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Abstract

Assembly Lines (ALs) are used for mass production as they offer lots of advantages over other
production systems in terms of lead time and cost. The advent of mass customization has forced
the manufacturing industries to update to Mixed-Model Assembly Lines (MMALs) but at the
cost of increased complexity. In the real world, industries need to determine the sequence of
models based on various conflicting performance measures/criteria. This paper investigates the
Multi-Criteria Model Sequencing Problem (MC-MSP) using a modified simulation integrated
Smart Multi-Criteria Nawaz, Enscore, and Ham (SMC-NEH) algorithm. To address the
multiple criteria, a modified simulation integrated Smart Multi-Criteria Nawaz, Enscore, and
Ham (SMC-NEH) algorithm was developed by integrating a priori approach with NEH
algorithm. Discrete Event Simulation (DES) was used to evaluate each solution. A
mathematical model was developed for three criteria: flow time, makespan and idle time.
Further, to validate the effectiveness of the proposed SMC-NEH a case study and Taillard’s
benchmark instances were solved and a Multi-Criteria Decision-Making (MCDM) analysis
was performed to compare the performance of the proposed SMC-NEH algorithm with the
traditional NEH algorithm and its variants. The results showed that the proposed SMC-NEH
algorithm outperformed the others in optimizing the conflicting multi-criteria problem.

Keywords: Multi-Criteria Optimization, NEH Algorithm, Assembly Lines, Mixed-Model
Sequencing, Smart Algorithm
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1 Introduction

The concept of Assembly Lines (ALs) has been introduced for mass production as well as cost
efficiency. ALs are flow oriented mass production systems where various operations are
performed on the products as they move through the system. AL consists of several work
stations in series with buffers storage (possibly) in between, where a work station is a group of
machines or operators performing one or more operations on the products [1, 2]. Usually, these
workstations are placed in serial, parallel, U-shape and two sided. A transportation system
(automatic guided vehicles, conveyor belts or robotic arms) is used to move the product from
one workstation to another to perform assembly operations. Each workstation takes some time
to perform various operations on the product, this time is known as cycle time [3]. Figure 1
describes a simple mixed-model assembly line with four workstations. It can be seen from
Figure 1 that various workstations are located around the conveyor belt and products are
moving from one workstation to another in pallets.

WorkStation 1 WorkStation 2 WorkStation 3 WorkStation 4

Products
Loading

Pallets Containing
Products Conveyor belt

Unloading of
finished
Products

Assembly Line

Figure 1 A simple Mixed-Model Assembly Line with four workstations

ALs are classified into three categories - Single Model Assembly Lines (SMALs), Multi Model
Assembly Lines (MuMALs) and Mixed Model Assembly Lines (MMALs). MMALs are
widely used in mass customization environment. Industries are forced to adopt MMALs
because of continuously increasing demand for customized products. MMALs are special
types of ALs in which various models of the same products are intermixed to be produced on
the same AL with a batch size of one [4]. This naturally solves the batch sizing and inventory
problem that exists in MuMAL. Moreover, the investment required for MMALs is quite less
than that for separate SMALs but at the cost of increased complexity. However, ineffective use
of MMAL results in increased cycle time and higher per unit production cost [5]. There are
two Major Challenges in MMALs: Model Sequencing Problem (MSP) and Assembly Line
Balancing Problem (ALBP). In ALBP, various tasks/operations are assigned to different
stations while optimizing cycle time, balance efficiency and smoothness index etc. However
in MSP, sequence/order of various models is determined while optimizing the makespan, flow
time, cycle time, idle time and lateness etc [6, 7]. The MSP with single criteria had been in
focus for many years. But in the real world, industries had to face multiple conflicting
performance measures/criteria while determining the optimal sequencing. In recent years,
researchers have focused on finding the optimal sequence based on various conflicting criteria.
Two or more criteria such as idle time, flow time, makespan, earliness, tardiness and their
combinations have been used by researchers. In this research, Mixed Model Assembly Line
Multi-Criteria Model Sequencing Problem (MMALMC-MSP) is considered with three
performance measures: flow time, makespan and idle time.
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Over time various approaches have been developed by researchers for the Multi-
Criteria Optimization problems (MCO). They are widely divided into three classes. First
approach is priori approach in which all the necessary information is given at the start of the
decision-making process such as optimization of weighted combination of various criteria or
sequential optimization of various criteria [8]. Weighted sum method is the simplest method
when all the criteria are to be maximized or minimized. It is generally applied to single
dimensional cases as it is difficult to apply on multi-dimensional cases [9]. Further, it uses the
linearity of preferences which may not imitate the preferences of the managers and results
obtained may not be logical [10, 11]. Most advanced way in priori approach is the use of
MCDM techniques for the ranking of solutions and then selection of the better optimal solution
[8]. These techniques can deals with multi-dimensional problems [9]. Second approach is
known as posteriori approach in which a better optimal solution is selected from the set of
nondominated or Pareto optimal solution [12, 13]. Third approach is called interactive
approach in which preferences must be introduced during the solution process and at each step
a most preferred solution is selected. Finally, the methodology determined the optimal
compromise between the various criteria [14]. Michalos et al. [15] developed a decision making
method consists of two stages for multi-criteria assembly line design. In first stage, minimum
number of resources required to perform the assembly operations are calculating while in the
second stage, assembly was configured to further improve its performance based on multiple
criteria. Georgy et al. [16] proposed a model for the evaluation of engineering performance by
means of utility function. A multi attribute utility function was developed based on eigenvector
prioritization method.

Extensive literature can be found on multi-objective optimization. However, literature
on MC-MSP is relatively scarce especially compared to the large number of papers published
on single criteria model sequencing problems. Various approaches and models are proposed
by researchers to solve the MC-MSP in MMAL environment, namely multi-objective genetic
algorithm [17], multi-objective simulated annealing [18], ant colony optimization algorithm
[19], and multi-objective artificial bee colony algorithm [20], while considering various
performance measures. Comprehensive literature review on MC-MSP has been covered by
Yenisey et al. [14] and Minella et al. [21]. Therefore, only the significant and recent research
work on MC-MSP in MMAL environment is discussed in the lines that follow. Shao et al. [17]
addressed the sequencing problems in pull production systems which were composed of one
mixed-model assembly line and one flexible fabrication flow line with limited intermediate
buffers. They considered two performance measures simultaneously: minimization of total
variation in parts consumption and makespan in the fabrication line. They proposed multi-
objective genetic algorithm by integrating the Preto Rank Method (PRM) and proved that the
proposed algorithm was more efficient in minimizing both performance measures than existing
multi-objective simulated annealing algorithm. Kucukkoc et al. [19] proposed a special mixed-
model assembly line system based on the parallel two-sided assembly line while optimizing
the weighted idle time and cycle to cycle work lord smoothness index. They proposed an agent-
based ant colony optimization algorithm up to four levels. Salehi et al. [18] proposed a meta-
heuristic algorithm based on simulated annealing for the optimization of three performance
measures: idle cost, setup cost and production rate variation cost. Effectiveness of the proposed
algorithm is proved against Lingo software. Fattahi et al. [22] determined the optimal sequence
of products considering the feeding lines. They proposed simulated annealing and ant colony
heuristic algorithms for optimizing the three performance measures namely: idle time cost,
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workload cost and component deviation cost. Saif et al. [20] considered the simultaneously
balancing and sequencing problem while optimizing the workload deviation and total flow time.
They introduced Pareto solution in Artificial Bee Colony Algorithm (ABC) and proposed
multi-objective ABC algorithm. Norozi et al. [23] proposed intelligence based genetic
algorithm for parallel MMALs in which a heuristic method is used for generating the initial
population. They optimized work load and makespan. Tahriri et al. [24] proposed a Multi-
Objective Genetic Algorithm (MOGA) for the simultaneous optimization of three conflicting
performance measures: makespan, setup time and cost. Rahimi-vahed [25] proposed a hybrid
algorithm based on Particle Swarm Optimization (PSO) and Tabu Search (TS) by integrating
Pareto solution for Multi-Objective Optimization (MOO) of MSP. Senthilkumar et al. [26]
proposed multi-objective algorithm based on simulated annealing algorithm for level
production scheduling. They solved the problem simultaneously for number of step ups and
material usage rate. Mansouri et al. [7] proposed a MOGA by integrating the Pareto optimal
frontier with general Genetic Algorithm (GA). Marichelvam et al. [27] extended a discrete
firefly algorithm for MC-MSP to optimize mean flow time and makespan. Rajendran et al. [28]
developed Multi-Objective Ant-Colony algorithm (MOAC) in order to optimize conflicting
performance measures - the makespan and total Flowtime. Moghaddam et al. [29] proposed
the memetic algorithm for MC-MSP to optimize three different performance measures.
Effectiveness of the proposed algorithm was verified against Lingo 6 software. Eren [30]
simultaneously minimized the makespan, total completion time, tardiness and earliness while
considering the setup time. Integer programming model was proposed to solve MC-MSP for
20 products. However, six Tabu search based methods and one random search method were
used for large scale problems. It was concluded that Tabu search based methods are more
effective. Allouche et al. [31] proposed a compromise programming and satisfaction based
procedure to solve MC-MSP while minimizing makespan, total flow time and total tardiness.
From the above literature it can be concluded that various meta-heuristic algorithms have been
used for the optimization of conflicting performance measures/criteria with the integration of
various MCO approaches.

Beside meta-heuristic algorithms, constructive algorithms were also used by
researchers to solve MSP [32]. So far NEH algorithm has been found to be one of the best
constructive methods for permutation scheduling and sequencing problems [33]. In recent
years various researchers have modified the NEH algorithm to achieve better optimal results.
Liu et al. [34] proposed two techniques to improve the performance of NEH algorithm. They
developed block properties while integrating the tie breaking rules. These two techniques
helped in getting results in a short time. Kalczynski et al. [35] increased the performance of
NEH algorithm by proposing new techniques. It was proved that NEH algorithm is the best
algorithm for the makespan minimization problem. They proposed a new priority order with a
tie breaking method. Jin et al. [33] proposed block properties method to reduce the complexity
and time of the NEH algorithm. Liu et al. [36] proposed a modified NEH algorithm by
introducing dispatching rules while prioritizing the models. According to Rossi et al. [37], NEH
algorithm is the best constructive algorithm to minimize the makespan. Although it is not the
best algorithm for flow time and idle time minimization problems but still it provides
significant results. Framinan et al. [38] had adopted NEH algorithm to minimize the flow time,
idle time and makespan separately. They proposed various initial sequences for optimization.
Minella et al. [39] employed NEH algorithm for flow time optimization as seed in their
restarted iterated pareto greedy algorithm. It is acknowledged that the NEH algorithm and its
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variants perform well for single objective problems such as flow time, makespan, idle time and
tardiness [12, 14, 40]. But they can also be used for MCO problems. Various methods have
been introduced to use NEH for MCO problems. Ding et al. [41] proposed a Multi-Objective
NEH (MONEH) for the optimization of both carbon emissions and makespan. They integrated
an energy saving process with NEH in which they change the speed of the machine to save
energy while keep the makespan unchanged. Arroyo [12] proposed the integration of Pareto
solution concept with NEH to solve the MCO problem. In that research, makespan and
tardiness were minimized simultaneously. Liu et al. [40] proposed a hybrid NEH algorithm for
multiple criteria. They optimized the makespan and idle time simultaneously by introducing
new priority and tie breaking rules. One of the other methods for MCO is the integration of
MCDM techniques for the selection of better solutions. MCDM techniques with the integration
of NEH algorithm to simultaneously optimize various conflicting performance measures was
proposed by the author in a previous studies [42, 43]. Various MCDM techniques have been
developed to facilitate the decision maker in the appropriate selection from a pool of solutions.
One of the MCDM techniques is Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS). It is used for selecting the best alternative. In TOPSIS, distances to the
positive and negative ideal solution are calculated instantaneously to determine the ranking
order of all alternatives [44, 45]. It is a very useful technique for dealing with real world multi-
criteria decision-making problems. Because of high flexibility and simplicity, it can be easily
used in various situation [11, 46, 47]. Therefore, in this work TOPSIS is integrated with the
NEH algorithm for multi-criteria optimization.

Another major problem in MCO is the evaluation of the algorithm’s effectiveness based
on conflicting objectives. Unlike single criteria optimization, the comparison of an algorithm
in MCO environment is quite difficult. A simple comparison method does not exist for such
comparisons. Liu et al. [40] and Parthana et al. [44] had used Average Relative Percentage
Deviation (ARPD) and MCDM analysis for the comparison of algorithms for MCO while Ding
et al. [41] had used coverage metric, distance metrics and distribution spacing for evaluation
of the algorithm on the basis of various criteria.

It can be summarized from the above literature that makespan, lateness, flow time, idle
and setup time are the important criteria for MSP. Therefore, in this work MC-MSP has been
solved while simultaneously optimizing the Flow Time (FT), Makespan (MS) and Idle Time
(IDT). The aim to optimize MS is to complete customers’ demand as soon as possible while
optimization of FT could help to improve the average response time of the system. However,
IDT optimization could increase machine utilization. For years, optimization of MS was
considered as equivalent to optimization of IDT, but recent research has shown that these are
clearly different and can be conflicting [40]. In this research, three conflicting criteria (MS,
FT and IDT) are considered for MC-MSP. The consideration of three conflicting criteria has
made this problem unique as well as more complex. A modified simulation integrated Smart
Multi-Criteria NEH (SMC-NEH) algorithm has been proposed in which TOPSIS, a MCDM
technique, has been integrated for decision making. In order to achieve better optimization, a
tie breaking rule was also introduced. Further, each solution has been evaluated using Discrete
Event Simulation (DES). For multi-criteria optimization of MSP, use of NEH algorithm with
the integration of MCDM technique along with the simulation is a novel approach. It provides
the algorithm with required decision-making intelligence to solve multi-criteria optimization
problems effectively. Proposed SMC-NEH has been applied on a case study of pumps
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assembly lines in which three conflicting criteria (FT, MS and IDT) were simultaneously
optimized. To further validate the effectiveness of proposed SMC-NEH, Taillard’s benchmark
instances were solved and the performance of proposed SMC-NEH was compared with the
traditional NEH algorithm and its variants. Evaluation of algorithms’ effectiveness for MCO
was performed by ARPD and MCDM analysis.

The rest of the paper is organized as follows. The example problem studied, and
mathematical modeling are presented in section 2 while newly proposed algorithm is described
in section 3. In section 4, a case study and test cases are presented while results are analyzed
and discussed in section 5. Final conclusions and future recommendations are provided in
section 6.

2 Problem definition

To meet customers’ demand for customized products, industries try to produce various kinds
of products with minimum lead time and cost. A major manufacturing problem associated with
mixed-model assembly lines scheduling is the MSP. In this problem, optimal sequencing of
products/models is determined while considering multiple criteria. This problem can be
categorized as Multi-Criteria Model Sequencing Problem (MC-MSP). To improve average
response time of the system, complete customers’ demand as soon as possible and maximize
machine utilization, it is essential to find an optimal compromise between conflicting criteria
(FT, MS and IDT). To solve this problem, first step was the development of a mathematical
model of the considered criteria. The notations used in this article are given in Table 1.

Table 1 Notations used in this article

Parameters Description

n Total number of models/products

m Total number of workstations/machines

i Index for models, 1 i n≤ ≤
j Index for workstations, 1 j m≤ ≤

ijPT Process time of
thi model at

thj workstation

ijAT Arrival time of
thi model at

thj workstation

ijCT

ijWT

Completion time of
thi model at

thj workstation

Waiting time of
thi model at

thj workstation

ijIT Idle time for
thi model at

thj workstation

ijX Decision variable with value 1 only if
thi model assigned to

thj
workstation otherwise zero

a Total number of alternatives

c Total number of Criteria

l Index for alternatives, 1 l a≤ ≤
k Index for criteria, 1 k c≤ ≤

lkCV Value of
thk criteria for

thl alternative

kw Weight of the
thk criteria

lkNCV Normalize value of
thk criteria for

thl alternative

lkWNCV Weighted normalize value of
thk criteria for

thl alternative



7

,k kA A+ − Set of positive ideal and negative ideal solutions respectively

,l lS S+ −
Separation measures from positive ideal ( A+

) and negative ideal

solutions ( A−
) respectively

lC Relative closeness of alternatives

Three conflicting criteria (FT, MS and IDT) for MC-MSP have been illustrated in Equations
(1-3).

1
1

      : ( )
N

i i
i

M in FT CT AT
=

= −∑ (1)

First criteria for MC-MSP is given in equation (1) and was used to minimize the total flow time.

( )           : m a x i jM in M S C T= (2)

Second criteria for MC-MSP is expressed in equation (2) and was important in minimizing the
makespan.

1 1

      :
N M

ij
i j

M in ID T IT
= =

= ∑ ∑ (3)

Third criteria is given in equation (3) and was used to minimize the total idle time. Here

{ ( 1)

( 1) ( 1)

                              

           

0 0

0  ij i j

ij i j ij i j

i AT CT

ij AT CT A CT

f

TifIT −

− −

≤

− −

−

>= (4)

Idle time for thi model at thj workstation is calculated by equation (4). Idle time is zero if the
thi model arrived at thj station before the completion of ( 1)thi − model.

{ }
1

0 ,           1,2,  , ij
j

m

X i n
=

≥ ∀ = …∑ (5)

Equation (5) assured that a workstation can be idle.

{ }
1

1 ,           1, 2 ,  , ij
i

n

X j m
=

= ∀ = …∑ (6)

Equation (6) indicated that one model can only be assigned to one station.

11 0AT = (7)

Equation (7) assured that the arrival time of the first model at first workstation is zero.

1 ( 1)1i iAT CT −= (8)

Equation (8) specified that the arrival time of thi model at first workstation is equal to the

completion time of ( 1)thi − model.
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{ }( 1)           2, 3, , ij i j jAT CT m− ∀ = …= (9)

Equation (9) indicated that the arrival time of thi model at thj workstation is equal to the

completion time of thi model at ( 1)thj − workstation. Here 1,2,  , i n= … and 2, 3, , j m= … .

{ }1           1, 2, ,0    j jW mT ∀ = …= (10)

Equation (10) showed that the waiting time for first model at all the workstations is zero.

{ }1           1,2, ,0    i iW nT ∀ = …= (11)

Equation (11) indicated that the waiting time of the thi model at first workstation is zero.

{ ( 1)

( 1) ( 1)

                                  

            

0 0

0

ij i j

ij i j ij i j

if AT CT

ij AT CT AT CTif
WT −

− −

− ≥

− − <
= (12)

Waiting time of thi model at thj workstation can be calculated from equation (12) and it is

equal to zero if arrival time thi model at thj workstation is greater than the completion time of

( 1)thi − model at thj workstation.

ij ij ij ijCT AT WT PT= + + (13)

Completion time of thi model at thj workstation can be calculated from equation (13) and it is

equal to the sum of arrival time, waiting time and process time of thi model at thj workstation.

Following assumptions were used in this paper:

1. MMAL must be balanced before solving MC-MSP
2. The number of various models and their respected process times are known and

constant.
3. Movement of the models is asynchronous
4. Travel time of models from one station to another is assumed to be zero.
5. Process time is the sum of set-up time and assembly time.
6. Models Pre-emption is not allowed.
7. Machines are uninterruptedly available and cannot process more than one models at the

same time.

3 Proposed Algorithm (SMC-NEH)

In proposed SMC-NEH algorithm, decision making technique (TOPSIS) along with DES were
integrated with traditional NEH algorithm for multi-criteria optimization.

3.1 Multi-Criteria Optimization (MCO)

In a conflicting criteria environment, it is vital to find out the optimal solution which can
provide optimal compromise between all the criteria. TOPSIS, a MCDM technique, is
suggested for MCO of MC-MSP. It is a very useful technique for dealing with real world multi-
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criteria decision-making problems. Steps to find optimal solution using TOPSIS are given
below:

3.1.1 Decision Matrix

First step for TOPSIS implementation is the creation of a decision matrix. This consisted of
various available alternatives or choices, which are ranked against different objectives or
criteria.

3.1.2 Normalization

In the second step, Criteria in the decision matrix are normalized using equation (14).

2

1l

lk
lk a

lk

CV
NCV

CV
=

=

∑
(14)

3.1.3 Weighted Normalization

Third step is assignment of weights to the criteria. After weight assignment, weighted
normalized value of criteria is calculated using equation (15).

 lk k lkWNCV W NCV×= (15)

3.1.4 Ideal Solution

In the fourth step, set of positive ideal ( A+ ) and negative ideal solutions ( A− ) is determined
using equation (16) and (17) respectively for each criteria. In the case of minimization problem,

positive ideal ( A+ ) solution is the minimum value of the thk criteria.

{ }             1,2,3,.min ) .( , .,k lkA W V l ANC+ = =∀ (16)

{ }             1,2,3,.max ) .( , .,k lkA W V l ANC− = =∀ (17)

3.1.5 Separation and Closeness

In the fifth step, separations: positive ideal ( kA+
) and negative ideal solutions ( kA−

) are calculated

using equations (18) and (19) respectively for each alternative. While, Relative closeness to the
ideal solution is measured for each alternative using equation (20).

( ) { }
2

1

     ,          1, 2,3, ,
C

l lk k
k

S WNCV WNCV l A+ +

=

= − ∀ = …∑ (18)

( ) { }
2

1

     ,          1, 2,3, ,
C

l lk k
k

S WNCV WNCV l A−

=

− = − ∀ = …∑ (19)

( )
 

l

l
l

l

S
R

S S

−

− +
=

+
(20)
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3.1.6 Ranking

Last step is the ranking of various alternatives on the bases of relative closeness ( lR ). It is the

ratio of the distance from negative ideal solution and total distance. The alternative with higher

lR value is the better alternative which provides optimal comprise between various conflicting

criteria.

3.2 SMC-NEH:

NEH algorithm was originally proposed for MSP in Permutation Flow-Shop (PFS) for
makespan minimization. Over the past years, researchers have also used it for idle time [40],
flow time [38], tardiness [12] and energy minimization [41]. MC-MSP in MMAL is the same
as in PFS because of the assumptions considered while defining the problem in Section 2.
Consideration of three conflicting criteria has made this problem more complex. In this
algorithm, TOPSIS and DES are integrated with NEH algorithm for MCO. To achieve better
optimization, a tie breaking rule is also introduced. Based on these, new proposed SMC-NEH
is as follows:

1. Sort the products according to the descending sum of process times.
2. Pick the first two and determine the products partial sequence by ranking them on the

bases of relative closeness ( lR ). To determine the lkCV , discrete event simulation is

used.

3. Insert the thi product at the place which provides highest relative closeness ( lR ) value.

In case of tie, apply tie breaking rule (sequence with minimum idle time is selected)
because higher machine utilization reduces production cost.

4. Repeat step 3 until all the products are sequenced.

Flowchart of the proposed SMC-NEH algorithm is given Figure 2 while pseudo code of the
algorithm is given in

Table 2.
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Initialization

Sort the products according
to the descending order of

sum of process time

Select first two products and
determine the products

partial sequences

Select the sequence with
highest relative closeness

value
Insert the ith product

Determined the values of
Criteria for all the sequences

using DES method

Check if all products
are sequenced

yes

No

Determine all the possible
sequences while keeping the

position of previously
sequenced products fixed

Create the decision matrix
(Sequences x Criteria)

Normalized the criteria

Assign weights to the
criteria and determine

weighted normalized values

Determine positive ideal and
negative ideal solutions

Determine separations from
positive ideal and negative

ideal solutions

Determined the relative
closeness of the sequences

Rank the sequences based on
relative closeness

End

Figure 2 Flowchart of proposed Smart Multi-Criteria Nawaz, Enscore, and Ham (SMC-NEH) algorithm

Table 2 Pseudo code of SMC-NEH algorithm

%Initialize
Input: Process time of model on workstations
for i = 1 to No. of Products do:

Sorting in Descending Order of Process Time;
end
for j = 2 to No. of Products do:

Find the possible Sequences of Products
For k=1: Possible Sequences of Products

Find Flow Time for all possible sequence = Sum of completion time – arrival time
Find Make Span for all possible sequence = Maximum completion time
Find Idle Time for all possible sequence = Total machine Idle time

end
Create MCDM Matrix = [FT; MS; IDT]';

for i=1: size (Matrix MCDM)
Determine Normalized MCDM Matrix;

end
Find Weighted Normalized MCDM Matrix;
for i=1: size (Weighted Normalized MCDM Matrix MCDM)

Determine the positive idle solution;
Determine the negative idle solution;

end
for i=1: size (Weighted Normalized MCDM Matrix MCDM)

Determine the separation from positive idle solution;
Determine the separation from negative idle solution;

end
for i=1: size (Weighted Normalized MCDM Matrix MCDM,2)
Determine the relative closeness;
End
For i=1: size (relative closeness)
Find the sequence with maximum relative closeness;
end

4 Case Study and Test Problems

A case study of Mixed model pumps assembly line was conducted to elaborate the proposed
SMC-NEH algorithm. Main parts required for assembly of hydraulic pumps are illustrated in
Figure 3. Mixed-model pump assembly line is shown in Figure 4. There were thirteen models
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( 13i = ) to be assembled on MMAL. Twenty-four operations were required for the assembly

of each model on seven workstations ( 7j = ). First station was being used for the assembly of

the valve chamber while housing intake, control valve, rare body, safety valve, cam shaft and
front body were being assembled on second, third, fourth, fifth, sixth and seventh stations
respectively.

Valve Chamber

Housing Intake

Cam Shaft

Piston

Response Lever

Safety Valve

Rare bodyFront body

Control Valve
Lever

Figure 3 Main parts required for assembly of hydraulic pumps

Semi-automated machines were used to perform the operations. Assembly line under
consideration was asynchronous un-paced line. It means an operator starts to work on the next
part as soon as it becomes available. Thus, the movement of parts is not coordinated. On
completion of service the parts immediately move to the next machine or work station, if the
space is available for them. In this MMAL, Models were loaded on workstation 1 and after
processing transferred to the next workstation. After passing through various workstations they
were unloaded at station 7. Un-paced conveyors were used to transfer the models from one
workstation to another.

A

B

C

D

A

B

C

D

Sequenced
models loading

Assembly
Line

Assembled
models unloading

WS-1 WS-2 WS-3 WS-4 WS-5 WS-6 WS-7

Figure 4 Description of Mixed-Model Pump Assembly line

This study encompasses four weeks of time and motion study to determine the average
process time of various models. Time required for each workstation to perform the assembly
operation is recorded. As the assembly operations are being performed using semi-automated
machines, so process time of operations tends to change because of various factors such as
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fatigue and operator’s efficiency etc. Therefore, average process time is calculated to minimize
the real-life uncertainty factors. The average process time for each model at various
workstations is given in Table 3.

Table 3 Process Time (sec) of Models on Respective Stations

Model ( i )/Station ( j)
Station

(1)
Station

(2)
Station

(3)
Station

(4)
Station

(5)
Station

(6)
Station

(7)
Model (1) 34.16 44.99 27.69 34.26 25.25 30.72 43.33
Model (2) 39.38 22.51 36.15 26.42 27.33 32.47 34.90
Model (3) 32.42 32.39 26.42 27.77 30.47 23.24 31.40
Model (4) 33.68 34.05 39.28 22.20 20.66 32.32 33.17
Model (5) 32.31 22.40 42.00 28.12 43.16 44.39 31.02
Model (6) 32.60 35.60 25.01 41.85 31.28 39.39 32.92
Model (7) 24.42 24.32 40.16 26.68 26.11 21.86 44.42
Model (8) 40.65 42.12 29.10 31.70 43.76 20.00 41.48
Model (9) 29.49 32.18 35.40 26.18 27.07 27.63 37.26
Model (10) 43.94 33.98 26.43 37.68 26.29 35.48 35.92
Model (11) 37.81 27.36 33.85 20.10 30.62 27.09 39.69
Model (12) 26.92 42.94 29.22 42.10 26.55 43.61 27.53
Model (13) 35.94 20.31 27.46 22.17 32.68 33.74 21.30

It was vital for the company to determine the sequence of models which simultaneously
optimized three criteria (flow time, makespan and idle time). Flow time is associated with the
response of the assembly line to demand while makespan is used to increase the system
throughput. So, minimization of flow time leads to the maximization of makespan and vice
versa. Same is the case with machine idle time as minimum idle time significantly increases
the flow time and makespan. Therefore, proposed SMC-NEH algorithm was applied for the
simultaneous optimization of the above-mentioned conflicting criteria. Optimized sequence
obtained from proposed algorithm is 12, 7, 9, 8, 6, 10, 5, 4, 1, 2, 3, 11, 13 with the FT, MS and
IDT values of 3479.88 sec, 666.75 sec and 121.25 sec respectively.

To further evaluate the performance of the proposed algorithm, Taillard’s [48]
benchmark instances were used. Taillard had presented 120 instances with 12 different sized
problems. These problems ranged from small problems with 20 models and 5 machines to large
problems with 500 models and 20 machines. Mainly, these are used for makespan criterion but
they have also been used for flow time and idle time [40]. Each problem was solved using the
proposed SMC-NEH algorithm, NEH algorithm and its variants for FT and IDT. All algorithms
were programmed and run in MatlabTM R2018b on a personal computer with Core I5-5200U,
2.20 GHz with 8.00 GB memory.

5 Analysis of Results and Discussions

In this section, computational results have been briefly described to evaluate the performance
of the proposed SMC-NEH for the MCO of FT, MS and IDT in MC-MSP. Unlike the
comparison of algorithms for single criteria optimization, comparison of algorithms for MCO
is difficult as algorithms perform differently with respect to various conflicting criteria.
Therefore, without the implementation of MCDM analysis, it is not possible to decide which
algorithm performed better based on conflicting criteria. So, there was a need for evaluation on
the basis of MCDM. Analysis was performed using TOPSIS to select the better algorithm based
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on conflicting criteria. To further evaluate the algorithms’ effectiveness, Relative Percentage

Deviation (RPD) was also applied where ( )kq kq kq kqRPD CV BV BV= − , kqCV is the value

of criteria (k) obtained by the algorithm for instance (q) and kqBV is the value of criteria (k)

obtained by best approach for instance (q). Optimized sequences, RPD values of the criteria

and ranking based on TOPSIS for above mentioned algorithms are given in Table 4.

Table 4 Optimized sequence, Average Relative Percentage Deviation (ARPD) and TOPSIS ranking of algorithms

Algorithm Sequence FT MS IDT Avg. (RPD) TOPSIS Ranking

SMC-NEH
12, 7, 9, 8, 6, 10, 5, 4, 1, 2,

3, 11, 13
0.12 0.02 0.00 0.047 90.72

NEH-FT
5, 8, 10, 2, 4, 13, 3, 11, 9,

6, 1, 12, 7
0.00 0.07 2.44 0.84 10.08

NEH-MS
7, 3, 5, 11, 9, 2, 12, 8, 10,

6, 4, 1, 13
0.03 0.00 1.58 0.53 36.38

NEH-IDT
12, 7, 9, 8, 11, 6, 5, 3, 4, 1,

10, 2, 13
0.13 0.02 0.00 0.05 89.78

As it can be seen from Table 4, ARPD value of SMC-NEH is lowest so it can be concluded
that proposed SMC-NEH algorithm provides better MCO for conflicting criteria in MC-MSP
while NEH-FT is the worst algorithm for MCO. Same is the case of TOPSIS ranking, proposed
SMC-NEH algorithm ranked first with 90.72 percentage while NEH-IDT, NEH-MS and NEH-
FT ranked second, third and fourth respectively. Moreover, the proposed SMC-NEH algorithm
simultaneously optimize all three criteria in 0.00186 seconds while NEH-IDT, NEH-MS and
NEH-FT provide results in 0.001856, 0.001871 and 0.001869 seconds respectively.
Computational Time (CT) difference of proposed SMC-NEH algorithm is insignificant against
the compared algorithms while yields better results.

To further validate the effectiveness of the proposed SMC-NEH algorithm, a total of
120 Taillard’s instances with 12 different sized problems were solved. For the sake of
simplicity, average results of each problem size were compared. ARPD values of algorithms
for each problem size are given in Figure 5. It can be seen from Figure 5 that SMC-NEH had
the lowest ARPD values while NEH-FT had the highest ARPD Values. From the ARPD results,
it can be seen that SMC-NEH provides better optimal compromise between conflicting criteria
as compared to other above-mentioned algorithms while NEH-FT provided the worst results.
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Figure 5 ARPD values of algorithms for each problem size

Further, MCDM analysis was also performed to rank the algorithms based on their
effectiveness to optimize multiple conflicting criteria. TOPSIS was used in MCDM analysis.
Ranking of algorithms for each problem size based on TOPSIS is given in Figure 6. MCDM
analysis also ranked SMC-NEH as the better algorithm for the MCO of MC-MSP while NEH-
FT ranked as the worst one among other above-mentioned algorithms.

Figure 6 TOPSIS ranking of algorithm for each problem size

RPD values of criteria, ARPD values for each algorithm and TOPSIS ranking of above-
mentioned algorithms for each problem size is given in Table 5. It can be seen from Table 5
that the ARPD values of criteria for proposed SMC-NEH algorithm was lowest among the
other algorithms and the MCDM analysis also ranked proposed SMC-NEH algorithm highest
for each problem size. Average of ARPD values of the instances for each algorithm is given in
the last row of Table 5 which further strengthens the effectiveness of the proposed algorithm.
It can be observed that SMC-NEH had the lowest value of ARPD while NEH-FT had the
highest ARPD value and NEH-IDT and NEH-MS are in the second and third place.
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Table 5 Average Relative Percentage Deviation (ARPD) and TOPSIS ranking of algorithms for each problem size

Problem Size Algorithms
RPD

Avg. (RPD) TOPSIS Ranking
FT MS IDT

20 x 5

SMC-NEH 0.41 0.11 0.03 0.19 82.08
NEH-FT 0.00 0.14 5.96 2.03 20.68
NEH-MS 0.18 0.00 2.14 0.77 64.41
NEH-IDT 0.52 0.11 0.00 0.21 78.72

20 x 10

SMC-NEH 0.28 0.10 0.07 0.15 82.19
NEH-FT 0.00 0.12 2.72 0.94 21.06
NEH-MS 0.16 0.00 1.30 0.49 53.05
NEH-IDT 0.38 0.13 0.00 0.17 77.73

20 x 20

SMC-NEH 0.19 0.06 0.02 0.09 83.13
NEH-FT 0.00 0.09 1.46 0.52 18.06
NEH-MS 0.09 0.00 0.69 0.26 53.36
NEH-IDT 0.22 0.09 0.00 0.10 80.64

50 x 5

SMC-NEH 0.38 0.05 0.07 0.16 82.81
NEH-FT 0.00 0.12 3.14 1.09 26.94
NEH-MS 0.37 0.00 0.57 0.31 75.66
NEH-IDT 0.69 0.05 0.00 0.25 72.92

50 x 10

SMC-NEH 0.39 0.06 0.11 0.19 81.17
NEH-FT 0.00 0.14 3.58 1.24 23.13
NEH-MS 0.27 0.00 1.27 0.51 63.36
NEH-IDT 0.53 0.07 0.00 0.20 76.60

50 x 20

SMC-NEH 0.27 0.07 0.08 0.14 81.11
NEH-FT 0.00 0.13 1.92 0.68 21.85
NEH-MS 0.19 0.00 0.74 0.31 60.86
NEH-IDT 0.35 0.09 0.00 0.15 77.37

100 x 5

SMC-NEH 0.58 0.04 0.13 0.25 81.27
NEH-FT 0.00 0.09 6.04 2.04 28.41
NEH-MS 0.59 0.00 1.20 0.60 72.90
NEH-IDT 1.01 0.03 0.00 0.35 71.56

100 x 10

SMC-NEH 0.40 0.05 0.07 0.17 81.30
NEH-FT 0.00 0.12 2.79 0.97 27.99
NEH-MS 0.40 0.00 0.61 0.34 71.83
NEH-IDT 0.70 0.05 0.00 0.25 71.87

100 x 20

SMC-NEH 0.30 0.04 0.11 0.15 81.23
NEH-FT 0.00 0.13 2.18 0.77 24.22
NEH-MS 0.28 0.00 0.73 0.34 63.92
NEH-IDT 0.45 0.06 0.00 0.17 75.47

200 x 10

SMC-NEH 0.53 0.03 0.10 0.22 80.61
NEH-FT 0.00 0.10 3.98 1.36 28.88
NEH-MS 0.59 0.00 0.85 0.48 70.16
NEH-IDT 0.91 0.03 0.00 0.31 71.08

200 x 20

SMC-NEH 0.43 0.04 0.08 0.18 79.86
NEH-FT 0.00 0.13 2.71 0.95 26.20
NEH-MS 0.49 0.00 0.58 0.36 69.51
NEH-IDT 0.63 0.05 0.00 0.23 73.64

500 x 20

SMC-NEH 0.62 0.04 0.18 0.28 78.00
NEH-FT 0.00 0.11 3.70 1.27 28.23
NEH-MS 0.83 0.00 0.44 0.42 70.41
NEH-IDT 0.93 0.03 0.00 0.32 71.72

Average

SMC-NEH 0.40 0.06 0.09 0.18 81.23
NEH-FT 0.00 0.12 3.35 1.16 24.64
NEH-MS 0.37 0.00 0.93 0.43 65.79
NEH-IDT 0.61 0.07 0.00 0.23 74.94

Percentage performance improvement and CT of proposed SMC-NEH algorithm relative to
second best algorithm NEH-IDT are given in Table 6. It can be seen from Table 6 that the
proposed SMC-NEH achieved 3.31 % to 20.07 % and 0.52 % to 6.36 % better performance in
term of ARPD and TOPSIS values respectively for various problem sizes. In case of CT
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consumption, SMC-NEH algorithm consumed 1.89 % to 8.49 % more time as compared to
NEH-IDT. This CT difference is insignificant as compared to the percentage performance
improvement because any small improvement of above-mentioned criteria can bring
significant economic benefits.

Table 6 Percentage performance improvement and CT of proposed SMC-NEH relative to NEH-IDT

Problem Size ARPD (%) TOPSIS (%) CT (%) Problem Size ARPD (%) TOPSIS (%) CT (%)

20 x 5 3.31 0.52 3.07 100 x 5 16.16 6.36 4.62
20 x 10 7.01 2.79 3.43 100 x 10 18.37 6.16 2.87
20 x 20 7.27 1.52 3.00 100 x 20 6.45 3.67 2.07
50 x 5 20.07 6.35 8.49 200 x 10 17.71 6.28 2.54
50 x 10 3.74 2.90 3.72 200 x 20 10.70 4.05 1.89
50 x 20 3.46 2.36 2.91 500 x 20 6.48 4.19 3.40

Therefore, it can be concluded from the above ARPD and MCDM analysis that SMC-NEH
provide a better optimal compromise between conflicting criteria as compared to the traditional
NEH algorithm and its variants for flow time and idle time.

6 Conclusion

In this article the SMC-NEH algorithm is proposed by incorporating simulation and TOPSIS
for multi-criteria optimization of model sequencing problem in MMAL. In order to validate
the performance of the proposed SMC-NEH algorithm, a case study problem of mixed model
pumps assembly line and Taillard’s benchmark instances (120 instances with 12 different
problem sizes) are used. ARPD and MCDM analysis are performed to compare the
performance of the proposed SMC-NEH with the traditional NEH algorithm and its variants
for flow time and idle time. The ARPD values of criteria for proposed SMC-NEH algorithm is
lowest among the other algorithms and the MCDM analysis also ranked proposed SMC-NEH
algorithm highest for each problem size while NEH-IDT is ranked second best. As compared
to NEH-IDT, proposed SMC-NEH algorithm provided 3.31 % to 20.07 % and 0.52 % to 6.36 %
better results in terms of ARPD and TOPSIS values respectively. Results from both the analysis
techniques showed that the proposed SMC-NEH algorithm outperforms the rest of the
algorithms while NEH-FT is the worst algorithm in optimizing all the conflicting criteria. Thus,
it is recommended to use SMC-NEH algorithm for MC-MSP.

This research can be extended by studying the effect of integrating NEH and its
extensions (NEHKK1, NEHKK2, NEH-D, NEHFF and NEHLJP) with various MCDM
techniques and Pareto solutions while considering the real-life uncertainties such as deviation
in the process time due to human error and machine breakdowns/failures. Additionally, the
effectiveness of using MCDM for other MCO problems can be studied in the future.
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