (A.15)
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Subjected to (A.11), (A.13) and (A.14), it yields

σin =
√
| σ2

IN − σ2
M | =

√
N · | Var(RIN(t))− Var(RM(t)) | (A.16)
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Appendix B

Other historical parameter
estimation

ρi =
Cov(∆Zi(t)∆W(t))√

Var(∆Zi(t))Var(∆W (t))
, i = 1, 2, 3

∆Z1(t) =
RS(t)−RS −RIN(t) +RIN√
N · | Var(RS(t))− Var(RIN(t)) |

∆Z2(t) =
RIN(t)−RIN −RM(t) +RM√
N · | Var(RIN(t))− Var(RM(t)) |

∆Z3(t) =
RM(t)−RM√
N · Var(RM(t))

∆W (t) =
x(t+ 1)− x(t)−N−1k(θ̂(t)− x(t))√

N · Var(∆x(t))

(B.1)

Following maximized log-likelihood estimation, the converging speed k and cointegra-

tion equilibrium θ can be estimated by

k = −T ln


T
∑T−1

t=0 x(t)x(t+ 1)− (x(T )− x(0)) ·
∑T−1

t=0 x(t)−
(∑T−1

t=0 x(t)
)2

T
∑T−1

t=0 x
2(t)−

(∑T−1
t=0 x(t)

)2


(B.2)

θ =
n

1−m

m =
T
∑T−1

t=0 [x(t)x(t+ 1)]− [x(T )− x(0)]
∑T−1

t=0 x(t)− [
∑T−1

t=0 x(t)]2

T
∑T−1

t=0 x
2(t)−

[∑T−1
t=0 x(t)

]2

n =
x(T )− x(0) +

∑T−1
t=0 x(t)−m

∑N−1
t=0 x(t)

T

(B.3)
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η =

√
2kδ2

1−m2

δ =
1

T

[
x2(T )− x2(0) + (1 +m2)

T−1∑
t=0

x2(t)− 2m
T−1∑
t=0

x(t)x(t+ 1)− Tn

] (B.4)
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Appendix C

Trading volume

Table C.1: Trading volume of stocks in Eurozone-US portfolio (In-Sample)

Stock Name Average daily volume(lead) Average daily volume(lag)
AEGON 12,220,541 951,200
Alcatel-lucent 31,637,984 19,144,920
Anheuser-Busch InBev SA 2,203,982 1,105,417
ArcelorMittal SA 9,315,133 6,074,824
Eni SpA 17,749,943 691,509
Fresenius Medical Care 789,666 174,543
Orange 9,328,530 1,061,169
RELX NV 4,089,247 213,449
Sanofi 3,202,636 2,571,929
SAP SE 3,869,732 1,664,125
STMicroelectronics NV 6,031,119 1,911,053
Telecom Italia S.p.A 82,464,466 358,539
Tenaris S.A 2,900,515 1,711,129
TOTAL S.A 6,045,863 3,013,808
Unilever 5,303,551 2,334,112
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Table C.2: Trading volume of stocks in UK-US portfolio (In-Sample)

Stock Name Average daily volume(lead) Average daily volume(lag)
ARM holdings plc 5,323,268 2,524,225
AstraZeneca plc 2,773,519 2,766,091
Barclays plc 50,227,723 3,452,195
BHP Billiton plc 8,589,135 1,321,290
BP plc 32,533,117 9,171,087
British American Tobacco plc 2,843,520 238,162
BT Group plc 18,745,776 265,420
Carnival plc 818,275 184,814
Diageo plc 4,281,529 581,543
GlaxoSmithKline plc 8,247,496 2,674,625
HSBC Holding plc 26,440,983 2,130,255
InterContinental Hotels Group 973,734 239,187
Lloyds Banking Group plc 159,523,022 3,160,685
National Grid plc 7,407,353 485,207
Pearson plc 2,376,736 338,290
Prudential plc 5,648,959 254,555
Randgold Resources Ltd 454,319 852,553
Rio Tinto plc 5,242,438 3,130,434
Royal Bank of Scotland Group 11,716,216 659,719
Royal Dutch Shell plc-A 3,976,278 2,623,036
Royal Dutch Shell plc-B 4,416,276 1,085,237
Shire plc 1,754,137 704,677
Smith&Newphew plc 2,465,972 300,293
Unilever plc 2,598,871 1,269,066
Vodafone Group plc 82,326,525 7,496,278
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Table C.3: Trading volume of stocks in China A-H share portfolio

Stock Name Average daily volume(lead) Average daily volume(lag)
Air China Ltd 38,352,809 14,600,094
Aluminum of China Co Ltd 64,612,605 25,735,846
Anhui Conch Cement Co Ltd 31,470,627 12,275,738
Bank of China Ltd 214,324,348 328,338,758
Bank of Communication Co Ltd 127,000,452 36,917,281
China CITIC Bank Co Ltd 60,126,805 45,196,555
China Eastern Airlines Co Ltd 46,710,415 13,334,904
China Life Insurance Co Ltd 26,603,850 39,392,931
China Merchants Bank Co Ltd 93,097,864 23,777,840
China Shenhua Energy Co Ltd 28,982,030 17,548,524
China Southern Airlines Co Ltd 66,072,075 18,907,438
Industrial&Commercial Bank 154,743,210 282,553,486
of China
Tsingtao Brewery Co Ltd 3,541,230 1,508,603
Zijin Ming Group Co Ltd 151,937,626 40,618,173
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Appendix D

Proof of existence of the constraint
1

Defining the individual’s accumulative consumptions adjusted by state-price density

from 0 to t as

J(t)
∆
=

∫ t

0

H0(τ)ck(τ)dτ. (D.1)

Also denoting the conditional expectation of the risk adjusted total consumptions

adaptive to the information F(t), as M(t)

M(t)
∆
= E

[∫ T

0

H0(τ)ck(τ)dτ | F(t)

]
, t ∈ [0, T ] . (D.2)

According to the martingale representation theorem, M(t) almost surely satisfies

M(t) = c+

∫ t

0

ϕ′(τ)dW (τ). (D.3)

Under F(t)-adaptive, the individual’s current prospect on the future accumulative

consumptions adjusted by state-price density Cf (t) satisfies:

Cf (t)
∆
=

1

Z0(t)
Et
[∫ T

t

H0(τ)ck(τ)dτ | F(t)

]
=

1

Z0(t)
[M(t)− J(t)] .

(D.4)

Additionally, applying Ito’s formula on Z(t)−1 subjected to Eq. (3.1), it has

dZ(t)−1 = ‖θ(t)‖2Z(t)−1dt+ Z(t)−1θ(t)′dW (t). (D.5)
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Based on Eq. (3.1), (D.1), (D.3) and (D.5), applying Ito’s formula on Cf (script t is

omitted) then yields

dCf = Z−1 [dM − dJ ] + (M − J) d(Z−1) + [dM − dJ ] d(Z−1)

= Z−1
{

(ϕ′dW −H0ckdt) + (M − J + ϕ′dW −H0ckdt)(‖θ‖2dt+ θ′dW )
}

= Z−1H0 {−ckdt+H0 [ϕ′(θdt+ dW ) + (M − J)θ′(θdt+ dW )]} ,
(D.6)

with defining

H0[ϕ′θ + (M − J)θ′θ]
∆
= Ek(t, ·),

H0[ϕ′ + (M − J)θ′]
∆
= σ(t,Xk, ·),

(D.7)

then subjected to Eq. (3.2), the (D.6) can be rewritten as

dCf (t) = −e−rtck(t)dt+ e−rtEk(t, ·)dt+ e−rtσ(t,Xk, ·)dW (t). (D.8)

Writing Cf (t) in an integral form with the limit from 0 to T

Cf (T ) = Cf (0)−
∫ T

0

e−rtck(t)dt+

∫ T

0

e−rtEk(t, ·)dt

+

∫ T

0

e−rtσ(t,Xk, ·)dW (t),

(D.9)

substituting the Cf (0) subjected to integral form of (D.4) into (D.9). Moreover at the

life end, the individual’s prospect for her left consumption will be zero, Cf (T ) = 0,

then (D.9) can be arranged as

E
∫ T

0

H0(t)ck(t)dt =

∫ T

0

e−rtck(t)dt−
∫ T

0

e−rtEk(t, ·)dt

−
∫ T

0

e−rtσ(t,Xk, ·)dW (t).

(D.10)

By considering money time value, based on (3.16) the integral form of Xk(t) from 0

to T is

e−rTXk(T ) = Xk(0)−
∫ T

0

e−rtck(t)dt+

∫ T

0

e−rtEk(t, ·)dt

+

∫ T

0

e−rtσ(t,Xk, ·)dW (t),

(D.11)
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then (D.10) and (D.11) contribute

E
∫ T

0

H0(τ)ck(τ)dτ = Xk(0)− e−rTXc
k(T )., (D.12)

In addition, subjected to Eq. (3.2) it almost sure that

e−rTXk(T ) ≥ E [H0(T )Xk(T )] , (D.13)

lastly, (D.12) and (D.13) yields the constraint 1, Eq. (3.15).
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Appendix E

Proof for household’s wealth
framework

Recalling the risk deflator process, Eq. (3.1):

dZ(t) = −Z(t)θ(t)′dW (t) (E.1)

applying Ito’s formula on ln(Z(t)) yields:

Z(t) = e(−
∫ t
0 θ(τ)′dW (τ)− 1

2

∫ t
0 ‖θ(τ)‖2dτ) (E.2)

then defining H0(t) as state-price density, contains both the discounted factor and

risk deflator:

H0(t) = e−rtZ(t) = e−(rt+
∫ t
0 θ(τ)′dW (τ)+ 1

2

∫ t
0 ‖θ(τ)‖2dτ) (E.3)

recalling the agent’s wealth process (4.4) with risk-neutral brownian motion W0 and

rearranging it with considering time discount factor to be integral form:

e−rtXk(t) = Xk(0) +

∫ t

(0,t)

e−rτ [εk(τ)− ck(τ)] dτ +

∫ t

0

e−rτπ′(τ)σ(τ)dW0(τ) (E.4)

applying Ito’s formula on (Z(t)e−rtXk(t)) with (E.1) and (E.4):

d
(
Z(t)e−rtXk(t)

)
= Z(t)e−rt {[εk(t)− ck(t)] dt+ π′(t)σ(t)dW0(t)}

−e−rtXk(t)Z(t)θ′(t)dW (t)− Z(t)θ′(t)dW (t)

·
{
e−rt [εk(t)− ck(t)] dt+ e−rtπ′(t)σ(t)dW0(t)

} (E.5)

assuming W (t) and W0(t) are independent and based on (E.3), rewriting (E.5) to be:

dH0(t)Xk(t) = H0(t) [εk(t)− ck(t)] dt+H0(t)π′kσ(t)dW0(t)

−H0(t)Xk(t)θ
′(t)dW (t) (E.6)
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In addition, recalling the market risk vector, Eq. (4.5) that

θ(t) = σ(t)′(σ(t)σ(t)′)−1(b(t)− r1n). (E.7)

where Z(t) is to reconcile the price to be risk-neutral by releasing the market risk

premium. Additionally, the particular driving force of risk sources of each security

W (t) also can be reconciled to be risk-neutral W0(t) by the Girsanov’s theorem:

W0(t) = W (t) +

∫ t

0

θ(τ)dτ (E.8)

subject to the equation (E.7) and (E.8), reconverting the risk-neutral W0(t) in the

(E.6) back to W (t):

dH0(t)Xk(t) = H0(t) [εk(t)− ck(t) + π′(t)(b(t)− r1n)] dt

+H0(t)[σ′(t)π(t)−Xk(t)θ(t)]
′dW (t)

(E.9)

Finally we obtain the present value of risk-neutral wealth of every household’s in an

integral form as:

H0(t)Xk(t) +

∫ t

0

H0(τ) [ck(τ)− εk(τ)− π′(t)(b(τ)− r1n)] dτ

=

∫ t

0

H0(τ)[σ′(τ)π(τ)−Xk(τ)θ(τ)]′dW (τ)

(E.10)

and

H0(T )Xk(T ) +

∫ T

0

H0(τ) [ck(τ)− εk(τ)− π′(t)(b(τ)− r1n)] dτ

=

∫ T

0

H0(τ)[σ′(τ)π(τ)−Xk(τ)θ(τ)]′dW (τ)

(E.11)

In addition, the aggregated wealth accumulated through the dynasty is

Gk = E(H0(T )Xk(T ))−Xk(0)+ (E.12)

(E.11) and (E.12) together give

Gk +Xk(0)+ + Et
[∫ T

t

H0(s) [ck(s)− εk(s)− π′(t)(b(s)− r1n)] ds

]
= −

∫ t

0

H0(τ) [ck(τ)− εk(τ)− π′(t)(b(τ)− r1n)] dτ

(E.13)
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In the end, by taking conditional expectation and denoting the generalized income Ek
contains both labor income εk and expected the capital gain vector π′(t)(b(τ)− r1n)

(zero in the no financial investment scenario), then subject to (E.10) and (E.13), the

generalized expression of each household’s wealth is

Xk(t) =
1

H0(t)

{
Et
[∫ T

t

H0(s) [ck(s)− Ek(s))] ds
]

+Xk(0)+ + Gk
}

(E.14)
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