

BIOINFORMATICS ANALYSIS OF EPIGENETIC VARIANTS ASSOCIATED WITH MELANOMA

Katarzyna MURAT

submitted for the degree of Master of Philosophy

Department of Chemistry and Biosciences University of Bradford

2018

Declaration of Authorship

I, Katarzyna MURAT, declare that this thesis titled, "BIOINFORMATICS ANAL-YSIS OF EPIGENETIC VARIANTS ASSOCIATED WITH MELANOMA" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given.
 With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others,
 I have made clear exactly what was done by others and what I have contributed myself.

alazyna Munat Signed:

Date: 30.07.2018

Abstract

BIOINFORMATICS ANALYSIS OF EPIGENETIC VARIANTS ASSOCIATED WITH MELANOMA

by Katarzyna MURAT

The field of cancer genomics is currently being enhanced by the power of Epigenome-wide association studies (EWAS). Over the last couple of years comprehensive sequence data sets have been generated, allowing analysis of genome-wide activity in cohorts of different individuals to be increasingly available. Finding associations between epigenetic variation and phenotype is one of the biggest challenges in biomedical research. Laboratories lacking dedicated resources and programming experience require bioinformatics expertise which can be prohibitively costly and time-consuming. To address this, we have developed a collection of freely available Galaxy tools (Poterlowicz, 2018a), combining analytical methods into a range of convenient analysis pipelines with graphical user-friendly interface. The tool suite includes methods for data preprocessing, quality assessment and differentially methylated region and position discovery. The aim of this project was to make EWAS analysis flexible and accessible to everyone and compatible with routine clinical and biological use. This is exemplified by my work undertaken by integrating DNA methylation profiles of melanoma patients (at baseline and mitogen-activated protein kinase inhibitor MAPKi treatment) to identify novel epigenetic switches responsible for tumour resistance to therapy (Hugo et al., 2015). Configuration files are publicly published on our GitHub repository (Poterlowicz, 2018b) with scripts and dependency settings also available to download and install via Galaxy test toolshed (Poterlowicz, 2018a). Results and experiences using this framework demonstrate the potential for Galaxy to be a bioinformatics solution for multi-omics cancer biomarker discovery tool.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr Krzysztof Poterlowicz for the continuous support of my MPhil study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my study. Besides my advisor, I would like to thank colleagues, for their insightful comments and encouragement. Last but not the least, I would like to thank my family for supporting me spiritually throughout writing this thesis and my life in general.

Contents

De	eclara	ation of Authorship	i		
Ak	ostra	ct	ii		
Ac	knov	wledgements	iii		
1	Intro	oduction	1		
	1.1	Skin Cutaneous Melanoma	1		
	1.2	Epigenetics Regulation of Disorders	7		
	1.3	Computational Epigenetics	11		
	1.4	Public Databases for Epigenetic Information	15		
2 Computational Methods for Epigenetics		nputational Methods for Epigenetics	18		
	2.1	Epigenome-Wide DNA Methylation Profiling	18		
		2.1.1 Pre-processing	20		
		2.1.2 Mapping and Graphical Visualization	21		
		2.1.3 DMR and DMP Identification	22		
		2.1.4 Peak Detection	23		
	2.2	Galaxy Tools Development	24		
3	Development of Galaxy Tools 28				
	3.1	EWAS - Galaxy Tool Suite	28		
4	Арр	lication of the Tools	34		
	4.1	Enhancement for the Computational Methods	34		
	4.2	Clinical Relevance Validation	35		
	4.3	Discovery and Validation of a Predicted SKCM Epigenetics Vari-			
		ants	37		

A	Galaxy EWAS Training	40
в	Table of Differentially Methylated Regions	45
С	Table of DMR's Annotation	58
D	Table of DMR's Functional Annotation (GO)	79
Bi	Bibliography	

v

List of Figures

1.1	The layers of human skin (epidermis, dermis and hypodermis),	
	as well as an inset with a close-up view of the types of cells	
	in the skin (keratinocyte both squamous cells and basal cells,	
	and melanocytes) (Gordon, 2013).	2
1.2	Galaxy Project (public) interface consisting of tool search panel,	
	working space area and history.	15
2.1	The Infinium Methylation Assay Technology (Illumina, 2018)	20
2.2	Galaxy's graphical workflow editor, show part of a sample work-	
	flow	26
2.3	Local Galaxy Instance running via command line with custom	
	interface consisting predefined tools sections, tailored working	
	space area and test history.	27
3.1	Simplified workflow for analysing epigenetics data	29
3.2	Screenshot from the Galaxy Workflow Editor, showing EWAS	
	example workflow discussed in the Analyses section.	33
4.1	Quality Control Plot representation of melanoma pre and post	
	MAPKi treatment samples.	36
4.2	Functional Annotation of DMR's found in melanoma biopsies	
	pre and post MAPKi treatment.	38
A.1	Data Upload minfi_read450k Tool Interface	41
A.2	Quality Assessment (minfi_qc) Tool Interface	42
A.3	minfi_dmr Tool Interface	43
A.4	DMR Training Track launch UCSC Genome Browser	44

List of Tables

3.1 Summary of the EWAS suite tools inputs and outputs 30

List of Abbreviations

EWAS	Epigenome-wide association study
TSG	Tumor Suppressor Genes
NGS	Next-generation sequencing
GEO	Gene Expression Omnibus
SNP	Single-nucleotide polymorphism
DMR	Differentially Methylated Regions
DMP	Differentially Methylated Positions
MAPK	Mitogen-activated protein kinase
MITF	Microphthalmia Associated Transcription Factor
TCGA	The Cancer Genome Atlas
ENCODE	Encyclopedia of DNA Elements
SDK	Software Development Kit
API	Application Programming Interface
FDR	False Discovery Rate

Dedicated to my beloved Parents Monika and Kazimierz Murat

Chapter 1

Introduction

1.1 Skin Cutaneous Melanoma

To better understand skin cancer, we need a basic knowledge of the skin itself. Human skin is considered to be an extraordinary organ providing the main barrier between the internal and external environment. This barrier is designed to protect the human body against a large number of environmental stressors such as temperature, microbial pathogens, chemical agents and UV (Tobin, 2006). Normal skin consists of layers of the epidermis, papillary and reticular dermis, and hypodermis (subcutaneous fat layer) shown in Figure 1.1 below. The epidermis is composed of three living cell layers which from the epidermis – dermis junction include stratum basale, s. spinosum, and s.granulosum followed distally by the non-viable but biochemically active stratum corneum. The latter is composed of dead keratinizing or cornifying stratified epithelium cells that have migrated outward from the basal layer (Tobin, 2006). The stratum basale (basal layer) is the deepest sublayer, containing three major type of cells such as predominant keratinocytes, and low numbers of melanocytes, and Merkel cells (Tobin, 2006). Underlying the epidermis is the dermis, which provides support and nutrients for the epidermis. The dermis is composed of collagen, reticulin and elastic fibers, and houses the appendages including hair follicles and sweat glands(Tobin, 2006). It also contains vascular, neural and lymphatic systems with multiple receptors for touch, temperature and pain. In the human skin, melanocytes reside in the stratum

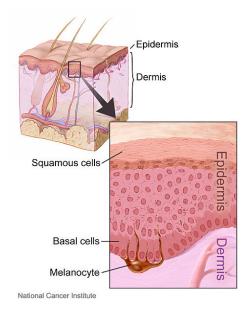


Figure 1.1: The layers of human skin (epidermis, dermis and hypodermis), as well as an inset with a close-up view of the types of cells in the skin (keratinocyte both squamous cells and basal cells, and melanocytes) (Gordon, 2013).

basale as shown on Figure 1.1 and produce the pigment melanin, which protects the skin from ultraviolet radiation (UVR) (Tobin, 2006). Early stages of melanocyte development initiates with the fate commitment of precursor cell lineages from the neural crest, which is then followed by cell migration and niche localization. Many genes involved in melanocyte development and pigmentation have been characterized as key to identifying the genes and proteins involved in melanoma skin cancer. Transformed melanocytes that develop into melanomas increase quickly and spread aggressively to other parts of the body making it one of the most deadly cancers (Uong and Zon, 2010). Melanocytes arise from, a certain class of stem cells called neural crest cells (NCCs) (Erickson and Reedy, 1998). The neural crest is induced at the time of gastrulation, in the zone between the neural and non-neural ectoderm (Erickson and Reedy, 1998) and gives rise to a number of cells populations. Pigment cells are generated from multipotent neural-melanocytic progenitors or bipotent glial-melanocytic precursors melanoblast (Dupin and Le Douarin, 2003). Melanoblast cells migrate from the trunk neural crest cells dorsolaterally between the ectoderm and dorsal surface compartments (Dupin and Le

Douarin, 2003). Melanoblasts are exposed to a range of developmental cues that regulate their specification process (Dorsky, Moon, and Raible, 1998). This developmental process is governed primarily by key signaling molecules including Wnt and BMP (Kléber et al., 2005), and other complex pathways. Wht protein mediates a fate switch between melanogenesis and gliogenesis through activated beta-catenin, as overexpression of beta-catenin leads to an increase of melanocytes and a loss of glial derivatives (Dorsky, Moon, and Raible, 1998). On the other hand BMP signaling suppresses neural crest cell differentiation into melanocytes and appear to have opposing effects to Wht (Dhara and Stice, 2008). Their coordinated expression is required for the normal melanocyte growth and development (Jin et al., 2001). A range of experiments identified a series of interactions among molecules relevant for melanocyte development (Giebel and Spritz, 1991). These studies have elucidated genetic pathways such as transcription factor (MITF) and tyrosine kinase (KIT) genes with essential functions for cell homeostasis including survival, cell cycle and metabolism. KIT and MITF show complex interactions, in that *MITF* is needed for the maintenance of *KIT* expression in melanoblasts and KIT signaling modulates MITF activity and stability in melanocyte cell lines (Kawakami and Fisher, 2017). In melanocyte development MITF stimulates melanogenesis by activating some key pigmentation-related genes transcription activation (e.g. TYR, TYRP1, MLANA) and anti-apoptotic genes upregulation (e.g. BCL2, BCL2A1) (Garraway et al., 2005). On the other hand KIT plays a crucial role in the survival, migration, and development of the melanocyte lineage (Giebel and Spritz, 1991). This effect on melanin production may explain why disruption of those genes lead to defects in melanocyte numbers causing variety of skin disorders including cancer. Many genes involved in melanocyte development have also been implicated in melanoma progression. Several genetic pathways regulate cell growth and survival and play important roles in normal embryonic development as well as melanoma progression (Uong and Zon, 2010).

The mitogen activated protein kinase (MAPK) is a type of protein kinase

that is specific to the amino acids serine and threonine. MAPK signaling pathway also known as the Ras-Raf-MEK-ERK pathway is one of several potentially target-able pathways in melanoma. Mutations that over-activate BRAF and NRAS are found in nearly 65% and 20% of melanomas respectively (Gilbertson et al., 2006). Understanding how melanomas acquire resistance to BRAF and NRAS inhibitors via genetic alterations is important, as leads to the reactivation of the MAPK pathway, and so is a focus of drug discovery potential (Hugo et al., 2015). Recent studies have provided further insights of many genes that are up- and down-regulated in melanoma development. For example, MITF and KIT have a crucial role in the melanocyte life cycle (Garraway et al., 2005). Over-expression of these genes can caused inappropriate cell cycle progression and as a result to this changes development of the tumour (Garraway et al., 2005). Cutaneous melanomas incidence is rapidly increasing and is projected to rise by 7% in the UK between 2014 and 2035, reaching 32 cases per 100,000 people by 2035 (Smittenaar et al., 2016). The most important factors suggested for this increased risk include unprotected exposure to intense natural ultraviolet light (sun rays) and artificial ultraviolet radiation (e.g. tanning beds, sunbeds), permanent mechanical or chemical irritation and genetic predisposition (e.g. red-hair phenotype (MC1R variants) and familial atypical mole syndrome or family of atypical features)(Ghiorzo et al., 1999). Suspected skin melanoma may induce changes that have developed *de novo* or on the basis of a pigmented lesion (thickening, surface change, discolouration and margins or occurrence of itching and / or bleeding)(Ghiorzo et al., 1999). The early identification and location of the primary tumour creates a unique chance of curing skin melanoma. Prognosis appears in part to be a function of tumour size and stage of invasion with tumour thickness (Breslow, 1970). Physical examination should include questions about the condition of the skin (i.e. information about changes in existing skin lesions or the occurrence of new lesions) and factors that increase the risk of skin melanomas (e.g. sunburn, use of solarium, occurrence of melanomas in

the family). The most important element allowing early diagnosis is the examination of the skin, which should be performed by the doctor during the patient's visit to the outpatient clinic or during hospitalization. The principle is to assess the skin of the whole body in good lighting, checking all the skin areas especially ones that are difficult to access (head, feet, inter-digital spaces, genital and anal areas). In low-risk melanomas (pT1a) the melanoma is less than 1mm thick, not ulcerated and no other investigations are necessary (Dummer et al., 2012). Computed tomography (CT) and positron emission tomography-computed tomography (PET-TK) should be considered in patients with higher tumour stages (pT1b-pT3a) especially in the presence of clinical metastases to lymph nodes or isolated metastases to distant organs (Dummer et al., 2012). In the case of clinical metastases to the inguinal lymph nodes, a CT scan or magnetic resonance imaging (MRI) of the pelvis are recommended before surgical treatment and sentinel node biopsy (Dummer et al., 2012). The identification of clinical and pathomorphological prognostic features is aimed at understanding the biology of cancer and facilitating the planning of appropriate treatment for an individual patient, including the risk of relapse and the likelihood of survival after treatment (Dummer et al., 2012). The risk factors that achieved convincing or highly suggestive evidence regarding contribution to the development of skin cancer are genetic predisposition, sun exposure, skin colour, photo-sensitivity and age. Cases of cancer in family members increase the risk of getting cancer caused by the transmission of mutations associated with pigment cells development (Uong and Zon, 2010). Nevertheless, knowing genes responsible for melanoma occurring in families contributed significantly to understanding the molecular mechanisms of this disease (Gordon, 2013). Observation of the patients whose relatives have suffered from the disease, gave the first insight into the model of melanoma progression, which can be accelerated on the basis of congenital disorder (Gordon, 2013). In the case of about 50% of families tested mutations were found in two closely related genes CDKN2A and CDK4. CDKN2A encodes two suppressor genes p16INK4a and p14ARF inhibiting progress

of the cell cycle (Ghiorzo et al., 1999). A close relationship was established between the genetic diversity at the melanocortin receptor 1 (MC1R) and pigmentation of the skin and hair, and recently also a predisposition to developing melanoma (Ghiorzo et al., 1999). Inheriting CDKN2A and CDK4 gene mutations does not cause cancer by themselves. Skin DNA damage caused by UV rays leads to numerous acquired or somatic genetic changes. Multiple research studies show a correlation between increased risk of skin cutaneous melanoma (SKCM) and sun exposure (Ghiorzo et al., 1999). Moreover, It was explained that the majority of melanoma occur on skin occasionally exposed (e.g. abdomen skin) to sunlight when patients are young age and this tendency decreases with age of exposure. On the other hand in elderly patients melanoma tend to arise in skin constantly exposed to sun (e.g. face, neck, arms) (Ghiorzo et al., 1999). There is no sure way to prevent melanoma, as age, gender, race, and family history can't be controlled. However, regular skin checks and limiting unprotected UV exposure can help (Ghiorzo et al., 1999). The primary prevention of melanoma is concerned with a reduction in the risk factors for skin cancer, most notably sun exposure and sunburn. The well-proven methods are off covering the skin, wear a hat and, applying significant amounts of sunscreen are still are not generally well adhered to, and so rates remain very high and increasing (Gordon, 2013). Identification of clinical and pathomorphological features of prognosis aims to understand the biology of cancer and facilitating the planning of proper treatment for individual patients, including the risk of disease recurrence and probability of survival after treatment. The most important prognostic factors in melanoma patients without the presence of metastases is vertical tumour thickness (Breslow's depth), presence of histologically recognised ulceration, mitotic rate and level of invasion (Clark's level) (Gospodarowicz and Wittekind, 2017). The staging system most often used for melanoma is the American Joint Committee on Cancer (AJCC) TNM system, which is based on 3 key pieces of informa-

tion: tumor thickness (T), spread to nearby lymph nodes (N) and metastasis

to distant sites (M). The earliest clinical stage of melanomas is stage 0 (carcinoma in situ), and then range from stages I through IV. As a rule, the lower the number, the less the cancer has spread. A higher number, such as stage IV, means cancer has metastasized to distant organs (Gospodarowicz and Wittekind, 2017). The majority of patients with stage 0 require surgical excision only but more advanced cancers often require other more complex treatments including immunotherapy. Immunotherapy is the use of medicines to stimulate immune system so that the latter can recognize and destroy cancer cells more effectively. Among stage III and IV tumours with a poor prognosis and high risk of recurrence it is recommended to perform an examination of their BRAF gene. The identification of the BRAFV600E mutation will drive the appropriate BRAF inhibitor treatment strategy (Carbognin et al., 2015). Independently of the status of the BRAF mutation, the immune system can be stimulated with antibodies anti-PD-1 antibodies (e.g. nivolumab or pembrolizumab) or by drugs like ipilimumab (anti-CTLA4 antibody). The sequence of treatment (especially in the presence of mutations BRAF) currently is still not specified. The combination of BRAF and MEK inhibitors is associated with a high response rate (approximately 70%) and a rapid improvement in the symptoms of the disease while treatment with anti-PD-1 antibodies brings less response rates, but they are more long-lasting (Carbognin et al., 2015). Detection of genomic alterations in the melanoma can help identify patients who may benefit from an experimental approach in clinical trials and future treatment design.

1.2 Epigenetics Regulation of Disorders

The first reports on epigenetics and the mechanisms of epigenetic modifications were initially published in the 1950s (Holliday, 2006). The number of epigenetics-related studies published since then is immense and rapidly growing (July 2018 over 63 thousand records founded in PubMed database of (Biotechnology Information, 2018), which indicates great interest in this topic. New approaches, including DNA methylation and histone modifications are very important in various biological processes such as transcription (Busslinger, Hurst, and Flavell, 1983), genomic imprinting (Reik et al., 1987), developmental regulation (Anteguera, Macleod, and Bird, 1989), mutagenesis (Cooper and Youssoufian, 1988), transposition (Banks and Fedoroff, 1989), DNA repair (Brown and Jiricny, 1988), X chromosome inactivation (Pfeifer et al., 1990), chromatin organization (Lewis and Bird, 1991). The renewed research in epigenetics has led to novel findings about aberrations in cytosine-methylation in the pathogenesis of neoplastic (Niller, Wolf, and Minarovits, 2009), neurodegenerative (Jakovcevski and Akbarian, 2012), psychiatric diseases (Abdolmaleky, Thiagalingam, and Wilcox, 2005), various cancers (Dawson and Kouzarides, 2012), immune disorders and pediatric disorders (Uddin et al., 2010). The term epigenome means "on top of" genome and refers to specific changes in genome regulatory activity occurring in response to environmental stimuli (Egger et al., 2004). Epigenetic modifications do not change the underlying DNA sequence, but can cause multiple changes in cellular function and gene expression(Egger et al., 2004). However, those changes still remain unknown in many progressive and incurable diseases such as cancers including one of the deadliest, melanoma (Esteller and Herman, 2002). A modification very widely studied currently is DNA methylation. The methylation of cytosine at the 5-position (m5C) in eukaryotic DNA is the only modification present in the genomes of all vertebrates and flowering plants (Bird, 1986). The role of this mark is so important that many researchers consider m5C to be the 5th base of DNA. The analysis of the human methylation profile showed that methylation typically occurs at cytosine in CpG dinucleotides (Bird, 1986). CpG's are not evenly distributed in the genome, with the majority of them grouped into non-methylated sequences islands close to promoter regions (Bird, 1987). Methylation of CpG islands associated with gene regulatory regions can cause genomic instability and lead to the development of many progressive and incurable diseases including cancer (Sandoval et al., 2011). The field of epigenetics is

quickly growing and with it the understanding that both the individual's environmental exposure and personal lifestyle can interact with the genome itself. Research indicates that most human diseases manifest from the interaction of genetic variants caused by the influence of epigenetic changes (Holliday, 2006). These changes may be reflected at various stages of development or even in later generations (Holliday, 2006). For example, a mother's exposure to pollution (before pregnancy) could impact her child's asthma or a father's diet could define predisposition to obesity. Genetic variants discovery can motivate society to provide healthy lifestyle and preventional protection against harmful environmental impact (Egger et al., 2004). Additionally, if the epigenetic signatures of chemical/pollution exposures can be identified than they can be limited to the minimum and the risk of epigenetic changes will decrease (Egger et al., 2004). Clinical applications of epigenetic changes, especially epigenetic functional regulation of gene expression has become one of the most important research topics in recent years, including in relation to tumour pathogenesis (Esteller and Herman, 2002). The main reason for this interest was the finding that methylation of chromatin and DNA methylation in the transcriptional silencing of genes related to oncogenesis (Esteller and Herman, 2002). In 1983 an experiment performed by Feinberg and Vogelstein found that genes of colorectal cancer cells obtained from primary human tumour tissues were substantially hypomethylated compared with normal tissues (Feinberg and Vogelstein, 1983). Nowadays, epigenetic changes discovery can be used as clinical biomarkers for early cancer molecular diagnosis, or as a treatment in gene targeted therapy in later stages (Esteller and Herman, 2002). There is also evidence showing that abnormal DNA methylation has been observed in immune disorders (Meda et al., 2011). Studies indicate that environmental agents, including stress and diet, combine to inhibit T-cell DNA methylation and epigenetic alterations, for example in lupus-like autoimmunity (Rakyan et al., 2011). However, epigenetics is such a new field of science that in most cases, its impact has not been fully demonstrated especially in terms of neurodegenerative disorders, as we still don't know much

about them (Jakovcevski and Akbarian, 2012). Several reports have associated Alzheimer's disease with difference in DNA methylation patterns related to brain function and ageing (Egger et al., 2004). Epigenetic errors appear one by one and findings from autopsies of brain tissue from patients with neurodegenerative disorders shed a new light on therapy in terms of incurable cases (Egger et al., 2004). Clinical applications of epigenetics, combined with the rise of technology, will lead to molecular diagnosis for which targeted treatments can be developed. (Bock and Lengauer, 2008).

DNA Methylation in Melanoma

There have been several investigations on the relationship between DNA methylation and melanoma. Genome-wide studies of DNA methylation have been performed and the changes in methylation level have been identified as potentially important in melanoma development, progression, and metastasis (Sager, 1989). DNA hyper-methylation of CpG islands at promoter sites has been widely described as a indicator of tumorigenesis by silencing tumor suppressor genes (TSG) (Sager, 1989). In 1995, Whelan et al. demonstrated that loss of function of the TSG gene cyclin-dependent-kinase inhibitor 2 (CDKN2) can lead to tumorigenesis (Whelan, 1995). To date, several studies have revealed association of TSG to melanoma. This is evident in the case of inactivation of RAS Association Domain Family Protein 1 (RASSF1A) which can be found in significant number of melanomas (and in around 90% of melanoma cell lines) (Maat et al., 2007) Moreover, BRCA1 associated protein1 (BAP1) silencing somatic mutations can be seen in more than 80% of metastasising tumours (Harbour, Onken, and Council, 2010). Apart from CDKN2, RASSF1A and BRCA1, which have been intensively discussed in multiple cancers, hypermethylation of other genes has also been associated with melanoma. The HOX gene family, a member of the homeodomain-containing transcription factors, has been used as a biomarker in various human cancers (Pramio et al., 2017) and are also regulated at the nuclear-cytoplasmic transport level in skin cancers (Pramio et al., 2017). Thus, the differential methylation of genes

in melanoma tumors provides an opportunity to more fully understand development of this cancer and to develop new therapeutic agents (Pramio et al., 2017).

MAPKi Targeted Therapy for Melanoma

Pathway targeted therapies (BRAF/MEK inhibitors) and immune checkpoint inhibitors have revolutionised melanoma treatment. Approximately 40% of melanomas express carcinogen BRAF mutations that is fundamental for the mitogen-activated protein kinase (MAPK) activation (Flaherty, 2012). Early studies showed that BRAF gene mutation require MAPK signalling for their survival (Flaherty, 2012). Over the past decade researchers have performed multiple clinical trials and experiments based on agents which that target these pathways. In one of the largest trials on BRAF mutated metastatic melanoma researchers obtained over 422 samples from confirmed cutaneous melanoma stage III and IV BRAF mutation positive patients (Hauschild et al., 2012) subjected to MAPKi targeted therapy. Patients where treated with dabrafenib inhibitor of the associated enzyme B-Raf, which plays a master role in the regulation of cell development (Hauschild et al., 2012). While resistant tumours showed a reactivated MAPK pathway, there was a significant treatment effect (over 50%) compared with chemotherapy treatment (Hauschild et al., 2012). Results like these has helped to direct future strategies towards MAPKi therapy. However, melanoma resistant to MAPKi inhibitors still requires additional trials and test to discover mechanisms responsible for intratumoral immunity (Hugo et al., 2015).

1.3 Computational Epigenetics

Recently, various experimental techniques have been developed for genomewide mapping of epigenetic information. Next-generation sequencing (NGS) was shown to be useful for DNA methylation and histone modification profile detection (Harris et al., 2010). However, the latter study failed to consider the differing categories of epigenetic data distribution, complexity level and data quality issue. Bioinformatics analysis and interpretation of epigenetic records have become one of the major challenges of recent years (Gautam et al., 2018). Working with genomic data requires some knowledge of computer languages like C++, S, R, Perl, Python, and many others were used to write genomic libraries and packages. While specific tools for data conversion and handling have been developed, unfortunately user friendly tools are still a rarity. The algorithms come first, with the interface following later. Powerful and flexible analysis systems do exist but they require computing and statical knowledge. R is a widely used programming language and free software environment for statistical computing and graphics that is supported by the R Foundation for Statistical Computing (Matloff, 2011). It is a GNU operating system project that runs on different operation systems including Microsoft Windows, macOS, and UNIX, and is administered by CRAN project network (Matloff, 2011). R is an implementation of the S statistics language and quickly became more popular than S itself. Firstly due to the fact it is freely available and secondly, the involvement of more users means more developers and a wider contribution network. It also gives the possibility to use it in a more user-friendly way via graphical user interfaces (GUIs) such as RStudio (Racine, 2012), Deducer (Fellows, 2012), and Rattle (Williams, 2009). R is a very lean and functional language which allows the user to divide complex processes into modules (packages) (Paradis, Claude, and Strimmer, 2004) that can be customized depending on the user requirements and accessed through the Bioconductor website (www.bioconductor.org) (Gentleman et al., 2004). Bioconductor is a free, open source and open development R-based software project for the analysis and comprehension of high-throughput genomic data (Gentleman et al., 2004). To date, software development taken by the Bioconductor project provides a range of resources: a web based repository, nearly 1560 software packages, hundreds of metadata packages and a number of experimental data packages, publications, slides and training materials are constantly improved by users and developers (Gentleman et

al., 2004). Although R and Bioconductor present many advantages as they are a flexible and reproducible solution, they still require users to know the statistical and programming concepts according to the analysis to avoid erroneous results (Matloff, 2011). The major advance offered by next-generation sequencing (NGS) technologies is the ability to produce, in some cases, in excess of one billion short reads per instrument run, which makes them useful for many biological applications. A Bioconductor software (Robinson, Mc-Carthy, and Smyth, 2010) offers a suite of tools for analyzing and visualizing a variety of sequencing approaches based on peak-finding algorithms. data summarisation and visualisation (Bock and Lengauer, 2008). Combining chromatin immunoprecipitation assays (ChIP) can be analysed with multiple peak callers e.g. MOSAiCS (Sun et al., 2013), ChIPseqR (Humburg et al., 2011), BayesPeak (Spyrou et al., 2009). Differential expression analysis of RNA-seq data can be run with EdgeR (Robinson, McCarthy, and Smyth, 2010) or DESeq2 (Love, Huber, and Anders, 2014) solution. The unique data distribution characteristics of DNA methylation require the development of dedicated bioinformatics and computational tools. Bioconductor packages provide analysis of multiple DNA methylation methods such us bisulfite sequencing (methylPipe (Kishore et al., 2015), DMRcate (Peters et al., 2014)) and one of the most common techniques Infinium Methylation Assay 450k (Dedeurwaerder et al., 2011) (DMRcate (Peters et al., 2014), Minfi (Hansen and Aryee, 2012), ChAMP (Morris et al., 2013), methylumi (Davis et al., 2012), RnBeads (Assenov et al., 2014)). The goal of the analysis is mainly to identify differentially methylated regions (DMRs) or differentially methylated positions (DMPs) integrate, and then visualize epigenomic data sets (Bock and Lengauer, 2008). The last but not least step of each of the above is enrichment analysis to discover functions (Gene Ontology (Ashburner et al., 2000)) and pathways (KEGG (Kanehisa and Goto, 2000)). It is still a case of manually inputting data as gene list into the DAVID (Dennis et al., 2003) functional annotation tool or running the tool via command line.

Application of Galaxy for Epigenetic Research

Developers aims to make computational biology accessible to everyone. Thus, they have devised Galaxy an open, web-based platform for accessible, reproducible, and transparent data-intensive research (https://usegalaxy.org) see Figure 1.2 (Goecks, Nekrutenko, and Taylor, 2010). This platform is accessible for users of every level of interest and knowledge. It features hundreds of tools and workflows, which are easily to run via user friendly interface (Goecks, Nekrutenko, and Taylor, 2010). Reproducible workflows and interactive histories allow users to repeat tasks and fully understand the analysis. This followed by transparent publication of data processing and sharing these on-line creates an opportunity to verify results and methods by the community. The main Galaxy server has more than 124,000 registered users worldwide, who run approximately 245,000 analysis jobs each month (Goecks, Nekrutenko, and Taylor, 2010). Newly registered users can address their needs and get support from more advanced developers, administrators or educators involved in the project. I outline in Figure 1.2 a scheme that in three panels illustrate the available tools section, working space and history on Galaxy, containing inputs and outputs of the analysis. Analysis tools of interest can be searched by name or by the topic/category they belong. When a tool is selected, it is shown in the working space ready to use. When a user apply inputs and custom settings then only one click separates him from getting results. Output as an inputs datasets are added to the history panel and they can be modified, renamed, shared or downloaded from there. The Galaxy framework and software is open-source which means that is available to everyone and can be run on any Unix-based operating system. Server administration and tool development is supported by an application programming interface (API), software development kit (SDK) and tools for automating set-up and deployment (Goecks, Nekrutenko, and Taylor, 2010). In recent years, researchers have contributed their time, skills and expertise to building this project. These researchers include the members of the Galaxy

users, developers and admins communities. The availability of training materials, workshops and meetings continue to build a strong Galaxy collaboration network around the world (Goecks, Nekrutenko, and Taylor, 2010).

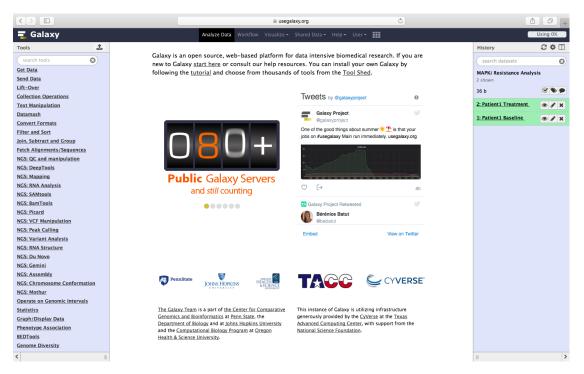


Figure 1.2: Galaxy Project (public) interface consisting of tool search panel, working space area and history.

1.4 Public Databases for Epigenetic Information

To date, epigenetics data are widely available on public resources such as Gene Expression Omnibus (GEO) (Edgar, Domrachev, and Lash, 2002) or ArrayExpress (Brazma et al., 2003) repositories. The number of experiments and their results have been increasing rapidly over the last decade. Current efforts are focused on the extraction and creation of epigenome specific databases. In 2003, the ENCODE Project was launched with the goal of producing a public genome-wide Encyclopedia of DNA Elements (Consortium, 2004). This encyclopedia produces, organizes and also analyses the data, and this project has surpassed the highest expectations of the creators. ENCODE provides not only data but also tools to search and visualize

analysis products in an integrative way. However, the project has been criticized for missing functional elements of genetic and biochemical approaches. In terms of epigenome modifications type there are three types of epigenetic databases include DNA methylation, histone modyfication and Noncoding RNA mechanism (Holliday, 2006). The DNA methylation databases are important for studying methylomes obtained from different techniques and tissues, pathological conditions, and species. By way of illustration, NGSmethDB is a database for NGS at single cytosine resolution level of DNA methylation data (Hackenberg, Barturen, and Oliver, 2010). Furthermore, the DiseaseMeth database focuses only on human diseases (Lv et al., 2011), while MethylomeDB it is a brain tissue specific database (Xin et al., 2011). Histone repositories are useful for cross-species research in chromatin interactions of genomic DNA, post-translational modifications, and histone modifying enzymes. This approach can be seen in the case of the two freely available databases. Histome database covering around 50 human histone proteins and 150 histone modifying enzymes (Khare et al., 2011) and 4DGenome which instead records multiple chromatin interaction data around 4,433,071 experimentally-derived and 3,605,176 computationally-predicted interactions in 5 organisms. (Teng et al., 2015). Noncoding RNA repositories include target prediction algorithms and experimentally verified miRNA targets. MiRWalk has been developed only for the prediction of possible miRNA binding sites (Dweep et al., 2011). Nevertheless, researchers provide us with miRBase microRNA sequences, targets and gene nomenclature repository (Griffiths Jones et al., 2006). Circular RNAs are specific of they origin from otherwise protein-coding genes and have been shown to be expressed in eukaryotic cells that was the aim for creating circBase containing unique circRNA (Glazar, Papavasileiou, and Rajewsky, 2014). Data mining of genomic regions methylated in cancer have resulted in the creation of cancer limited databases. Customised repositories are useful for cohort studies where irregular methylation patterns that are correlated with various cancers. A leading example of this is The Cancer Genome Atlas (TCGA), which is a publically

funded project that aims to accelerate understanding of cancer genetics by cataloging and storing of cancer genomic profiles (Tomczak, 2015). Other comprehensive databases available for DNA methylation and cancer include MethyCancer (He et al., 2007) and a database of 167 epigenetic modifiers correlated with cancer targets (Nanda, Kumar, and Raghava, 2016). These computational strategies and resources offer new opportunities for greater understanding of epigenome regulation, molecular organization, development and disease (Gautam et al., 2018).

Chapter 2

Computational Methods for Epigenetics

2.1 Epigenome-Wide DNA Methylation Profiling

Epigenome-wide association studies (EWAS) analyse genome-wide distribution of epigenetic marks in cohorts of different individuals in order to find associations between epigenetic variation and phenotype (Rakyan et al., 2011). One of the epigenetic modifications widely studied is DNA methylation. In humans, DNA methylation occurs by attaching a methyl group to the cytosine residue and it has been suggested that this modification results in as a suppression of gene expression (Bird, 1986). With regards to DNA methylation analysis there are a range of technologies such as, polymerase chain reaction (PCR) or pyrosequencing which are dedicated to studying small groups of methylation sites across number of samples (Kristensen and Hansen, 2009). New approaches, including bisulphite sequencing (RRBS) (Carr et al., 2007) and sequencing by synthesis (MethylC-Seq) (Urich et al., 2015), have allowed researchers to study DNA methylation on the global scale. Results from RRBS and MethylC-seq are comparable with one another (Urich et al., 2015). A potentially significant problem with these methods is its level of complexity and cost escalating with population sizes, meaning that currently running this type of analysis can be prohibitively costly (Kristensen and Hansen, 2009). By contrast, Illumina Methylation Assay (Illumina, 2018) provides high accuracy with low input DNA requirements on budget. Bisulfite conversion, array processing, and a wide study of methylation changes with other platform compatibility, (e.g. gene expression, microRNA profiling) make Illumina Methylation Assay one of the most comprehensive solution on the market (Sandoval et al., 2011). However, a Illumina Genome Studio software license is required, which may not be suitable for everyone. Moreover, as the company offers only basic preprocessing and analysis options there is growing interest to create freely available software to perform quality control, normalization and detection of differentially methylated regions (Marabita et al., 2013a). Existing tools and pipelines also require high performance computational hardware, programming knowledge and experience to run the analysis. This is why the aim of my project was to establish and implement this methods into user-friendly environment.

There are two basic approaches currently being adopted in research for reading the 450k data. First focuses on efficiency of bisulfite conversion and the second on the overall experiment (e.g. hybridization, extension). Illumina Methylation Assay 450k is a powerful utilisation in terms of reagent costs, time of labour, high accuracy, low input DNA requirements and price. It determines quantitative array-based methylation high resolution measurements at the single-CpG-site level of over 450 thousand loci (Pidsley et al., 2013). Epigenome-wide methylation analysis capabilities make this assay suitable for broad investigation of methylation changes in normal and diseased cells (Rakyan et al., 2011). Infinium technology uses two different bead types to detect changes in DNA methylation levels. In Figure 2.1 one can see M - methylated and U - unmethylated bead types. Depending on the probe design, the bead signals are reported in different colours -green or red (Illumina, 2018).

As such it has become one of the most comprehensive solutions on the market (Marabita et al., 2013a). However, due to the nature of the design following two different chemical assays, analysis can be too complex. As mentioned previously, the Ilumina Genome Studio software license is required

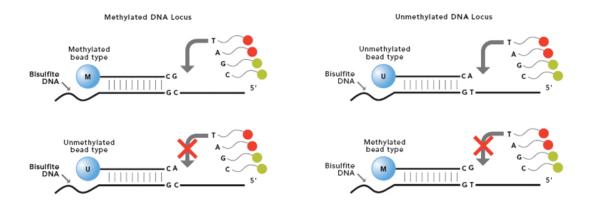


Figure 2.1: The Infinium Methylation Assay Technology (Illumina, 2018)

before use and the company offers only basic preprocessing and analysis strategies (Marabita et al., 2013a). 450k probes first needs to be filtered and normalised. Filtering out any probes that can generate artifactual data and removing any source of variation to avoid any data deviations. After correct preprocessing of the data (i.e. filtering out problematic probes and normalizing the data),downstream analysis can be performed. Detection of DMPs (differentially methylated positions) and DMRs (differentially methylated regions) is the most attractive currently available technique in the framework of large biomarker discovery studies, and has resulted in a growing interest to create freely available software to perform quality control, normalization and differentially methylated regions detection (Marabita et al., 2013a).

2.1.1 Pre-processing

No single technique excels in all aspects of DNA methylation analysis. Sample number and associated characteristics, and the method applied will generate different types and number of results. Therefore, it is necessary to understand, identify, and exclude low quality scores. Data preprocessing may be divided into normalization and filtering step. Different methods have been proposed to perform normalization. The Infinium I probe design includes two bead types per SNP locus and ends in the queried SNP base (Nakabayashi, 2017). Infinium II probe design requires just one bead type per locus and

ends at the base proceeding of SNP (Nakabayashi, 2017). Both of designs allow unlimited access for SNP interrogation and minimize the differences so ranking of potential differentially methylated loci is more accurate (Illumina, 2018). Background and inter-array correction equalizes the background signal between Type I and Type II probes and helps to achieve good guality data especially when subtle methylation differences need to be detected by statistical tests between large numbers of cases and controls. Filtering otherwise provides a basis for detection and removal of SNP variation (Daca-Roszak et al., 2015), low p-values and cross-reactive events (Marabita et al., 2013b). This helps to correct for possible bias arising from within and between array variation which normalization did not detect (Aryee et al., 2014). Computational methods can be applied to sequencing datasets via command line tools or R based trimming toolkits, such as Bioconductor package Minfi and its Quality Control functions (Aryee et al., 2014). Here function return plots with the log median intensity in both the methylated (M) and unmethylated (U) channels. When plotting these two medians against each other the good quality samples cluster together, while failed samples tend to separate and have lower median intensities (Aryee et al., 2014). In addition Bioconductor offers us tailored function to remove probes that contain either a SNP at the CpG interrogation or at the single nucleotide extension (Aryee et al., 2014).

2.1.2 Mapping and Graphical Visualization

Generally, downstream data analysis provides three types of information: statistical significance between groups, absolute differences (β , M value) and differentially methylated areas (Aryee et al., 2014). Beta value ranges from 0 to 1 indicating the methylation level at that site for the population of cells analysed (0 - unmethylated, 1 - methylated) (Cazaly et al., 2016). Unfortunately at very high or low values there is a risk of unequal variance at β values record. To avoid any heteroskedasticity β values can be transformed into the logit - M value (Cazaly et al., 2016). Differentially methylated areas involves adjacent positions or regions that have different methylation patterns

between samples (Aryee et al., 2014). The first step in high-throughput seguencing analysis is the mapping of the generated reads to a genome reference sequence. To accomplish this task, numerous software tools have been developed. Alignment is the process where data are mapped to the genome. Depending on the genome, not all methylation loci may have a genomic position. Currently, popular software alignment tools use UCSC genome browser (http://genome.ucsc.edu) (Kent et al., 2002) to optimally match the reference genome with data. The UCSC Genome Browser site provides reference sequences and draft assemblies for various genomes. Graphical viewers have been developed to support fast interactive performance. Open-source, webbased tool suite for genomic visualization, examination and curation of the custom data. Infinium methylation arrays can be associated with a genomic location using Minfi package (Aryee et al., 2014). Data mapped to genome can be generated or converted in normalized BedGraph format e.g. using Bioconductor rtracklayer package. Rtracklayer is a framework for interacting with genome browsers and manipulating annotation tracks (Lawrence, Gentleman, and Carey, 2009). BedGraph format allows display of continuousvalued data in track format which can be visualized in genome browsers or genomics viewers (Kent et al., 2002). Graphical representation of data give better understanding of generated reads and their possible implication.

2.1.3 DMR and DMP Identification

The next step of methylation profiling is identification of differentially methylated loci with respect to case or control design. In simple comparisons between such pairs of samples (e.g. treatment and control) Fisher's Exact Test or Hidden Markov Models (HMMs) are adequate to compare one test and one control sample at a time. They are implemented in Bioconductor packages such as methylKit (Akalin A, 2012), RnBeads (Assenov et al., 2014) and VanillaICE (Scharpf RB, 2008). These studies would have been more useful if they had focused on replicates variation. Replication between a discovery and a validation data set improve the measurement of variation and hence increases the precision of gene expression measurements and allows smaller changes to be detected. Genomic regions (DMR) that are differentially methylated between replicates can be tracked using regression bump hunting framework (Jaffe et al., 2012). The algorithm first implements a t-statistic at each methylated loci location, with optional smoothing, then grouping probes into clusters with a maximum location gap and a cutoff size to refer the lowest possible value of genomic profile hunted (Jaffe et al., 2012). Differentially methylated positions (DMP) detection can be accomplished by using linear regression model from limma package (Ritchie ME, 2015). Limma was initially developed for the analysis of microarray expression analysis but currently it is also used for methylation data (Ritchie ME, 2015). In order to reveal the meaning of methylation changes results can be functionally annotated or correlated with the corresponding expression data.

2.1.4 Peak Detection

Peak Detection is a computational method added and used in methylation analysis to identify areas where a protein (e.g., modified histones or transcription factors) interacts with DNA (Pepke, Wold, and Mortazavi, 2009). Transcription factors enriched area are called transcription factor binding sites (TFBS), while for histone modifications enriched area are referred to as histone modification peak (Pepke, Wold, and Mortazavi, 2009). In DNA methylation experiments, an area of interest is the methylated enriched region (Klose and Bird, 2006). Software packages for peak detection follow these basic components: first, call peaks along individual chromosome than combine individual signals to apply post-call filtering and statistical tests. Significance ranking of called peaks estimate regulatory sites or whole different distribution patterns. There are two preferred approaches for mapping puncture peaks e.g. sites of transcription-factor binding or methylation levels. These are MACS - Model-Based Analysis (Zhang et al., 2008) and PeakSeq systematic scoring (Rozowsky et al., 2009). Broad and narrow peaks e.g. open chromatin regions can be detected using F-Seq (Boyle, 2008) or WaveSeq (Mitra A, 2012). The key problem with peak calling algorithms and tools, is that customized settings and parameters can affect the number of peaks and potential can confuse the user. The power and abundance of counting-based measurements create new challenges and features for future analysis tools.

2.2 Galaxy Tools Development

Galaxy is an open-source project. Everyone can contribute to its development as it is not focused on any single software but rather enables integration of different technologies (Afgan et al., 2018). In addition, Galaxy allow researchers to share code and work in straightforward manner without being concerned with what programming language or environment was used (Afgan et al., 2018). The XML file is a link between the tool and Galaxy which describes to Galaxy how the underlying software works i.e., how to invoke the tool, what options to pass and what the tool will produce as output. Dependency and libraries required for installation can be added via Conda (Anaconda, 2017). Conda quickly installs, runs and updates packages and software requirements for any language — Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN (Anaconda, 2017). Functional testing is a recipe quality control process to present developers and users with tools that can be run across different systems and architectures. Tools are tested by feeding them with example datasets and settings and then examining the results. Every Galaxy dataset is associated with a datatype which can be added to the config file if the latter it is not already there (Afgan et al., 2018). Appropriate types of the data have great importance for the analysis e.g. SAM/BAM, BED, GFF/GTF, WIG, bigWig, bigBed, bedGraph, and VCF offer specific visualization and visual analysis environment options available via Trackster (Afgan et al., 2018). Galaxy's aim is the integration of datasets easily without downloading or sending it to a remote server. Following this idea developers can make tools accessible to a broad audience by sharing and publishing them on the main server accessible to everyone (Afgan et al., 2018).

The tools and tool suites provide ready-to-use combinations of bioinformatics methods that are wrapped into Galaxy ToolShed (Poterlowicz, 2018a). The ToolShed allows Galaxy administrators to install thousands of freely available Galaxy utilities into their instances. The main ToolShed serves as an digital distribution platform, sharing tool updates and versions. This solution simplifies management of tools for both developers and administrators (Afgan et al., 2018). Tools can be developed separately in respect to researchers needs. The goal of creating groups of tools and build them into suites is to expand both their quantity and quality (Goecks, Nekrutenko, and Taylor, 2010). The number of Galaxy tools contributed by the community has increased as a result of growing interest in multiple areas of research. In Galaxy, users can find simple statistics or even text manipulation tools so there is no need to download your data and edit them manually, but the majority of tools on the instance are for analysis of Next-generation sequencing (NGS) genomic datasets. In addition to newly available tools, Galaxy recognizes and can process data types from current DNA sequencers (Goecks, Nekrutenko, and Taylor, 2010). Galaxy implements a range of attributes to simplify the analysis of big data, including workflows and collections. Users are able to analyze their data in interactive and reproducible ways. Workflow's trial-and-error approach allows them to use individual tools in following order and connection. Pipelines can be generated from history or downloaded from external resources (e.g. (Manchester and Southampton, 2018)). A convenient workflow editor shown on Figure 2.2 is also available to build workflows step-by-step or to edit existing ones. Galaxy gives user flexibility by providing named-tags and labels for tools and datasets used in the analysis. Once developed, workflows behave complex tools, and they can be obtained and executed from Galaxy's main analysis interface (Goecks, Nekrutenko, and Taylor, 2010).

However, local galaxy instance requires a few additional things to run: a virtual environment, configuration files, and dependent Python modules (Afgan et al., 2018). However, starting the server requires informatics expertise

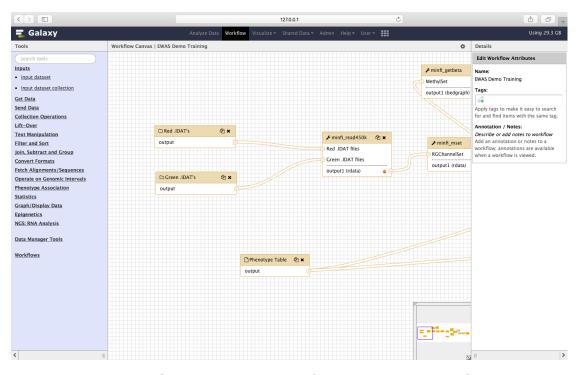


Figure 2.2: Galaxy's graphical workflow editor, show part of a sample workflow.

to set up infrastructure and managing the instance. Firstly users should install Galaxy, tools and all the necessary dependencies on their local machine. Then administration work starts when maintaining the server requests not only user handling but also controlling the usage, data back-up and software updates. Galaxy provides multiple benefits from local installation. Users can customize Galaxy itself as can be seen on Figure 2.3. This shows a "kpbioteam" instance being run by Dr K Poterlowicz team. In addition, the admin settings section allows installation of the tools not to be published onto the main server or to develop new tools that integrate with particular research question. Scalability optimize runs, handle more users, run more jobs even on large datasets. Disadvantages on the informatics side are fully addressed by various advantages of this solution (Afgan et al., 2018).

Planemo are command-line utilities assist in developing Galaxy and Common Workflow Language tools. The key aspects of Planemo virtual appliance are availability to local development environments (e.g. if Planemo has been installed with brew or pip) and the second is for developers using a dedicated Planemo virtual appliance (available as OVA, Docker, Vagrant, etc.)

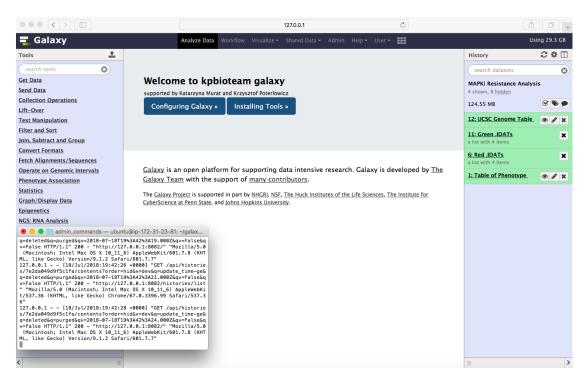


Figure 2.3: Local Galaxy Instance running via command line with custom interface consisting predefined tools sections, tailored working space area and test history.

(galaxyproject, 2014). Planemo can help user to develop tools and Conda packages in unison, publish tools to the Galaxy Tool Shed and also support docker and containers (galaxyproject, 2014). Docker, a virtual appliance is an open-source technology that performs operating-system-level virtualization also known as containerisation (Developers, 2017). It enables developers to easily pack, ship, and run any application as a lightweight, portable, self-sufficient container, which can run virtually everywhere. Containers are created from runtime instance of an image which specify their exact contents. Images are often created by combining and modifying standard images downloaded from repositories (Developers, 2017). In addition, Docker (Developers, 2017) can get more applications running on the same time and more hardware than other computational solutions. Simplified containered applications are ready-to-run by developers and it makes managing and deploying much easier. Nowadays, almost all IT and cloud companies have adopted Docker which means that the community is still growing and it is really valuable to use it (Developers, 2017).

Chapter 3

Development of Galaxy Tools

3.1 EWAS - Galaxy Tool Suite

An EWAS suite (table 3.1) has been developed as a part of my project to provide users with an enhanced understanding of the Infinium Methylation Assay analysis tool. The tool suite includes methods for preprocessing with stratified quantile normalization minfi ppquantile or extended implementation of functional normalization minfi ppfun with unwanted variation removal, sample specific quality assessment minfi gc and differentially methylated regions minfi dmr and position detection minfi dmp. All scripts were wrapped into a web based platform - Galaxy, as a user-friendly interface with tools and ready to run workflows. Which is a solution for non-programmer scientists allowing them to analyze their data and share their experience with others (Poterlowicz, 2018a). Configuration files are publicly published on our lab group's GitHub repository with scripts and dependency settings also available to download and install via the Galaxy test toolshed (Poterlowicz, 2018a). My suite was created and tested using a Planemo workspace with a default configuration and shed tool setup available via Docker (operating-system-level virtualization) (Poterlowicz, 2018b).

The workflow combines 7 main steps Figure 3.1, starting with raw intensity data loading (/.idat) and then preprocessing and optional normalization of the data. The next quality control step performs an additional sample check to remove low-quality data, which normalization cannot detect. The workflow gives the user the opportunity to perform any of these preparation and

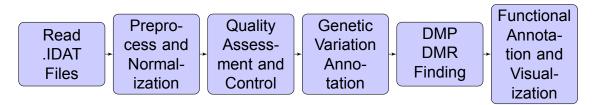
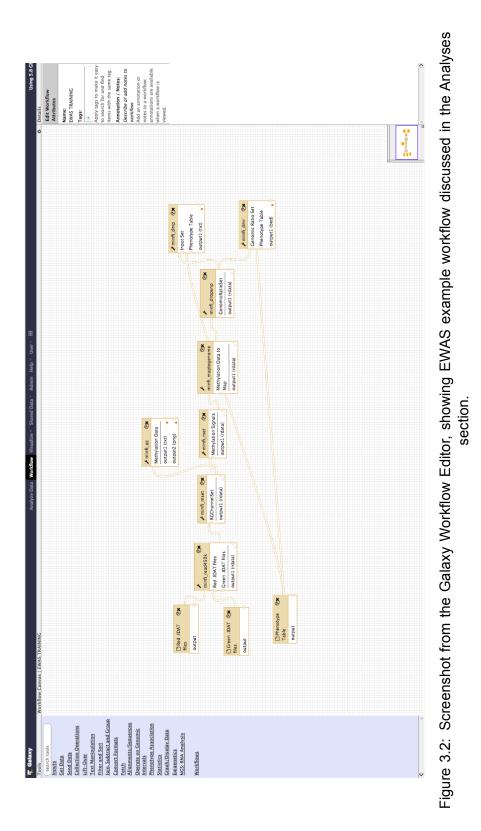


Figure 3.1: Simplified workflow for analysing epigenetics data

data cleaning steps, including the highly recommended genetic variation annotation step that results in single nucleotide polymorphism finding and removal. Finally, the dataset generated through all of these steps can be used to hunt (find) differentially methylated positions (DMP) and regions (DMR) with respect to a phenotype covariate. Functional annotation of these data generates clinically meaningful information about methylation changes with graphical representation of these genes and functions. All the tools, single preparation and analysis steps are shown in Figure 3.2 and explained in detail below.


Data Loading: IDAT files are the combination of raw green and red colour arrays containing the summarized bead information generated by the Illumina 450k scanner (Marabita et al., 2013a). Illumina's GenomeStudio solution converts the data into plain-text ASCII files losing a large amount of information during this process (Marabita et al., 2013a). To prevent this kind of data loss we developed an R based tool minfi read450k which is the combination of illuminaio readIDAT and minfi RGChannelSet function. We decided to use this functions to firstly load intensity information for each two color micro array and then build up an RGChannelSet class based on them. Preprocessing and Normalization: RGChannelSet represents two color data with a green and a red channel and can be converted into methylated and unmethylated signals assigned to MethylSet or into Beta values build in RatioSet (Aryee et al., 2014). Users can convert from RGChannelSet into MethylSet using the minfi mset tool or compute Beta values using minfi rset tool, no normalization performed. However, these two classes can also be preprocessed and normalized with two methods recommended by Illumina (Aryee et al., 2014). Minfi ppquantile implements stratified quantile normalization preprocessing

Tool	Input	Output	Description
minfi_read450k	IDAT	RGChan- nelSet	read the .IDAT files
minfi_mset	RGChannelSet	MethylSet	convert the Red/Green .IDAT's for an Illumina methylation array
minfi_qc	MethylSet /Ge- nomicMethylSet	DataFrame	quality assessment
minfi_rset	MethylSet/Ge- nomicRatioSet	RatioSet	converting methylation data from methylation and unmethylation channels, to ratios (Beta and M-values)
minfi_ppfun	RGChannelSet	GenomicRa- tioSet	functional normalization preprocessing
minfi_ppquan- tile	RGChan- nelSet/Ge- nomicMethylSet	GenomicRa- tioSet	stratified quantile normal- ization
minfi_map- togenome	MethylSet/RGChan- nelSet/RatioSet	GenomicRa- tioSet	add genomic coordinates to each probe together with some additional annotation information
minfi_geo	GEO accession	GenomicRa- tioSet	download data from GEO database
minfi_getbeta	MethylSet/Ra- tioSet/Genomi- cRatioSet	DataFrame	return Beta value
minfi_getCN	MethylSet/Ra- tioSet/Genomi- cRatioSet	DataFrame	return coordinating node
minfi_getM	MethylSet/Ra- tioSet/Genomi- cRatioSet	DataFrame	return the Fisher informa- tion corresponding to a model and a design
minfi_pheno	RatioSet/Genomi- cRatioSet	DataFrame	extract phenotype data
minfi_getanno	GenomicRatioSet	DataFrame	access provided annota- tion
minfi_getsnp	GenomicRatioSet	DataFrame	return SNP information of the probes
minfi_dropsnp	GenomicRatioSet	GenomicRa- tioSet	drop the probes that con- tain either a SNP at the metylated loci interrogation or at the single nucleotide extension
minfi_dmp	MethylSet/Ge- nomicRatioSet	DataFrame	return differentially methy- lated positions
minfi_dmr	GenomicRatioSet	DataFrame	return differentially methy- lated regions

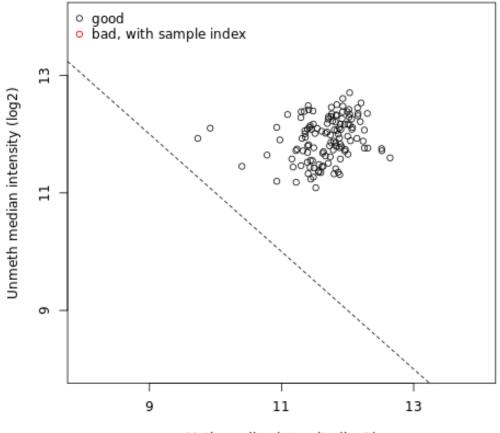
Table 3.1: Summary of the EWAS suite tools inputs and outputs

and it is supported for small changes like in one-type samples e.g. blood dataset. The conceptual understanding is that it is a transformation of the array x based on function F-1Gx where Gx is an estimated distribution function and F-1 is the inverse of an estimated distribution function (Bolstad et al., 2003). It has the result in normalized distributions identical for all the arrays (Bolstad et al., 2003). For quantile normalization Gx is the empirical distribution of array x and F is the empirical distribution for the averaged quantiles across arrays (Bolstad et al., 2003). To sum up, quantile normalization is a technique for making two arrays distributions identical in statistical properties. In contrast, minfi ppfun is aimed at global biological differences such as healthy and occurred datasets with different tissues and cell types (Fortin et al., 2014). It is called the between-array normalization method and removes only variation explained by a set of covariates while quantile normalization forces samples to be the same, which removes all variation across the data (Fortin et al., 2014). Both of these methods return GenomicRatioSet class aimed at most of analyses performed on EWAS data using Minfi package (Aryee et al., 2014). Quality Assessment and Control: Data quality assurance is an important step in Infinium Methylation Assay analysis. The assessment can be run on methylated signals generated by preprocessing analysis step. Minfi gc tool outputs plot the log median intensity in both the methylated (M) and unmethylated (U) channels. When plotting these two medians against each other the good samples cluster together, while failed samples tend to separate and have lower median intensities as we can see on Figure 4.1 all provided samples are remarkable. **Mapping:** Mapping is the process where a sequenced read is compared to a reference based on its nucleotide sequence similarity. Minfi maptogenome tool accept both Methyl- and RatioSet than align to the genome using an annotation package and output GenomicRatioSet or GenomicMethylSet. However, depending on the genome, not all methylation loci may have a genomic position. Annotating probes affected by genetic variation: Incomplete annotation of genetic variations

such as single nucleotide polymorphism (SNP) may affect DNA measurements and interfere results from downstream analysis. Minfi getsnp return a data frame containing the SNP information of unwanted probes to be removed by minfi dropsnp tool (Aryee et al., 2014). **DMPs and DMRs Identification:** The main goal of the EWAS suite is to simplify the way differentially methylated loci sites are detected. The EWAS suite contains minfi dmp tool detecting differentially methylated positions (DMPs) with respect to a phenotype covariate, and more complex minfi dmr solution for finding differentially methylated regions (DMRs) (Arvee et al., 2014). Genomic regions that are differentially methylated between two conditions can be tracked using a bump hunting algorithm. The algorithm first implements a t-statistic at each methylated loci location, with optional smoothing, then groups probes into clusters with a maximum location gap and a cutoff size (Aryee et al., 2014). Functional Annotation and Visualization: In addition to downstream analysis users can access annotation provided via Illumina (minfi getanno) (Aryee et al., 2014) or perform additional functional annotation using the Gene Ontology (GO) tool (clusterprofiler_go). The Gene Ontology (GO) provides a very detailed representation of functional relationships between biological processes, molecular function and cellular components across data (Consortium, 2004). Once a specific regions has been chosen, clusterprofiler go visualize enrichment result see Figure 4.2. Many researchers use pathway analysis to characterise the function of the gene that demonstrate the potential for Galaxy to be a bioinformatics solution for wide multi-omics research. **Training:** I have also provided training sessions and interactive tours for user self-learning. The training materials are freely accessible at the Galaxy project Github repository (http://galaxyproject.github.io/training-material). Such trainings and tours guide users through an entire analysis. Following steps and notes helps users to explore and better understand the concept. Slides, a hands-on instruction describes the analysis workflow, all necessary input files are ready-to-use via Zenodo, a Galaxy Interactive Tour, and a tailor-made Galaxy Docker image for the corresponding data analysis.

Chapter 4

Application of the Tools


4.1 Enhancement for the Computational Methods

With the rapidly increasing volume of epigenetics data available, a computerbased analysis of heritable changes in gene expression becomes more and more feasible. Many computational epigenetics studies have focused on generation of data and increasing diversity of methods and techniques on data population scale and tools to mine them. The generalization of much of the published research on this issue is however, problematic. It is true that executing and aligning for multi-omics studies are important steps. Risk evaluation, disease management and novel therapeutics development are all challenging researchers to find novel bioinformatic frameworks and approaches. Recent work has revealed that this challenge is now being targeted (Holliday, 2006). The main difference to existing solutions is that they are require computing knowledge and experience. In this regard I provide a well established user friendly tool suite available via Galaxy platform 'EWAS-Galaxy'. It is combine theories, models and methods required to run complex biological and medical epigenetics analysis. In addition, It provides a set of tools, each one being available as a BioConda package as well as a Docker container (Poterlowicz, 2018b). Based on the Galaxy Docker project, my web server offers a comprehensive and freely accessible epigenetics workspace. Source code for the Galaxy is open and supported by the developer community, which means that my tools are being tested and constantly improved. They can be deployed on every standard operating system (Linux, Windows, OSX), but at the same time they can be installed and run on high-performance- or cloudcomputing infrastructure (Poterlowicz, 2018a). The role of computational epigenetics is the development and application of bioinformatics methods to study the epigenome.

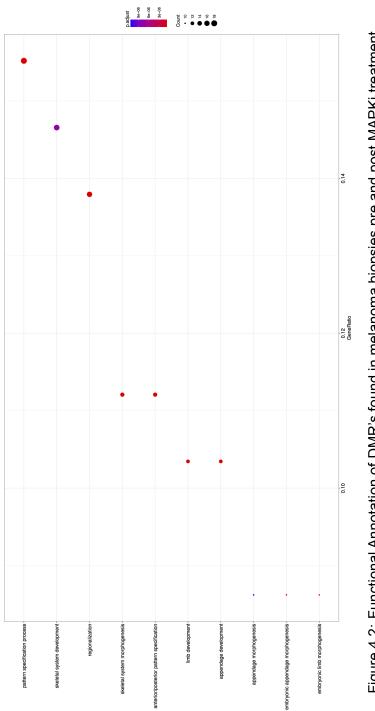
4.2 Clinical Relevance Validation

A Big interest in skin cancer biomarker identification led to validation of the differentially methylated regions analysis. Illumina 450K Methylation data were obtained for sensitivity of melanoma biopsies pre and post MAPKi treatment (Hugo et al., 2015). The data has been download from Gene Expression Omnibus (GEO) with accession number GSE65183. The Gene Expression Omnibus is an international public database repository which distributes broadly understood genomic data sets (Hugo et al., 2015). Methylation profiling by genome tiling array in melanoma can help us understand how non-genomic and immune changes can have an impact on treatment efficiency and disease progression. Raw image IDAT files were loaded into the Galaxy environment using Data Libraries. EWAS workflow was run on Red and Green dataset collections of patient-matched melanoma tumours biopsied before therapy and during disease progression, pre-defined phenotype tables with sensitivity information and up to date genome tables (UCSC Main on Human hg19 Methyl450) (Poterlowicz, 2018b) were used as inputs and default settings. This workflow generated differentially methylated regions and positions and also studied the functional aspects behind hypo- and hyper - methylated genes. To detect poorly performing samples I ran quality diagnostics with minfi gc tool. Provided samples passed quality control test, can be seen (on figure 4.1) that they clustered together with higher median intensities confirming their good quality (Aryee et al., 2014).

Differentially methylated loci were identified using single probe analysis implemented by **minf_dmp** tool with the following parameters: phenotype set

Meth median intensity (log2)

Figure 4.1: Quality Control Plot representation of melanoma pre and post MAPKi treatment samples.


as **categorical** and qCutoff size set to **1**. The bump hunting algorithm was applied into **minfi_dmr** tool to identify differentially methylated regions (DMRs) with maximum location gap parameter set to **250**, genomic profile above the cutoff equal to **0.1**, number of resamples set to **0**, null method set to **permutation** and verbose equal **FALSE** which means that no additional progress information will be printed. Differentially Methylated Regions and Positions revealed the need for further investigation of tissue diversity in response to environmental changes (Bock and Lengauer, 2008). Nearest transcription start sites (TSS) and enhancer elements annotations where found in the hypermethylated gene set listed as follows: PITX1, SFRP2, MSX1, MIR21, AXIN2, GREM1, WT1, CBX2, HCK, GTSE1, SNCG, PDPN, PDGFRA, NAF1, FGF5,

FOXE1, THBS1, DLK1 and HOX gene family.

Functional annotation with GO is a schema to understand how the annotations are assigned to the genes (Ashburner et al., 2000). These are enrichment GO categories after controlling for FDR control Figure 4.2. The most significance to the gene output was the pattern specification process (GO:0007389), skeletal system development (GO:0001501) and regionalization (GO:0003002) meaning that melanoma MAPKi resistance could be related to the cells developmental process within specific environments.

4.3 Discovery and Validation of a Predicted SKCM Epigenetics Variants

Epigenetic aberrations that involve DNA modifications give researchers the possibility to identify novel non-genetic factors responsible for complex human phenotypes such as height, weight, and disease. To identify methylation changes researchers need to perform complicated and time consuming computational analysis (Bock and Lengauer, 2008). Here, the EWAS suite becomes a solution for this inconvenience and provides a simplified downstream analysis including preprocessing, quality evaluation and differentially methylated CpG site detection in one complex set of tools developed and published under the Galaxy platform. I also show how my initial implementation of EWAS tools suite combination, Figure 3.2, can provide additional insights into e.g. melanoma therapeutic resistance. Workflow published on the kpbioteam docker instance allow users to repeat the analysis performed on melanoma data with their own examples and feedback improvements. Diagnostic biomarkers currently used to assist in the diagnosis of melanoma were founded in chosen dataset. However, the study fails to consider the differing categories of treatment. Recent cases reported by (Hugo et al., 2015) showed that gene and signature based transcriptomic alterations in acquired MAPKi resistant melanoma were highly recurrent. This can help to explain clinical

relapse comprehensively with new genetic and epigenetic mechanism findings (Gilbertson et al., 2006). Initial observations suggest that there may be a link between MAPKi resistance and DNA methylation changes itself. Here, we showed that specific genes and pathways subject to differential regulation in resistant tumour cells. I highlighted a group of hypermethylated genes already connected to cancer which a lack of MAPKi research. This data demonstrates that PDGFR, which is suggested to be responsible for RAS/MAPK pathway activation can truly regulate the MAPKi mechanism in non responsive tumours, but its altered methylation regulation reguires additional studies (Hugo et al., 2015). Hypermethylation can be associated with expression down-regulation. The PITX1 protein is a member of the bicoid-related homeobox transcription factors and was founded as contributor to the progression of human cutaneous malignant melanoma (Osaki et al., 2013). Previous published studies are limited to local surveys and serial biopsies. Thus, stimulus of innate or acquired MAPKi resistance may converge on epigenetics. I also presented that homeodomain transcription factor MSX1 and CBX2 polycomb protein are likely to be treatment resistance factors, reported as downregulated and inactivated in melanoma tumours (Clermont et al., 2014). Additional analysis performed on MAPKi treatment sensitivity data reveal new potential directions for therapeutic approaches.

Appendix A

Galaxy EWAS Training

450K Array Data Upload

The first step of EWAS - Galaxy data anylalysis is raw methylation data loading (intensity information files for each two color micro array)

1. Create a new history for this tutorial and give it a proper name

2. Import the following IDAT files from Zenodo ()

3. Run minfi_read450k with the following parameteres for input files A.1 red files: GSM1588704_8795207135_R01C02_Red.idat pre-treatment, GSM1588705_8795207119_R05C02_Red.idat pre-treatment, GSM1588706_8795207135_R02C02_Red.idat BRAFi treatment resistant, GSM1588707_8795207119_R06C02_Red.idat BRAFi treatment resistant green files: GSM1588704_8795207135_R01C02_Grn.idat pre-treatment, GSM1588705_8795207119_R05C02_Grn.idat pre-treatment, GSM1588706_8795207135_R02C02_Grn.idat pre-treatment, GSM1588706_8795207135_R02C02_Grn.idat BRAFi treatment resistant, GSM1588706_8795207135_R02C02_Grn.idat BRAFi treatment resistant, GSM1588707_8795207119_R06C02_Grn.idat BRAFi treatment resistant

Preprocessing and Quality Assessment

Preprocessing and data quality assurance is an important step in Infinium Methylation Assay analysis (Aryee et al., 2014). RGChannelSet represents two color data with a green and a red channel and can be converted into methylated and unmethylated signals assigned to MethylSet or into Beta values build in RatioSet. User can convert from RGChannelSet into MethylSet using the minfi_mset or compute Beta values using minfi_set. The minfi_qc tool extracts and plots the quality control data frame with two columns mMed

T Galaxy	Analyze Data Workflow Visualize - Shared Data - Admin Help - User -	Using 29.3 CB
Tools	minfi_read450k load .IDAT files (Galaxy Version 2.1.0)	History 📿 🗘 🗔
search tools Epigenetics <u>clusterProfiler kegg</u> run KEGG Analysis	Ped JDAT files (2) 11: Green JDATs 6: Red JDATs 6: Red JDATs	search datasets Inputs for Demo Training A shown, 8 hidden 124.55 MB
clusterProfiler_go_run GO Analysis clusterProfiler_bitr_converting ID types <u>Cuffnorm</u> Create normalized	a Green JDAT files (7) D 11: Green JDATs G:Red JDATs	12: UCSC Genome Table. I1: Green .IDATs a list with 4 items
expression levels <u>minfi dmp</u> to find differentially methylated positions <u>minfi_getbeta</u> obtain Beta value	→ Execute	6: Red_JDATs X a list with 4 items X 1: Table of Phenotype Image: Comparison of the second se
matrix minfi gc provides a simple quality control matrix and plot	The tool load the binary 450K array "IDAT" raw files generated by the Illumina Scanner. In addition to the methylated and an unmethylated intensity values for each 450,000 CpG positions, IDAT file contains some extra info such as control probes.	
minfi dropsnp drop the probes that contain either a SNP at the CpG interrogation or at the single nucleotide extension	Citations (2 Show BibTeX Keith Baggeriy (Aut), Henrik Bengtsson (Aut), Kasper DanielHansen (Aut, Cre), Matt Ritchie (Aut), Mike L. Smith (Aut), TimTriche Jr. (Ctb) (2017). illuminaio. (doi:10.18129/b9.bioc.illuminaio[Link)	
minfi_dmr to find differentially methylated regions		
minfi maptogenome mapping Ilumina methylation array data to the genome		
<u>minfi rset</u> store Beta values and/or M values		
minfimset Create objects contains CpGs signals		
minfi read450k load .IDAT files		
chipeakanno annopeaks annotate peaks by annoGR object in the		

Figure A.1: Data Upload minfi_read450k Tool Interface

and uMed which are the medians of MethylSet signals (Meth and Unmeth).Comparing them against one another allows user to detect and remove low-quality samples A.2

- 1. Run minfi_mset to create MethylSet object
- 2. Run minfi_qc to estimate sample-specific quality control
- 3. Convert methylation data from the MethylSet, to ratios with minfi_rset
- 4. Then map ratio data to the genome using minfi_maptogenome tool

Removing probes affected by genetic variation

1. Run minfi_dropsnp to remove the probes that contain either a SNP at the metylated loci interrogation or at the single nucleotide extension, highly recommended by (Aryee et al., 2014)

DMPs and DMRs Identification

The main goal of the EWAS suite is to simplify the way differentially methylated loci sites are detected. The EWAS suite contains minfi_dmp tool detecting differentially methylated positions (DMPs) with respect to a phenotype covariate, and more complex minfi_dmr solution for finding differentially methylated regions (DMRs). Genomic regions that are differentially methylated between two conditions can be tracked using a bumphunting algorithm. The algorithm first implements a t-statistic at each methylated loci location,

Galaxy	Analyze Data Workflow Visualize - Shared Data - Admin Help - User -	Usi	ing 29.3 G
pols	minfi_gc provides a simple quality control matrix and plot (Galaxy Version 0.1.0) • Options	History	3 \$ [
search tools	Methylation Data	search datasets	(
Cuffnorm Create normalized expression levels	□ 2: MethylSet •	Outputs for Demo Trainin	ıg
minfi_dmp to find differentially methylated positions	Execute R: GRSet without SNPs	319.69 MB	8
<u>minfi_getbeta</u> obtain Beta value matrix	Quality Control (QC) of 2: Data Mapped To The Genome against each other the 6: RatoSet	<u>16: clusterProfiler_go on</u> data 14	•
minfi gc provides a simple quality control matrix and plot	Citations (Z Show 8)	15: clusterProfiler go on data 14	۲
minfi dropsnp drop the probes that contain either a SNP at the CpG interrogation or at the single	I: RCChannelSet I: RCChannelSet Aryce, Martin J. and Jäffe, Andrew E: and Corrada-Bravo, Hector and Ladd-Acosta, Christine and Feinberg, Andrew P. and Hansen, Kasper D. and Irizary, Rafael A. (2014). Minft: a fact-bible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. In <i>Bioinformatics</i> ,	11: Table of Annotated P eaks	•
nucleotide extension minfi dmr to find differentially	30 (10), pp. 136381369. [doi:10.1093/bioinformatics/btu049][Link]	10: Differentially Methyl ated Regions	•
methylated regions		9: Differentially Methylat ed Positions	•
minfi maptogenome mapping Ilumina methylation array data to the genome		8: GRSet without SNPs	•
minfi rset store Beta values and/or M values		7: Data Mapped To The Genome	•
<u>minfi mset</u> Create objects contains CpGs signals		<u>6: RatioSet</u>	•
minfi read450k load .IDAT files		<u>5: minfi qc on data 2</u>	۲
chipeakanno annopeaks annotate		4: Quality Control Report	۲
peaks by annoGR object in the given range		<u>3: Beta Value</u>	۲
<u>minfi_geo</u> reading Illumina methylation array data from GEO		2: MethylSet	•
illuminaio readidat load .IDAT files		1: RGChannelSet	•
files S: RNA Analysis			
		11	

Figure A.2: Quality Assessment (minfi_qc) Tool Interface

with optional smoothing, then groups probes into clusters with a maximum location gap and a cutoff size.

- 1. Import phenotypeTable.txt from Zenodo ()
- 2. Run minfi dmp with the following parameters

Input set:GenomicRatioSet

Phenotype Table:phenotypeTable.txt

Phenotype Type:categorical

qCutoff Size:0.5 (DMPs with an FDR q-value greater than this will not be re-

turned)

Variance Shrinkage:TRUE (is recommended when sample sizes are small <10)

3. Run minfi_dmr A.3

Input set:GenomicRatioSet

Phenotype Table:phenotypeTable.txt

factor1: sensitive

factor2: resistant

maxGap Size:250

coef Size:2

Cutoff Size:0.1

nullMethod:permutation

verbose:TRUE

4. Visualize Differentially Methylated Regions with UCSC

- Click on the minfi_dmr output in your history to expand it
- Click on the pencil button displayed in your dataset in the history set
- Database/Build Human Feb. 2009 (GRCh37/hg19) (hg19)
- Press Save

- Towards the bottom of the history item, find the line starting with display at UCSC

- This will launch UCSC Genome Browser (Kent et al., 2002) with your Custom Track A.4

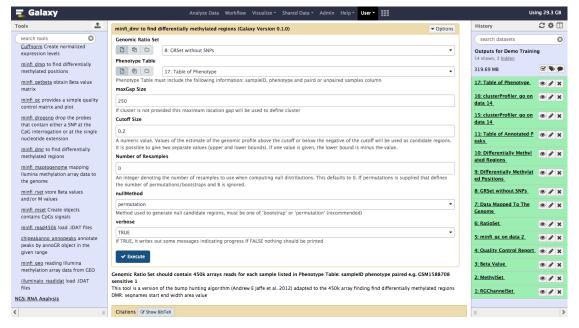


Figure A.3: minfi_dmr Tool Interface

Annotation and Visualization

In addition to downstream analysis users can annotate the differentially methylated loci to the promoter regions of genes with gene function description, and relationships between these concepts.

1. Run chipeakanno_annopeaks with the following parameters *Differentialy methylated data*: use output of Differentially Methylated Positions analysis from Step 4 *bindingType*: StartSite

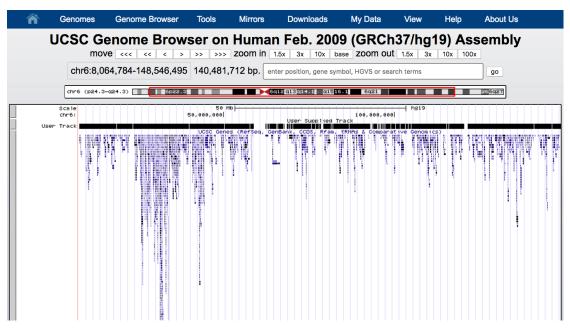


Figure A.4: DMR Training Track launch UCSC Genome Browser

bindingRegionStart:-5000

bindingRegionEnd:3000

Additional Column of Score:8 position of column of score optional value if it is required

2. Cut *gene_name* Column from Table of Annotated Peaks to get List of Genes with the following parameters

Cut columns: c16

Delimited by: Tab

3. Remove beginning of Gene List with the following parameter

Remove first: 1

4. Convert List of Genes to List of entrez ID using clusterProfiler bitr with the following parameters

Input Type Gene ID: SYMBOL

Output Type Gene ID: ENTREZID

5. Run GO Enrichment Analysis with clusterProfiler go using output of step 4

Appendix B

Table of Differentially Methylated Regions

Supplementary Data File

Description: The accompanying table shows the Differentially Methylated Regions founded in melanoma biopsies pre and post MAPKi treatment. The start and end columns indicate the limiting genomic locations of the DMR with width beetwen them. The value column indicates the average difference in methylation in the methylated region, and the area column indicates the area of this region with respect to the 0 line.

seqnames	start	end	width	value
chr11	637035	637175	141	-0.124012888048672
chr6	28584155	28584172	18	-0.10798311230643801
chr13	20710941	20711042	102	-0.103599195678859
chr16	14403004	14403022	19	-0.14040893898075399
chr8	11560486	11560510	25	-0.136436552550316
chr2	225307070	225307259	190	-0.13627480203925599
chr3	119421667	119421868	202	-0.129286989416137
chr7	2143886	2143942	57	0.12731922331307499
chr14	95235402	95235489	88	-0.12657979944939499
chr5	74907592	74907694	103	-0.12238116743333401
chr8	11539320	11539405	86	-0.118715555887448
chr5	180632948	180633063	116	0.117538987740608
chr16	1521617	1521656	40	0.116705694748048
chr6	33255241	33255400	160	0.115841009579616

chr17	77751069	77751089	21	0.11544281219399299
chr3	49027210	49027225	16	-0.11447089631264699
chr6	17282333	17282354	22	0.11134776487086499
chr12	14927345	14927351	7	-0.109710621025649
chr4	76555772	76555777	6	-0.10960929761368
chr11	63258744	63258779	36	-0.108360433208011
chr22	46688823	46688823	1	0.16053500897133899
chr19	55889216	55889216	1	0.15305514017642999
chr11	2292000	2292000	1	-0.14823121136736001
chr1	2987645	2987645	1	-0.14733788727401501
chr12	12008666	12008666	1	0.14329740027684401
chr12	66134770	66134770	1	0.13955551276179201
chrX	82763706	82763706	1	-0.13885729522767701
chr6	117584665	117584665	1	-0.13674957088845799
chr12	114845868	114845868	1	-0.134920614463754
chr8	141370229	141370229	1	0.134914365547156
chr6	170553845	170553845	1	0.13420248495128001
chr2	222435351	222435351	1	0.13203352052036099
chr1	230406371	230406371	1	0.13160625663473399
chr4	1623883	1623883	1	0.13095355759851199
chr17	37024625	37024625	1	0.130321842759
chr14	65007512	65007512	1	-0.130098860102633
chrX	132548278	132548278	1	0.12832582289404099
chr6	13326842	13326842	1	0.12831656980001699
chr2	242756362	242756362	1	0.12764825400728799
chr14	57274763	57274763	1	-0.12735053095825299

chr106276157510.12726090174218599chrX48980610489806101-0.12688506472781799chr15597295535972955310.12685394191065899chr17810146678101466710.12622185598444399chr628603779286037791-0.126196570119602chr101159991741159991741-0.1261930361598799chr1158220370582203701-0.12603239674417299chr224275602924275602910.12537568512165301chr7335301188353011881-0.12463814819647499chr14265546102655461010.1224071381395868chr311152198111152198110.122396167075517chr313437028213437028210.122654143071462chr313730172713730172710.12215916290196301chr313730172713730172710.1221679439121747chr313730172713730172710.121619431802154chr21279451252794512510.12161743812015445chr3214242824014242824010.120473872424201chr3414242824014242824010.120077674636437chr3414242824024283016110.12005366697212699chr348718317871831710.1205536697212699					
christien christien christien christien christien chr15 59729553 59729553 1 0.12685394191065899 chr17 81014667 81014667 1 0.126195598444399 chr6 28603779 28603779 1 -0.126196570119602 chr10 115999174 115999174 1 -0.12618908061598799 chr19 58220370 58220370 1 -0.12603239674417299 chr19 58220370 58220370 1 0.12537568512165301 chr2 242756029 242756029 1 0.12514987300042599 chr3 35301188 35301188 1 -0.12463814819647499 chr5 134370282 134370282 1 0.124071381395868 chr13 111521981 111521981 1 0.123318125974862 chr6 33255172 33255172 1 0.12215916290196301 chr3 137301727 137301727 1 0.1218114078845 chr2 30640256 30640256 <td< td=""><td>chr10</td><td>62761575</td><td>62761575</td><td>1</td><td>0.12726090174218599</td></td<>	chr10	62761575	62761575	1	0.12726090174218599
chrin 81014667 81014667 1 0.12622185598444399 chr6 28603779 28603779 1 -0.126196570119602 chr10 115999174 115999174 1 -0.12618908061598799 chr10 58220370 58220370 1 -0.12618908061598799 chr19 58220370 58220370 1 -0.12603239674417299 chr2 242756029 242756029 1 0.12537568512165301 chr2 35301188 35301188 1 -0.12614987300042599 chr3 35301188 35301188 1 -0.12463814819647499 chr3 134370282 134370282 1 0.124071381395868 chr3 111521981 111521981 1 0.12318125974862 chr3 177315882 177315882 1 0.122654143071462 chr3 137301727 137301727 1 0.1218114078845 chr20 30640256 30640256 1 0.121679439121747 chr31 137301727 137301727 1	chrX	48980610	48980610	1	-0.12688506472781799
chroninteractioninteractionchron286037791-0.126196570119602chr101159991741159991741-0.12618908061598799chr1958220370582203701-0.12603239674417299chr224275602924275602910.12537568512165301chr735301188353011881-0.12614987300042599chr1726554610265546101-0.12463814819647499chr1311452198111152198110.123396167075517chr31152198111152198110.123596167075517chr317731588217731588210.122654143071462chr313730172713730172710.12215916290196301chr313730172713730172710.121679439121747chr4127945125279451251-0.121679439121747chr414398508439850810.12149381802154chr11680812266808122610.12077674636437chr416808122610.120077674636437chr416808122610.12007674636437chr416808122610.120077674636437chr416808122610.120077674636437chr416808122610.120077674636437chr416808122610.120077674636437chr416808122610.120077674636437chr416808122610.120077674636437chr4168081226680812261	chr15	59729553	59729553	1	0.12685394191065899
chr101159991741159991741 -0.12618908061598799 $chr10$ 58220370582203701 -0.12618908061598799 $chr19$ 58220370582203701 -0.12603239674417299 $chr2$ 2427560292427560291 0.12537568512165301 $chr7$ 35301188353011881 -0.12514987300042599 $chr17$ 26554610265546101 -0.12463814819647499 $chr15$ 1343702821343702821 0.124071381395868 $chr13$ 1115219811115219811 0.123596167075517 $chr3$ 27161749271617491 -0.123318125974862 $chr3$ 1773158821773158821 0.122654143071462 $chr3$ 1373017271373017271 0.12215916290196301 $chr20$ 30640256306402561 -0.121679439121747 $chr21$ 27945125279451251 0.12149381802154 $chr12$ 439850843985081 0.12077674636437 $chr21$ 68081226680812261 0.12064492832901	chr17	81014667	81014667	1	0.12622185598444399
christian christian christian christian christian chr19 58220370 58220370 1 -0.12603239674417299 chr2 242756029 242756029 1 0.12537568512165301 chr7 35301188 35301188 1 -0.12514987300042599 chr17 26554610 26554610 1 -0.12463814819647499 chr5 134370282 134370282 1 0.123596167075517 chr13 111521981 111521981 1 0.123318125974862 chr3 177315882 177315882 1 0.122654143071462 chr6 33255172 33255172 1 0.12215916290196301 chr3 137301727 13 0.1218114078845 chr20 30640256 30640256 1 -0.121679439121747 chr21 27945125 27945125 1 0.12149381802154 chr12 4398508 4398508 1 0.12104738724242201 chr12 4398508 142428240 1 -0.1210473	chr6	28603779	28603779	1	-0.126196570119602
chr chr chr chr chr2 242756029 242756029 1 0.12537568512165301 chr7 35301188 35301188 1 -0.12514987300042599 chr17 26554610 26554610 1 -0.12463814819647499 chr13 134370282 134370282 1 0.124071381395868 chr13 111521981 111521981 1 0.123596167075517 chr3 17161749 27161749 1 -0.123318125974862 chr3 177315882 177315882 1 0.122654143071462 chr3 137301727 133255172 1 0.12215916290196301 chr3 137301727 137301727 1 0.1218114078845 chr20 30640256 30640256 1 -0.121679439121747 chr21 27945125 27945125 1 -0.121679439121747 chr21 398508 1 0.12149381802154 2 chr12 4398508 1 0.12014738724242201 2	chr10	115999174	115999174	1	-0.12618908061598799
chr 35301188 35301188 1 -0.12514987300042599 chr17 26554610 26554610 1 -0.12463814819647499 chr5 134370282 134370282 1 0.124071381395868 chr13 111521981 111521981 1 0.123596167075517 chr3 111521981 111521981 1 0.123318125974862 chr3 177315882 177315882 1 0.122654143071462 chr6 33255172 33255172 1 0.12215916290196301 chr3 137301727 137301727 1 0.1218114078845 chr20 30640256 30640256 1 -0.121515821155445 chr12 27945125 27945125 1 -0.12104738724242201 chr12 4398508 4398508 1 0.12077674636437 chr14 68081226 68081226 1 0.120644928832901	chr19	58220370	58220370	1	-0.12603239674417299
chr1726554610265546101-0.12463814819647499chr513437028213437028210.124071381395868chr1311152198111152198110.123596167075517chr727161749271617491-0.123318125974862chr317731588217731588210.122654143071462chr6332551723325517210.12215916290196301chr313730172713730172710.1218114078845chr2030640256306402561-0.121515821155445chr21279451252794512510.12149381802154chr814242824014242824010.12077674636437chr2124283016124283016110.120644928832901	chr2	242756029	242756029	1	0.12537568512165301
christinterferinterferinterferchr513437028213437028210.124071381395868chr1311152198111152198110.123596167075517chr727161749271617491-0.123318125974862chr317731588217731588210.122654143071462chr6332551723325517210.12215916290196301chr313730172713730172710.1218114078845chr2030640256306402561-0.121679439121747chr2127945125279451251-0.121515821155445chr124398508439850810.12149381802154chr81424282401424282401-0.12104738724242201chr11680812266808122610.12077674636437chr224283016124283016110.120644928832901	chr7	35301188	35301188	1	-0.12514987300042599
chr1311152198111152198110.123596167075517chr727161749271617491-0.123318125974862chr317731588217731588210.122654143071462chr6332551723325517210.12215916290196301chr313730172713730172710.1218114078845chr2030640256306402561-0.121679439121747chr2127945125279451251-0.121515821155445chr124398508439850810.12149381802154chr81424282401424282401-0.12104738724242201chr11680812266808122610.12077674636437chr224283016124283016110.120644928832901	chr17	26554610	26554610	1	-0.12463814819647499
chr727161749271617491-0.123318125974862chr317731588217731588210.122654143071462chr6332551723325517210.12215916290196301chr313730172713730172710.1218114078845chr2030640256306402561-0.121679439121747chr2127945125279451251-0.121515821155445chr124398508439850810.12149381802154chr81424282401424282401-0.12104738724242201chr11680812266808122610.12077674636437chr224283016124283016110.120644928832901	chr5	134370282	134370282	1	0.124071381395868
chr317731588217731588210.122654143071462chr6332551723325517210.12215916290196301chr313730172713730172710.1218114078845chr2030640256306402561-0.121679439121747chr2127945125279451251-0.121515821155445chr124398508439850810.12149381802154chr81424282401424282401-0.12104738724242201chr11680812266808122610.12077674636437chr224283016124283016110.120644928832901	chr13	111521981	111521981	1	0.123596167075517
chr6332551723325517210.12215916290196301chr313730172713730172710.1218114078845chr2030640256306402561-0.121679439121747chr2127945125279451251-0.121515821155445chr124398508439850810.12149381802154chr81424282401424282401-0.1210473872424201chr11680812266808122610.12077674636437chr224283016124283016110.120644928832901	chr7	27161749	27161749	1	-0.123318125974862
chr313730172713730172710.1218114078845chr2030640256306402561-0.121679439121747chr2127945125279451251-0.121515821155445chr124398508439850810.12149381802154chr81424282401424282401-0.12104738724242201chr11680812266808122610.12077674636437chr224283016124283016110.120644928832901	chr3	177315882	177315882	1	0.122654143071462
chr20 30640256 30640256 1 -0.121679439121747 chr21 27945125 27945125 1 -0.121515821155445 chr12 4398508 4398508 1 0.12149381802154 chr8 142428240 142428240 1 -0.12104738724242201 chr11 68081226 68081226 1 0.12077674636437 chr2 242830161 242830161 1 0.120644928832901	chr6	33255172	33255172	1	0.12215916290196301
chr21 27945125 27945125 1 -0.121515821155445 chr12 4398508 4398508 1 0.12149381802154 chr8 142428240 142428240 1 -0.12104738724242201 chr11 68081226 68081226 1 0.12077674636437 chr2 242830161 242830161 1 0.120644928832901	chr3	137301727	137301727	1	0.1218114078845
chr12 4398508 4398508 1 0.12149381802154 chr8 142428240 142428240 1 -0.12104738724242201 chr11 68081226 68081226 1 0.12077674636437 chr2 242830161 242830161 1 0.120644928832901	chr20	30640256	30640256	1	-0.121679439121747
chr8 142428240 142428240 1 -0.12104738724242201 chr11 68081226 68081226 1 0.12077674636437 chr2 242830161 242830161 1 0.120644928832901	chr21	27945125	27945125	1	-0.121515821155445
chr11 68081226 68081226 1 0.12077674636437 chr2 242830161 242830161 1 0.120644928832901	chr12	4398508	4398508	1	0.12149381802154
chr2 242830161 242830161 1 0.120644928832901	chr8	142428240	142428240	1	-0.12104738724242201
	chr11	68081226	68081226	1	0.12077674636437
chr10 88718317 88718317 1 0.12055366697212699	chr2	242830161	242830161	1	0.120644928832901
	chr10	88718317	88718317	1	0.12055366697212699

		I		
chr8	120868748	120868748	1	0.12002641277069299
chr13	25085301	25085301	1	-0.119932776811815
chrX	27999538	27999538	1	-0.119824688825988
chr3	157261021	157261021	1	-0.11974114896269
chr7	27224873	27224873	1	0.11970903424680999
chr9	117372723	117372723	1	0.119031262957996
chr12	124144432	124144432	1	-0.118915955262726
chr1	50884480	50884480	1	-0.11824224544209
chr3	49027243	49027243	1	-0.11756965654969299
chr11	72851913	72851913	1	0.11752549983777701
chr10	16562626	16562626	1	-0.11743482801303599
chr2	51259807	51259807	1	-0.117328845913815
chr19	15360953	15360953	1	-0.11666845196612199
chr7	6199980	6199980	1	0.116654583278869
chr6	33041218	33041218	1	-0.11631137363175
chr17	8926158	8926158	1	-0.11597704742722401
chr4	41883164	41883164	1	-0.115736384202522
chr4	154710750	154710750	1	-0.115709145966333
chr21	44851244	44851244	1	-0.115289672564198
chr16	85659946	85659946	1	0.11523346935845399
chr3	8671361	8671361	1	-0.115233017453939
chr8	65281496	65281496	1	-0.11476238720759301
chrX	68727150	68727150	1	-0.114706822290637
chr8	55380185	55380185	1	-0.114666685582534
chr11	6953558	6953558	1	-0.114601482040839
chr16	54967389	54967389	1	-0.11454073849728499
chr6	27235843	27235843	1	-0.114349696886029
chr12	1948648	1948648	1	-0.11432918842155999
chr20	30640022	30640022	1	-0.114211058386022
chr5	148810177	148810177	1	0.11387892996193701
·				•

chr7	47344608	47344608	1	0.113712054963099
chr1	22141170	22141170	1	-0.11351137352818
chr3	121741209	121741209	1	-0.113343572230443
chr1	2524890	2524890	1	0.113241054936184
chr2	242008100	242008100	1	0.113094021200255
chr1	3332188	3332188	1	0.113053786666189
chr6	170554795	170554795	1	0.112955245971986
chr2	220117771	220117771	1	0.112940541389401
chr1	13910667	13910667	1	-0.112356385525081
chr11	130271817	130271817	1	0.11223967583349601
chr4	164088478	164088478	1	0.112205903170614
chr1	874697	874697	1	0.112158136613177
chrX	30327778	30327778	1	0.11213589444989901
chrX	134305728	134305728	1	-0.111928225752649
chr11	60225240	60225240	1	-0.11165621383909299
chr14	97059005	97059005	1	-0.111652075228202
chr7	73803588	73803588	1	0.11148853924242901
chr6	28584103	28584103	1	-0.11147170176575701
chr2	160761085	160761085	1	-0.111359586185865
chrX	138276972	138276972	1	-0.111340640997727
chr17	17929033	17929033	1	-0.11023598405450299
chr7	15726466	15726466	1	-0.110191504951083
chr7	33080496	33080496	1	-0.110077665461544

				1
chr15	33010399	33010399	1	-0.110006567837051
chr6	158834216	158834216	1	0.10999645741552
chrX	114957471	114957471	1	-0.10999201454742399
chr6	27513479	27513479	1	-0.109987017774902
chr18	44527026	44527026	1	-0.10998635677157299
chr1	1110107	1110107	1	0.109893101979087
chr6	33041343	33041343	1	-0.109868885925718
chr10	16562998	16562998	1	-0.10977522125084301
chr3	157261106	157261106	1	-0.10963935043367801
chr6	32920962	32920962	1	-0.10942442445153699
chr12	125034283	125034283	1	0.109238850116584
chr5	172671526	172671526	1	-0.109232336122665
chr4	24913973	24913973	1	-0.109168717974375
chr20	30640121	30640121	1	-0.109007215333146
chr12	103355958	103355958	1	-0.108909828259471
chr17	78955599	78955599	1	0.10888949659701599
chr7	1563708	1563708	1	0.10865079819256
chr11	20181725	20181725	1	-0.10859791759907
chr4	81189927	81189927	1	-0.108480853512708
chr9	100614879	100614879	1	-0.108460640192918
chr10	729226	729226	1	-0.108418232846721
chr11	32449821	32449821	1	-0.108412173538479
chrX	151620975	151620975	1	-0.108322288361311
chr10	127569905	127569905	1	0.108221794436341
chr17	6024017	6024017	1	-0.108161056408916
chr15	39871923	39871923	1	-0.108012224702111
chr1	16553549	16553549	1	-0.10800653773188899

chr1	1286917	1286917	1	0.107997667928319
chr17	63555244	63555244	1	-0.10793463833573499
chr5	758981	758981	1	-0.107887747828479
chr3	119832292	119832292	1	-0.107759788699141
chr1	119527638	119527638	1	-0.107720105666243
chr7	1883139	1883139	1	0.10760821356136401
chr10	43332443	43332443	1	-0.107599168427578
chr7	27232412	27232412	1	-0.10749113418684
chr3	73671377	73671377	1	-0.10747876722784699
chr7	96652481	96652481	1	0.107441203156391
chr4	55095209	55095209	1	0.107429344813642
chr7	104444687	104444687	1	0.107334363324657
chr9	115835616	115835616	1	-0.107318497484808
chr7	156736159	156736159	1	0.10730918740216799
chr10	73565625	73565625	1	0.107275081561613
chr20	9489749	9489749	1	-0.10726681239973899
chr12	133179338	133179338	1	0.10719873147812201
chr19	18497143	18497143	1	0.107180741689341
chr22	49067022	49067022	1	0.107160453820571
chr7	14025907	14025907	1	-0.107155044831899
chr14	101193038	101193038	1	-0.10705750690709399
chr15	75248086	75248086	1	0.10701489299339401
chr16	88499083	88499083	1	0.106969491433567
chr17	9080989	9080989	1	0.106864994393845
chr18	44526743	44526743	1	-0.106855303542586
chr1	2425888	2425888	1	0.106787124473451

chr1	200993200	200993200	1	0.10670070046810499
chr21	45811432	45811432	1	-0.10664739344672999
chr8	65291513	65291513	1	-0.106642175623474
chr2	19561482	19561482	1	0.106639719481052
chr12	124991139	124991139	1	0.10642104197168401
chr7	15726479	15726479	1	-0.106407197379582
chr17	57918500	57918500	1	-0.106337745838559
chr7	1234925	1234925	1	0.10630299054127
chr1	13910700	13910700	1	-0.106242503306801
chr7	2144579	2144579	1	0.10614186866653499
chr16	3088480	3088480	1	0.106020719334687
chr6	27526256	27526256	1	-0.105985650992152
chr16	4013337	4013337	1	0.105873126230512
chr17	48546193	48546193	1	-0.105780580885399
chr8	145013728	145013728	1	-0.10572300881592001
chr10	131641580	131641580	1	0.105659833057068
chr10	81946545	81946545	1	0.10545283207622599
chr6	11711971	11711971	1	-0.105382017269966
chr17	38984421	38984421	1	-0.10533591587878099
chr14	57265910	57265910	1	-0.105262348390998
chr5	140800929	140800929	1	-0.105229756006415
chr18	30352975	30352975	1	0.105227187967704
chr12	101603453	101603453	1	-0.105161186803192
chr13	102105440	102105440	1	0.105060953675732

chr11	32009163	32009163	1	-0.105029431478791
chr6	28477973	28477973	1	-0.10498215017005399
chr19	17610751	17610751	1	0.104948452961803
chr1	172886544	172886544	1	0.10491614248061799
chr11	68417376	68417376	1	-0.104905039443941
chr3	172166242	172166242	1	-0.104886809586504
chr6	170479840	170479840	1	0.10488226318586601
chr7	27184030	27184030	1	0.104859995048034
chr8	24772137	24772137	1	-0.104854886848308
chr16	46919112	46919112	1	0.10480590801688799
chr14	59038939	59038939	1	-0.104713619798806
chr4	154710523	154710523	1	-0.104518164900059
chr3	89164223	89164223	1	0.10451440965561699
chr11	111250093	111250093	1	-0.10451297615451501
chr15	81426610	81426610	1	-0.104499752568863
chr14	75153307	75153307	1	0.104490964925798
chr2	222333289	222333289	1	0.10435832104432299
chr1	241519652	241519652	1	-0.104279302631394
chrX	103268309	103268309	1	-0.104247652076186
chr10	28288192	28288192	1	-0.104246364439679
chr4	182862370	182862370	1	0.104243531040668
chr11	88069169	88069169	1	0.104212710647739
chr8	98290229	98290229	1	-0.10418878749230701
chr14	62068941	62068941	1	0.10416661372495301

chr6	33255541	33255541	1	0.10403223430929
chr19	595705	595705	1	0.10400729134155599
chr12	13043728	13043728	1	0.103865906867918
chr17	74260692	74260692	1	-0.103836859804503
chr17	75276428	75276428	1	0.10382569025496
chr12	66123127	66123127	1	-0.10382279315894601
chr15	25414716	25414716	1	-0.10370450501645
chr7	1095005	1095005	1	0.103665737875729
chr14	91752093	91752093	1	-0.103659140301418
chr3	172166517	172166517	1	-0.10361076137165701
chr16	1076283	1076283	1	0.1034982175643
chr8	37557348	37557348	1	0.103494253879458
chr7	51544475	51544475	1	-0.103484496718387
chr6	159084599	159084599	1	0.10346642150404201
chr2	11672761	11672761	1	-0.10301523610233899
chr2	172958324	172958324	1	0.102865114465247
chr19	18540330	18540330	1	0.102851604206926
chr2	222064243	222064243	1	0.10282718638032901
chr6	3054085	3054085	1	-0.102745208692728
chr7	92645767	92645767	1	0.10272223311284299
chr8	58056113	58056113	1	-0.102622883478428
chr8	17353980	17353980	1	0.10257945756098601
chr20	3229402	3229402	1	-0.102376606295041

chr224260612224260612210.102372151482944chr2140145361401453611-0.102349240990334chr10291866812918668110.102347581984831chr1115661243615661243610.10233009226989chr10767279197672791910.10232007528624699chr1198689719686897110.10229019224851899chr129236619812306198120.102230147125593chr136795937810.102164030230496chr1412261285818254323310.102125446159189chr15122612858120.102097752801121chr34902715612261285810.1012097528012121chr3490271564902715610.10199875236978chr1412261285812261285810.101998875236978chr35929420759294207510.10198875236978chr41929420759294207510.10198875236978chr43109880711098807110.1019902083079299chr45514834415948344110.1018953138667699chr45514834415948344110.101866327505896chr47481299044812990410.101373260878196chr4748129904183329210.10133360878196chr40708473507084735010.10133760878196chr4150449710.10133760878196chr41504497					
chr10 29186681 29186681 1 0.102347581984831 chr11 156612436 156612436 1 0.102330099226989 chr10 76727919 76727919 1 0.10232007528624699 chr10 76727919 76727919 1 0.10232007528624699 chr15 96868971 1 0.10229019224851899 chr14 12306198 12306198 1 0.102230147125593 chr15 167959378 67959378 1 0.102125446159189 chr1 122612858 122612858 1 0.102097752801121 chr3 49027156 49027156 1 0.10209752801121 chr3 49027156 41087520 1 0.1012058470880869 chr11 122612858 129261285 1 0.101988875236978 chr12 41087520 41087520 1 0.101988875236978 chr12 92942075 92942075 1 0.101988875236978 chr8 59483441 59483441 1 -0.10189553138667699 </td <td>chr2</td> <td>242606122</td> <td>242606122</td> <td>1</td> <td>0.102372151482944</td>	chr2	242606122	242606122	1	0.102372151482944
chr115661243615661243610.102330099226989chr10767279197672791910.10233007528624699chr15968689719686897110.10229919224851899chr1912306198123061981-0.102230147125593chr18679593786795937810.102164030230496chr21825432331825432331-0.102125446159189chr1112261285812261285810.102097752801121chr349027156490271561-0.102058470880869chr12410875204108752010.101988875236978chr14929420759294207510.101985251286454chr865281397652813971-0.1018953138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101389418183363901chr1070847350708473501-0.101353260878196chr1147882322478823221-0.101307091968666	chr21	40145361	40145361	1	-0.102349240990334
chr10 76727919 76727919 1 0.102320075286246999 chr15 96868971 96868971 1 0.10229919224851899 chr19 12306198 12306198 1 -0.102230147125593 chr18 67959378 67959378 1 0.102164030230496 chr2 182543233 182543233 1 -0.102125446159189 chr11 122612858 122612858 1 0.102097752801121 chr3 49027156 49027156 1 0.1019058470880869 chr11 122612858 122612858 1 0.1019058470880869 chr12 41087520 41087520 1 0.101988875236978 chr12 41087520 92942075 1 0.1019880718654 chr14 92942075 92942075 1 0.101985251286454 chr15 59483411 1 -0.1018953138667699 chr18 59483411 59483411 1 0.101866327505896 chr10 70847350 70847350 1 -0.101470034442445	chr10	29186681	29186681	1	0.102347581984831
christi christi <t< td=""><td>chr1</td><td>156612436</td><td>156612436</td><td>1</td><td>0.102330099226989</td></t<>	chr1	156612436	156612436	1	0.102330099226989
christer reference reference chr19 12306198 12306198 1 -0.102230147125593 chr18 67959378 67959378 1 0.102164030230496 chr2 182543233 182543233 1 -0.102125446159189 chr11 122612858 122612858 1 0.102097752801121 chr3 49027156 49027156 1 -0.102058470880869 chr12 41087520 41087520 1 0.101988875236978 chr1 92942075 92942075 1 0.101988875236978 chr8 65281397 65281397 1 -0.10197902083079299 chr8 110988071 110988071 1 -0.10189553138667699 chr18 59483441 59483441 1 -0.10189418183363901 chr12 219857231 219857231 1 0.101866327505896 chr10 70847350 70847350 1 -0.10147003442445 chr10 70847350 70847350 1 -0.101353260878196 <	chr10	76727919	76727919	1	0.10232007528624699
christchristchristchristchr18679593786795937810.102164030230496chr21825432331825432331-0.102125446159189chr1112261285812261285810.102097752801121chr349027156490271561-0.102058470880869chr12410875204108752010.101988875236978chr1929420759294207510.101985251286454chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.1013866327505896chr1070847350708473501-0.101470034442445chr1147882322478823221-0.101353260878196chr1050449750449710.101307091968666	chr15	96868971	96868971	1	0.10229919224851899
chr21825432331825432331-0.102125446159189chr1112261285812261285810.102097752801121chr349027156490271561-0.102058470880869chr12410875204108752010.101988875236978chr1929420759294207510.101985251286454chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr1070847350708473501-0.101353260878196chr11478823224788232210.101307091968666	chr19	12306198	12306198	1	-0.102230147125593
chr1112261285812261285810.102097752801121chr349027156490271561-0.102058470880869chr12410875204108752010.101988875236978chr11929420759294207510.101985251286454chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr1070847350708473501-0.101353260878196chr11478823224788232210.101307091968666chr1050449710.101307091968666	chr18	67959378	67959378	1	0.102164030230496
chr349027156490271561-0.102058470880869chr12410875204108752010.101988875236978chr1929420759294207510.101985251286454chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr748129904481299041-0.10179139338468chr1070847350708473501-0.101353260878196chr11478823224788232210.101307091968666	chr2	182543233	182543233	1	-0.102125446159189
chr12410875204108752010.101988875236978chr1929420759294207510.101985251286454chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr748129904481299041-0.10179139338468chr1070847350708473501-0.101353260878196chr1050449710.101307091968666	chr11	122612858	122612858	1	0.102097752801121
chr1929420759294207510.101985251286454chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr748129904481299041-0.10179139338468chr1070847350708473501-0.101353260878196chr1050449750449710.101307091968666	chr3	49027156	49027156	1	-0.102058470880869
chr865281397652813971-0.10197902083079299chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr748129904481299041-0.10179139338468chr1070847350708473501-0.101353260878196chr1050449750449710.101307091968666	chr12	41087520	41087520	1	0.101988875236978
chr81109880711109880711-0.10189553138667699chr1859483441594834411-0.10189418183363901chr221985723121985723110.101866327505896chr748129904481299041-0.10179139338468chr1070847350708473501-0.101470034442445chr1147882322478823221-0.101353260878196chr1050449750449710.101307091968666	chr1	92942075	92942075	1	0.101985251286454
chr18 59483441 59483441 1 -0.10189418183363901 chr2 219857231 219857231 1 0.101866327505896 chr7 48129904 48129904 1 -0.10179139338468 chr10 70847350 70847350 1 -0.101470034442445 chr11 47882322 47882322 1 -0.101353260878196 chr10 504497 1 0.101307091968666	chr8	65281397	65281397	1	-0.10197902083079299
chr2 219857231 219857231 1 0.101866327505896 chr7 48129904 48129904 1 -0.10179139338468 chr10 70847350 70847350 1 -0.101470034442445 chr11 47882322 47882322 1 -0.101353260878196 chr10 504497 504497 1 0.101307091968666	chr8	110988071	110988071	1	-0.10189553138667699
chr7 48129904 48129904 1 -0.10179139338468 chr10 70847350 70847350 1 -0.101470034442445 chr11 47882322 47882322 1 -0.101353260878196 chr10 504497 504497 1 0.101307091968666	chr18	59483441	59483441	1	-0.10189418183363901
chr10 70847350 70847350 1 -0.101470034442445 chr1 47882322 47882322 1 -0.101353260878196 chr10 504497 504497 1 0.101307091968666	chr2	219857231	219857231	1	0.101866327505896
chr1 47882322 47882322 1 -0.101353260878196 $chr10$ 504497 504497 1 0.101307091968666	chr7	48129904	48129904	1	-0.10179139338468
chr10 504497 504497 1 0.101307091968666	chr10	70847350	70847350	1	-0.101470034442445
	chr1	47882322	47882322	1	-0.101353260878196
chr7 1233469 1233469 1 0.101251969857042	chr10	504497	504497	1	0.101307091968666
	chr7	1233469	1233469	1	0.101251969857042

chr3	26663593	26663593	1	-0.101207719948323
chr12	124990897	124990897	1	0.101196428120161
chrX	153770983	153770983	1	-0.101179944369073
chrY	9385586	9385586	1	-0.101155812375696
chr10	129861770	129861770	1	0.10110526762918701
chr10	80523167	80523167	1	-0.10109858573823299
chr22	49137906	49137906	1	0.101094556847243
chr15	93633408	93633408	1	0.10108409025040201
chr2	163695776	163695776	1	-0.100983554882114
chr14	57275967	57275967	1	-0.100920098537103
chr6	42738967	42738967	1	-0.10087877674661901
chr6	27258466	27258466	1	-0.100870954020625
chr13	114086994	114086994	1	0.100799446744015
chr10	85997177	85997177	1	-0.100700692309193
chr4	122686038	122686038	1	-0.100674866753929
chr16	10449523	10449523	1	-0.100622143068377
chr16	82044957	82044957	1	-0.10056489087438
chr11	6913644	6913644	1	-0.100467407127736
chr6	27342632	27342632	1	-0.100280738631745
chr6	111888446	111888446	1	0.100264975037983
chr14	59742285	59742285	1	-0.1002495184215
chr12	53227816	53227816	1	-0.10022075519222599
chr6	10398601	10398601	1	-0.100188920898861
chr11	32458714	32458714	1	-0.100119136435286
chr17	37894397	37894397	1	0.10004974772408801
chr4	4857506	4857506	1	0.10003454190038

Appendix C

Table of DMR's Annotation

Supplementary Data File

Description: The accompanying tables shows the annotation of DMR's founded in melanoma biopsies pre and post MAPKi treatment.

seqnames	start	end	width	gene_name
chr11	637035	637175	141	DRD4
chr6	28584155	28584172	18	SCAND3
chr16	14403004	14403022	19	MIR365A
chr3	119421667	119421868	202	MAATS1
chr14	95235402	95235489	88	GSC
chr5	74907592	74907694	103	ANKDD1B
chr5	180632948	180633063	116	TRIM7
chr5	180632948	180633063	116	CTC - 338M12.1
chr16	1521617	1521656	40	LA16c - 390E6.3
chr6	33255241	33255400	160	WDR46
chr6	33255241	33255400	160	PFDN6
chr17	77751069	77751089	21	CBX2
chr3	49027210	49027225	16	RP13 - 131K19.2
chr3	49027210	49027225	16	RP13 - 131K19.7

chr3	49027210	49027225	16	P4HTM
chr6	17282333	17282354	22	RBM24
chr12	14927345	14927351	7	HIST4H4
chr12	14927345	14927351	7	H2AFJ
chr4	76555772	76555777	6	CDKL2
chr11	63258744	63258779	36	HRASLS5
chr22	46688823	46688823	1	GTSE1
chr19	55889216	55889216	1	TMEM190
chr19	55889216	55889216	1	CTD - 2105E13.15
chr11	2292000	2292000	1	ASCL2
chr1	2987645	2987645	1	<i>LINC</i> 00982
chr1	2987645	2987645	1	PRDM16
chrX	82763706	82763706	1	RP3 - 326L13.2
chrX	82763706	82763706	1	POU3F4
chrX	82763706	82763706	1	RP3 - 326L13.3
chr6	117584665	117584665	1	VGLL2
chr12	114845868	114845868	1	TBX5
chr12	114845868	114845868	1	TBX5 - AS1
chr2	222435351	222435351	1	CTD - 2308L22.1
chr1	230406371	230406371	1	RP5 - 956O18.2
chr17	37024625	37024625	1	LASP1
chr14	65007512	65007512	1	RP11 - 973N13.4
chr14	65007512	65007512	1	RP11 - 973N13.5
chrX	132548278	132548278	1	GPC4
chr6	13326842	13326842	1	TBC1D7
chr2	242756362	242756362	1	AC114730.3
chr14	57274763	57274763	1	OTX2

1 10	C07C1F7F	00701575	1	
chr10	62761575	62761575	1	RHOBTB1
chrX	48980610	48980610	1	GPKOW
chr17	81014667	81014667	1	B3GNTL1
chr6	28603779	28603779	1	RP11 - 373N24.2
chr10	115999174	115999174	1	VWA2
chr19	58220370	58220370	1	ZNF154
chr2	242756029	242756029	1	AC114730.3
chr7	35301188	35301188	1	AC009531.2
chr17	26554610	26554610	1	PYY2
chr5	134370282	134370282	1	PITX1
chr5	134370282	134370282	1	C5 or f 66
chr13	111521981	111521981	1	LINC00346
chr6	33255172	33255172	1	WDR46
chr6	33255172	33255172	1	PFDN6
chr20	30640256	30640256	1	HCK
chr21	27945125	27945125	1	CYYR1
chr11	68081226	68081226	1	LRP5
chr10	88718317	88718317	1	SNCG
chr8	120868748	120868748	1	DSCC1
chr13	25085301	25085301	1	PARP4
chrX	27999538	27999538	1	DCAF8L1
chr3	157261021	157261021	1	C3 or f 55
chr7	27224873	27224873	1	HOXA10
chr7	27224873	27224873	1	HOXA11
chr7	27224873	27224873	1	HOXA11 - AS
chr9	117372723	117372723	1	C9 or f 91

chr3	49027243	49027243	1	RP13 - 131K19.2
chr3	49027243	49027243	1	RP13 - 131K19.7
chr3	49027243	49027243	1	P4HTM
chr11	72851913	72851913	1	FCHSD2
chr10	16562626	16562626	1	C1QL3
chr2	51259807	51259807	1	NRXN1
chr2	51259807	51259807	1	AC007682.1
chr6	33041218	33041218	1	HLA – DPB1
chr17	8926158	8926158	1	NTN1
chr4	41883164	41883164	1	LINC00682
chr4	154710750	154710750	1	SFRP2
chr21	44851244	44851244	1	SIK1
chr8	65281496	65281496	1	RP11 - 32K4.1
chr8	65281496	65281496	1	<i>LINC</i> 00966
chrX	68727150	68727150	1	FAM155B
chr16	54967389	54967389	1	CRNDE
chr16	54967389	54967389	1	IRX5
chr16	54967389	54967389	1	CTD - 3032H12.2
chr6	27235843	27235843	1	XXbac - BPGBPG24O18.1
chr20	30640022	30640022	1	HCK
chr5	148810177	148810177	1	MIR145
chr1	22141170	22141170	1	LDLRAD2
chr3	121741209	121741209	1	ILDR1
chr2	242008100	242008100	1	AC005237.4

chr2 220117771 220117771 1 TUBA4B chr1 13910667 13910667 1 PDPN chr4 164088478 164088478 1 NAF1	
chr4 164088478 164088478 1 $NAF1$	
chrX 30327778 30327778 1 NR0B1	
chrX 134305728 134305728 1 $CT55$	
chr11 60225240 60225240 1 MS4A1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
chr14 97059005 97059005 1 $RP11 - 433J8$.1
chr6 28584103 28584103 1 SCAND3	
chr2 160761085 160761085 1 $LY75$	
chr2 160761085 160761085 1 $LY75 - CD30$	2
chr7 15726466 15726466 1 MEOX2	
chr7 15726466 15726466 1 AC005550.4	
chr7 33080496 33080496 1 AC074338.4	
chr15 33010399 33010399 1 $RP11 - 758N2$	3.1
chr15 33010399 33010399 1 GREM1	
chrX 114957471 114957471 1 $RP1 - 241P17$	<i>.</i> .4
<i>chrX</i> 114957471 114957471 1 <i>AC</i> 005000.1	
chrX 114957471 114957471 1 $RP1 - 241P17$	'.1
chr1 1110107 1110107 1 TTLL10	
chr6 33041343 33041343 1 HLA – DPB1	
chr10 16562998 16562998 1 C1QL3	
chr3 157261106 157261106 1 $C3orf55$	

chr6032920962329209621XXbac - BPG181M17.5chr2030640121306401211HCKchr111033559581033559581PAHchr1120181725201817251DBX1chr481189927811899271FGF5chr410061487910FGF5chr41516209751516209751GABRA3chr439871923398719231FAFAchr116553549165535491ANO7P1chr112869171ANO7P1chr112869171DVL1chr1635524463552441ANO2P1chr1635524463552441IRG_296chr11983229119832291RNU6 - 885Pchr3193243343324431PDZRN3chr373671377736713771PDZRN3chr3736713771DLX5chr4509520950952091PDGFRAchr451095209104446871LHFPL3 - AS1chr451095209104446871RPS - 1121A15.3					
chr121033559581033559581PAHchr1120181725201817251DBX1chr481189927811899271FGF5chr91006148791006148791FOXE1chr31516209751516209751GABRA3chr1539871923398719231THBS1chr116553549165535491ANO7P1chr1128691712869171DVL1chr163555244635552441AXIN2chr16355244635552441RN7SL762Pchr31198322921198322921RNU6 - 885Pchr373671377736713771PDZRN3chr373671377736713771DLX5chr455095209550952091LHFPL3 - AS1chr455095209550952091LHFPL3 - AS1	chr6	32920962	32920962	1	XXbac - BPG181M17.5
chr11 20181725 20181725 1 DBX1 chr4 81189927 81189927 1 FGF5 chr9 100614879 100614879 1 FOXE1 chr4 151620975 151620975 1 GABRA3 chr15 39871923 39871923 1 THBS1 chr14 16553549 16553549 1 ANO7P1 chr1 1286917 1286917 1 DVL1 chr1 63555244 63555244 1 AXIN2 chr13 63555244 63555244 1 IRG_296 chr14 63555244 63555244 1 IRG_296 chr15 6355244 63555244 1 IRG_296 chr14 6353249 14 IRG_296 Image: 1 chr15 6353244 6355244 1 IRG_296 chr3 19832292 119832292 1 RN16 – 885P chr3 73671377 73671377 1 PDZRN3 – AS1	chr20	30640121	30640121	1	HCK
chr4 81189927 81189927 1 FGF5 chr9 100614879 100614879 1 FOXE1 chr1 151620975 151620975 1 GABRA3 chr15 39871923 39871923 1 THBS1 chr1 16553549 16553549 1 ANO7P1 chr1 1286917 1286917 1 DVL1 chr17 63555244 63555244 1 AXIN2 chr13 19832292 119832292 1 RN7SL762P chr3 119832292 1 RNU6 – 885P chr3 73671377 73671377 1 PDZRN3 – AS1 chr3 73671377 73671377 1 PDZRN3 – AS1 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 55095209 55095209 1 PDGFRA chr4 5095209 55095209 1 LHFPL3 – AS1	chr12	103355958	103355958	1	РАН
chr i i FOXE1 chr3 151620975 151620975 1 GABRA3 chr15 39871923 39871923 1 THBS1 chr11 16553549 16553549 1 ANO7P1 chr11 1286917 1286917 1 DVL1 chr11 63555244 63555244 1 AXIN2 chr12 63555244 63555244 1 LRG_296 chr13 19832292 119832292 1 RN75L762P chr3 119832292 119832292 1 RNU6 – 885P chr3 73671377 73671377 1 PDZRN3 – AS1 chr3 73671377 73671377 1 PDZRN3 – AS1 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 55095209 55095209 1 PDGFRA chr4 55095209 55095209 1 LHFPL3 – AS1	chr11	20181725	20181725	1	DBX1
chrX 151620975 151620975 1 GABRA3 chr15 39871923 39871923 1 THBS1 chr1 16553549 16553549 1 ANO7P1 chr1 16553549 1 DVL1 chr1 1286917 1 DVL1 chr17 63555244 63555244 1 AXIN2 chr17 63555244 63555244 1 LRG_296 chr17 63555244 63555244 1 LRG_296 chr17 6353249 119832292 1 RN75L762P chr10 43332433 43332443 1 RP1-170019.14 chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3-AS1 chr3 73671377 73671377 1 PDZRN3-AS1 chr3 73671377 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr4 10444687	chr4	81189927	81189927	1	FGF5
christian reference reference reference chr15 39871923 39871923 1 THBS1 chr1 16553549 1 ANO7P1 chr1 1286917 1 DVL1 chr17 63555244 63555244 1 AXIN2 chr17 63555244 63555244 1 LRG_296 chr17 63555244 63555244 1 LRG_296 chr17 63555244 63555244 1 LRG_296 chr17 6355244 63555244 1 LRG_296 chr3 119832292 119832292 1 RN7SL762P chr10 43332443 43332443 1 RNU6 - 885P chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 - AS1 chr3 73671377 73671377 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 104	chr9	100614879	100614879	1	FOXE1
index index index index chr1 16553549 16553549 1 ANO7P1 chr1 1286917 1286917 1 DVL1 chr17 63555244 63555244 1 AXIN2 chr17 63555244 63555244 1 LRG_296 chr18 119832292 119832292 1 RN7SL762P chr10 43332443 43332443 1 RNU6 – 885P chr11 57232412 27232412 1 RP1 – 170019.14 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 5652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr4 5095209 55095209 1 LHFPL3 – AS1	chrX	151620975	151620975	1	GABRA3
chr1 1286917 1286917 1 DVL1 chr17 63555244 63555244 1 AXIN2 chr17 63555244 63555244 1 LRG_296 chr17 63555244 63555244 1 RN7SL762P chr3 119832292 119832292 1 RN16 – 885P chr10 43332443 43332443 1 RP1 – 170019.14 chr3 73671377 73671377 1 PDZRN3 – AS1 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 55095209 55095209 1 PDGFRA chr4 10444687 10444687 1 LHFPL3 – AS1	chr15	39871923	39871923	1	THBS1
chr17 63555244 63555244 1 AXIN2 chr17 63555244 63555244 1 LRG_296 chr3 119832292 119832292 1 RN7SL762P chr10 43332443 43332443 1 RNU6 – 885P chr3 27232412 27232412 1 RP1 – 170O19.14 chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 55095209 55095209 1 PDGFRA chr4 10444687 10444687 1 LHFPL3 – AS1	chr1	16553549	16553549	1	ANO7P1
chr17 63555244 63555244 1 LRG_296 chr3 119832292 119832292 1 RN7SL762P chr10 43332443 43332443 1 RNU6 – 885P chr7 27232412 27232412 1 RP1 – 170019.14 chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 – AS1	chr1	1286917	1286917	1	DVL1
chr3 119832292 119832292 1 RN7SL762P chr10 43332443 43332443 1 RNU6 – 885P chr7 27232412 27232412 1 RP1 – 170O19.14 chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 – AS1 chr3 96652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 – AS1	chr17	63555244	63555244	1	AXIN2
chr10 43332443 43332443 1 RNU6 - 885P chr7 27232412 27232412 1 RP1 - 170O19.14 chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 - AS1 chr3 96652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 - AS1	chr17	63555244	63555244	1	<i>LRG</i> _296
chr7 27232412 27232412 1 RP1 – 170019.14 chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 – AS1 chr4 96652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 – AS1	chr3	119832292	119832292	1	RN7SL762P
chr3 73671377 73671377 1 PDZRN3 chr3 73671377 73671377 1 PDZRN3 AS1 chr3 96652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3	chr10	43332443	43332443	1	RNU6 - 885P
chr3 73671377 73671377 1 PDZRN3 – AS1 chr7 96652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 – AS1	chr7	27232412	27232412	1	RP1 - 170O19.14
chr7 96652481 96652481 1 DLX5 chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 - AS1	chr3	73671377	73671377	1	PDZRN3
chr4 55095209 55095209 1 PDGFRA chr7 10444687 10444687 1 LHFPL3 - AS1	chr3	73671377	73671377	1	PDZRN3 - AS1
chr7 104444687 104444687 1 LHFPL3 – AS1	chr7	96652481	96652481	1	DLX5
	chr4	55095209	55095209	1	PDGFRA
chr7 156736159 156736159 1 $RP5 - 1121A15.3$	chr7	104444687	104444687	1	LHFPL3 - AS1
	chr7	156736159	156736159	1	RP5 - 1121A15.3

18497143	18497143	1	<i>MIR</i> 3189
101193038	101193038	1	DLK1
75248086	75248086	1	RPP25
75248086	75248086	1	SCAMP5
9080989	9080989	1	RP11 - 85B7.2
2425888	2425888	1	RP3 - 395M20.2
2425888	2425888	1	RP3 - 395M20.3
200993200	200993200	1	KIF21B
200993200	200993200	1	RP11 - 168O16.1
65291513	65291513	1	MIR124 - 2
19561482	19561482	1	OSR1
15726479	15726479	1	MEOX2
15726479	15726479	1	AC005550.4
57918500	57918500	1	MIR21
13910700	13910700	1	PDPN
3088480	3088480	1	CCDC64B
48546193	48546193	1	CHAD
131641580	131641580	1	MIR4297
140800929	140800929	1	PCDHGA11
140800929	140800929	1	PCDHGB8P
30352975	30352975	1	KLHL14
101603453	101603453	1	SLC5A8
	101193038 75248086 75248086 9080989 2425888 2425888 200993200 65291513 19561482 15726479 57918500 13910700 3088480 48546193 131641580 140800929 30352975	101193038 101193038 75248086 75248086 75248086 75248086 9080989 9080989 2425888 2425888 2425888 2425888 200993200 200993200 200993200 200993200 65291513 65291513 19561482 19561482 15726479 15726479 15726479 15726479 157918500 57918500 3088480 3088480 48546193 48546193 131641580 140800929 140800929 140800929 30352975 30352975	101193038 101193038 1 75248086 75248086 1 75248086 75248086 1 75248086 75248086 1 9080989 9080989 1 2425888 2425888 1 240993200 200993200 1 200993200 200993200 1 65291513 65291513 1 19561482 19561482 1 15726479 15726479 1 15726479 15726479 1 13910700 13910700 1 3088480 3088480 1 131641580 131641580 1 140800929 140800929 1 30352975 30352975 30352975 1

chr131021054401021054401ITGBL1chr31721662421GHSRchr327184030271840301HOXA5chr824772137247721371RP11-624C23.1chr824772137247721371GS1-72M22.1chr824772137247721371SFFM2chr424772137247721371GPT2chr415471052154710521GFT2chr411125003111250031SFRP2chr4103268301032683091RGS7chr5103268301032683091H2BFWTchr4103268301032683091SFRP2chr418069169282881921H2BFMchr1028288192282881921ARMC4chr1188069169880691691CTSCchr433255541332555411SFRP1chr633255541332555411FFDN6chr633255541332555411AC00559.3chr1213043728130437281GPRC5Achr1374260692742606921IBALD2			1		
chr 1 1 1 1 1 chr7 27184030 27184030 1 HOXA5 chr8 24772137 24772137 1 RP11 – 624C23.1 chr8 24772137 24772137 1 GS1 – 72M22.1 chr8 24772137 24772137 1 GFT2 chr16 46919112 46919112 1 GPT2 chr41 154710523 154710523 1 SFRP2 chr11 111250093 111250093 1 RGS7 chr11 111250093 103268309 1 H2BFWT chrX 103268309 103268309 1 H2BFWT chr10 28288192 28288192 1 RRMC4 chr11 88069169 1 ZTSC chr11 88069169 1 RCTSC chr11 88069169 1 LRG_50 chr11 88069169 1 LRG_50 chr11 88069169 1 <td< td=""><td>chr13</td><td>102105440</td><td>102105440</td><td>1</td><td>ITGBL1</td></td<>	chr13	102105440	102105440	1	ITGBL1
chrs 24772137 24772137 1 RP11-624C23.1 chr8 24772137 24772137 1 GS1-72M22.1 chr8 24772137 24772137 1 NEFM chr16 46919112 246919112 1 GPT2 chr14 154710523 154710523 1 SFRP2 chr11 111250093 111250093 1 ROU2-60P chr11 111250093 111250093 1 RGS7 chr11 103268309 103268309 1 H2BFWT chr11 103268309 103268309 1 H2BFWT chr11 28288192 1 H2BFWT chr11 28288192 1 RF11-218D6.4 chr11 88069169 1 CTSC chr11 88069169 1 LRG_50 chr11 88069169 1 LRG_50 chr11 88069169 1 LRG_50 chr6 33255541 33255541 1 MDR46	chr3	172166242	172166242	1	GHSR
$chr8$ 24772137247721371 $GS1 - 72M22.1$ $chr8$ 247721371 $NEFM$ $chr16$ 46919112469191121 $GPT2$ $chr4$ 1547105231547105231 $SFRP2$ $chr11$ 1112500931112500931 $RNU2 - 60P$ $chr11$ 1112500931112500931 $RGS7$ $chr11$ 2415196522415196521 $RGS7$ $chrX$ 1032683091032683091 $H2BFWT$ $chrX$ 1032683091032683091 $H2BFM$ $chr10$ 28288192282881921 $ARMC4$ $chr11$ 88069169880691691 $RF11 - 218D6.4$ $chr11$ 88069169880691691 LRG_50 $chr11$ 8806916933255541332555411 $chr6$ 33255541332555411 $PFDN6$ $chr12$ 13043728130437281 $GPRC5A$	chr7	27184030	27184030	1	HOXA5
chrs24772137247721371 $NEFM$ $chrl6$ 46919112469191121 $GPT2$ $chr4$ 1547105231547105231 $SFRP2$ $chr11$ 1112500931112500931 $RNU2 - 60P$ $chr11$ 2415196522415196521 $RGS7$ $chrX$ 1032683091032683091 $H2BFWT$ $chrX$ 1032683091032683091 $H2BFWT$ $chrX$ 1032683091032683091 RCA $chrX$ 103268309282881921 $ARMC4$ $chr10$ 28288192282881921 $RP11 - 218D6.4$ $chr11$ 880691691 $CTSC$ $chr11$ 880691691 $RFY15$ $chr11$ 880691691 $RSPY15$ $chr6$ 3225541332555411 $RPCN6$ $chr6$ 332554133255411 $PFDN6$ $chr12$ 13043728130437281 $AC00559.3$	chr8	24772137	24772137	1	RP11 - 624C23.1
christi christi <t< td=""><td>chr8</td><td>24772137</td><td>24772137</td><td>1</td><td>GS1 - 72M22.1</td></t<>	chr8	24772137	24772137	1	GS1 - 72M22.1
christian christian <thc></thc> christian	chr8	24772137	24772137	1	NEFM
christian interface interface interface interface chr11 111250093 111250093 1 RRU2 - 60P chr1 241519652 241519652 1 RGS7 chrX 103268309 103268309 1 H2BFWT chr10 28288192 28288192 1 ARMC4 chr11 88069169 1 CTSC chr11 88069169 1 LRG_50 chr3 98290229 98290229 1 TSPYL5 chr6 33255541 33255541 1 PFDN6 chr12 3043728 1 GPRC5A	chr16	46919112	46919112	1	GPT2
Image: Mark Mark Mark Mark Mark Mark Mark Mark	chr4	154710523	154710523	1	SFRP2
chrX 103268309 103268309 1 H2BFWT chrX 103268309 103268309 1 H2BFWT chr10 28288192 28288192 1 ARMC4 chr10 28288192 28288192 1 ARMC4 chr10 28288192 28288192 1 ARMC4 chr11 88069169 1 CTSC Achter chr11 88069169 1 LRG_50 Achter chr8 98290229 98290229 1 TSPYL5 chr6 33255541 33255541 1 PFDN6 chr12 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr11	111250093	111250093	1	RNU2 - 60P
chrin 103268309 103268309 1 H2BFM chr10 28288192 28288192 1 ARMC4 chr10 28288192 28288192 1 RP11 - 218D6.4 chr11 88069169 28288192 1 CTSC chr11 88069169 88069169 1 CTSC chr11 88069169 88069169 1 LRG_50 chr6 33255541 33255541 1 MDR46 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr1	241519652	241519652	1	RGS7
chrin 28288192 28288192 1 ARMC4 chr10 28288192 28288192 1 RP11 – 218D6.4 chr11 28288192 28288192 1 RP11 – 218D6.4 chr11 88069169 88069169 1 CTSC chr11 88069169 88069169 1 LRG_50 chr11 88069169 98290229 1 TSPYL5 chr6 33255541 33255541 1 WDR46 chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chrX	103268309	103268309	1	H2BFWT
chr10 28288192 28288192 1 RP11 - 218D6.4 chr11 88069169 88069169 1 CTSC chr11 88069169 88069169 1 LRG_50 chr11 88069169 98290229 1 LRG_50 chr8 98290229 98290229 1 TSPYL5 chr6 33255541 33255541 1 WDR46 chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chrX	103268309	103268309	1	H2BFM
chr11 88069169 88069169 1 CTSC chr11 88069169 88069169 1 LRG_50 chr8 98290229 98290229 1 TSPYL5 chr6 33255541 33255541 1 WDR46 chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr10	28288192	28288192	1	ARMC4
chr11 88069169 88069169 1 LRG_50 chr8 98290229 98290229 1 TSPYL5 chr6 33255541 33255541 1 WDR46 chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr10	28288192	28288192	1	RP11 - 218D6.4
chr8 98290229 98290229 1 TSPYL5 chr6 33255541 33255541 1 WDR46 chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr11	88069169	88069169	1	CTSC
chr6 33255541 33255541 1 WDR46 chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr11	88069169	88069169	1	LRG_{50}
chr6 33255541 33255541 1 PFDN6 chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr8	98290229	98290229	1	TSPYL5
chr19 595705 595705 1 AC005559.3 chr12 13043728 13043728 1 GPRC5A	chr6	33255541	33255541	1	WDR46
chr12 13043728 13043728 1 GPRC5A	chr6	33255541	33255541	1	PFDN6
	chr19	595705	595705	1	AC005559.3
chr17 74260692 74260692 1 UBALD2	chr12	13043728	13043728	1	GPRC5A
	chr17	74260692	74260692	1	UBALD2

chr1775276428752764281RP11 - 285E9.6chr177527642875276428140057chr1525414716254147161TMEM261P1chr1525414716254147161SNORD115 - 1chr1525414716254147161GREB1chr21721665171721665171GREB1chr2116727611GREB1chr3305408530540851RP11 - 40E16.2chr4305408530561131RP11 - 284F21.90chr41566124361566124361SLC7A2chr11566124361566124361RP11 - 284F21.90chr11566124361566124361RP11 - 284F21.91chr11566124361566124361RP11 - 284F21.91chr11566124361566124361RP11 - 284F21.91chr11566124361566124361RP11 - 284F21.91chr11566124361566124361RP11 - 284F21.91chr198868971968689711NR2F2 - AS1chr112306198123061981RP11 - 284F21.91chr112306198182543231RCMchr112306198182543231RCHchr218254323182543231RCHchr218254323182543231RP13 - 131K19.2chr349027156400271561RP13 - 131K19.2chr349027156400271561 <th></th> <th></th> <th>I</th> <th></th> <th></th>			I		
chr152541471625414716254147161TMEM261P1chr1525414716254147161SNORD115 - 1chr1525414716254147161SNORD115 - 2chr31721665171721665171GHSRchr211672761116727611GREB1chr6305408530540851RP1 - 40E16.2chr858056113580561131RP1 - 40E16.2chr817353980173539801SLC7A2chr11566124361566124361BCANchr11566124361566124361BCANchr11566124361566124361RP11 - 284F21.90chr11566124361566124361NR2F2 - AS1chr11566124361566124361NR2F2chr1986897198689711NR2F2chr112306198123061981CTD - 2666L21.1chr2182543231825432331CERKLchr2182543231825432331AC01373.3chr349027156490271561RP13 - 131K19.2chr349027156490271561CNTN1chr349027156490271561CNTN1chr365281397652813971CNTN1chr365281397652813971CNTN1chr365281397652813971CNTN1chr365281397652813971CNTN1chr3 <td>chr17</td> <td>75276428</td> <td>75276428</td> <td>1</td> <td>RP11 - 285E9.6</td>	chr17	75276428	75276428	1	RP11 - 285E9.6
christic	chr17	75276428	75276428	1	40057
christic reference reference chr15 25414716 25414716 1 SNORD115 - 2 chr3 172166517 172166517 1 GHSR chr2 11672761 11672761 1 GREB1 chr6 3054085 3054085 1 RP1-40E16.2 chr8 58056113 58056113 1 RP1-513017.2 chr8 58056113 58056113 1 RP11-513017.2 chr8 17353980 17353980 1 SLC7A2 chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 RP11-284F21.90 chr1 156612436 156612436 1 BCAN chr1 156612436 14 NR2F2-AS1 chr1 156612433 18254323 1 CTD - 2666L21.1 chr19 12306198 12 CTD - 2666L21.1 1 chr2 182543233 182543233 1 CTD - 2666L21.1 <	chr15	25414716	25414716	1	TMEM261P1
chr3 172166517 172166517 1 GHSR chr2 11672761 11672761 1 GREB1 chr6 3054085 3054085 1 RP1-40E16.2 chr6 3054085 3054085 1 RP1-40E16.2 chr8 58056113 58056113 1 RP11-513O17.2 chr8 17353980 1 SLC7A2 chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 BCAN chr1 156612436 1 RP11-284F21.00 chr1 156612436 1 RP13-284F21.01 chr15 96868971 96868971 1 NR2F2-AS1 chr19 12306198 12 CTD-2666L21.1 chr2 182543233 182543233 1 CERKL chr2 182543233 182543233 1 AC013733.3 chr2 182543233	chr15	25414716	25414716	1	SNORD115 - 1
chr i chr i chr chr2 11672761 11672761 1 GREB1 chr6 3054085 3054085 1 RP1-40E16.2 chr8 58056113 58056113 1 RP11-513017.2 chr8 17353980 17353980 1 SLC7A2 chr1 156612436 156612436 1 RP11-284F21.90 chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 RP11-284F21.00 chr1 156612436 156612436 1 RP11-284F21.01 chr1 96868971 96868971 1 RP11-284F21.01 chr15 96868971 96868971 1 RP11-284F21.01 chr15 96868971 96868971 1 RP11-284F21.01 chr15 96868971 96868971 1 RCD chr12 12306198 12306198 1 CTD -2666L21.1 chr2 182543233 182543233	chr15	25414716	25414716	1	SNORD115-2
chr6 3054085 3054085 1 RP1-40E16.2 chr8 58056113 58056113 1 RP11-513O17.2 chr8 17353980 17353980 1 SLC7A2 chr1 156612436 156612436 1 RP11-284F21.9 chr1 156612436 1 RP11-284F21.9 1 chr1 156612436 1 RP11-284F21.9 1 chr1 96868971 96868971 1 RP13-284F21.9 chr1 96868971 96868971 1 NR2F2-AS1 chr1 96868971 96868971 1 NR2F2 chr1 12306198 12306198 1 NEUROD1 chr2 182543233 182543233 1 AC013733.3 chr3 49027156 4902715	chr3	172166517	172166517	1	GHSR
chron number number number number chr8 58056113 58056113 1 RP11 – 513O17.2 chr8 17353980 17353980 1 SLC7A2 chr1 156612436 156612436 1 RP11 – 284F21.9 chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 RP11 – 284F21.9 chr1 156612436 156612436 1 RP11 – 284F21.10 chr15 96868971 96868971 1 NR2F2 – AS1 chr15 96868971 96868971 1 NR2F2 chr19 12306198 12306198 1 CTD – 2666L21.1 chr2 182543233 182543233 1 CERKL chr2 182543233 182543233 1 NEUROD1 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156	chr2	11672761	11672761	1	GREB1
chr8 17353980 17353980 1 SLC7A2 chr1 156612436 156612436 1 RP11 – 284F21.9 chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 RP11 – 284F21.90 chr1 156612436 156612436 1 RP11 – 284F21.10 chr1 156612436 156612436 1 RP11 – 284F21.10 chr1 96868971 96868971 1 RP11 – 284F21.10 chr15 96868971 96868971 1 NR2F2 – AS1 chr15 96868971 96868971 1 NR2F2 chr19 12306198 12306198 1 CTD – 2666L21.1 chr2 182543233 182543233 1 CERKL chr2 182543233 182543233 1 AC013733.3 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 P4HTM chr8 65281397<	chr6	3054085	3054085	1	RP1 - 40E16.2
christian christian <thc cline<="" th=""> christian <thchristian< th=""> <thchristian< th=""> <thchri< td=""><td>chr8</td><td>58056113</td><td>58056113</td><td>1</td><td>RP11 - 513O17.2</td></thchri<></thchristian<></thchristian<></thc>	chr8	58056113	58056113	1	RP11 - 513O17.2
chr i i i chr1 156612436 156612436 1 BCAN chr1 156612436 156612436 1 RP11 – 284F21.10 chr15 96868971 96868971 1 NR2F2 – AS1 chr15 96868971 96868971 1 NR2F2 chr19 12306198 12306198 1 CTD – 2666L21.1 chr20 182543233 182543233 1 CERKL chr21 182543233 182543233 1 NEUROD1 chr2 182543233 182543233 1 AC013733.3 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 RP13 – 131K19.7 chr3 49027156 49027156 1 RP13 – 131K19.7 chr3 49027156 40027156 1 RP13 – 131K19.7 chr3 49027156 1 RP13 – 131K19.7 1 chr3 65281397 65281397 1	chr8	17353980	17353980	1	SLC7A2
chr1 156612436 156612436 1 RP11 - 284F21.10 chr15 96868971 96868971 1 NR2F2 - AS1 chr15 96868971 96868971 1 NR2F2 chr15 96868971 96868971 1 NR2F2 chr19 12306198 12306198 1 CTD - 2666L21.1 chr2 182543233 182543233 1 CERKL chr2 182543233 182543233 1 NEUROD1 chr2 182543233 182543233 1 AC013733.3 chr3 49027156 49027156 1 RP13 - 131K19.2 chr3 49027156 49027156 1 RP13 - 131K19.7 chr3 49027156 5 1 RP11 - 32K4.1 chr8 65281397	chr1	156612436	156612436	1	RP11 - 284F21.9
christian christian <thc clistian<="" th=""> christian <</thc>	chr1	156612436	156612436	1	BCAN
Image: Mark Mark Mark Mark Mark Mark Mark Mark	chr1	156612436	156612436	1	RP11 - 284F21.10
Image: Constraint of the strength of the strengt of the strength of the strength of the strength of the	chr15	96868971	96868971	1	NR2F2 - AS1
chr2 182543233 182543233 1 CERKL chr2 182543233 182543233 1 NEUROD1 chr2 182543233 182543233 1 AC013733.3 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 RP13 – 131K19.7 chr3 65281397 65281397 1 RP11 – 32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 10988071 1 KCNV1 chr2 2198	chr15	96868971	96868971	1	NR2F2
chr2 182543233 182543233 1 NEUROD1 chr2 182543233 182543233 1 AC013733.3 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 RP13 – 131K19.7 chr3 49027156 49027156 1 RP13 – 131K19.7 chr3 49027156 49027156 1 RP13 – 131K19.7 chr4 41087520 41087520 1 RP11 – 32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 1 KCNV1 1 chr2 219857231 219857231 1 CRYBA2	chr19	12306198	12306198	1	CTD - 2666L21.1
chr2 182543233 182543233 1 AC013733.3 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 RP13 – 131K19.2 chr3 49027156 49027156 1 RP13 – 131K19.7 chr12 41087520 41087520 1 CNTN1 chr8 65281397 65281397 1 INC00966 chr8 110988071 10988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr2	182543233	182543233	1	CERKL
chr3 49027156 49027156 1 RP13 - 131K19.2 chr3 49027156 49027156 1 RP13 - 131K19.7 chr3 49027156 49027156 1 P4HTM chr3 49027156 49027156 1 P4HTM chr3 65281397 65281397 1 RP11 - 32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr2	182543233	182543233	1	NEUROD1
chr3 49027156 49027156 1 RP13 - 131K19.7 chr3 49027156 49027156 1 P4HTM chr12 41087520 41087520 1 CNTN1 chr8 65281397 65281397 1 RP11 - 32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr2	182543233	182543233	1	AC013733.3
chr3 49027156 49027156 1 P4HTM chr12 41087520 41087520 1 CNTN1 chr8 65281397 65281397 1 RP11 – 32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr3	49027156	49027156	1	RP13 - 131K19.2
chr12 41087520 41087520 1 CNTN1 chr8 65281397 65281397 1 RP11 – 32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr3	49027156	49027156	1	RP13 - 131K19.7
chr8 65281397 65281397 1 RP11-32K4.1 chr8 65281397 65281397 1 LINC00966 chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr3	49027156	49027156	1	P4HTM
chr8 65281397 65281397 1 LINC00966 chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr12	41087520	41087520	1	CNTN1
chr8 110988071 110988071 1 KCNV1 chr2 219857231 219857231 1 CRYBA2	chr8	65281397	65281397	1	RP11 - 32K4.1
chr2 219857231 219857231 1 CRYBA2	chr8	65281397	65281397	1	<i>LINC</i> 00966
	chr8	110988071	110988071	1	KCNV1
chr7 48129904 48129904 1 UPP1	chr2	219857231	219857231	1	CRYBA2
	chr7	48129904	48129904	1	UPP1

chr10	70847350	70847350	1	SRGN
chr1	47882322	47882322	1	FOXE3
chr3	26663593	26663593	1	AC099754.1
chr3	26663593	26663593	1	LRRC3B
chrX	153770983	153770983	1	IKBKG
chrY	9385586	9385586	1	FAM197Y1
chrY	9385586	9385586	1	TSPY15P
chr15	93633408	93633408	1	RGMA
chr2	163695776	163695776	1	KCNH7
chr14	57275967	57275967	1	OTX2
chr14	57275967	57275967	1	OTX2 - AS1
chr4	122686038	122686038	1	TMEM155
chr4	122686038	122686038	1	AC079341.1
chr16	10449523	10449523	1	RP11 - 609N14.1
chr16	82044957	82044957	1	SDR42E1
chr11	6913644	6913644	1	OR2D2
chr6	27342632	27342632	1	ZNF204P
chr6	27342632	27342632	1	ZNF391
chr12	53227816	53227816	1	KRT79
chr12	53227816	53227816	1	RP11 - 153F5.3
chr11	32458714	32458714	1	WT1
chr11	32458714	32458714	1	WT1 - AS
chr17	37894397	37894397	1	GRB7
chr4	4857506	4857506	1	MSX1

gene_name	score	distance To Site
DRD4	-0.124012888048672	117
SCAND3	-0.10798311230643801	165
MIR365A	-0.14040893898075399	119
MAATS1	-0.129286989416137	0
GSC	-0.12657979944939499	1072
ANKDD1B	-0.12238116743333401	307
TRIM7	0.117538987740608	654
CTC - 338M12.1	0.117538987740608	56
LA16c - 390E6.3	0.116705694748048	1028
WDR46	0.115841009579616	1903
PFDN6	0.115841009579616	1678
CBX2	0.11544281219399299	841
RP13 - 131K19.2	-0.11447089631264699	195
RP13 - 131K19.7	-0.11447089631264699	3813
P4HTM	-0.11447089631264699	93
RBM24	0.11134776487086499	755
HIST4H4	-0.109710621025649	3279
H2AFJ	-0.109710621025649	74
CDKL2	-0.10960929761368	122

-0.108360433208011	77
0.16053500897133899	3814
0.15305514017642999	1011
0.15305514017642999	276
-0.14823121136736001	181
-0.14733788727401501	2643
-0.14733788727401501	1912
-0.13885729522767701	515
-0.13885729522767701	436
-0.13885729522767701	2597
-0.13674957088845799	2055
-0.134920614463754	378
-0.134920614463754	127
0.13203352052036099	1874
0.13160625663473399	2141
0.130321842759	1486
-0.130098860102633	425
-0.130098860102633	4914
0.12832582289404099	1239
0.12831656980001699	1972
0.12764825400728799	3250
-0.12735053095825299	2433
0.12726090174218599	376
	0.16053500897133899 0.15305514017642999 0.15305514017642999 0.15305514017642999 -0.14823121136736001 -0.14733788727401501 -0.14733788727401501 -0.13885729522767701 -0.13885729522767701 -0.13885729522767701 -0.13885729522767701 -0.13674957088845799 -0.134920614463754 -0.134920614463754 0.13203352052036099 0.13160625663473399 0.130321842759 -0.130098860102633 -0.130098860102633 -0.12831656980001699 0.12764825400728799 -0.12735053095825299

GPKOW	-0.12688506472781799	458
B3GNTL1	0.12622185598444399	4980
RP11 - 373N24.2	-0.126196570119602	2407
VWA2	-0.12618908061598799	155
ZNF154	-0.12603239674417299	208
AC114730.3	0.12537568512165301	2917
AC009531.2	-0.12514987300042599	1847
PYY2	-0.12463814819647499	1020
PITX1	0.124071381395868	220
C5 or f 66	0.124071381395868	1311
LINC00346	0.123596167075517	180
WDR46	0.12215916290196301	2131
PFDN6	0.12215916290196301	1906
HCK	-0.121679439121747	264
CYYR1	-0.121515821155445	477
LRP5	0.12077674636437	1148
SNCG	0.12055366697212699	57
DSCC1	0.12002641277069299	497
PARP4	-0.119932776811815	1646
DCAF8L1	-0.119824688825988	27
C3 or f 55	-0.11974114896269	13
HOXA10	0.11970903424680999	4992
HOXA11	0.11970903424680999	30
HOXA11 - AS	0.11970903424680999	735

C9 or f 91	0.119031262957996	762
RP13 - 131K19.2	-0.11756965654969299	177
RP13 - 131K19.7	-0.11756965654969299	3846
P4HTM	-0.11756965654969299	75
FCHSD2	0.11752549983777701	1392
C1QL3	-0.11743482801303599	1377
NRXN1	-0.117328845913815	132
AC007682.1	-0.117328845913815	67
HLA – DPB1	-0.11631137363175	2484
NTN1	-0.11597704742722401	1298
LINC00682	-0.115736384202522	1463
SFRP2	-0.115709145966333	477
SIK1	-0.115289672564198	4235
RP11 - 32K4.1	-0.11476238720759301	380
<i>LINC</i> 00966	-0.11476238720759301	4388
FAM155B	-0.114706822290637	2065
CRNDE	-0.11454073849728499	4287
IRX5	-0.11454073849728499	2614
CTD - 3032H12.2	-0.11454073849728499	1435
XXbac – BPGBPG24O18.1	-0.114349696886029	48
HCK	-0.114211058386022	30
MIR145	0.11387892996193701	327
LDLRAD2	-0.11351137352818	2411
ILDR1	-0.113343572230443	157

1	
0.113094021200255	4566
0.112940541389401	193
-0.112356385525081	706
0.112205903170614	404
0.11213589444989901	62
-0.111928225752649	405
-0.11165621383909299	2014
-0.11165621383909299	1957
-0.111652075228202	64
-0.11147170176575701	113
-0.111359586185865	174
-0.111359586185865	135
-0.110191504951083	28
-0.110191504951083	1536
-0.110077665461544	4501
-0.110006567837051	808
-0.110006567837051	223
-0.10999201454742399	3801
-0.10999201454742399	3785
-0.10999201454742399	173
0.109893101979087	842
	0.112940541389401 -0.112356385525081 0.112205903170614 0.11213589444989901 -0.111928225752649 -0.11165621383909299 -0.11165621383909299 -0.111652075228202 -0.111652075228202 -0.111359586185865 -0.111359586185865 -0.110191504951083 -0.110077665461544 -0.110006567837051 -0.10999201454742399 -0.10999201454742399

HLA - DPB1	-0.109868885925718	2359
C1QL3	-0.10977522125084301	1005
C3 or f 55	-0.10963935043367801	70
XXbac - BPG181M17.5	-0.10942442445153699	62
HCK	-0.109007215333146	129
РАН	-0.108909828259471	3769
DBX1	-0.10859791759907	433
FGF5	-0.108480853512708	2173
FOXE1	-0.108460640192918	656
GABRA3	-0.108322288361311	1144
THBS1	-0.108012224702111	1356
ANO7P1	-0.10800653773188899	972
DVL1	0.107997667928319	2186
AXIN2	-0.10793463833573499	2520
<i>LRG</i> _296	-0.10793463833573499	2495
RN7SL762P	-0.107759788699141	2658
RNU6 - 885P	-0.107599168427578	4444
RP1 - 170019.14	-0.10749113418684	654
PDZRN3	-0.10747876722784699	2713
L		

PDZRN3 - AS1	-0.10747876722784699	512
DLX5	0.107441203156391	1927
PDGFRA	0.107429344813642	54
LHFPL3 - AS1	0.107334363324657	132
RP5 - 1121A15.3	0.10730918740216799	1255
MIR3189	0.107180741689341	228
DLK1	-0.10705750690709399	995
RPP25	0.10701489299339401	1718
SCAMP5	0.10701489299339401	1473
RP11 - 85B7.2	0.106864994393845	1445
RP3 - 395M20.2	0.106787124473451	1190
RP3 - 395M20.3	0.106787124473451	29
KIF21B	0.10670070046810499	371
RP11 - 168O16.1	0.10670070046810499	122
MIR124 - 2	-0.106642175623474	192
OSR1	0.106639719481052	3067
MEOX2	-0.106407197379582	41
AC005550.4	-0.106407197379582	1523

	1	
MIR21	-0.106337745838559	126
PDPN	-0.106242503306801	739
CCDC64B	0.106020719334687	1552
CHAD	-0.105780580885399	133
MIR4297	0.105659833057068	57
PCDHGA11	-0.105229756006415	166
PCDHGB8P	-0.105229756006415	4923
KLHL14	0.105227187967704	49
SLC5A8	-0.105161186803192	731
ITGBL1	0.105060953675732	473
GHSR	-0.104886809586504	3
HOXA5	0.104859995048034	742
RP11 - 624C23.1	-0.104854886848308	2550
GS1 - 72M22.1	-0.104854886848308	92
NEFM	-0.104854886848308	1611
GPT2	0.10480590801688799	821
SFRP2	-0.104518164900059	250

RNU2 - 60P	-0.10451297615451501	3723
RGS7	-0.104279302631394	877
H2BFWT	-0.104247652076186	49
H2BFM	-0.104247652076186	39
ARMC4	-0.104246364439679	214
RP11 - 218D6.4	-0.104246364439679	524
CTSC	0.104212710647739	1785
LRG_{50}	0.104212710647739	1771
TSPYL5	-0.10418878749230701	52
WDR46	0.10403223430929	1762
PFDN6	0.10403223430929	1537
AC005559.3	0.10400729134155599	4101
GPRC5A	0.103865906867918	11
UBALD2	-0.103836859804503	590
RP11 - 285E9.6	0.10382569025496	1550
40057	0.10382569025496	222
TMEM261P1	-0.10370450501645	106
SNORD115 - 1	-0.10370450501645	1153
SNORD115 - 2	-0.10370450501645	3065
GHSR	-0.10361076137165701	270
GREB1	-0.10301523610233899	1480
RP1 - 40E16.2	-0.102745208692728	2038
RP11 - 513O17.2	-0.102622883478428	864

SLC7A20.10257945756098601616RP11-284F21.90.1023300992269891253BCAN0.1023300992269892242RP11-284F21.000.10229019248518901618NR2F20.102290192248518901618NR2F20.10229019224851890167CTD-2666L21.1-0.1021254461591892168REUROD1-0.1021254461591892369AC013733.3-0.102058470880869264RP13-131K19.2-0.102058470880869162P4HTM-0.102058470880869162CNTN10.101988875236978182RP11-32K4.1-0.101979020830792994487KCNV1-0.101865327505896911LINC00966-0.10114703442445511FAGS-0.101353260878196517FACMPA2-0.101207719948323587AC099754.1-0.101207719948323507LRRC3B-0.101207719948323507			
BCAN0.1023300992269891253RP11 - 284F21.000.1023300992269892242NR2F2 - AS10.102299192248518991618NR2F20.10229919224851899195CTD - 2666L21.1-0.1021254461591892158NEUROD1-0.1021254461591892369AC013733.3-0.102125446159189264RP13 - 131K19.2-0.102058470880869264RP13 - 131K19.7-0.102058470880869162P4HTM-0.1012058470880869162CNTN10.1019888752369781275RP11 - 32K4.1-0.1019790208307929924487LINC00966-0.101895531386676994CRYBA20.101866327505896911UPP1-0.10147003442445511FOXE3-0.101353260878196587AC099754.1-0.101207719948323587	SLC7A2	0.10257945756098601	616
RP11 - 284F21.10 0.102330099226989 2242 NR2F2 - AS1 0.10229919224851899 1618 NR2F2 0.10229919224851899 195 CTD - 2666L21.1 -0.102230147125593 367 CERKL -0.102125446159189 2158 NEUROD1 -0.102125446159189 2369 AC013733.3 -0.102125446159189 4606 RP13 - 131K19.2 -0.102058470880869 264 RP13 - 131K19.7 -0.102058470880869 162 CNTN1 -0.1012058470880869 162 RP11 - 32K4.1 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 QRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 517 FOXE3 -0.101207719948323 587	RP11 - 284F21.9	0.102330099226989	1639
NR2F2 – AS1 0.10229919224851899 1618 NR2F2 0.10229919224851899 195 CTD – 2666L21.1 -0.102230147125593 367 CERKL -0.102125446159189 2158 NEUROD1 -0.102125446159189 2369 AC013733.3 -0.102125446159189 264 RP13 – 131K19.2 -0.102058470880869 264 RP13 – 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 – 32K4.1 -0.10197902083079299 2481 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 VPP1 -0.10179139338468 1678 SRGN -0.101470034442445 511 FOXE3 -0.101207719948323 587	BCAN	0.102330099226989	1253
NR2F2 0.10229919224851899 195 CTD – 2666L21.1 -0.102230147125593 367 CERKL -0.102125446159189 2158 NEUROD1 -0.102125446159189 2369 AC013733.3 -0.102125446159189 264 RP13 – 131K19.2 -0.102058470880869 264 RP13 – 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 – 32K4.1 -0.10197902083079299 281 LINC00966 -0.10189553138667699 4 CRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	RP11 - 284F21.10	0.102330099226989	2242
CTD - 2666L21.1 -0.102230147125593 367 CERKL -0.102125446159189 2158 NEUROD1 -0.102125446159189 2369 AC013733.3 -0.102125446159189 4606 RP13 - 131K19.2 -0.102058470880869 264 RP13 - 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10189553138667699 4 KCNV1 -0.10179139338468 911 UPP1 -0.101470034442445 511 FOXE3 -0.101207719948323 587	NR2F2 - AS1	0.10229919224851899	1618
CERKL -0.102125446159189 2158 NEUROD1 -0.102125446159189 2369 AC013733.3 -0.102125446159189 4606 RP13 - 131K19.2 -0.102058470880869 264 RP13 - 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	NR2F2	0.10229919224851899	195
NEUROD1 -0.102125446159189 2369 AC013733.3 -0.102125446159189 4606 RP13 - 131K19.2 -0.102058470880869 264 RP13 - 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10189553138667699 4487 KCNV1 -0.10189553138667699 417 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	CTD - 2666L21.1	-0.102230147125593	367
AC013733.3 -0.102125446159189 4606 RP13 - 131K19.2 -0.102058470880869 264 RP13 - 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 VPP1 -0.10179139338468 1678 SRGN -0.1011470034442445 511 FOXE3 -0.101207719948323 587	CERKL	-0.102125446159189	2158
RP13 - 131K19.2 -0.102058470880869 264 RP13 - 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 VPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	NEUROD1	-0.102125446159189	2369
RP13 - 131K19.7 -0.102058470880869 3759 P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 VPP1 0.101866327505896 911 SRGN -0.101470034442445 511 FOXE3 -0.101207719948323 587	AC013733.3	-0.102125446159189	4606
P4HTM -0.102058470880869 162 CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 0.101866327505896 911 911 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	RP13 - 131K19.2	-0.102058470880869	264
CNTN1 0.101988875236978 1275 RP11 - 32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 CRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	RP13 - 131K19.7	-0.102058470880869	3759
RP11-32K4.1 -0.10197902083079299 281 LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 CRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	P4HTM	-0.102058470880869	162
LINC00966 -0.10197902083079299 4487 KCNV1 -0.10189553138667699 4 CRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101353260878196 511 FOXE3 -0.101207719948323 587	CNTN1	0.101988875236978	1275
KCNV1 -0.10189553138667699 4 CRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101470034442445 511 FOXE3 -0.101353260878196 577 AC099754.1 -0.101207719948323 587	RP11 - 32K4.1	-0.10197902083079299	281
CRYBA2 0.101866327505896 911 UPP1 -0.10179139338468 1678 SRGN -0.101470034442445 511 FOXE3 -0.101353260878196 577 AC099754.1 -0.101207719948323 587	<i>LINC</i> 00966	-0.10197902083079299	4487
UPP1 -0.10179139338468 1678 SRGN -0.101470034442445 511 FOXE3 -0.101353260878196 577 AC099754.1 -0.101207719948323 587	KCNV1	-0.10189553138667699	4
SRGN -0.101470034442445 511 FOXE3 -0.101353260878196 577 AC099754.1 -0.101207719948323 587	CRYBA2	0.101866327505896	911
FOXE3 -0.101353260878196 577 AC099754.1 -0.101207719948323 587	UPP1	-0.10179139338468	1678
AC099754.1 -0.101207719948323 587	SRGN	-0.101470034442445	511
	FOXE3	-0.101353260878196	577
<i>LRRC3B</i> -0.101207719948323 703	AC099754.1	-0.101207719948323	587
	LRRC3B	-0.101207719948323	703

	1	
IKBKG	-0.101179944369073	1568
FAM197Y1	-0.101155812375696	892
TSPY15P	-0.101155812375696	130
RGMA	0.10108409025040201	974
KCNH7	-0.100983554882114	535
OTX2	-0.100920098537103	1229
OTX2 - AS1	-0.100920098537103	3933
TMEM155	-0.100674866753929	543
AC079341.1	-0.100674866753929	297
RP11 - 609N14.1	-0.100622143068377	2913
SDR42E1	-0.10056489087438	135
OR2D2	-0.100467407127736	185
ZNF204P	-0.100280738631745	3327
ZNF391	-0.100280738631745	237
KRT79	-0.10022075519222599	262
RP11 - 153F5.3	-0.10022075519222599	3370
WT1	-0.100119136435286	1537
WT1 - AS	-0.100119136435286	1649
GRB7	0.10004974772408801	216
MSX1	0.10003454190038	3886

Appendix D

Table of DMR's Functional Annotation (GO)

Supplementary Data File

Description: The accompanying table shows the functional enrichment of Gene Ontology biological processes of DMR's founded in melanoma biopsies pre and post MAPKi treatment.

ID	Description	GeneRatio
GO: 0007389	pattern specification process	18/116
GO: 0003002	regionalization	16/116
GO: 0009952	anterior/posterior pattern specification	13/116
GO: 0048705	skeletal systemmorphogenesis	13/116
GO:0048736	appendage development	12/116
GO: 0060173	limbdevelopment	12/116
GO: 0030326	embry onic limb morphogenesis	10/116
GO: 0035113	embry onic appendage morphogenesis	10/116
GO: 0001501	skeletal system development	17/116
GO: 0035107	appendage morphogenesis	10/116
GO:0035108	limbmorphogenesis	10/116

GO: 0048562	embry on icorgan morphogenesis	13/116
GO: 0048568	embry onic organ development	15/116
GO: 0023019	signal transduction involved in regulation of gene expression	5/116
GO: 0061448	connective tissue development	11/116
GO: 0060485	mesenchymedevelopment	11/116
GO:0035270	endocrine system development	8/116
GO: 0060021	palatedevelopment	7/116
GO: 0001837	epithelial to mesen chymal transition	8/116
GO:0051216	cartilage development	9/116
GO: 0048762	mesenchymal cell differentiation	9/116
GO: 0090596	sensoryorganmorphogenesis	10/116
GO: 0042471	earmorphogenesis	7/116
GO:0007548	sexdifferentiation	10/116
GO: 0045137	development of primary sexual characteristics	9/116
GO: 0035239	tubemorphogenesis	11/116
GO: 0010717	regulation of epithelial to mesen chymal transition	6/116
GO: 0060349	bonemorphogenesis	6/116
GO: 0060348	bonedevelopment	8/116
GO:0007369	gastrulation	8/116
GO:0048704	embry onics keletal systemmorphogenesis	6/116

GO: 0060562	epithelial tube morphogenes is	10/116
GO: 2000027	regulation of organ morphogenes is	9/116
GO: 0045165	cell fate commitment	9/116
GO: 0009954	proximal/distal pattern formation	4/116
GO: 0035051	cardiocyted if ferentiation	7/116
GO: 0060537	musclet is sue development	11/116
GO: 0035115	embry onic for elimbmorphogenesis	4/116
GO: 0042733	embry onic digit morphogenesis	5/116
GO: 0043583	eardevelopment	8/116
GO:0008406	gonaddevelopment	8/116
GO:0048608	reproductive structure development	11/116
GO: 0035136	for elimbmorphogenesis	4/116
GO: 0061458	reproductive system development	11/116
GO:0072148	epithelial cell fate commitment	3/116
GO: 0048706	embry on ics keletal system development	6/116
GO:0030900	forebraindevelopment	10/116
GO:0072210	metanephric nephrond evelopment	4/116
GO:0072224	metanephricglomerulus development	3/116
<i>GO</i> : 0040013	negative regulation of locomotion	9/116

ID	Official Gene Symbol
GO:0007389	LRP5/SFRP2/DBX1/AXIN2/ARMC4/NR2F2/WT1/MSX1
GO:0003002	OTX2/LRP5/SFRP2/MEOX2/GREM1/DBX1/AXIN2/NR2F2/NEU-
	ROD1/WT1/MSX1
GO:0009952	OTX2/SFRP2/MEOX2/AXIN2/OSR1/HOXA5/NR2F2/NEU-
	ROD1/WT1/MSX1
GO:0048705	GSC/SFRP2/IRX5/AXIN2/DLX5/PDGFRA/CHAD/HOXA5/MSX1
GO:0048736	PITX1/HOXA10/SFRP2/MEOX2/GREM1/DLX5/OSR1/NR2F2/MSX1
GO:0060173	PITX1/LRP5/HOXA11/SFRP2/MEOX2/GREM1/DLX5/MSX1
GO:0030326	PITX1/LRP5/HOXA10/SFRP2/GREM1/DLX5/OSR1/MSX1
GO:0035113	PITX1/LRP5/HOXA11/SFRP2/GREM1/DLX5/OSR1/MSX1
GO:0035107	TBX5/PITX1/LRP5/HOXA10/SFRP2/GREM1/DLX5/OSR1/MSX1
GO:0035108	TBX5/PITX1/LRP5/HOXA11/SFRP2/GREM1/DLX5/OSR1/MSX1
GO:0048562	GSC/POU3F4IRX5/FOXE1/DVL1/DLX5/PDGFRA/OSR1/NEU-
	ROD1/MSX1
GO:0048568	GSC/ASCL2/POU3F4/IRX5/FOXE1/DVL1/DLX5/PDGFRA/EU-
	ROD1/MSX1
GO:0023019	GSC/FGF5/PDGFRA/NEUROD1/MSX1
GO:0061448	PITX1/LRP5/SFRP2/GREM1/AXIN2/OSR1/MIR21/WT1/MSX1
GO:0060485	SFRP2/PDPN/GREM1/AXIN2/OSR1/MIR21/HOXA5/WT1/MSX1
GO:0035270	PITX1/NR0B1/FOXE1/PDGFRA/HOXA5/NEUROD1/WT1/MSX1
GO:0060021	PRDM16/MEOX2/FOXE1/DLX5/PDGFRA/OSR1/MSX1
GO:0001837	GSC/TBX5/SFRP2/PDPN/GREM1/AXIN2/MIR21/MSX1
GO:0051216	PITX1/HOXA11/SFRP2/GREM1/AXIN2/OSR1/MIR21/MSX1
GO:0048762	GSC/TBX5/SFRP2/PDPN/GREM1/AXIN2/OSR1/MIR21/MSX1
GO:0090596	GSC/POU3F4/LRP5/NTN1/IRX5/DVL1/DLX5/OSR1/FOXE3/MSX1
GO:0042471	GSC/POU3F4/NTN1/DVL1/DLX5/OSR1/MSX1

GO:0007548	CDKL2/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/WT1
GO:0045137	CBX2/SFRP2/IRX5/PDGFRA/OSR1/WT1
GO:0035239	LRP5/HOXA11/SFRP2/GREM1/DVL1/PDGFRA/MIR21/HOXA5/WT1
GO:0010717	TBX5/SFRP2/PDPN/GREM1/AXIN2/MIR21
GO:0060349	LRP5/HOXA11/SFRP2/AXIN2/DLX5/MSX1
GO:0060348	LRP5/HOXA11/SFRP2/GREM1/AXIN2/DLX5/CHAD/MSX1
GO:0007369	GSC/OTX2/LRP5/SFRP2/MIR145/DVL1/OSR1
GO:0048704	GSC/HOXA11/IRX5/PDGFRA/OSR1/HOXA5
GO:0060562	LRP5/HOXA11/SFRP2/GREM1/DVL1/OSR1/MIR21/WT1
GO:2000027	TBX5/GPC4/SFRP2/GREM1/DVL1/CHAD/WT1/MSX1
GO:0045165	GSC/PITX1/HOXA11/SFRP2/PDPN/DBX1/NR2F2/NEUROD1/WT1
GO:0009954	HOXA10/HOXA11/GREM1/OSR1
GO:0035051	TBX5/SIK1/MIR145/GREM1/PDGFRA/MIR21/WT1
GO:0060537	VGLL2/TBX5/PITX1/MIR145/GREM1/PDGFRA/OSR1/NR2F2/WT1
GO:0035115	TBX5/HOXA11/OSR1/MSX1
GO:0042733	LRP5/HOXA11/SFRP2/OSR1/MSX1
GO:0043583	GSC/POU3F4/NTN1/DVL1/DLX5/OSR1/NEUROD1/MSX1
GO:0008406	HOXA10/HOXA11/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/WT1
GO:0048608	ASCL2/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/GHSR/NR2F2/WT1
GO:0035136	TBX5/HOXA11/OSR1/MSX1
GO:0061458	ASCL2/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/GHSR/NR2F2/WT1
GO:0072148	PDPN/NR2F2/NEUROD1
GO:0048706	GSC/HOXA11/IRX5/PDGFRA/OSR1/HOXA5
GO:0030900	POU3F4/OTX2/PITX1/DLX5/BCAN/NR2F2/NEUROD1/MSX1
GO:0072210	GREM1/PDGFRA/OSR1/WT1
GO:0072224	PDGFRA/OSR1/WT1
GO:0040013	TBX5/SFRP2/MEOX2/GREM1/THBS1/MIR124-
	2/MIR21/GHSR/NR2F2

Bibliography

ln:

- Abdolmaleky, Hamid M, Sam Thiagalingam, and Marsha Wilcox (2005). "Genetics and epigenetics in major psychiatric disorders". In: *American Journal of Pharmacogenomics* 5.3, pp. 149–160.
- Afgan, Enis et al. (2018). "The Galaxy platform for accessible, reproducible and collaborative biomedical analyses 2018 update". In: *Nucleic acids research* 46.W1, W537 W544 0305 1048.
- Akalin A Kormaksson M, Li S et al (2012). "methylKit a comprehensive R package for the analysis of genome-wide DNA methylation profiles." In: *Genome Biology* 13.
- Anaconda, Inc. (2017). Conda Conda documentation. https//conda.io/ docs/. Accessed 8 Oct. 2018.
- Antequera, Francisco, Donald Macleod, and Adrian P Bird (1989). "Specific protection of methylated CpGs in mammalian nuclei". In: *Cell* 58.3, pp. 509–517.
- Aryee, Martin J. et al. (2014). "Minfi a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays". In: *Bioinformatics* 30.10, p. 1363 1369 1460 2059.
- Ashburner, Michael et al. (2000). "Gene Ontology tool for the unification of biology". In: *Nature genetics* 25.1, p. 25 1546 1718.
- Assenov, Yassen et al. (2014). "Comprehensive analysis of DNA methylation data with RnBeads". In: *Nature methods* 11.11, p. 1138 1548 7105.
- Banks, Jo Ann and Nina Fedoroff (1989). "Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element". In: *Developmental genetics* 10.6, pp. 425–437.

- Biotechnology Information, U.S. National Library of Medicine National Center for (2018). *Published Tools*. https://www.ncbi.nlm.nih.gov/pubmed/.
- Bird, Adrian P. (1986). "CpGrich islands and the function of DNA methylation". In: *Nature* 321.6067, p. 209 213 0028 0836.
- Bird, Adrian P (1987). "CpG islands as gene markers in the vertebrate nucleus". In: *Trends in Genetics* 3, pp. 342–347.
- Bock, Christoph and Thomas Lengauer (2008). "Computational epigenetics". In: *Bioinformatics* 24.1, p. 1 10 1367 4803.
- Bolstad, Benjamin M et al. (2003). "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias".In: *Bioinformatics* 19.2, pp. 185–193.
- Boyle A. P., Guinney J. Crawford G. E. Furey T. S. (2008). "F-Seq a feature density estimator for high-throughput sequence tags." In: *Bioinformatics* 21.
- Brazma, Alvis et al. (2003). "ArrayExpress public repository for microarray gene expression data at the EBI". In: *Nucleic acids research* 31.1, p. 68 71 1362 4962.
- Breslow, Alexander (1970). "Thickness, cross sectional areas and depth of invasion in the prognosis of cutaneous melanoma". In: *Annals of surgery* 172.5, p. 902.
- Brown, Thomas C and Josef Jiricny (1988). "Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells". In: *Cell* 54.5, pp. 705–711.
- Busslinger, M, J Hurst, and RA Flavell (1983). "DNA methylation and the regulation of globin gene expression". In: *Cell* 34.1, pp. 197–206.
- Carbognin, Luisa et al. (2015). "Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death ligand 1 (PD L1) sensitivity analysis of trials in melanoma, lung and genitourinary cancers". In: *PloS one* 10.6, e0130142 1932 6203.
- Carr, Ian M et al. (2007). "Sequence analysis and editing for bisulphite genomic sequencing projects". In: *Nucleic acids research* 35.10, e79.

- Cazaly, Emma et al. (2016). "Comparison of pre-processing methodologies for Illumina 450k methylation array data in familial analyses". In: *Clinical epigenetics* 8.1, p. 75.
- Clermont, P. L. et al. (2014). "Genotranscriptomic meta analysis of the Polycomb gene CBX2 in human cancers initial evidence of an oncogenic role".
 In: *British journal of cancer* 111.8, p. 1663 1532 1827.
- Consortium, ENCODE Project et al. (2004). "The ENCODE (ENCyclopedia of DNA elements) project". In: *Science* 306.5696, pp. 636–640.
- Consortium, Gene Ontology (2004). "The Gene Ontology (GO) database and informatics resource". In: *Nucleic acids research* 32.suppl_1, pp. D258–D261.
- Cooper, David and Hagop Youssoufian (1988). "The CpG dinucleotide and human genetic disease". In: *Human genetics* 78.2, p. 151 155.
- Daca-Roszak, Patrycja et al. (2015). "Impact of SNPs on methylation readouts by Illumina Infinium HumanMethylation450 BeadChip Array implications for comparative population studies". In: *BMC genomics* 16.1, p. 1003.
- Davis, Sean et al. (2012). "methylumi Handle Illumina methylation data". In: *R package version* 2.0.
- Dawson, Mark A and Tony Kouzarides (2012). "Cancer epigenetics from mechanism to therapy". In: *Cell* 150.1, pp. 12–27.
- Dedeurwaerder, Sarah et al. (2011). "Evaluation of the Infinium Methylation 450K technology". In: *Epigenomics* 3.6, p. 771 784 1750 1911.
- Dennis, Glynn et al. (2003). "DAVID database for annotation, visualization, and integrated discovery". In: *Genome biology* 4.9, R60 1474 760X.
- Developers, The Sean (2017). *Docker documentation*. https//media.readthedocs. org/pdf/docker-sean/latest/docker-sean.pdf. Accessed 8 Oct. 2018.
- Dhara, Sujoy K. and Steven L. Stice (2008). "Neural differentiation of human embryonic stem cells". In: *Journal of cellular biochemistry* 105.3, p. 633 640 0730 2312.

- Dorsky, Richard I., Randall T. Moon, and David W. Raible (1998). "Control of neural crest cell fate by the Wnt signalling pathway". In: *Nature* 396.6709, p. 370 1476 4687.
- Dummer, R. et al. (2012). "Cutaneous melanoma ESMO Clinical Practice Guidelines for diagnosis, treatment and follow up". In: *Annals of Oncology* 23, p. vii86 vii91.
- Dupin, Elisabeth and Nicole M Le Douarin (2003). "Development of melanocyte precursors from the vertebrate neural crest". In: *Oncogene* 22.20, p. 3016.
- Dweep, Harsh et al. (2011). "miRWalk database prediction of possible miRNA binding sites by "walking" the genes of three genomes". In: *Journal of biomedical informatics* 44.5, p. 839 847 1532 0464.
- Edgar, Ron, Michael Domrachev, and Alex E. Lash (2002). "Gene Expression Omnibus NCBI gene expression and hybridization array data repository". In: *Nucleic acids research* 30.1, p. 207 210 1362 4962.
- Egger, Gerda et al. (2004). "Epigenetics in human disease and prospects for epigenetic therapy". In: *Nature* 429.6990, p. 457 1476 4687.
- Erickson, Carol A. and Mark V. Reedy (1998). "5 Neural Crest Development The Interplay between Morphogenesis and Cell Differentiation". In: *Current topics in developmental biology*. Vol. 40. Elsevier, p. 177 209 0070 2153.
- Esteller, Manel and James G. Herman (2002). "Cancer as an epigenetic disease DNA methylation and chromatin alterations in human tumours". In: *The Journal of Pathology A Journal of the Pathological Society of Great Britain and Ireland* 196.1, p. 1 7 0022 3417.
- Feinberg, Andrew P. and Bert Vogelstein (1983). "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". In: *Analytical biochemistry* 132.1, p. 6 13 0003 2697.
- Fellows, Ian et al. (2012). "Deducer a data analysis GUI for R". In: *Journal of statistical Software* 49.8, pp. 1–15.

- Flaherty, Keith T (2012). "Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets". In: *Clinical & experimental metastasis* 29.7, pp. 841–846.
- Fortin, Jean-Philippe et al. (2014). "Functional normalization of 450k methylation array data improves replication in large cancer studies". In: *Genome biology* 15.11, p. 503.
- galaxyproject (2014). *Planemo documentation*. https//planemo.readthedocs. io/en/latest/. Accessed 8 Oct. 2018.
- Garraway, Levi A. et al. (2005). "Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma". In: *Nature* 436.7047, p. 117 1476 4687.
- Gautam, Budhayash et al. (2018). "The Role of Bioinformatics in Epigenetics". In: *Current trends in Bioinformatics: An Insight*. Springer, pp. 39–53.
- Gentleman, Robert C et al. (2004). "Bioconductor open software development for computational biology and bioinformatics". In: *Genome biology* 5.10, R80.
- Ghiorzo, Paola et al. (1999). "Characterization of ligurian melanoma families and risk of occurrence of other neoplasia". In: *International journal of cancer* 83.4, p. 441 448 0020 7136.
- Giebel, Lutz B. and Richard A. Spritz (1991). "Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism". In: *Proceedings of the National Academy of Sciences* 88.19, p. 8696 8699 0027 8424.
- Gilbertson, Richard J. et al. (2006). "Mutational analysis of PDGFRRAS/MAPK pathway activation in childhood medulloblastoma". In: *European journal of cancer* 42.5, p. 646 649 0959 8049.
- Glazar, Petar, Panagiotis Papavasileiou, and Nikolaus Rajewsky (2014). "circBase a database for circular RNAs". In: *Rna* 20.11, p. 1666 1670 1355 8382.

- Goecks, Jeremy, Anton Nekrutenko, and James Taylor (2010). "Galaxy a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences". In: *Genome biology* 11.8, R86 1474 760X.
- Gordon, Randy (2013). "Skin cancer an overview of epidemiology and risk factors". In: vol. 29. Elsevier, p. 160 169 0749 2081.
- Gospodarowicz Mary, Brierley James and Christian Wittekind (2017). "TNM classification of malignant tumours". In: *John Wiley and Sons*.
- Griffiths Jones, Sam et al. (2006). "miRBase microRNA sequences, targets and gene nomenclature". In: *Nucleic acids research* 34.suppl 1, p. D140 D144 1362 4962.
- Hackenberg, Michael, Guillermo Barturen, and Jose L. Oliver (2010). "NGSmethDB a database for next generation sequencing single cytosine resolution DNA methylation data". In: *Nucleic acids research* 39.suppl 1, p. D75 D79 0305 1048.
- Hansen, Kasper Daniel and Martin Aryee (2012). "minfi Analyze Illumina's 450k methylation arrays". In: *R package version* 1.0.
- Harbour, William, Roberson Elisha Duan Shenghui Cao Li Worley Lori Onken
 Michael, and Matatall Katie Helms Cynthia Bowcock Anne Council Laurin
 (2010). "Frequent mutation of BAP1 in metastasizing uveal melanomas".
 In: Science 330.6009, pp. 1410–1413.
- Harris, R Alan et al. (2010). "Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications". In: *Nature biotechnology* 28.10, p. 1097.
- Hauschild, Axel et al. (2012). "Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial". In: *The Lancet* 380.9839, pp. 358–365.
- He, Ximiao et al. (2007). "MethyCancer the database of human DNA methylation and cancer". In: *Nucleic acids research* 36.suppl 1, p. D836 D841 0305 1048.

- Holliday, Robin (2006). "Epigenetics a historical overview". In: *Epigenetics* 1.2, p. 76 80 1559 2294.
- Hugo, Willy et al. (2015). "Non genomic and immune evolution of melanoma acquiring MAPKi resistance". In: *Cell* 162.6, p. 1271 1285 0092 8674.
- Humburg, Peter et al. (2011). "ChIPseqR analysis of ChIP seq experiments". In: *BMC bioinformatics* 12.1, p. 39 1471 2105.
- Illumina, Inc. (2018). Infinium Methylation Assay Overview. https//emea. illumina.com/science/technology/beadarray-technology/infiniummethylation-assay.html. Accessed 8 Oct. 2018.
- Jaffe, Andrew E. et al. (2012). "Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies". In: *International journal of epidemiology* 41.1, p. 200 209 1464 3685.
- Jakovcevski, Mira and Schahram Akbarian (2012). "Epigenetic mechanisms in neurological disease". In: *Nature medicine* 18.8, p. 1194.
- Jin, Eun Jung et al. (2001). "Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo". In: *Developmental biology* 233.1, p. 22 37 0012 1606.
- Kanehisa, Minoru and Susumu Goto (2000). "KEGG kyoto encyclopedia of genes and genomes". In: *Nucleic acids research* 28.1, p. 27 30 1362 4962.
- Kawakami, Akinori and David E. Fisher (2017). "The master role of microphthalmia associated transcription factor in melanocyte and melanoma biology". In: *Laboratory Investigation* 97.6, p. 649 1530 0307.
- Kent, W James et al. (2002). "The human genome browser at UCSC". In: *Genome research* 12.6, pp. 996–1006.
- Khare, Satyajeet P. et al. (2011). "Histome relational knowledgebase of human histone proteins and histone modifying enzymes". In: *Nucleic acids research* 40.D1, p. D337 D342 1362 4962.
- Kishore, Kamal et al. (2015). "methylPipe and compEpiTools a suite of R packages for the integrative analysis of epigenomics data". In: *BMC bioinformatics* 16.1, p. 313 1471 2105.

- Kléber, Maurice et al. (2005). "Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling". In: *The Journal of cell biology* 169.2, pp. 309–320.
- Klose, Robert J. and Adrian P. Bird (2006). "Genomic DNA methylation the mark and its mediators". In: *Trends in biochemical sciences* 31.2, p. 89 97 0968 0004.
- Kristensen, Lasse Sommer and Lise Lotte Hansen (2009). "PCR based methods for detecting single locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment". In: *Clinical chemistry* 55.8, p. 1471 1483 0009 9147.
- Lawrence, Michael, Robert Gentleman, and Vincent Carey (2009). "rtracklayer an R package for interfacing with genome browsers". In: *Bioinformatics* 25.14, pp. 1841–1842.
- Lewis, Joe and Adrian Bird (1991). "DNA methylation and chromatin structure". In: *Febs Letters* 285.2, pp. 155–159.
- Love, Michael I, Wolfgang Huber, and Simon Anders (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2". In: *Genome biology* 15.12, p. 550.
- Lv, Jie et al. (2011). "DiseaseMeth a human disease methylation database". In: *Nucleic acids research* 40.D1, p. D1030 D1035 1362 4962.
- Maat, Willem et al. (2007). "Epigenetic inactivation of RASSF1a in uveal melanoma". In: *Investigative ophthalmology & visual science* 48.2, pp. 486–490.
- Manchester, The University of and University of Southampton (2018). *MyExperiment*. http://www.myexperiment.org/. Accessed 8 Oct. 2018.
- Marabita, Francesco et al. (2013a). "An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 Bead-Chip platform". In: *Epigenetics* 8.3, p. 333 346 1559 2294.
- Marabita, Francesco et al. (2013b). "An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 Bead-Chip platform". In: *Epigenetics* 8.3, pp. 333–346.

- Matloff, Norman (2011). The art of R programming A tour of statistical software design. No Starch Press.
- Meda, Francesca et al. (2011). "The epigenetics of autoimmunity". In: *Cellular* & molecular immunology 8.3, p. 226.
- Mitra A, Song J (2012). "WaveSeq A Novel Data-Driven Method of Detecting Histone Modification Enrichments Using Wavelets." In: *Bioinformatics* 9.
- Morris, Tiffany J. et al. (2013). "ChAMP 450k chip analysis methylation pipeline". In: *Bioinformatics* 30.3, p. 428 430 1460 2059.
- Nakabayashi, Kazuhiko (2017). "Illumina HumanMethylation BeadChip for Genome-Wide DNA Methylation Profiling Advantages and Limitations". In: *Handbook of Nutrition, Diet, and Epigenetics*. Springer, pp. 1–15.
- Nanda, Jagpreet Singh, Rahul Kumar, and Gajendra P. S. Raghava (2016).
 "dbEM A database of epigenetic modifiers curated from cancerous and normal genomes". In: *Scientific reports* 6, p. 19340 2045 2322.
- Niller, Hans Helmut, Hans Wolf, and Janos Minarovits (2009). "Epigenetic dysregulation of the host cell genome in Epstein–Barr virus-associated neoplasia". In: *Seminars in cancer biology*. Vol. 19. 3. Elsevier, pp. 158– 164.
- Osaki, Mitsuhiko et al. (2013). "Decreased PITX1 gene expression in human cutaneous malignant melanoma and its clinicopathological significance". In: *European Journal of Dermatology* 23.3, p. 344 349 1167 1122.
- Paradis, Emmanuel, Julien Claude, and Korbinian Strimmer (2004). "APE analyses of phylogenetics and evolution in R language". In: *Bioinformatics* 20.2, pp. 289–290.
- Pepke, Shirley, Barbara Wold, and Ali Mortazavi (2009). "Computation for ChIP-seq and RNA-seq studies". In: *Nature methods* 6.11s, S22.
- Peters, T. J. et al. (2014). "DMRcate Illumina 450 K methylation array apatial analysis methods". In: *R package version* 1.0.
- Pfeifer, GP et al. (1990). "Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state

stability." In: *Proceedings of the National Academy of Sciences* 87.21, pp. 8252–8256.

- Pidsley, Ruth et al. (2013). "A data driven approach to preprocessing Illumina 450K methylation array data". In: *BMC genomics* 14.1, p. 293 1471 2164.
- Poterlowicz K., Murat K. (2018a). Published Tools. https//testtoolshed. g2.bx.psu.edu/repository/browse_repositories_in_categorysort= name & operation = repositories _ by _ user & id = 0a77a6371a54a53. Accessed 8 Oct. 2018.
- (2018b). Source Code of EWAS Tools. https//github.com/kpbioteam.
 Accessed 8 Oct. 2018.
- Pramio, Dimitrius T et al. (2017). "Epigenetic signature of differentially methylated genes in cutaneous melanoma". In: *Applied Cancer Research* 37.1, p. 34.
- Racine, Jeffrey S (2012). "RStudio A Platform-Independent IDE for R and Sweave". In: *Journal of Applied Econometrics* 27.1, pp. 167–172.
- Rakyan, Vardhman K. et al. (2011). "Epigenome wide association studies for common human diseases". In: *Nature Reviews Genetics* 12.8, p. 529 1471 0064.
- Reik, Wolf et al. (1987). "Genomic imprinting determines methylation of parental alleles in transgenic mice". In: *Nature* 328.6127, p. 248.
- Ritchie ME Phipson B, Wu D et al. (2015). "limma powers differential expression analyses for RNA-sequencing and microarray studies." In: *Nucleic Acids Research* 2.
- Robinson, Mark D., Davis J. McCarthy, and Gordon K. Smyth (2010). "edgeR a Bioconductor package for differential expression analysis of digital gene expression data". In: *Bioinformatics* 26.1, p. 139 140 1367 4803.

Rozowsky, Joel et al. (2009). "PeakSeq enables systematic scoring of ChIPseq experiments relative to controls". In: *Nature biotechnology* 27.1, p. 66.

Sager, Ruth (1989). "Tumor suppressor genes: the puzzle and the promise". In: *Science* 246.4936, pp. 1406–1412.

- Sandoval, Juan et al. (2011). "Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome". In: *Epigenetics* 6.6, p. 692 702 1559 2294.
- Scharpf RB Parmigiani G, Pevsner J Ruczinski I. (2008). "Hidden Markov models for the assessment of chromosomal alterations using high-throughput SNP arrays." In: *The annals of applied statistics* 2.
- Smittenaar, CR et al. (2016). "Cancer incidence and mortality projections in the UK until 2035". In: *British journal of cancer* 115.9, p. 1147.
- Spyrou, Christiana et al. (2009). "BayesPeak Bayesian analysis of ChIP seq data". In: *BMC bioinformatics* 10.1, p. 299 1471 2105.
- Sun, Guannan et al. (2013). "Statistical analysis of ChIP seq data with MO-SAiCS". In: *Deep Sequencing Data Analysis*. Springer, p. 193 212.
- Teng, Li et al. (2015). "4DGenome a comprehensive database of chromatin interactions". In: *Bioinformatics* 31.15, p. 2560 2564 1460 2059.
- Tobin, Desmond J. (2006). "Biochemistry of human skin our brain on the outside". In: *Chemical Society Reviews* 35.1, p. 52 67.
- Tomczak Czerwinska, Wiznerowicz (2015). "The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge". In: *Contemporary oncology* 19.1A, A68.
- Uddin, Monica et al. (2010). "Epigenetic and immune function profiles associated with posttraumatic stress disorder". In: *Proceedings of the National Academy of Sciences*, p. 200910794.
- Uong, Audrey and Leonard I. Zon (2010). "Melanocytes in development and cancer". In: *Journal of cellular physiology* 222.1, p. 38 41 0021 9541.
- Urich, Mark A et al. (2015). "MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing". In: *Nature protocols* 10.3, p. 475.
- Whelan Alison, Bartsch Detlef Goodfellow Paul (1995). "A familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumorsuppressor gene". In: *New England Journal of Medicine* 333.15, pp. 975– 977.

- Williams, Graham J et al. (2009). "Rattle a data mining GUI for R". In: *The R Journal* 1.2, pp. 45–55.
- Xin, Yurong et al. (2011). "MethylomeDB a database of DNA methylation profiles of the brain". In: *Nucleic acids research* 40.D1, p. D1245 D1249 1362 4962.
- Zhang, Yong et al. (2008). "Model based analysis of ChIP Seq (MACS)". In: *Genome biology* 9.9, R137 1474 760X.