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Abstract—This paper presents an analysis of the Doppler tol-
erance and isolation properties of five different sets of piecewise
linear frequency modulated (PLFM) waveform triplets consisting
of a combination of LFM subchirps. Different combinations of
PLFM signals are used to produce waveforms with the same time-
bandwidth product and optimise them with respect to isolation.
The performance of the proposed waveforms are numerically
investigated and a comparison between sets is presented. Results
confirm that the waveforms have quasi-orthogonal properties and
exhibit a degree of Doppler tolerance.

I. INTRODUCTION

The design of orthogonal waveforms represents one of
the major research challenges for multi-channel and multi-
function radar systems. Recently, multiple-input multiple-
output (MIMO) techniques have been adopted by the radar
community as they can provide benefits, such as improved
target detection performance, improved angle estimation ac-
curacy and decreased minimum detectable velocity [1]–[4].
MIMO radars can operate in two different ways, namely in
statistical and coherent modes of operation. Statistical MIMO
radar systems deploy broadly separated antennas, whereas
coherent MIMO radars feature closely spaced antennas. In
both cases, each antenna element transmits a waveform orthog-
onal to adjacent waveforms transmitted by all other antenna
elements. In addition to common modes of operation, a multi-
beam radar (MBR) with collocated antennas can be devised
as well. This type of radar uses an orthogonal waveform for
each of its beams to form separate radar channels with dif-
ferent properties [5], [6]. A linear combination of orthogonal
waveforms is transmitted for each channel. Isolation between
channels of an MBR is key and enables multiple simultaneous
functionalities requiring a different resource allocation, such
as radar altimetry, target tracking, proximity activation, etc.

The most common implementations of orthogonal wave-
forms, that reduce mutual interference in its entirety, are time
division multiplexing (TDM) [3] and frequency division mul-
tiplexing (FDM) [7]. Although the aforementioned techniques
work well in the domain of telecommunications, they present
limitations when used for radar sensing and detection. In the
case of TDM, a target may be moving which would affect
different time delayed waveforms differently. FDM, on the
other hand, could produce different responses for different
frequency bands as the target radar cross section (RCS) is
also a function of frequency. To counteract both problems,

waveforms with the same time and frequency support can
be used and their orthogonality is achieved by employing
waveform diversity (WD).

This paper focuses on linear frequency modulated (LFM)
waveforms as they have good Doppler tolerance and constant
amplitude, which allows the transmitting amplifiers to operate
in a saturated mode. The pulse compression, low sidelobes
and ease of generation are additional advantages of LFM
waveforms. Moreover, LFM waveforms do not require any
prior knowledge of the target response and that makes them
suitable for detection. It has been shown that LFM waveforms
present quasi-orthogonal properties when chirp rate diversity
is exploited [8], [9]. The orthogonal properties have been
analysed and demonstrated in many applications of telecom-
munications and radar signal processing. In [10] the authors
showed how LFM chirps can be used in multiuser communica-
tion schemes to form independent channels and reduce mutual
interference. Additionally, LFM chirps have been used as pilot
signals for channel estimation [10]. Chirp rate diversity can
be applied to MIMO synthetic aperture radars (SAR) as well,
where a high degree of isolation, large time-bandwidth product
and constant signal envelope are required to form orthogonal
waveforms [11]. A similar approach was used to investigate
piecewise linear frequency modulated (PLFM) waveforms and
their use for different types of MIMO radar when Doppler
tolerance and no prior knowledge about the target are required
[12], [13]. PLFM waveforms consist of multiple time-delayed
chirps stacked together so that amplitude of the signal remains
constant.

This paper is focused on a numerical characterisation of five
proposed sets of PLFM waveforms. Each set is investigated
and compared with respect to isolation performance and
Doppler tolerance.

II. WAVEFORM DESIGN

A. Signal Model

Let us consider PLFM signals of amplitude A, obtained as
the combination of N = 2 LFM waveforms, with a complex
envelope

si(t) = A

N∑
n=1

si,n (1)
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where

si,n = rect

(
t− τi,n
Ti,n

)
e2πjfi,n(t−τi,n)eπjµi,n(t−τi,n)2 (2)

The frequency offset and chirp rate of the nth subchirp with
duration Ti,n and bandwidth Bi,n are defined as fi,n and
µi,n = Bi,n/Ti,n, respectively. The bandwidth Bi,n is positive
for up-chirps and negative for down-chirps and the rectangular
function is defined as

rect

(
t

T

)
=

{
1, t ∈ [0, T ]

0, otherwise
(3)

We study the orthogonal properties and Doppler tolerance of
five sets of different waveform triplets (that is i = 1, .., 3), all
of the same energy, with the frequency modulation and design
shown in Fig. 1 and with the parameters given in Table I.

B. Characterisation Metrics
The level of interference between a pair of waveforms si(t)

and sj(t) in the presence of a target inducing a Doppler shift
can be described by the cross-ambiguity function

χi,j(τ, fD) =

∫
s∗i (t)sj(t+ τ)ej2πfDtdt (4)

The isolation is defined as the ratio between the peak of the
ambiguity function and the cross-ambiguity function as

Ii,j(τ, fD) =

∣∣∣∣ χi,i(0, 0)

χi,j(τ, fD)

∣∣∣∣ =

∣∣∣∣ χj,j(0, 0)

χj,i(−τ, fD)

∣∣∣∣ (5)

and the minimum level of isolation is

Ii,j =
χi,i(0, 0)

maxτ,fD |χi,j(τ, fD)|
(6)

For each waveform triplet, the lowest isolation between all
possible pair combinations is taken as a reference and therefore

Iset = min
i,j

Ii,j (7)

with i ∈ {1, 2, 3}, j ∈ {1, 2, 3} and i 6= j. The effects of
Doppler on orthogonality between waveform pairs is analysed
by the zero-delay cut of the cross-ambiguity function

χi,j(0, fD) =

∫
s∗i (t)sj(t)e

j2πfDtdt (8)

and the filter mismatch loss due to the Doppler shift can be
determined as

Mi(fD) =
maxτ |χi,i(τ, fD)|

χi,i(0, 0)
(9)

As a reference, the Doppler performance of si within the
Doppler interval fD ∈ [fD,min, fD,max] is indicated as

M i = min
fD

Mi(fD) (10)

Finally, the average power leakage between a pair of wave-
forms after matched filtering in the interval τ ∈ [τmin, τmax] is
indicated by the peak to average cross-correlation, also known
as peak to average power ratio (PAPR), and can be calculated
as

P i,j = (τmax − τmin)
χi,i(0, 0)∫ τmax

τmin
|χi,j(τ, 0)|dτ

(11)

III. NUMERICAL SIMULATIONS

A. General Parameters

In this section, a comparison between the five proposed
waveform triplets is presented along with their frequency mod-
ulation schemes, time delay cuts, Doppler cuts and isolation
figures. The design of the three waveforms forming each triplet
is given in the first column of Fig. 1 for the five proposed
sets. For clarity, Fig. 1 is indicative and does not take into
account the exact design parameters of each waveform given in
Table I. All waveforms si have the same time duration T and
bandwidth B and therefore a constant time-bandwidth product
of BT = 5000 to ensure a fair comparison of the results. For
the simulations presented in this paper, the time duration was
fixed to T = 50 µs, the bandwidth to B = 100 MHz and
the sampling frequency was fs = 400 MHz. The maximum
Doppler shift considered was fD,max = 160 kHz which is
sufficient to account for targets travelling at Mach 2 for a
carrier frequency of 35 GHz. All pair combinations in each
of the five sets are characterised by the isolation performance
Ii,j , Doppler tolerance M i and PAPR P i,j . For each set the
worst case figure of the isolation Iset is given as well.

B. Comments on the Results

Set 1 consists of an up-chirp, a down-chirp and a combina-
tion of up and down chirps. Table I shows that the up-chirp
and the down-chirp are the combination pair with the best
isolation performance. This is in agreement with the results
obtained in [5] that showed the isolation improves with the
time-bandwidth product as

Ii,j ≈
√
BT,BT >> 1 (12)

Furthermore, for chirps with the same duration and different
chirp rates, a lower bound on the isolation has been found as
[5]

Ii,j >

√
|∆B|T

2
(13)

Note that Eq. 13 depends on the bandwidth difference between
two waveforms with the bandwidth defined as a signed value
(i.e. positive for an up-chirp and negative for a down-chirp).
As a result, chirp pairs with opposite frequency rates exhibit
higher isolation values than chirp pairs with only increasing
or decreasing rates. The cross-correlation values shown in Fig.
1(b) corroborate that up and down-chirps (s1, s2) have lower
value of interference in comparison to the case with two up-
chirps (s1, s3,1). In this case, splitting s3 into two subsignals
provides chirp rate diversity and results in better orthogo-
nality. The highest value of the cross-correlations χ3,2(τ, 0)
and χ1,3(τ, 0) occurs for negative delays and is due to the
contribution of two intersection points in the time-frequency
space (see Fig. 1(a)). According to Eq. (13), the intersection
of the two up-chirps (s3,1 and s1) contributes more energy
than the other intersection (s3,2 and s1) that consists of up-
and down-chirp.
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(a) Set 1: Modulation
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(c) Set 1: Doppler Mismatch
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(d) Set 2: Modulation

-50 -25 0 25 50

Time Delay [µs]

-80

-70

-60

-50

-40

-30

-20

C
ro

s
s
-A

m
b

ig
u

it
y
 [

d
B

]

χ
2,1

(τ,0)

χ
3,2

(τ,0)

χ
1,3

(τ,0)

(e) Set 2: Time Delay Cut
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(f) Set 2: Doppler Mismatch
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(g) Set 3: Modulation
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(h) Set 3: Time Delay Cut

-150 -100 -50 0 50 100 150

Doppler Frequency [kHz]

-8

-6

-4

-2

0

F
ilt

e
r 

M
is

m
a

tc
h

 [
d

B
]

s
1

s
2

s
3

(i) Set 3: Doppler Mismatch
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(j) Set 4: Modulation
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(k) Set 4: Time Delay Cut
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(l) Set 4: Doppler Mismatch
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(m) Set 5: Modulation
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(o) Set 5: Doppler Mismatch

Fig. 1. First column depicts frequency modulations, second column shows zero Doppler cuts of normalised cross-ambiguity functions χi,j(τ, 0) and third
one filter mismatch losses due to Doppler shift Mi(fD).



Set 2 consists of waveforms made of disjoint subchirps and
was introduced in [12]. The time duration of each subchirp
was selected via an optimisation iteration aimed at minimis-
ing isolation. Table I shows the best isolation occurs when
the first subchirp has a time duration of T/2 − ∆T and
∆T = −0.425 µs. The best isolation values are obtained
when subchirps occupy approximately half of the waveform
duration. This can be seen in Fig. 2 showing the value of
isolation as a function of ∆T . Decreasing time duration of a
chirp effectively decreases the isolation and optimal isolation
values occur when the minimal time duration is maximised.
Fig. 1(e) shows that the cross-correlations χ2,1(τ, 0) and
χ3,2(τ, 0) have the highest value in the centre, where single
intersections in the time-frequency modulation plots contribute
the most. The aforementioned intersections correspond to the
pairs of up-chirps (s1,1, s2,1 at positive delays) and down-
chirps (s1,2, s2,2 at negative delays) both of which have the
same |∆B|T and therefore comparable level of isolation.
Similar reasoning holds for χ3,2(τ, 0).
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Fig. 2. Optimisation results for set 2 with parametrised bandwidths. Isolation
obtains higher values when time duration of all subsignals is comparable.

Set 3 was previously used for time-synchronised multi-
channel communications systems [10], hence its isolation
values are worse when the waveforms are transmitted with
different time delays. The waveforms were defined according
to the frequency modulations shown in Fig. 1(g). Optimisation
results were obtained for a fixed s2 and by varying the
other two waveforms so to change the starting frequencies
f1,2 and f3,2 whilst adjusting the bandwidths B1,1, B3,1

accordingly. Fig. 3 shows that isolation increases when the
intermediate frequencies have opposite signs and that the plot
is symmetric around the axis f1,2 = f3,2. Results indicate two
optimal solutions and one of them is defined in Table I. It
shows that the first subchirp s2,1 has a constant frequency
value. This confirms the results in Fig. 3 as the optimal
solutions are located at the edges of the frequency distribution.
The optimisation variables were bounded within the interval
f1,2, f3,2 ∈ [−50 MHz, 50 MHz].

Sets 4 and 5 were obtained by fixing s2 and optimising
s1 and s3. The bandwidth of each subchirp was fixed whilst
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Fig. 3. Optimisation results for the waveform set 3. Isolation of the the entire
set is shown as a function of optimisation parameters f1,2 and f3,2.

the time duration was varied according to Ti,1 = T/2 + ∆Ti.
In this case, the optimisation variables were bounded within
the intervals ∆T1,∆T3 ∈ [−22.5 µs, 22.5 µs]. Fig. 4 and Fig.
5 show that the optimal regions are those where ∆T1 and
∆T3 have opposite signs with the optimal values being in
the corners. In the case of set 4, the highest values of cross-
ambiguity function χ3,2(τ, 0) (Fig. 1(k)) are a contribution
of intersections of chirp pairs ss2,1, s3,1 and ss2,2, s3,2 for
positive delays. This contribution can be minimised by em-
ploying chirp rate diversity and therefore increasing the chirp
rate difference between corresponding pairs. The difference
is maximised by increasing the values of |∆T3| which leads
to the optimal figures noted in Table I and shown in Fig. 4.
Similar reasoning is suitable for set 5. The difference in this
case is that the chirp pairs s2,1, s3,1 and s2,2, s3,2, contributing
to the maximum value of χ3,2(τ, 0) for positive delays, have
opposite slopes. This improves isolation performance as shown
in Fig. 5 and corroborates Eq. (13).
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Fig. 4. Optimisation results for the waveform set 4. Isolation of the the entire
set is shown as a function of optimisation parameters ∆T1 and ∆T3.

Doppler tolerance of each waveform depends on the longest
LFM subchirp of the waveform. In general, if the time duration
of the longest subchirp is increased, the filter mismatch due to
Doppler shift will reduce. Doppler tolerance is not optimal as



TABLE I
WAVEFORM PARAMETERS AND ISOLATION FIGURES FOR THE PROPOSED WAVEFORM SETS.

si sj
τi,1 Ti,1 fi,1 Bi,1 τi,2 Ti,2 fi,2 Bi,2 Ii,j M i P i,j Iset
[µs] [µs] [MHz] [MHz] [µs] [µs] [MHz] [MHz] [dB] [dB] [dB] [dB]

Set 1
s1 s2 -25.000 25.000 -50.0 50.0 0.000 25.000 0.0 50.0 37.44 -0.23 40.07

32.18s2 s3 -25.000 25.000 50.0 -50.0 0.000 25.000 0.0 -50.0 32.18 -0.23 50.40
s3 s1 -25.000 25.000 -50.0 100.0 0.000 25.000 50.0 -100.0 32.18 -7.19 50.40

Set 2
s1 s2 -25.000 24.575 -50.0 25.0 -0.425 25.425 50.0 -75.0 31.36 -6.20 58.93

31.36s2 s3 -25.000 24.575 -50.0 50.0 -0.425 25.425 50.0 -50.0 31.37 -6.11 59.72
s3 s1 -25.000 24.575 -50.0 75.0 -0.425 25.425 50.0 -25.0 32.23 -6.07 55.52

Set 3
s1 s2 -25.000 25.000 -50.0 50.0 0.000 25.000 0.0 50.0 32.53 -0.23 70.02

28.77s2 s3 -25.000 25.000 -50.0 0.0 0.000 25.000 -50.0 100.0 29.17 -7.19 71.96
s3 s1 -25.000 25.000 -50.0 87.0 0.000 25.000 37.0 13.0 28.77 -6.06 72.42

Set 4
s1 s2 -25.000 47.500 -50.0 100.0 22.500 2.500 50.0 -100.0 31.12 -0.72 42.70

31.12s2 s3 -25.000 25.000 -50.0 100.0 0.000 25.000 50.0 -100.0 31.12 -7.19 42.70
s3 s1 -25.000 2.500 -50.0 100.0 -22.500 47.500 50.0 -100.0 35.24 -0.72 40.90

Set 5
s1 s2 -25.000 47.500 -50.0 100.0 22.500 2.500 50.0 -100.0 32.01 -0.73 51.53

32.01s2 s3 -25.000 25.000 -50.0 100.0 0.000 25.000 50.0 -100.0 32.01 -7.19 51.53
s3 s1 -25.000 2.500 -50.0 100.0 -22.500 47.500 50.0 -100.0 35.25 -0.73 40.90
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Fig. 5. Optimisation results for the waveform set 5. Isolation of the the entire
set is shown as a function of optimisation parameters ∆T1 and ∆T3.

the filter mismatch for most waveforms decreases to −6 dB
but it still has an advantage over polyphase codes [14]. This
can be observed in the third column of Fig. 1 that shows filter
mismatch Mi(fD) for each set.

IV. CONCLUSION

In this paper, orthogonal properties of piecewise LFM
waveforms were investigated. It was shown that increasing
time-bandwidth product increases the isolation between the
waveforms. The use of linear subchirps ensures that the wave-
forms show Doppler tolerant properties to a certain degree.
Additionally, it was demonstrated that the isolation figures do
not vary significantly when the bandwidth and time duration
of a set of waveforms is fixed. The insights presented herein
can be used to employ more complex optimisation techniques
for waveform generation.
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