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Abstract 
 

In this paper, we consider a two-way relay non-orthogonal multiple access (TWR-NOMA) 

system with residual hardware impairments (RHIs) and channel estimation errors (CEEs), 

where two group users exchange their information via the decode-and-forward (DF) relay by 

using NOMA protocol. To evaluate the performance of the considered system, exact analytical 

expressions for the outage probability of the two groups users are derived in closed-form. 

Moreover, the asymptotic outage behavior in the high signal-to-noise ratio (SNR) regime is 

examined and the diversity order is derived and discussed. Numerical simulation results verify 

the accuracy of theoretical analyses, and show that: i) RHIs and CEEs have a deleterious 

effects on the outage probabilities; ii) CEEs have significant effects on the performance of the 

near user; iii) Due to the RHIs, CEEs, inter-group interference and intra-group interference, 

there exists error floors for the outage probability. 

 
 

Keywords: Non-orthogonal multiple access, residual hardware impairments, two-way relay, 

channel estimation errors. 
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1. Introduction 

Non-orthogonal multiple access (NOMA) has been identified as a promising technique for 

the fifth generation (5G) mobile communication network since it has the advantages of low 

latency, massive connectivity and high spectral efficiency [1-3]. In general, NOMA can be 

classified into two categories: power domain NOMA [4] and code domain NOMA [5]. For 

power domain NOMA, multi-users can be simultaneously served by the same base station 

using the same resource, while for code domain NOMA, the signals of different users are 

spread by using different codes and then multiplexed over the same time-frequency resources 

[6]. In this paper, we consider the power domain NOMA. It is worth noting that the power 

domain NOMA mentioned through this paper will be replaced by NOMA. For NOMA 

systems, in order to ensure a trade-off between throughput and user fairness, more powers are 

allocated to the users with poorer channel conditions. At the transmitter, the superposition 

signals are sent by power multiplexing, while the signals can be separately decoded at 

receivers by successive interference cancellation (SIC) [7]. 

Cooperative communication is another effective way to improve spectral efficiency, reduce 

transmit power and broaden the network coverage [8]. To further improve the system 

performance, two-way relay (TWR) was proposed for its ability to exchange information with 

the aid of a common relay with bidirectional information-transmission [9]. For combat 

channel fading and improve transmission reliability, the diversity behavior of the generalized 

MIMO TWR networks was studied in [10], where a two relay antenna selection (RAS) scheme 

was proposed. In [11], the outage behavior of a TWR network subject to a nonlinear 

transmission at the relay was studied, where fixed-gain and variable-gain amplify-and-forward 

(AF) relay were taken into account. Considering mixed asymmetric line-of-sight 

(LoS)/non-LoS (NLoS) fading scenario, the authors in [12] investigated the outage probability 

and channel capacity of the TWR networks. In [13], a distributed robust beamforming scheme 

was designed to minimize the total transmit power of the cognitive TWR networks. To further 

enhance the performance, the multi-antenna technique was introduced to the TWR networks 

[14], in which an optimal linear beamforming scheme was proposed to minimize the weighted 

mean squared error. As a further advance, massive multiple-input multiple-output (MIMO) 

inspired TWR network were involved in [15], where the impact of residual hardware 

impairments (RHIs) was investigated by considering Rician fading channels. 

Recently, the combination of TWR and NOMA, known as TWR-NOMA, has drawn a 

considerable research attention, since it exploits advantages of both TWR and NOMA [16–19]. 

In [16], the outage probability and ergodic rates of a TWR-NOMA system were investigated, 

in which perfect and imperfect SIC were analyzed. Sparked by full-duplex, the authors in [17] 

proposed a full duplex cooperative NOMA system, the outage probability and ergodic 

capacity of the proposed system were derived. For increase the system throughput and reduce 

the signaling overhead, the multi-pair TWR-NOMA network were developed in [18], in which 

an optimal group decoding scheduling scheme joint fair rate allocation was proposed for 

uplink and downlink. With the emphasis on secure transmission, different decoding schemes 

of the NOMA-based full-duplex TWR networks were proposed in [19] based on SIC for the 

legitimate users, relay and eavesdroppers. 

Although the above-mentioned works provide a solid foundation on the TWR-NOMA 

systems, one of the limitations of the above works is that the perfect hardware is assumed. In 

practice, due to deploying low-cost and low power efficiency RF components, the transceivers 
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are prone to hardware imperfections and impaired by some types of hardware impairments, 

such as in-phase/quadrature-phase (I/Q) imbalance, amplifier non-linearities, and phase noise 

[20–22]. Although some signal processing algorithms can be used to compensate for the above 

imperfections, there still remains some RHIs due to estimation errors, inaccurate calibration 

and different types of noise [23], [24]. As stated in [20] [22] [25], the RHIs have significant 

effects on the system performance. The authors in [20] quantified the aggregated impact of 

RHIs on dual-hop relaying systems. The joint impact of RHIs and imperfect CSI on the 

multi-relay NOMA system was investigated in [22]. The authors in [25] derived the 

expressions of outage probability and approximate ergodic sum rate for analysis the 

deleterious effect of RHIs on the dual-hop NOMA network. The performance of wireless 

communication systems in the presence of RHIs has been extensively studied, e.g., see [26–28] 

and the references therein. The authors in [26] analyzed the effect of RHIs on the ergodic 

channel and ergodic sum rates of optimal and linear minimum mean-square-error (MMSE) 

receivers of MIMO systems. In [27], authors investigated the lower bound for the achievable 

sum rate of regular and large-scale MIMO systems with zero-forcing receivers in the presence 

of RHIs. In [28], exact closed-form expressions of outage probability and asymptotic 

expressions were derived in a TWR cooperative network with opportunistic relay selection, 

and the allocation of the fixed hardware impairments are analyzed as well. Recently, there are 

some research works dealing with the performance analysis of related topics of NOMA with 

RHIs, e.g., [29–31]. In [29], the authors investigated the performance of the one way 

cooperative NOMA network with RHIs by deriving a closed-form expression for the outage 

probability. Considering RHIs at the relay, [30] derived analytical expressions for the outage 

probability and symbol error rate of a TWR network. In [31], a one way relay dual-hop NOMA 

network with RHIs at source, relay and destination was considered, in which the outage 

probability, asymptotic individual ergodic rate (IER) and ergodic sum rate (ESR) were 

obtained. Nevertheless, the above works assume that all nodes have perfect channel state 

information (CSI). In fact, the performance of wireless communication system is greatly 

affected by wireless channel, such as shadow fading and frequency selective fading, which 

makes the path between transmitter and receiver very complicated. Due to randomness nature 

of wireless channels, it is a great challenge to obtain perfect channel knowledge. The common 

way of doing this is to use some estimation algorithms to obtain the estimated. However, the 

perfect estimation is not available due to channel estimation errors (CEEs). Therefore, it is of 

significance to investigate the joint impact of RHIs and CEEs on the TWR-NOMA system. 

Motivation and Contribution: Motivated by the above discussion, different from the 

existing works on TWR-NOMA systems, we investigate the performance of TWR-NOMA 

systems in the presence of RHIs and CCEs, where two groups NOMA users exchange their 

information with the aid of decode-and-forward (DF) relay. The contributions of this paper are 

summarized as follows: 

 Contrary to the existing research works on the performance of TWR-NOMA, we 

consider two practical factors, namely, RHIS and CEE. We aim at investigating the 

joint effects of the two factors on TWR-NOMA networks, which is a valuable 

problem for practical system analysis and design. 

 We derived exact closed-form analytical expressions for the outage probability of the 

far users and near users. In addition, we also derived exact analytical expressions for 

the outage probability of the considered network under the condition of ideal RF 

components and CSI. 

 We examine the asymptotic outage behavior of the users and discuss the diversity 

order in the high signal-to-noise ratio (SNR) region. It reveals that RHIs and CEEs 
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can cause the outage performance to deteriorate. Moreover, the results show that there 

exists an error floor for the outage probability due to inter/intra group interference and 

CEEs, and the diversity order is zero. Additionally, CEEs have a deleterious effect on 

the outage probability on the near users. 

Organization: The rest of this paper is organized as follows. In section II, we present the 

TWR-NOMA system model in the presence of RHIs and CEEs. The exact closed-form 

analytical and asymptotic expressions for the outage probability and diversity order are 

derived and discussed in section III. In section IV, we present some numerical and simulation 

results to verify the accuracy of our analysis. A brief summary of this paper is concluded in 

section V. 

Notations: In this paper, the main notations are shown as follows: E   denotes the 

expectation operation,  r   is the probability,    denotes the continuous multiplication 

operation,    is the summation. 

2. System Model 

A TWR-NOMA system is considered, which consists of one two-antenna relay R  and two 

groups of NOMA users  1 1 2,G U U  and  2 3 4,G U U  as illustrated in Fig. 1. For NOMA 

users, we assume that two types of users are deployed: 1U  and 3U  are the near users, and 2U  

and 4U  are the far users. The users of same type aim to exchange their informations via a 

two-antenna relay R , namely 1R  and 2R . In addition, there is no direct link between two 

groups of users due to heavy shadowing. We also assume that all users are equipped with a 

single antenna and operate in a half-duplex mode. ih ,  1, 2,3, 4i , denotes the channel 

fading coefficients between iU  and R , where ih  follows independent Rayleigh random 

variables with  
2 20,i ih CN  . 

1U

2U 3U
4U

1h
2h

3h
4h

Relay

First phase

Second phase

2R1R

1G
2G

 
Fig. 1. System model 

In practice communication systems, it is a great challenge to obtain perfect CSI due to the 

CEEs. Thus, the channel fading coefficient can be modeled as ˆ=i i ih h e , where ˆih  represent 
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the estimated channels coefficient, 
ie  are the CEEs, which can be modeled by Gaussian 

random variable with  20,
ii ee CN   [32].  

The whole communication is completed in two phases: 1) multiple access channel (MAC) 

phase; 2) broadcasting (BC) phase. 

1) MAC Phase: In this phase, two pairs of users simultaneously transmit the respective 

information to the intended antenna of the relay, and the received information at  1 2R R  

suffers from interference from the users of  2 1G G . Thus, the received signals at 
1R  and 

2R  

are respectively given by 

1 11 1 1 2 2 2 1 2R u u r Ry h a P x h a P x I n                                          (1) 

2 23 3 3 4 4 4 1 1R u u r Ry h a P x h a P x I n                                          (2) 

where ix  are the transmitted signals by the user iU , with   1iE x  ,  1, 2,3, 4i . uP  is the 

transmission power. 
1 2 3, ,a a a  and 

4a  are the corresponding power allocation coefficients, 

satisfying 
1 2a a , 

1 2 1a a  , and 
3 4a a , 

3 4 1a a  ; 
2I  is the inter-group interference 

signal (IS) from 
2R  with 2 3 3 3 4 4 4u uI h a P x h a P x  ;  1 0,1   is the impact level of 

inter-group IS at R ; 
1I  is the inter-group IS from 

1R  with 1 1 1 1 2 2 2u uI h a P x h a P x  ; 
1Rn  

and 
2Rn  are additive white Gaussian noise (AWGN) with zero mean and 

0N  variance at 
1R  

and 2R , respectively; r  represents the received RHIs at relay with 

 
242

1
0,r r u ii

CN P h 


  , 
r  is used to characterize the aggregated level of RHIs from the 

relay [33]. 

According to the DF protocol of NOMA, 
1R  first decodes 1x  by treating signals from the 

users of another group as inter-group IS. Then, the received signal-to-interference plus noise 

rates (SINR) at 1R  to detect 1x  is given by 

1

2

1 1

4 42 2 2
2

2 2 1 1

1 3

ˆ

 =
ˆ ˆ ˆ

u

R x

u u k r u j j

k j

h a

h a h h a




     


 

   
                   (3) 

where 
1

2 4 42 2 2 2

1 11 3 1
1

i ju e i u e j r u ei j k
a a        

  
      , and 0u uP N   denotes the 

transmit SNR at the user nodes. 

Then, the SINR at relay to decode 2x  is given 

2

2

2 2

4 42 2
2

1 1

1 3

ˆ

 =
ˆ ˆ

u

R x

u k r u j j

k j

h a

h h a




    


 

  
                                (4) 

2) BC Phase: In this phase, the relay decodes and forwards the received signals to all users. 

More specifically, the antennas 2R  and 1R  send the superposed signals  1 1 2 2r rb P x b P x  

and  3 3 4 4r rb P x b P x  to 2G  and 1G , respectively, where rP  is the transmission power at 

the relay, 1 2 3, ,b b b  and 4b  are the power allocation coefficients. According the NOMA 
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protocol, the far users are allocated more power than the near users 
2 1b b , with 

1 2 1b b   

and 
4 3b b , with 

3 4 1b b  . 

The received signals at 
3U  and 

4U  denoted by 
3Uy  and 

4Uy , can be respectively expressed 

as 

3

2 4

3 2 3 3

1 3

U i r i t j r j

i j

y h b P x h b P x n 
 

 
    

 
                                   (5) 

4

2 4

4 2 4 4

1 3

U i r i t j r j

i j

y h b P x h b P x n 
 

 
    

 
                                  (6) 

where  2 0,1   is the impact level of inter-group IS at the user nodes, 
3n  and 

4n  are 

AWGN with mean power 
0N  at 3U  and 4U , respectively; 

t  represents the RHIs at the relay 

transmitter node,  20,t t rCN P  , 
t  is used to characterize the aggregate level of 

impairments in the transmitter hardware.
 We assume that the signals 2x  from the users can be correctly decoded at R  in the MAC 

phase. 
3U  decodes the desired signal 

1x  after using SIC to decode and eliminate 
2x . The 

effective SINR at 3U  for the detection of 
2x  is given by 

3 2

2

3 2

2 2 2
2

3 1 3 2 3 2

ˆ

ˆ ˆ ˆ

r

U x

r r t r

h b

h b h h




     
 

  

                                 (7) 

where  
3

2 2

2 21 1r e t        , 0r rP N   is the transmit SNR at the relay node. 

Similarly, we assume that the signals 1x  from the users can be correctly decoded at R  in the 

MAC phase. After SIC operations, the received SINR at 3U  to decode 1x  is given by 

3 1

2

3 1

2 2
2

3 2 3 2

ˆ

ˆ ˆ

r

U x

r t r

h b

h h




    
 

 

                                           (8) 

Then, the received SINR at 4U  to decode signal 2x  is given by 

4 2

2

4 2

2 2 2
2

4 1 4 2 4 3

ˆ

ˆ ˆ ˆ

r

U x

r r t r

h b

h b h h




     
 

  

                                    (9) 

where  
4

2 2

3 21 1r e t        . After these processes, the information is exchanged 

between the NOMA users in 1G  and 2G . 

3. Outage Performance Analysis 

In this section, we first derive the exact analytical expressions for the outage probability. Then 

the asymptotic outage behavior at high SNR region is analyzed, and the diversity orders are 

also discussed. 

3.1 Exact Outage Probability  
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1) Outage probability for 
1U  

In the TWR-NOMA, the outage event of 
1U  occurs in the following three cases: i) The 

information 
1x  cannot be decoded by 

1R ; ii) 
3U  cannot decode 

2x  successfully; iii) The in-

formation 
1x  cannot be decoded by 

3U , while 
3U  can first decode the information 

2x  cor-

rectly. Hence, the outage probability of 
1U  can be written as 

   
1 3 2 3 11

1 r r ,out

R x thf U x thm U x thfU                                           (10) 

where 
2

2 1fR

thf   , 
2

2 1mR

thm   . fR  and mR  are the target rates at 3U  to detect 1x  and 

2x , respectively. 

Then, the outage probability of 
1U  for the TWR-NOMA with RHIs and CEEs is provided 

in the following theorem. 

Theorem 1. For the non-ideal cases     2 0, 0, 1,2,3, 4 , ,
ie l i l t r     , the 

closed-form expression for the outage probability of 
1U  is expressed as 

0 1 1

2 2
3 1

1

22 23
ˆ ˆ, 3 11 1 2 1

2 2 2
1 1 1 1 2 1 1 3 1 1

ˆˆ ˆ
1

ˆ ˆ ˆ
ni out

U i

i

e

  

   


        

 



  
     

    
                   (11) 

where    
1 1

1 2 1 3 1=    
 

   ,    
1 1

2 3 2 2 1=    
 

   ,    
1 1

3 3 1 3 2=    
 

   , 

 
1 2

1

thf

u thf ra




  



 with 2

1 thf ra   ,  0 2 1max ,   , where 
  

2

1
2

1 2

thf

r thf tb

 


   


 
 

with  2

1 2thf tb     , 
  

2

2
2

2 1 2

thm

r thm tb b

 


   


  
 with  2

2 1 2thm tb b     , 

  2 2

1 2 2
ˆ1 u ra     ,   2 2

2 3 1 3
ˆ1 u ra       and   2 2

3 4 1 4
ˆ1 u ra      . 

Proof: See Appendix A.                                                                                                                  

Corollary 1. For the ideal cases  2 0, 0
ie l   , the analytical expression for the outage 

probability of 
1U  is expressed as 

0

2
1 3

1

6
, 3 11 1 2 1

4 1 4 1 5 1 6

1

thf

id out

U i

i thf thf thf

e

 

   


        


 



  
     

    
                    (12) 

where    
1 1

1 5 4 6 4=    
 

   ,    
1 1

2 6 5 5 4=    
 

   ,    
1 1

3 6 4 6 5=    
 

   , 

 0 2 1max ,     , 
 

1

1 2

thf

r thfb




  
 


 with 1 2thfb    and 

  
2

2 1 2

thm

r thmb b




  
 

 
 

with  2 1 2thmb b   , 2

1 1 1u a   ,  2

4 2 21 u a   ,  2

5 1 3 31 u a     and 

 2

6 1 4 41 u a    . 

Proof: See Appendix B.                                                                                                                              

2) Outage probability for 2U  

The outage events of 2U  include four conditions as follows: i) The information 1x  cannot 

be decoded correctly by relay. ii) The relay cannot decode 2x , while the relay can first decode 
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1x , successfully. iii) 
3U  cannot decode 

2x  correctly. iv) 
2x  cannot be decoded by 

4U  suc-

cessfully. Therefore, the outage probability of 
2U  can be expressed as 

     
2 2 1 3 2 4 2

1 r , r rout

U R x thm R x thf u x thm u x thmP                                (13) 

Then, the outage probability of 
2U  for the TWR-NOMA system with RHIs and CEEs is 

provided in the following theorem. 

Theorem 2. For the non-ideal cases  2 0, 0
ie l   , the exact analytical expression of 

2U  in terms of outage probability is expressed as 

      

32 1 1 1 2

2 2 2 2
2 1 3 4

2

2 2 ' '
ˆ ˆ ˆ ˆ, 2 1 1 2

2 2 2 2 2 2 ' '

2 1 2 1 2 2 1 2 1

2 2 2 2

1 2 1 2

2 2 ' 2 2 2 2 ' 2 2

2 1 1 2 1 1 2 2 1 1 2 2 1 2

ˆ ˆ
1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ni out

U

r u u r

e
a

    

       

           

   

             

 
    
 
   

   

 
       

     (14) 

where   ' 2 2

1 3 1 3
ˆ1 u ra       and   ' 2 2

2 4 1 4
ˆ1 u ra      . 

 
2 2

2

thm

u thm ra




  



 

with 
2

2 thm ra   . 

  
3

3 2

2 1 2

thm

r thm tb b

 


   


  
 with  2

2 1 2thm tb b     . 

Proof: See Appendix C.                                                                                                             

Corollary 2. For the ideal cases  2 0, 0
ie l   , the analytical expression for the outage 

probability with the ideal case of 2U  is expressed as 

 

 
2 2

2 2 2
2 1 1 3 4

2

1
6

2, 5 6

2
5 22 6 5

1
1

thfthm t

u u

k

a a uid out

U

k t thm k ut

a
e
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where 
  

2

2 1 2

thm

r thmb b




  
 

 
 with  2 1 2thmb b    and 

2

2 2

1 1 2

1thf

t

a

a




 
  . 

5 6Y Y Y    with  2

5 1 3 31 u a    ,  2

6 1 4 41 u a    . 

Proof: See Appendix D.                                                                                                                         

3.2 Asymptotic Outage Probability  

To gain more insights, the asymptotic outage behavior is studied in the high SNR region. For 

the TWR-NOMA system, u r    and 0  . The asymptotic SINR of (3) and (4) can 

be approximately expressed as  

     
1

2

1 1

2 2 2 2
2 2 2 2

1 2 2 3 1 3 4 1 4 1

ˆ

 =
ˆ ˆ ˆ ˆ

R x

r r r r

h a

h h a h a h a


      



      

           (16) 

   
2

2

2 2

2 2 2 2
2 2 2 2

1 2 3 1 3 4 1 4 1

ˆ

 =
ˆ ˆ ˆ ˆ

R x

r r r r

h a

h h h a h a


      



     

               (17) 
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where  
1 2 3 4 1 2 3 4

2 2 2 2 2 2 2 2 2

1 1 2 1 3 1 4e e e e r e e e ea a a a k                  . 

The asymptotic SINR of (7), (8) and (9) can be approximately expressed as 

3 2

2

3 2

2 2 2
2

3 1 3 2 3 2

ˆ

ˆ ˆ ˆ
U x

t

h b

h b h h


  

 

  

                                     (18) 

3 1

2

3 1

2 2
2

3 2 3 2

ˆ

ˆ ˆ
U x

t

h b

h h


  

 

 

                                         (19) 

4 2

2

4 2

2 2 2
2

4 1 4 2 4 3

ˆ

ˆ ˆ ˆ
U x

t

h b

h b h h


  

 

  

                                     (20) 

where 
3 3 3

2 2 2 2

2 2e e t e         and 
4 4 4

2 2 2 2

3 2e e t e        . 

Lemma 1. For the non-ideal cases  2 0, 0
ie l   , the asymptotic outage probability of 

1U  and 
2U  can be derived as following 

0 1 1

2 2
3 1

1

22 23
ˆ ˆ, 3 11 1 2 1

2 2 2
1 1 1 1 2 1 1 3 1 1

ˆˆ ˆ
1

ˆ ˆ ˆ
ni

U i

i

e
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where    
1 1

1 2 1 3 1=    
 

   ,    
1 1

2 3 2 2 1=    
 

   ,    
1 1

3 3 1 3 2= .   
 

    

  2 2

1 2 2
ˆ1 ra    ,   2 2

2 3 1 3
ˆ1 ra     ,   2 2

3 4 1 4
ˆ1 ra     . 
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1

thf
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where   ' 2 2

1 3 1 3
ˆ1 ra     ,   ' 2 2

2 4 1 4
ˆ1 ra     . 

2 2

2

thm

thm ra




 



 with 

2

2 thm ra   . 

 
3

3 2

2 1 2

thm

thm tb b

 


  


  
 with  2

2 1 2thm tb b     . 

Lemma 2. Based on the derived results of (12) and (15), when u r   , and 0  , 

using 1xe x    and L’Hospital’s rule, the ideal cases  2 0, 0
ie l    of the outage prob-
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ability of 
1U  and 

2U  can be approximated as follows 

1

22 26
, 3 1 11 1 1 2 1 1
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                 (23) 

where    
1 1

1 5 4 6 4=    
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1 1

2 6 5 5 4=    
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1 1

3 6 4 6 5=    
 

   . 

 2

4 2 21 a  ,  2

5 1 3 31 a    and  2

6 1 4 41 a   . 
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                                      (24) 

where 
2

2 2

1 1 2

1thf

t

a

a




 
  . 

3) Diversity Orders 

 In this subsection, the diversity order is analyzed, which is defined as [34] 

  log
lim

log

nU

d











                                                     (25) 

where 
nU

  denotes the asymptotic outage probability of 
nU ,  1, 2n . 

By using the definition in (25), the diversity orders for the non-ideal conditions 

 2 0, 0
ie l    of both 1U  and 2U  are obtained as 
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,
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log
lim 0
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                                                       (27) 

The diversity orders for the ideal conditions  2 0, 0
ie l    of both 1U  and 2U  are de-

rived as 
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log
lim 0

log

id

Uidd
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log
lim 0
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id

Uidd











                                                      (29) 

Remark: As can be observed from (21)-(24), there exists error floors for both the ideal and 

non-ideal conditions due to the intra-group interference. In addition, RHIs and CEEs 

deteriorate the outage probability since they can be recognized extra interference. As can also 

be seen in (26)-(29), the diversity orders for the ideal and non-ideal conditions are both zero 

due to the fixed outage probabilities at high SNRs. This means that TWR-NOMA can not 

obtain diversity gains. 

4. Numerical Results and Discussions 

In this section, some numerical results are provided to verify the accuracy of the theoretical 

analysis. We provide numerical illustration of our analytical results through Monte Carlo 
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Simulations. Unless otherwise specified, the parameter values are provided in the Table 1. For 

convenience, we assume 
1 2 3 4

2 2 2 2 2

e e e e e        , 
r t    .  

Table 1. Table of simulation parameters for numerical results 

Simulation parameters Values 

Monte Carlo simulations repeated 10
5
 iterations 

Power allocation coefficients of NOMA in 

the first phase 
1 3 0.75a a  , 

2 4 0.25a a   

Power allocation coefficients of NOMA in 

the second phase 
1 3 0.25b b  , 

2 4 0.75b b   

Average gain of estimated channel for 1ĥ , 2ĥ  
2

1 1
ˆ d   ,

2

2 2
ˆ d    

The distance between R and 
1U  or 

3U  
1 2d m  

The distance between R and 
2U  or 

4U  
2 4d m  

Pass loss exponent 4   

Targeted data rates 
fR =0.1 BPCU and mR =0.01 BPCU 
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Fig. 2. Outage probability versus the transmit SNR. 

Fig. 2 plots the outage probabilities of the two users versus transmit SNR for different 

values of   and 2

e . We consider three cases in this simulation. 1) 0  , 
2 0.03e  ; 2) 

0.05  , 
2 0e  ; 3) 0  , 

2 0e  . The curves represent the exact and asymptotic analytical 

of outage probability for 1U  and 2U  of ideal and non-ideal conditions in (11), (12), (14), (15) 

and (21), (22), (23), (24), respectively. It is clear that analytical curves are in good agreement 

with Monte Carlo simulations. It can be seen from this figure that the outage performance of 

the system with RHIs or CEEs is worse than that of the system without RHIs and CEEs for 

both 1U  and 2U , which means that RHIs and CEEs have deleterious effects on the system 

outage performance. Moreover, it is readily noticed from Fig. 2 that for the third case, there 

are error floors for 1U  and 2U . The reason can be explained that the intra-group IS result in 

zero diversity orders. This conclusion is confirmed by (28) and (29). 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 6, December 2011                                   145 

-10 0 10 20 30 40
10

-3

10
-2

10
-1

10
0

2 0e 

1U

2U

 

 

 

 

0.15, 0 green

0.1, 0 blue  in [16]

0.1, 0.15 red

0, 0 black  in [16]

 

 

 

 

 

 

 

 

Simulation

 Analysis

 Asymptotic

 

 

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

SNR(dB)

 
Fig. 3. Outage probability versus the transmit SNR. 

Fig. 3 plots the outage performance versus SNR with different levels of inter-group IS from 

 0,0.1,0.15  . For the purpose of comparison, the results of [16] have been provided. It 

can be seen that with the improvement of inter-group IS coefficient, the outage performance 

decreases obviously. We can conclude that the existence of the inter-group IS makes the 

outage performance worse. In addition, for the case  0   and  0.1  , it still have the 

error floors caused by the intra-group IS, which is consistent with the results of [16]. We can 

observe that RHIs has a negative effect on the outage performance by comparing the red 

curves with the blue curves. 
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Fig. 4. Outage probability versus the CEEs. 

Fig. 4 plots the outage performance of the TWR-NOMA system versus CEEs for different 

RHIs parameters  0,0.15  . As observed from Fig. 4, the outage probabilities of the 

TWR-NOMA network for the two users increase as CEEs grow large. This happens because 

the CEEs act as interference for the desired signal, which reduces the system performance. 

Moreover, the growth of 1U  is larger than that of 2U , which means that CEEs have more 
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serious effect on the outage probabilities of the near users than the far users for this system.  
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Fig. 5. Outage probability versus the RHIs at the relay node. 

Fig. 5 illustrates the impact of the RHIs at the relay node on the outage performance of the 

TWR-NOMA systems. These curves represent two cases: ideal case  2 0e   and non-ideal 

case  2 0.05e  . In addition, we assume a fixed transmit SNR (20dB) in this simulation. It 

can be observed that the outage performance becomes worse as the RHIs increase in both two 

cases. Moreover, when the RHIs is equal to zero  0  , the outage probabilities of this two 

cases have different values, due to the CEEs existence in the non-ideal case. 
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Fig. 6. Outage probability versus the RHIs and CEEs. 

Fig. 6 illustrates the impact of the RHIs and the CEEs at the relay node on the outage per-

formance of the TWR-NOMA systems. We use the change of color to reflect the outage 

performance affected. There is a chromaticity bar on the right side of the graph. As the color 

changes from dark to light indicates that the performance of system outage becomes degrades. 

There are two layers of grid in this figure, the lower one denotes the performance of 1U  and 

the other layer denotes the performance of 2U . This means that the performance of 1U  is 

better than that of 2U . It is apparent to see from the Fig. 6 that as RHIs increase, the color 
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changes from dark blue to light blue, and as the CEEs increase, the color clearly changes from 

dark to light, which means the outage probability becomes worse, respectively. 
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Fig. 7. Outage probability versus 

uP  

Fig. 7 depicts the impact of 
uP  on the outage performance. In this simulation, we consider 

two cases: 1) 20: 40uP    dB and 30u rP P dB  ; 2) 20: 40uP   dB and u rP P . For the 

first case, we can clearly see that there exist optimal allocation powers (about 0dB for 
1U  and 

6dB for 2U ) for uP  of 1U  and 2U . This happens because the performance gain caused by 

increasing the power of users ( uP ) is larger than the performance loss caused by reducing the 

power of relay ( rP ). For the second case, we can also see that the outage probabilities for the 

two users always decrease as the power of users and relay increasing. 

5. Conclusion 

This paper investigated the performance of TWR-NOMA networks with RHIs and CEEs, in 

which two groups of users exchange information with the aid of a DF relay. The closed-form 

expressions for exact outage probability of two group users were derived and the asymptotic 

behavior was discussed. Based on the derived analytical results, we further evaluated the di-

versity orders achieved by the users. Results revealed that CEEs have more deleterious effects 

on the outage probabilities of the near users than the far users. Furthermore, it was shown that 

the TWR-NOMA networks with inter-group IS, intra-group IS, RHIs or CEEs cause error 

floors. 

APPENDIX A 

PROOF OF THEOREM 1 

It is worth noting that for the convenience of calculation, we assume 
2

i iX h , 
2

ˆˆ
i iX h  

with  1, 2,3, 4i . Substituting (3), (7) and (8) into (10), the outage probability of 1U  is given 

by 
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1 1 3 2 3 1

,

1 2

=1 r r ,

       =1
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f f

             


                      (A.1) 

2

1 1

1 4 42 2 2
2

2 2 1 1

1 3

ˆ

r ,
ˆ ˆ ˆ

u

thf

u u k r u j j

k j

h a
f

h a h h a




     
 

 
 
   
 

   
 

 
             (A.2) 

2

3 2

2 2 2 2
2

3 1 3 2 3 2

2

3 1

2 2
2

3 2 3 2

ˆ

r ,
ˆ ˆ ˆ

ˆ

                                           ,
ˆ ˆ

r

thm

r r t r

r

thf

r t r

h b
f

h b h h

h b

h h




     




    




  

   







 


         (A.3) 

For calculating the probability of 
1f  in (A.2), we set 

1 2 3z z z z    with 

 
2

2

1 2 2
ˆ

u rz h a   ,  
2

2

2 3 1 3
ˆ

u rz h a    , and  
2

2

3 4 1 4
ˆ

u rz h a    . As we wrote 

earlier, 
2

ˆ
ih  follow the exponential distribution with the means 2ˆ

i ,  1, 2,3, 4i . In addition, 

1z , 
2z , and 

3z  are also independent exponentially distributed random variables with means 

  2 2

1 2 2
ˆ1 u ra     ,   2 2

2 3 1 3
ˆ1 u ra      , and   2 2

3 4 1 4
ˆ1 u ra      , re-

spectively. As shown in the [35], for the independent non-identical distributed fading scenario, 

the PDF of z  is given by 
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According to the above explanations, 1f  is expressed as follows 
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where  0 2 1max ,   , 
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2 1 2thm tb b      and 

  
2
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2

1 2

thf

r thf tb

 


   


 
 with  2

1 2thf tb     . 

Substituting (A.5), (A.6) into (A.1), (11) can be obtained. 

The proof is completed. 

APPENDIX B 

PROOF OF COROLLARY 1 

The outage probability of 
1U  for the ideal cases can be expressed as 
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where 4 5Y Y Y Y   , with 4 2 2uY a X , 5 1 3 3uY a X  , 6 1 4 4uY a X  . As we wrote 

earlier 4Y , 5Y  and 6Y  are independent exponentially distributed random variables with means 
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Combining (B.2), (B.3) into (B.1), we can obtain (12). 

The proof is completed. 

APPENDIX C 

PROOF OF THEOREM 2 

The outage probability of 2U  can be expressed as 
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For calculating the probability of 
3f  in (C.1), we assume '

1 2z z z   , with 

 
2

' 2

1 3 1 3
ˆ

u rz h a    , and  
2

' 2

2 4 1 4
ˆ

u rz h a    . '

1z  and '

2z  are also independent ex-

ponentially distributed random variables with means   ' 2 2

1 3 1 3
ˆ1 u ra       and 

  ' 2 2

2 4 1 4
ˆ1 u ra      , respectively. For the independent non-identical distributed fading 

scenario, the PDF of 'z  is given by 

 
1 22

1
2 1 2 1

.
z z

z i

t

e e
f z

 


   

  





 
   
      

                                     (C.3) 

Substituting (C.3) into (C.2), 3f  can be further rewritten as 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 6, December 2011                                   151 

      

2 1 1 1

2 2
2 1

2 2 ' '
ˆ ˆ 2 1 1 2

3
2 2 2 2 2 2 ' '

2 1 2 1 2 2 1 2 1

2 2 2 2

1 2 1 2

2 2 ' 2 2 2 2 ' 2 2

2 1 1 2 1 1 2 2 1 1 2 2 1 2

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
     .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

r u u r

f e
k a k

   

     

         

   

             

 
  
 
 

   

 
       

             (C.4) 

Substituting (7), (9) into (C.1), 
4f  and 

5f  can be calculated as follows 

 
2

2
3

2

3 2

4 2 2 2
2

3 1 3 2 3 2

3 2

ˆ

ˆ

r
ˆ ˆ ˆ

ˆ   r

   .

r

thm

r r t r

h b
f

h b h k h

X

e








    





 
 

   
   
 

  



                       (C.5) 

 
3

2
4

2

4 2

5 2 2 2
2

4 1 4 2 4 3

4 3

ˆ

ˆ

r
ˆ ˆ ˆ

ˆ   r

   ,

r

thm

r r t r

h b
f

h b h h

X

e








     





 
 

   
   
 

  



                       (C.6) 

where 
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, with  2

2 1 2thm tb b     . Finally, (14) can be 

obtained by combing (C.4), (C.5), and (C.6). 

The proof is completed. 

APPENDIX D 

PROOF OF COROLLARY 2 

The outage probability of 2U  with ideal conditions can be expressed as 
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3f   can be further calculated as 
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where 
5 6Y Y Y   . As we wrote earlier 

5 1 3 3uY a X  , 
6 1 4 4uY a X  . In addition, 
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are independent exponentially distributed random variables with means  2
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4f   and 5f   are easily obtained as follows 
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Combining (D.2), (D.3) and (D.4) into (D.1), we can obtain (15).  

The proof is completed. 
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