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Abstract
BIOINFORMATICS ANALYSIS OF EPIGENETIC VARIANTS

ASSOCIATED WITH MELANOMA

by Katarzyna MURAT

The field of cancer genomics is currently being enhanced by the power of

Epigenome-wide association studies (EWAS). Over the last couple of years

comprehensive sequence data sets have been generated, allowing analysis

of genome-wide activity in cohorts of different individuals to be increasingly

available. Finding associations between epigenetic variation and phenotype

is one of the biggest challenges in biomedical research. Laboratories lack-

ing dedicated resources and programming experience require bioinformat-

ics expertise which can be prohibitively costly and time-consuming. To ad-

dress this, we have developed a collection of freely available Galaxy tools

(Poterlowicz, 2018a), combining analytical methods into a range of conve-

nient analysis pipelines with graphical user-friendly interface.The tool suite

includes methods for data preprocessing, quality assessment and differen-

tially methylated region and position discovery. The aim of this project was to

make EWAS analysis flexible and accessible to everyone and compatible with

routine clinical and biological use. This is exemplified by my work undertaken

by integrating DNAmethylation profiles of melanoma patients (at baseline and

mitogen-activated protein kinase inhibitor MAPKi treatment) to identify novel

epigenetic switches responsible for tumour resistance to therapy (Hugo et

al., 2015). Configuration files are publicly published on our GitHub repository

(Poterlowicz, 2018b) with scripts and dependency settings also available to

download and install via Galaxy test toolshed (Poterlowicz, 2018a). Results

and experiences using this framework demonstrate the potential for Galaxy to

be a bioinformatics solution for multi-omics cancer biomarker discovery tool.
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Chapter 1

Introduction

1.1 Skin Cutaneous Melanoma

To better understand skin cancer, we need a basic knowledge of the skin it-

self. Human skin is considered to be an extraordinary organ providing the

main barrier between the internal and external environment. This barrier is

designed to protect the human body against a large number of environmental

stressors such as temperature, microbial pathogens, chemical agents and UV

(Tobin, 2006). Normal skin consists of layers of the epidermis, papillary and

reticular dermis, and hypodermis (subcutaneous fat layer) shown in Figure 1.1

below. The epidermis is composed of three living cell layers which from the

epidermis – dermis junction include stratum basale, s. spinosum, and s.gran-

ulosum followed distally by the non-viable but biochemically active stratum

corneum. The latter is composed of dead keratinizing or cornifying strati-

fied epithelium cells that have migrated outward from the basal layer (Tobin,

2006). The stratum basale (basal layer) is the deepest sublayer, containing

threemajor type of cells such as predominant keratinocytes, and low numbers

of melanocytes, and Merkel cells (Tobin, 2006). Underlying the epidermis is

the dermis, which provides support and nutrients for the epidermis. The der-

mis is composed of collagen, reticulin and elastic fibers, and houses the ap-

pendages including hair follicles and sweat glands(Tobin, 2006). It also con-

tains vascular, neural and lymphatic systems with multiple receptors for touch,

temperature and pain. In the human skin, melanocytes reside in the stratum
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Figure 1.1: The layers of human skin (epidermis, dermis and

hypodermis), as well as an inset with a close-up view of the

types of cells in the skin (keratinocyte both squamous cells and

basal cells, and melanocytes) (Gordon, 2013).

basale as shown on Figure1.1 and produce the pigment melanin, which pro-

tects the skin from ultraviolet radiation (UVR) (Tobin, 2006). Early stages of

melanocyte development initiates with the fate commitment of precursor cell

lineages from the neural crest, which is then followed by cell migration and

niche localization. Many genes involved in melanocyte development and pig-

mentation have been characterized as key to identifying the genes and pro-

teins involved in melanoma skin cancer. Transformed melanocytes that de-

velop into melanomas increase quickly and spread aggressively to other parts

of the body making it one of the most deadly cancers (Uong and Zon, 2010).

Melanocytes arise from, a certain class of stem cells called neural crest cells

(NCCs) (Erickson and Reedy, 1998). The neural crest is induced at the time

of gastrulation, in the zone between the neural and non-neural ectoderm (Er-

ickson and Reedy, 1998) and gives rise to a number of cells populations.

Pigment cells are generated from multipotent neural-melanocytic progenitors

or bipotent glial-melanocytic precursors melanoblast (Dupin and Le Douarin,

2003). Melanoblast cells migrate from the trunk neural crest cells dorsolater-

ally between the ectoderm and dorsal surface compartments (Dupin and Le
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Douarin, 2003). Melanoblasts are exposed to a range of developmental cues

that regulate their specification process (Dorsky, Moon, and Raible, 1998).

This developmental process is governed primarily by key signaling molecules

including Wnt and BMP (Kléber et al., 2005), and other complex pathways.

Wnt protein mediates a fate switch between melanogenesis and gliogene-

sis through activated beta-catenin, as overexpression of beta-catenin leads

to an increase of melanocytes and a loss of glial derivatives (Dorsky, Moon,

and Raible, 1998). On the other hand BMP signaling suppresses neural crest

cell differentiation into melanocytes and appear to have opposing effects to

Wnt (Dhara and Stice, 2008). Their coordinated expression is required for

the normal melanocyte growth and development (Jin et al., 2001). A range

of experiments identified a series of interactions among molecules relevant

for melanocyte development (Giebel and Spritz, 1991). These studies have

elucidated genetic pathways such as transcription factor (MITF) and tyrosine

kinase (KIT ) genes with essential functions for cell homeostasis including sur-

vival, cell cycle and metabolism. KIT andMITF show complex interactions, in

that MITF is needed for the maintenance of KIT expression in melanoblasts

and KIT signaling modulates MITF activity and stability in melanocyte cell

lines (Kawakami and Fisher, 2017). In melanocyte development MITF stimu-

lates melanogenesis by activating some key pigmentation-related genes tran-

scription activation (e.g. TYR, TYRP1, MLANA) and anti-apoptotic genes up-

regulation (e.g. BCL2, BCL2A1) (Garraway et al., 2005). On the other hand

KIT plays a crucial role in the survival, migration, and development of the

melanocyte lineage (Giebel and Spritz, 1991). This effect on melanin produc-

tion may explain why disruption of those genes lead to defects in melanocyte

numbers causing variety of skin disorders including cancer. Many genes in-

volved in melanocyte development have also been implicated in melanoma

progression. Several genetic pathways regulate cell growth and survival and

play important roles in normal embryonic development as well as melanoma

progression (Uong and Zon, 2010).

The mitogen activated protein kinase (MAPK) is a type of protein kinase
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that is specific to the amino acids serine and threonine. MAPK signaling path-

way also known as the Ras-Raf-MEK-ERK pathway is one of several poten-

tially target-able pathways in melanoma. Mutations that over-activate BRAF

and NRAS are found in nearly 65% and 20% of melanomas respectively

(Gilbertson et al., 2006). Understanding how melanomas acquire resistance

to BRAF and NRAS inhibitors via genetic alterations is important, as leads

to the reactivation of the MAPK pathway, and so is a focus of drug discovery

potential (Hugo et al., 2015). Recent studies have provided further insights of

many genes that are up- and down-regulated in melanoma development. For

example, MITF and KIT have a crucial role in the melanocyte life cycle (Gar-

raway et al., 2005). Over-expression of these genes can caused inappropri-

ate cell cycle progression and as a result to this changes development of the

tumour (Garraway et al., 2005). Cutaneous melanomas incidence is rapidly

increasing and is projected to rise by 7% in the UK between 2014 and 2035,

reaching 32 cases per 100,000 people by 2035 (Smittenaar et al., 2016). The

most important factors suggested for this increased risk include unprotected

exposure to intense natural ultraviolet light (sun rays) and artificial ultraviolet

radiation (e.g. tanning beds, sunbeds), permanent mechanical or chemical ir-

ritation and genetic predisposition (e.g. red-hair phenotype (MC1R variants)

and familial atypical mole syndrome or family of atypical features)(Ghiorzo

et al., 1999). Suspected skin melanoma may induce changes that have de-

veloped de novo or on the basis of a pigmented lesion (thickening, surface

change, discolouration and margins or occurrence of itching and / or bleed-

ing)(Ghiorzo et al., 1999). The early identification and location of the primary

tumour creates a unique chance of curing skin melanoma. Prognosis appears

in part to be a function of tumour size and stage of invasion with tumour thick-

ness (Breslow, 1970). Physical examination should include questions about

the condition of the skin (i.e. information about changes in existing skin le-

sions or the occurrence of new lesions) and factors that increase the risk of

skin melanomas (e.g. sunburn, use of solarium, occurrence of melanomas in
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the family). The most important element allowing early diagnosis is the ex-

amination of the skin, which should be performed by the doctor during the

patient’s visit to the outpatient clinic or during hospitalization. The princi-

ple is to assess the skin of the whole body in good lighting, checking all the

skin areas especially ones that are difficult to access (head, feet, inter-digital

spaces, genital and anal areas). In low-risk melanomas (pT1a) the melanoma

is less than 1mm thick, not ulcerated and no other investigations are neces-

sary (Dummer et al., 2012). Computed tomography (CT) and positron emis-

sion tomography-computed tomography (PET-TK) should be considered in

patients with higher tumour stages (pT1b–pT3a) especially in the presence

of clinical metastases to lymph nodes or isolatedmetastases to distant organs

(Dummer et al., 2012). In the case of clinical metastases to the inguinal lymph

nodes, a CT scan or magnetic resonance imaging (MRI) of the pelvis are rec-

ommended before surgical treatment and sentinel node biopsy (Dummer et

al., 2012). The identification of clinical and pathomorphological prognostic

features is aimed at understanding the biology of cancer and facilitating the

planning of appropriate treatment for an individual patient, including the risk of

relapse and the likelihood of survival after treatment (Dummer et al., 2012).

The risk factors that achieved convincing or highly suggestive evidence re-

garding contribution to the development of skin cancer are genetic predispo-

sition, sun exposure, skin colour, photo-sensitivity and age. Cases of cancer

in family members increase the risk of getting cancer caused by the transmis-

sion of mutations associated with pigment cells development (Uong and Zon,

2010). Nevertheless, knowing genes responsible for melanoma occurring

in families contributed significantly to understanding the molecular mecha-

nisms of this disease (Gordon, 2013). Observation of the patients whose rel-

atives have suffered from the disease, gave the first insight into the model of

melanoma progression, which can be accelerated on the basis of congenital

disorder (Gordon, 2013). In the case of about 50% of families tested muta-

tions were found in two closely related genes CDKN2A and CDK4. CDKN2A

encodes two suppressor genes p16INK4a and p14ARF inhibiting progress
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of the cell cycle (Ghiorzo et al., 1999). A close relationship was established

between the genetic diversity at the melanocortin receptor 1 (MC1R) and pig-

mentation of the skin and hair, and recently also a predisposition to developing

melanoma (Ghiorzo et al., 1999). Inheriting CDKN2A and CDK4 gene muta-

tions does not cause cancer by themselves. Skin DNA damage caused by

UV rays leads to numerous acquired or somatic genetic changes. Multiple re-

search studies show a correlation between increased risk of skin cutaneous

melanoma (SKCM) and sun exposure (Ghiorzo et al., 1999). Moreover, It was

explained that the majority of melanoma occur on skin occasionally exposed

(e.g. abdomen skin) to sunlight when patients are young age and this ten-

dency decreases with age of exposure. On the other hand in elderly patients

melanoma tend to arise in skin constantly exposed to sun (e.g. face, neck,

arms) (Ghiorzo et al., 1999). There is no sure way to prevent melanoma, as

age, gender, race, and family history can’t be controlled. However, regular

skin checks and limiting unprotected UV exposure can help (Ghiorzo et al.,

1999). The primary prevention of melanoma is concerned with a reduction

in the risk factors for skin cancer, most notably sun exposure and sunburn.

The well-proven methods are off covering the skin, wear a hat and, applying

significant amounts of sunscreen are still are not generally well adhered to,

and so rates remain very high and increasing (Gordon, 2013). Identification of

clinical and pathomorphological features of prognosis aims to understand the

biology of cancer and facilitating the planning of proper treatment for individual

patients, including the risk of disease recurrence and probability of survival

after treatment. The most important prognostic factors in melanoma patients

without the presence of metastases is vertical tumour thickness (Breslow’s

depth), presence of histologically recognised ulceration, mitotic rate and level

of invasion (Clark’s level) (Gospodarowicz and Wittekind, 2017). The stag-

ing system most often used for melanoma is the American Joint Committee

on Cancer (AJCC) TNM system, which is based on 3 key pieces of informa-

tion: tumor thickness (T), spread to nearby lymph nodes (N) and metastasis
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to distant sites (M). The earliest clinical stage of melanomas is stage 0 (car-

cinoma in situ), and then range from stages I through IV. As a rule, the lower

the number, the less the cancer has spread. A higher number, such as stage

IV, means cancer has metastasized to distant organs (Gospodarowicz and

Wittekind, 2017). The majority of patients with stage 0 require surgical exci-

sion only but more advanced cancers often require other more complex treat-

ments including immunotherapy. Immunotherapy is the use of medicines to

stimulate immune system so that the latter can recognize and destroy cancer

cells more effectively. Among stage III and IV tumours with a poor prognosis

and high risk of recurrence it is recommended to perform an examination of

their BRAF gene. The identification of the BRAFV600E mutation will drive

the appropriate BRAF inhibitor treatment strategy (Carbognin et al., 2015).

Independently of the status of the BRAF mutation, the immune system can

be stimulated with antibodies anti-PD-1 antibodies (e.g. nivolumab or pem-

brolizumab) or by drugs like ipilimumab (anti-CTLA4 antibody). The sequence

of treatment (especially in the presence of mutations BRAF) currently is still

not specified. The combination of BRAF and MEK inhibitors is associated

with a high response rate (approximately 70%) and a rapid improvement in

the symptoms of the disease while treatment with anti-PD-1 antibodies brings

less response rates, but they are more long-lasting (Carbognin et al., 2015).

Detection of genomic alterations in the melanoma can help identify patients

who may benefit from an experimental approach in clinical trials and future

treatment design.

1.2 Epigenetics Regulation of Disorders

The first reports on epigenetics and the mechanisms of epigenetic modifi-

cations were initially published in the 1950s (Holliday, 2006). The number

of epigenetics-related studies published since then is immense and rapidly

growing (July 2018 over 63 thousand records founded in PubMed database

of (Biotechnology Information, 2018), which indicates great interest in this
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topic. New approaches, including DNA methylation and histone modifica-

tions are very important in various biological processes such as transcrip-

tion (Busslinger, Hurst, and Flavell, 1983), genomic imprinting (Reik et al.,

1987), developmental regulation (Antequera, Macleod, and Bird, 1989), mu-

tagenesis (Cooper and Youssoufian, 1988), transposition (Banks and Fedo-

roff, 1989), DNA repair (Brown and Jiricny, 1988), X chromosome inactiva-

tion (Pfeifer et al., 1990), chromatin organization (Lewis and Bird, 1991).

The renewed research in epigenetics has led to novel findings about aber-

rations in cytosine-methylation in the pathogenesis of neoplastic (Niller, Wolf,

and Minarovits, 2009), neurodegenerative (Jakovcevski andAkbarian, 2012),

psychiatric diseases (Abdolmaleky, Thiagalingam, and Wilcox, 2005), vari-

ous cancers (Dawson and Kouzarides, 2012), immune disorders and pedi-

atric disorders (Uddin et al., 2010). The term epigenome means ”on top of”

genome and refers to specific changes in genome regulatory activity occurring

in response to environmental stimuli (Egger et al., 2004). Epigenetic modi-

fications do not change the underlying DNA sequence, but can cause mul-

tiple changes in cellular function and gene expression(Egger et al., 2004).

However, those changes still remain unknown in many progressive and in-

curable diseases such as cancers including one of the deadliest, melanoma

(Esteller and Herman, 2002). A modification very widely studied currently is

DNA methylation.The methylation of cytosine at the 5-position (m5C) in eu-

karyotic DNA is the only modification present in the genomes of all vertebrates

and flowering plants (Bird, 1986). The role of this mark is so important that

many researchers consider m5C to be the 5th base of DNA. The analysis

of the human methylation profile showed that methylation typically occurs at

cytosine in CpG dinucleotides (Bird, 1986). CpG’s are not evenly distributed

in the genome, with the majority of them grouped into non-methylated se-

quences islands close to promoter regions (Bird, 1987). Methylation of CpG

islands associated with gene regulatory regions can cause genomic insta-

bility and lead to the development of many progressive and incurable dis-

eases including cancer (Sandoval et al., 2011). The field of epigenetics is
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quickly growing and with it the understanding that both the individual’s envi-

ronmental exposure and personal lifestyle can interact with the genome itself.

Research indicates that most human diseases manifest from the interaction

of genetic variants caused by the influence of epigenetic changes (Holliday,

2006). These changes may be reflected at various stages of development

or even in later generations (Holliday, 2006). For example, a mother’s ex-

posure to pollution (before pregnancy) could impact her child’s asthma or a

father’s diet could define predisposition to obesity. Genetic variants discovery

can motivate society to provide healthy lifestyle and preventional protection

against harmful environmental impact (Egger et al., 2004). Additionally, if the

epigenetic signatures of chemical/pollution exposures can be identified than

they can be limited to the minimum and the risk of epigenetic changes will

decrease (Egger et al., 2004). Clinical applications of epigenetic changes,

especially epigenetic functional regulation of gene expression has become

one of the most important research topics in recent years, including in rela-

tion to tumour pathogenesis (Esteller and Herman, 2002). The main reason

for this interest was the finding that methylation of chromatin and DNAmethy-

lation in the transcriptional silencing of genes related to oncogenesis (Esteller

and Herman, 2002). In 1983 an experiment performed by Feinberg and Vo-

gelstein found that genes of colorectal cancer cells obtained from primary

human tumour tissues were substantially hypomethylated compared with nor-

mal tissues (Feinberg and Vogelstein, 1983). Nowadays, epigenetic changes

discovery can be used as clinical biomarkers for early cancer molecular diag-

nosis, or as a treatment in gene targeted therapy in later stages (Esteller and

Herman, 2002). There is also evidence showing that abnormal DNAmethyla-

tion has been observed in immune disorders (Meda et al., 2011). Studies in-

dicate that environmental agents, including stress and diet, combine to inhibit

T-cell DNA methylation and epigenetic alterations, for example in lupus-like

autoimmunity (Rakyan et al., 2011). However, epigenetics is such a new field

of science that in most cases, its impact has not been fully demonstrated es-

pecially in terms of neurodegenerative disorders, as we still don’t know much
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about them (Jakovcevski and Akbarian, 2012). Several reports have associ-

ated Alzheimer’s disease with difference in DNAmethylation patterns related

to brain function and ageing (Egger et al., 2004). Epigenetic errors appear

one by one and findings from autopsies of brain tissue from patients with

neurodegenerative disorders shed a new light on therapy in terms of incur-

able cases (Egger et al., 2004). Clinical applications of epigenetics, combined

with the rise of technology, will lead to molecular diagnosis for which targeted

treatments can be developed. (Bock and Lengauer, 2008).

DNA Methylation in Melanoma

There have been several investigations on the relationship between DNA

methylation and melanoma. Genome-wide studies of DNA methylation have

been performed and the changes in methylation level have been identified as

potentially important in melanoma development, progression, and metastasis

(Sager, 1989). DNA hyper-methylation of CpG islands at promoter sites has

been widely described as a indicator of tumorigenesis by silencing tumor sup-

pressor genes (TSG) (Sager, 1989). In 1995, Whelan et al. demonstrated that

loss of function of the TSG gene cyclin-dependent–kinase inhibitor 2 (CDKN2)

can lead to tumorigenesis (Whelan, 1995). To date, several studies have re-

vealed association of TSG to melanoma. This is evident in the case of inacti-

vation of RASAssociation Domain Family Protein 1 (RASSF1A) which can be

found in significant number of melanomas (and in around 90% of melanoma

cell lines) (Maat et al., 2007) Moreover, BRCA1 associated protein1 (BAP1)

silencing somatic mutations can be seen in more than 80% of metastasising

tumours (Harbour, Onken, and Council, 2010). Apart fromCDKN2, RASSF1A

and BRCA1, which have been intensively discussed in multiple cancers, hy-

permethylation of other genes has also been associated with melanoma. The

HOX gene family, a member of the homeodomain-containing transcription

factors, has been used as a biomarker in various human cancers (Pramio et

al., 2017) and are also regulated at the nuclear–cytoplasmic transport level in

skin cancers (Pramio et al., 2017). Thus, the differential methylation of genes
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in melanoma tumors provides an opportunity to more fully understand devel-

opment of this cancer and to develop new therapeutic agents (Pramio et al.,

2017).

MAPKi Targeted Therapy for Melanoma

Pathway targeted therapies (BRAF/MEK inhibitors) and immune checkpoint

inhibitors have revolutionised melanoma treatment. Approximately 40% of

melanomas express carcinogen BRAF mutations that is fundamental for the

mitogen-activated protein kinase (MAPK) activation (Flaherty, 2012). Early

studies showed that BRAF gene mutation require MAPK signalling for their

survival (Flaherty, 2012). Over the past decade researchers have performed

multiple clinical trials and experiments based on agents which that target

these pathways. In one of the largest trials on BRAF mutated metastatic

melanoma researchers obtained over 422 samples from confirmed cutaneous

melanoma stage III and IV BRAF mutation positive patients (Hauschild et

al., 2012) subjected to MAPKi targeted therapy. Patients where treated with

dabrafenib inhibitor of the associated enzyme B-Raf, which plays a master

role in the regulation of cell development (Hauschild et al., 2012). While

resistant tumours showed a reactivated MAPK pathway, there was a sig-

nificant treatment effect (over 50%) compared with chemotherapy treatment

(Hauschild et al., 2012). Results like these has helped to direct future strate-

gies towards MAPKi therapy. However, melanoma resistant to MAPKi in-

hibitors still requires additional trials and test to discover mechanisms respon-

sible for intratumoral immunity (Hugo et al., 2015).

1.3 Computational Epigenetics

Recently, various experimental techniques have been developed for genome-

wide mapping of epigenetic information. Next-generation sequencing (NGS)

was shown to be useful for DNA methylation and histone modification profile

detection (Harris et al., 2010). However, the latter study failed to consider
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the differing categories of epigenetic data distribution, complexity level and

data quality issue. Bioinformatics analysis and interpretation of epigenetic

records have become one of the major challenges of recent years (Gautam

et al., 2018). Working with genomic data requires some knowledge of com-

puter languages like C++, S, R, Perl, Python, and many others were used

to write genomic libraries and packages. While specific tools for data con-

version and handling have been developed, unfortunately user friendly tools

are still a rarity. The algorithms come first, with the interface following later.

Powerful and flexible analysis systems do exist but they require computing

and statical knowledge. R is a widely used programming language and free

software environment for statistical computing and graphics that is supported

by the R Foundation for Statistical Computing (Matloff, 2011). It is a GNU

operating system project that runs on different operation systems including

Microsoft Windows, macOS, and UNIX, and is administered by CRAN project

network (Matloff, 2011). R is an implementation of the S statistics language

and quickly becamemore popular than S itself. Firstly due to the fact it is freely

available and secondly, the involvement of more users means more develop-

ers and a wider contribution network. It also gives the possibility to use it in a

more user-friendly way via graphical user interfaces (GUIs) such as RStudio

(Racine, 2012), Deducer (Fellows, 2012), and Rattle (Williams, 2009). R is

a very lean and functional language which allows the user to divide complex

processes into modules (packages) (Paradis, Claude, and Strimmer, 2004)

that can be customized depending on the user requirements and accessed

through the Bioconductor website (www.bioconductor.org) (Gentleman et al.,

2004). Bioconductor is a free, open source and open development R-based

software project for the analysis and comprehension of high-throughput ge-

nomic data (Gentleman et al., 2004). To date, software development taken by

the Bioconductor project provides a range of resources: a web based repos-

itory, nearly 1560 software packages, hundreds of metadata packages and

a number of experimental data packages, publications, slides and training

materials are constantly improved by users and developers (Gentleman et
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al., 2004). Although R and Bioconductor present many advantages as they

are a flexible and reproducible solution, they still require users to know the

statistical and programming concepts according to the analysis to avoid erro-

neous results (Matloff, 2011). The major advance offered by next-generation

sequencing (NGS) technologies is the ability to produce, in some cases, in

excess of one billion short reads per instrument run, which makes them use-

ful for many biological applications. A Bioconductor software (Robinson, Mc-

Carthy, and Smyth, 2010) offers a suite of tools for analyzing and visualiz-

ing a variety of sequencing approaches based on peak-finding algorithms,

data summarisation and visualisation (Bock and Lengauer, 2008). Combin-

ing chromatin immunoprecipitation assays (ChIP) can be analysed with mul-

tiple peak callers e.g. MOSAiCS (Sun et al., 2013), ChIPseqR (Humburg et

al., 2011), BayesPeak (Spyrou et al., 2009). Differential expression analysis

of RNA-seq data can be run with EdgeR (Robinson, McCarthy, and Smyth,

2010) or DESeq2 (Love, Huber, and Anders, 2014) solution. The unique data

distribution characteristics of DNA methylation require the development of

dedicated bioinformatics and computational tools. Bioconductor packages

provide analysis of multiple DNA methylation methods such us bisulfite se-

quencing (methylPipe (Kishore et al., 2015), DMRcate (Peters et al., 2014))

and one of the most common techniques Infinium Methylation Assay 450k

(Dedeurwaerder et al., 2011) (DMRcate (Peters et al., 2014), Minfi (Hansen

andAryee, 2012), ChAMP (Morris et al., 2013), methylumi (Davis et al., 2012),

RnBeads (Assenov et al., 2014)). The goal of the analysis is mainly to iden-

tify differentially methylated regions (DMRs) or differentially methylated posi-

tions (DMPs) integrate, and then visualize epigenomic data sets (Bock and

Lengauer, 2008). The last but not least step of each of the above is enrich-

ment analysis to discover functions (Gene Ontology (Ashburner et al., 2000))

and pathways (KEGG (Kanehisa and Goto, 2000)). It is still a case of manu-

ally inputting data as gene list into the DAVID (Dennis et al., 2003) functional

annotation tool or running the tool via command line.
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Application of Galaxy for Epigenetic Research

Developers aims tomake computational biology accessible to everyone. Thus,

they have devised Galaxy an open, web-based platform for accessible, re-

producible, and transparent data-intensive research (https://usegalaxy.org)

see Figure 1.2 (Goecks, Nekrutenko, and Taylor, 2010). This platform is

accessible for users of every level of interest and knowledge. It features

hundreds of tools and workflows, which are easily to run via user friendly

interface (Goecks, Nekrutenko, and Taylor, 2010). Reproducible workflows

and interactive histories allow users to repeat tasks and fully understand the

analysis. This followed by transparent publication of data processing and

sharing these on-line creates an opportunity to verify results and methods

by the community. The main Galaxy server has more than 124,000 regis-

tered users worldwide, who run approximately 245,000 analysis jobs each

month (Goecks, Nekrutenko, and Taylor, 2010). Newly registered users can

address their needs and get support frommore advanced developers, admin-

istrators or educators involved in the project. I outline in Figure 1.2 a scheme

that in three panels illustrate the available tools section, working space and

history on Galaxy, containing inputs and outputs of the analysis. Analysis

tools of interest can be searched by name or by the topic/category they be-

long. When a tool is selected, it is shown in the working space ready to use.

When a user apply inputs and custom settings then only one click separates

him from getting results. Output as an inputs datasets are added to the his-

tory panel and they can be modified, renamed, shared or downloaded from

there. The Galaxy framework and software is open-source which means that

is available to everyone and can be run on any Unix-based operating system.

Server administration and tool development is supported by an application

programming interface (API), software development kit (SDK) and tools for

automating set-up and deployment (Goecks, Nekrutenko, and Taylor, 2010).

In recent years, researchers have contributed their time, skills and expertise

to building this project. These researchers include the members of the Galaxy
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users, developers and admins communities. The availability of training mate-

rials, workshops and meetings continue to build a strong Galaxy collaboration

network around the world (Goecks, Nekrutenko, and Taylor, 2010).

Figure 1.2: Galaxy Project (public) interface consisting of tool

search panel, working space area and history.

1.4 Public Databases for Epigenetic Information

To date, epigenetics data are widely available on public resources such as

Gene Expression Omnibus (GEO) (Edgar, Domrachev, and Lash, 2002) or

ArrayExpress (Brazma et al., 2003) repositories. The number of experiments

and their results have been increasing rapidly over the last decade. Cur-

rent efforts are focused on the extraction and creation of epigenome spe-

cific databases. In 2003, the ENCODE Project was launched with the goal

of producing a public genome-wide Encyclopedia of DNA Elements (Con-

sortium, 2004). This encyclopedia produces, organizes and also analyses

the data, and this project has surpassed the highest expectations of the cre-

ators. ENCODE provides not only data but also tools to search and visualize
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analysis products in an integrative way. However, the project has been criti-

cized for missing functional elements of genetic and biochemical approaches.

In terms of epigenome modifications type there are three types of epige-

netic databases include DNA methylation, histone modyfication and Non-

coding RNA mechanism (Holliday, 2006). The DNA methylation databases

are important for studying methylomes obtained from different techniques

and tissues, pathological conditions, and species. By way of illustration,

NGSmethDB is a database for NGS at single cytosine resolution level of

DNA methylation data (Hackenberg, Barturen, and Oliver, 2010). Further-

more, the DiseaseMeth database focuses only on human diseases (Lv et al.,

2011), while MethylomeDB it is a brain tissue specific database (Xin et al.,

2011). Histone repositories are useful for cross-species research in chro-

matin interactions of genomic DNA, post-translational modifications, and his-

tone modifying enzymes. This approach can be seen in the case of the two

freely available databases. Histome database covering around 50 human hi-

stone proteins and 150 histone modifying enzymes (Khare et al., 2011) and

4DGenome which instead records multiple chromatin interaction data around

4,433,071 experimentally-derived and 3,605,176 computationally-predicted

interactions in 5 organisms.(Teng et al., 2015). Noncoding RNA repositories

include target prediction algorithms and experimentally verified miRNA tar-

gets. MiRWalk has been developed only for the prediction of possible miRNA

binding sites (Dweep et al., 2011). Nevertheless, researchers provide us with

miRBase microRNA sequences, targets and gene nomenclature repository

(Griffiths Jones et al., 2006). Circular RNAs are specific of they origin from

otherwise protein-coding genes and have been shown to be expressed in

eukaryotic cells that was the aim for creating circBase containing unique cir-

cRNA (Glazar, Papavasileiou, and Rajewsky, 2014). Data mining of genomic

regions methylated in cancer have resulted in the creation of cancer limited

databases. Customised repositories are useful for cohort studies where irreg-

ular methylation patterns that are correlated with various cancers. A leading

example of this is The Cancer Genome Atlas (TCGA), which is a publically
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funded project that aims to accelerate understanding of cancer genetics by

cataloging and storing of cancer genomic profiles (Tomczak, 2015). Other

comprehensive databases available for DNAmethylation and cancer include

MethyCancer (He et al., 2007) and a database of 167 epigenetic modifiers

correlated with cancer targets (Nanda, Kumar, and Raghava, 2016). These

computational strategies and resources offer new opportunities for greater un-

derstanding of epigenome regulation, molecular organization, development

and disease (Gautam et al., 2018).
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Chapter 2

Computational Methods for

Epigenetics

2.1 Epigenome-Wide DNA Methylation Profiling

Epigenome-wide association studies (EWAS) analyse genome-wide distribu-

tion of epigenetic marks in cohorts of different individuals in order to find as-

sociations between epigenetic variation and phenotype (Rakyan et al., 2011).

One of the epigenetic modifications widely studied is DNAmethylation. In hu-

mans, DNA methylation occurs by attaching a methyl group to the cytosine

residue and it has been suggested that this modification results in as a sup-

pression of gene expression (Bird, 1986). With regards to DNA methylation

analysis there are a range of technologies such as, polymerase chain reac-

tion (PCR) or pyrosequencing which are dedicated to studying small groups of

methylation sites across number of samples (Kristensen and Hansen, 2009).

New approaches, including bisulphite sequencing (RRBS) (Carr et al., 2007)

and sequencing by synthesis (MethylC-Seq) (Urich et al., 2015), have al-

lowed researchers to study DNAmethylation on the global scale. Results from

RRBS and MethylC-seq are comparable with one another (Urich et al., 2015).

A potentially significant problem with these methods is its level of complexity

and cost escalating with population sizes, meaning that currently running this

type of analysis can be prohibitively costly (Kristensen and Hansen, 2009). By

contrast, Illumina Methylation Assay (Illumina, 2018) provides high accuracy
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with low input DNA requirements on budget. Bisulfite conversion, array pro-

cessing, and a wide study of methylation changes with other platform compat-

ibility, (e.g. gene expression, microRNA profiling) make Illumina Methylation

Assay one of the most comprehensive solution on the market (Sandoval et

al., 2011). However, a Illumina Genome Studio software license is required,

whichmay not be suitable for everyone. Moreover, as the company offers only

basic preprocessing and analysis options there is growing interest to create

freely available software to perform quality control, normalization and detec-

tion of differentially methylated regions (Marabita et al., 2013a). Existing tools

and pipelines also require high performance computational hardware, pro-

gramming knowledge and experience to run the analysis. This is why the aim

of my project was to establish and implement this methods into user-friendly

environment.

There are two basic approaches currently being adopted in research for

reading the 450k data. First focuses on efficiency of bisulfite conversion and

the second on the overall experiment (e.g. hybridization, extension). Illumina

Methylation Assay 450k is a powerful utilisation in terms of reagent costs,

time of labour, high accuracy, low input DNA requirements and price. It de-

termines quantitative array-based methylation high resolution measurements

at the single-CpG-site level of over 450 thousand loci (Pidsley et al., 2013).

Epigenome-wide methylation analysis capabilities make this assay suitable

for broad investigation of methylation changes in normal and diseased cells

(Rakyan et al., 2011). Infinium technology uses two different bead types to

detect changes in DNA methylation levels. In Figure 2.1 one can see M -

methylated and U - unmethylated bead types. Depending on the probe de-

sign, the bead signals are reported in different colours -green or red (Illumina,

2018).

As such it has become one of the most comprehensive solutions on the

market (Marabita et al., 2013a). However, due to the nature of the design fol-

lowing two different chemical assays, analysis can be too complex. As men-

tioned previously, the llumina Genome Studio software license is required
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Figure 2.1: The Infinium Methylation Assay Technology (Illu-

mina, 2018)

before use and the company offers only basic preprocessing and analysis

strategies (Marabita et al., 2013a). 450k probes first needs to be filtered and

normalised. Filtering out any probes that can generate artifactual data and

removing any source of variation to avoid any data deviations. After correct

preprocessing of the data (i.e. filtering out problematic probes and normal-

izing the data),downstream analysis can be performed. Detection of DMPs

(differentially methylated positions) and DMRs (differentially methylated re-

gions) is the most attractive currently available technique in the framework of

large biomarker discovery studies, and has resulted in a growing interest to

create freely available software to perform quality control, normalization and

differentially methylated regions detection (Marabita et al., 2013a).

2.1.1 Pre-processing

No single technique excels in all aspects of DNAmethylation analysis. Sam-

ple number and associated characteristics, and the method applied will gen-

erate different types and number of results. Therefore, it is necessary to un-

derstand, identify, and exclude low quality scores. Data preprocessing may

be divided into normalization and filtering step. Different methods have been

proposed to perform normalization. The Infinium I probe design includes two

bead types per SNP locus and ends in the queried SNP base (Nakabayashi,

2017). Infinium II probe design requires just one bead type per locus and



Chapter 2. Computational Methods for Epigenetics 21

ends at the base proceeding of SNP (Nakabayashi, 2017). Both of designs

allow unlimited access for SNP interrogation and minimize the differences so

ranking of potential differentially methylated loci is more accurate (Illumina,

2018). Background and inter-array correction equalizes the background sig-

nal between Type I and Type II probes and helps to achieve good quality data

especially when subtle methylation differences need to be detected by statis-

tical tests between large numbers of cases and controls. Filtering otherwise

provides a basis for detection and removal of SNP variation (Daca-Roszak

et al., 2015), low p-values and cross-reactive events (Marabita et al., 2013b).

This helps to correct for possible bias arising from within and between array

variation which normalization did not detect (Aryee et al., 2014). Compu-

tational methods can be applied to sequencing datasets via command line

tools or R based trimming toolkits, such as Bioconductor package Minfi and

its Quality Control functions (Aryee et al., 2014). Here function return plots

with the log median intensity in both the methylated (M) and unmethylated

(U) channels. When plotting these two medians against each other the good

quality samples cluster together, while failed samples tend to separate and

have lower median intensities (Aryee et al., 2014). In addition Bioconductor

offers us tailored function to remove probes that contain either a SNP at the

CpG interrogation or at the single nucleotide extension (Aryee et al., 2014).

2.1.2 Mapping and Graphical Visualization

Generally, downstream data analysis provides three types of information: sta-

tistical significance between groups, absolute differences (β, M value) and

differentially methylated areas (Aryee et al., 2014). Beta value ranges from

0 to 1 indicating the methylation level at that site for the population of cells

analysed (0 - unmethylated, 1 - methylated) (Cazaly et al., 2016). Unfor-

tunately at very high or low values there is a risk of unequal variance at β

values record. To avoid any heteroskedasticity β values can be transformed

into the logit - M value (Cazaly et al., 2016). Differentially methylated areas

involves adjacent positions or regions that have different methylation patterns
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between samples (Aryee et al., 2014). The first step in high-throughput se-

quencing analysis is the mapping of the generated reads to a genome refer-

ence sequence. To accomplish this task, numerous software tools have been

developed. Alignment is the process where data are mapped to the genome.

Depending on the genome, not all methylation loci may have a genomic posi-

tion. Currently, popular software alignment tools use UCSC genome browser

(http://genome.ucsc.edu) (Kent et al., 2002) to optimally match the reference

genome with data. The UCSC Genome Browser site provides reference se-

quences and draft assemblies for various genomes. Graphical viewers have

been developed to support fast interactive performance. Open-source, web-

based tool suite for genomic visualization, examination and curation of the

custom data. Infinium methylation arrays can be associated with a genomic

location using Minfi package (Aryee et al., 2014). Data mapped to genome

can be generated or converted in normalized BedGraph format e.g. using

Bioconductor rtracklayer package. Rtracklayer is a framework for interacting

with genome browsers and manipulating annotation tracks (Lawrence, Gen-

tleman, and Carey, 2009). BedGraph format allows display of continuous-

valued data in track format which can be visualized in genome browsers or

qenomics viewers (Kent et al., 2002). Graphical representation of data give

better understanding of generated reads and their possible implication.

2.1.3 DMR and DMP Identification

The next step of methylation profiling is identification of differentially methy-

lated loci with respect to case or control design. In simple comparisons be-

tween such pairs of samples (e.g. treatment and control) Fisher’s Exact Test

or Hidden Markov Models (HMMs) are adequate to compare one test and

one control sample at a time. They are implemented in Bioconductor pack-

ages such as methylKit (Akalin A, 2012), RnBeads (Assenov et al., 2014)

and VanillaICE (Scharpf RB, 2008). These studies would have been more

useful if they had focused on replicates variation. Replication between a dis-

covery and a validation data set improve the measurement of variation and
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hence increases the precision of gene expression measurements and allows

smaller changes to be detected. Genomic regions (DMR) that are differen-

tially methylated between replicates can be tracked using regression bump

hunting framework (Jaffe et al., 2012). The algorithm first implements a t-

statistic at each methylated loci location, with optional smoothing, then group-

ing probes into clusters with a maximum location gap and a cutoff size to refer

the lowest possible value of genomic profile hunted (Jaffe et al., 2012). Differ-

entially methylated positions (DMP) detection can be accomplished by using

linear regression model from limma package (Ritchie ME, 2015). Limma was

initially developed for the analysis of microarray expression analysis but cur-

rently it is also used for methylation data (Ritchie ME, 2015). In order to reveal

the meaning of methylation changes results can be functionaly annotated or

correlated with the corresponding expression data.

2.1.4 Peak Detection

Peak Detection is a computational method added and used in methylation

analysis to identify areas where a protein (e.g., modified histones or tran-

scription factors) interacts with DNA (Pepke, Wold, and Mortazavi, 2009).

Transcription factors enriched area are called transcription factor binding sites

(TFBS), while for histone modifications enriched area are referred to as his-

tone modification peak (Pepke, Wold, and Mortazavi, 2009). In DNAmethyla-

tion experiments, an area of interest is the methylated enriched region (Klose

and Bird, 2006). Software packages for peak detection follow these basic

components: first, call peaks along individual chromosome than combine in-

dividual signals to apply post-call filtering and statistical tests. Significance

ranking of called peaks estimate regulatory sites or whole different distribution

patterns. There are two preferred approaches for mapping puncture peaks

e.g. sites of transcription-factor binding or methylation levels. These are

MACS - Model-Based Analysis (Zhang et al., 2008) and PeakSeq system-

atic scoring (Rozowsky et al., 2009). Broad and narrow peaks e.g. open

chromatin regions can be detected using F-Seq (Boyle, 2008) or WaveSeq
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(Mitra A, 2012). The key problem with peak calling algorithms and tools, is

that customized settings and parameters can affect the number of peaks and

potential can confuse the user. The power and abundance of counting-based

measurements create new challenges and features for future analysis tools.

2.2 Galaxy Tools Development

Galaxy is an open-source project. Everyone can contribute to its develop-

ment as it is not focused on any single software but rather enables integra-

tion of different technologies (Afgan et al., 2018). In addition, Galaxy allow

researchers to share code and work in straightforward manner without being

concerned with what programming language or environment was used (Af-

gan et al., 2018). The XML file is a link between the tool and Galaxy which

describes to Galaxy how the underlying software works i.e., how to invoke

the tool, what options to pass and what the tool will produce as output. De-

pendency and libraries required for installation can be added via Conda (Ana-

conda, 2017). Conda quickly installs, runs and updates packages and soft-

ware requirements for any language — Python, R, Ruby, Lua, Scala, Java,

JavaScript, C/ C++, FORTRAN (Anaconda, 2017). Functional testing is a

recipe quality control process to present developers and users with tools that

can be run across different systems and architectures. Tools are tested by

feeding them with example datasets and settings and then examining the re-

sults. Every Galaxy dataset is associated with a datatype which can be added

to the config file if the latter it is not already there (Afgan et al., 2018). Appro-

priate types of the data have great importance for the analysis e.g. SAM/BAM,

BED, GFF/GTF, WIG, bigWig, bigBed, bedGraph, and VCF offer specific vi-

sualization and visual analysis environment options available via Trackster

(Afgan et al., 2018). Galaxy’s aim is the integration of datasets easily without

downloading or sending it to a remote server. Following this idea develop-

ers can make tools accessible to a broad audience by sharing and publishing

them on the main server accessible to everyone (Afgan et al., 2018).
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The tools and tool suites provide ready-to-use combinations of bioinfor-

matics methods that are wrapped into Galaxy ToolShed (Poterlowicz, 2018a).

The ToolShed allowsGalaxy administrators to install thousands of freely avail-

able Galaxy utilities into their instances. The main ToolShed serves as an

digital distribution platform, sharing tool updates and versions. This solu-

tion simplifies management of tools for both developers and administrators

(Afgan et al., 2018). Tools can be developed separately in respect to re-

searchers needs. The goal of creating groups of tools and build them into

suites is to expand both their quantity and quality (Goecks, Nekrutenko, and

Taylor, 2010). The number of Galaxy tools contributed by the community has

increased as a result of growing interest in multiple areas of research. In

Galaxy, users can find simple statistics or even text manipulation tools so

there is no need to download your data and edit them manually, but the ma-

jority of tools on the instance are for analysis of Next-generation sequencing

(NGS) genomic datasets. In addition to newly available tools, Galaxy rec-

ognizes and can process data types from current DNA sequencers (Goecks,

Nekrutenko, and Taylor, 2010). Galaxy implements a range of attributes to

simplify the analysis of big data, including workflows and collections. Users

are able to analyze their data in interactive and reproducible ways. Workflow’s

trial-and-error approach allows them to use individual tools in following order

and connection. Pipelines can be generated from history or downloaded from

external resources (e.g. (Manchester and Southampton, 2018)). A conve-

nient workflow editor shown on Figure 2.2 is also available to build workflows

step-by-step or to edit existing ones. Galaxy gives user flexibility by provid-

ing named-tags and labels for tools and datasets used in the analysis. Once

developed, workflows behave complex tools, and they can be obtained and

executed from Galaxy’s main analysis interface (Goecks, Nekrutenko, and

Taylor, 2010).

However, local galaxy instance requires a few additional things to run: a

virtual environment, configuration files, and dependent Python modules (Af-

gan et al., 2018). However, starting the server requires informatics expertise
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Figure 2.2: Galaxy’s graphical workflow editor, show part of a

sample workflow.

to set up infrastructure and managing the instance. Firstly users should in-

stall Galaxy, tools and all the necessary dependencies on their local machine.

Then administration work starts whenmaintaining the server requests not only

user handling but also controlling the usage, data back-up and software up-

dates. Galaxy provides multiple benefits from local installation. Users can

customize Galaxy itself as can be seen on Figure 2.3. This shows a ”kp-

bioteam” instance being run by Dr K Poterlowicz team. In addition, the admin

settings section allows installation of the tools not to be published onto the

main server or to develop new tools that integrate with particular research

question. Scalability optimize runs, handle more users, run more jobs even

on large datasets. Disadvantages on the informatics side are fully addressed

by various advantages of this solution (Afgan et al., 2018).

Planemo are command-line utilities assist in developing Galaxy and Com-

monWorkflow Language tools. The key aspects of Planemo virtual appliance

are availability to local development environments (e.g. if Planemo has been

installed with brew or pip) and the second is for developers using a dedi-

cated Planemo virtual appliance (available as OVA, Docker, Vagrant, etc.)
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Figure 2.3: Local Galaxy Instance running via command line

with custom interface consisting predefined tools sections, tai-

lored working space area and test history.

(galaxyproject, 2014). Planemo can help user to develop tools and Conda

packages in unison, publish tools to the Galaxy Tool Shed and also support

docker and containers (galaxyproject, 2014). Docker, a virtual appliance is

an open-source technology that performs operating-system-level virtualiza-

tion also known as containerisation (Developers, 2017). It enables develop-

ers to easily pack, ship, and run any application as a lightweight, portable,

self-sufficient container, which can run virtually everywhere. Containers are

created from runtime instance of an image which specify their exact contents.

Images are often created by combining andmodifying standard images down-

loaded from repositories (Developers, 2017). In addition, Docker (Develop-

ers, 2017) can get more applications running on the same time and more

hardware than other computational solutions. Simplified containered applica-

tions are ready-to-run by developers and it makes managing and deploying

much easier. Nowadays, almost all IT and cloud companies have adopted

Docker which means that the community is still growing and it is really valu-

able to use it (Developers, 2017).
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Chapter 3

Development of Galaxy Tools

3.1 EWAS - Galaxy Tool Suite

An EWAS suite (table 3.1) has been developed as a part of my project to pro-

vide users with an enhanced understanding of the Infinium MethylationAssay

analysis tool. The tool suite includes methods for preprocessing with strati-

fied quantile normalization minfi_ppquantile or extended implementation of

functional normalization minfi_ppfun with unwanted variation removal, sam-

ple specific quality assessment minfi_qc and differentially methylated regions

minfi_dmr and position detection minfi_dmp. All scripts were wrapped into

a web based platform - Galaxy, as a user-friendly interface with tools and

ready to run workflows. Which is a solution for non-programmer scientists

allowing them to analyze their data and share their experience with others

(Poterlowicz, 2018a). Configuration files are publicly published on our lab

group’s GitHub repository with scripts and dependency settings also available

to download and install via the Galaxy test toolshed (Poterlowicz, 2018a). My

suite was created and tested using a Planemo workspace with a default con-

figuration and shed tool setup available via Docker (operating-system-level

virtualization) (Poterlowicz, 2018b).

The workflow combines 7 main steps Figure 3.1, starting with raw inten-

sity data loading (/.idat) and then preprocessing and optional normalization of

the data. The next quality control step performs an additional sample check

to remove low-quality data, which normalization cannot detect. The work-

flow gives the user the opportunity to perform any of these preparation and



Chapter 3. Development of Galaxy Tools 29

Read

.IDAT

Files

Prepro-

cess and

Normal-

ization

Quality

Assess-

ment and

Control

Genetic

Variation

Anno-

tation

DMP

DMR

Finding

Functional

Annota-

tion and

Visual-

ization

Figure 3.1: Simplified workflow for analysing epigenetics data

data cleaning steps, including the highly recommended genetic variation an-

notation step that results in single nucleotide polymorphism finding and re-

moval. Finally, the dataset generated through all of these steps can be used

to hunt (find) differentially methylated positions (DMP) and regions (DMR)

with respect to a phenotype covariate. Functional annotation of these data

generates clinically meaningful information about methylation changes with

graphical representation of these genes and functions. All the tools, single

preparation and analysis steps are shown in Figure 3.2 and explained in de-

tail below.

Data Loading: IDAT files are the combination of raw green and red colour

arrays containing the summarized bead information generated by the Illumina

450k scanner (Marabita et al., 2013a). Illumina’s GenomeStudio solution con-

verts the data into plain-text ASCII files losing a large amount of information

during this process (Marabita et al., 2013a). To prevent this kind of data loss

we developed an R based tool minfi_read450k which is the combination of il-

luminaio readIDAT and minfi RGChannelSet function. We decided to use this

functions to firstly load intensity information for each two color micro array

and then build up an RGChannelSet class based on them. Preprocessing

and Normalization: RGChannelSet represents two color data with a green

and a red channel and can be converted into methylated and unmethylated

signals assigned to MethylSet or into Beta values build in RatioSet (Aryee et

al., 2014). Users can convert from RGChannelSet into MethylSet using the

minfi_mset tool or compute Beta values using minfi_rset tool, no normaliza-

tion performed. However, these two classes can also be preprocessed and

normalized with two methods recommended by Illumina (Aryee et al., 2014).

Minfi_ppquantile implements stratified quantile normalization preprocessing
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Table 3.1: Summary of the EWAS suite tools inputs and outputs

Tool Input Output Description

minfi_read450k IDAT RGChan-

nelSet

read the .IDAT files

minfi_mset RGChannelSet MethylSet convert the Red/Green

.IDAT’s for an Illumina

methylation array

minfi_qc MethylSet /Ge-

nomicMethylSet

DataFrame quality assessment

minfi_rset MethylSet/Ge-

nomicRatioSet

RatioSet converting methylation

data from methylation and

unmethylation channels, to

ratios (Beta and M-values)

minfi_ppfun RGChannelSet GenomicRa-

tioSet

functional normalization

preprocessing

minfi_ppquan-

tile

RGChan-

nelSet/Ge-

nomicMethylSet

GenomicRa-

tioSet

stratified quantile normal-

ization

minfi_map-

togenome

MethylSet/RGChan-

nelSet/RatioSet

GenomicRa-

tioSet

add genomic coordinates

to each probe together with

some additional annotation

information

minfi_geo GEO accession GenomicRa-

tioSet

download data from GEO

database

minfi_getbeta MethylSet/Ra-

tioSet/Genomi-

cRatioSet

DataFrame return Beta value

minfi_getCN MethylSet/Ra-

tioSet/Genomi-

cRatioSet

DataFrame return coordinating node

minfi_getM MethylSet/Ra-

tioSet/Genomi-

cRatioSet

DataFrame return the Fisher informa-

tion corresponding to a

model and a design

minfi_pheno RatioSet/Genomi-

cRatioSet

DataFrame extract phenotype data

minfi_getanno GenomicRatioSet DataFrame access provided annota-

tion

minfi_getsnp GenomicRatioSet DataFrame return SNP information of

the probes

minfi_dropsnp GenomicRatioSet GenomicRa-

tioSet

drop the probes that con-

tain either a SNP at the

metylated loci interrogation

or at the single nucleotide

extension

minfi_dmp MethylSet/Ge-

nomicRatioSet

DataFrame return differentially methy-

lated positions

minfi_dmr GenomicRatioSet DataFrame return differentially methy-

lated regions
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and it is supported for small changes like in one-type samples e.g. blood

dataset. The conceptual understanding is that it is a transformation of the

array x based on function F−1Gx where Gx is an estimated distribution func-

tion and F−1 is the inverse of an estimated distribution function (Bolstad et al.,

2003). It has the result in normalized distributions identical for all the arrays

(Bolstad et al., 2003). For quantile normalization Gx is the empirical distribu-

tion of array x and F is the empirical distribution for the averaged quantiles

across arrays (Bolstad et al., 2003). To sum up, quantile normalization is a

technique for making two arrays distributions identical in statistical proper-

ties. In contrast, minfi_ppfun is aimed at global biological differences such as

healthy and occurred datasets with different tissues and cell types (Fortin et

al., 2014). It is called the between-array normalization method and removes

only variation explained by a set of covariates while quantile normalization

forces samples to be the same, which removes all variation across the data

(Fortin et al., 2014). Both of these methods return GenomicRatioSet class

aimed at most of analyses performed on EWAS data using Minfi package

(Aryee et al., 2014). Quality Assessment and Control: Data quality assur-

ance is an important step in InfiniumMethylationAssay analysis. The assess-

ment can be run on methylated signals generated by preprocessing analysis

step. Minfi_qc tool outputs plot the log median intensity in both the methy-

lated (M) and unmethylated (U) channels. When plotting these two medians

against each other the good samples cluster together, while failed samples

tend to separate and have lower median intensities as we can see on Figure

4.1 all provided samples are remarkable. Mapping: Mapping is the process

where a sequenced read is compared to a reference based on its nucleotide

sequence similarity. Minfi_maptogenome tool accept both Methyl- and Ra-

tioSet than align to the genome using an annotation package and output Ge-

nomicRatioSet or GenomicMethylSet. However, depending on the genome,

not all methylation loci may have a genomic position. Annotating probes

affected by genetic variation: Incomplete annotation of genetic variations
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such as single nucleotide polymorphism (SNP) may affect DNA measure-

ments and interfere results from downstream analysis. Minfi_getsnp return a

data frame containing the SNP information of unwanted probes to be removed

byminfi_dropsnp tool (Aryee et al., 2014). DMPs andDMRs Identification:

The main goal of the EWAS suite is to simplify the way differentially methy-

lated loci sites are detected. The EWAS suite contains minfi_dmp tool detect-

ing differentially methylated positions (DMPs) with respect to a phenotype co-

variate, and more complex minfi_dmr solution for finding differentially methy-

lated regions (DMRs) (Aryee et al., 2014). Genomic regions that are differen-

tially methylated between two conditions can be tracked using a bump hunt-

ing algorithm. The algorithm first implements a t-statistic at each methylated

loci location, with optional smoothing, then groups probes into clusters with a

maximum location gap and a cutoff size (Aryee et al., 2014). Functional An-

notation and Visualization: In addition to downstream analysis users can

access annotation provided via Illumina (minfi_getanno) (Aryee et al., 2014)

or perform additional functional annotation using the Gene Ontology (GO) tool

(clusterprofiler_go). The Gene Ontology (GO) provides a very detailed repre-

sentation of functional relationships between biological processes, molecular

function and cellular components across data (Consortium, 2004). Once a

specific regions has been chosen, clusterprofiler_go visualize enrichment re-

sult see Figure 4.2. Many researchers use pathway analysis to characterise

the function of the gene that demonstrate the potential for Galaxy to be a

bioinformatics solution for wide multi-omics research. Training: I have also

provided training sessions and interactive tours for user self-learning. The

training materials are freely accessible at the Galaxy project Github reposi-

tory (http://galaxyproject.github.io/training-material). Such trainings and tours

guide users through an entire analysis. Following steps and notes helps users

to explore and better understand the concept. Slides, a hands-on instruction

describes the analysis workflow, all necessary input files are ready-to-use via

Zenodo, a Galaxy Interactive Tour, and a tailor-made Galaxy Docker image

for the corresponding data analysis.
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Chapter 4

Application of the Tools

4.1 Enhancement for theComputationalMethods

With the rapidly increasing volume of epigenetics data available, a computer-

based analysis of heritable changes in gene expression becomes more and

more feasible. Many computational epigenetics studies have focused on gen-

eration of data and increasing diversity of methods and techniques on data

population scale and tools to mine them. The generalization of much of the

published research on this issue is however, problematic. It is true that exe-

cuting and aligning for multi-omics studies are important steps. Risk evalua-

tion, disease management and novel therapeutics development are all chal-

lenging researchers to find novel bioinformatic frameworks and approaches.

Recent work has revealed that this challenge is now being targeted (Holli-

day, 2006). The main difference to existing solutions is that they are require

computing knowledge and experience. In this regard I provide a well estab-

lished user friendly tool suite available via Galaxy platform ’EWAS-Galaxy’. It

is combine theories, models and methods required to run complex biological

and medical epigenetics analysis. In addition, It provides a set of tools, each

one being available as a BioConda package as well as a Docker container

(Poterlowicz, 2018b). Based on the Galaxy Docker project, my web server

offers a comprehensive and freely accessible epigenetics workspace. Source

code for the Galaxy is open and supported by the developer community, which

means that my tools are being tested and constantly improved. They can be

deployed on every standard operating system (Linux, Windows,OSX), but at
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the same time they can be installed and run on high-performance- or cloud-

computing infrastructure (Poterlowicz, 2018a). The role of computational epi-

genetics is the development and application of bioinformatics methods to

study the epigenome.

4.2 Clinical Relevance Validation

ABig interest in skin cancer biomarker identification led to validation of the dif-

ferentially methylated regions analysis. Illumina 450K Methylation data were

obtained for sensitivity of melanoma biopsies pre and post MAPKi treatment

(Hugo et al., 2015). The data has been download from Gene Expression Om-

nibus (GEO) with accession number GSE65183. The Gene Expression Om-

nibus is an international public database repository which distributes broadly

understood genomic data sets (Hugo et al., 2015). Methylation profiling by

genome tiling array in melanoma can help us understand how non-genomic

and immune changes can have an impact on treatment efficiency and dis-

ease progression. Raw image IDAT files were loaded into the Galaxy envi-

ronment using Data Libraries. EWAS workflow was run on Red and Green

dataset collections of patient-matched melanoma tumours biopsied before

therapy and during disease progression, pre-defined phenotype tables with

sensitivity information and up to date genome tables (UCSC Main on Human

hg19 Methyl450) (Poterlowicz, 2018b) were used as inputs and default set-

tings. This workflow generated differentially methylated regions and positions

and also studied the functional aspects behind hypo- and hyper - methylated

genes. To detect poorly performing samples I ran quality diagnostics with

minfi_qc tool. Provided samples passed quality control test, can be seen (on

figure 4.1) that they clustered together with higher median intensities confirm-

ing their good quality (Aryee et al., 2014).

Differentially methylated loci were identified using single probe analysis

implemented byminf_dmp tool with the following parameters: phenotype set
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Figure 4.1: Quality Control Plot representation of melanoma pre

and post MAPKi treatment samples.

as categorical and qCutoff size set to 1. The bump hunting algorithm was ap-

plied into minfi_dmr tool to identify differentially methylated regions (DMRs)

with maximum location gap parameter set to 250, genomic profile above the

cutoff equal to 0.1, number of resamples set to 0, null method set to permu-

tation and verbose equal FALSE which means that no additional progress

information will be printed. Differentially Methylated Regions and Positions

revealed the need for further investigation of tissue diversity in response to en-

vironmental changes (Bock and Lengauer, 2008). Nearest transcription start

sites (TSS) and enhancer elements annotations where found in the hyper-

methylated gene set listed as follows: PITX1, SFRP2, MSX1, MIR21, AXIN2,

GREM1, WT1, CBX2, HCK, GTSE1, SNCG, PDPN, PDGFRA, NAF1, FGF5,
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FOXE1, THBS1, DLK1 and HOX gene family.

Functional annotation with GO is a schema to understand how the an-

notations are assigned to the genes (Ashburner et al., 2000). These are

enrichment GO categories after controlling for FDR control Figure 4.2. The

most significance to the gene output was the pattern specification process

(GO:0007389), skeletal system development (GO:0001501) and regionaliza-

tion (GO:0003002) meaning that melanoma MAPKi resistance could be re-

lated to the cells developmental process within specific environments.

4.3 Discovery andValidation of a Predicted SKCM

Epigenetics Variants

Epigenetic aberrations that involve DNA modifications give researchers the

possibility to identify novel non-genetic factors responsible for complex hu-

man phenotypes such as height, weight, and disease. To identify methyla-

tion changes researchers need to perform complicated and time consuming

computational analysis (Bock and Lengauer, 2008). Here, the EWAS suite

becomes a solution for this inconvenience and provides a simplified down-

stream analysis including preprocessing, quality evaluation and differentially

methylated CpG site detection in one complex set of tools developed and

published under the Galaxy platform. I also show how my initial implementa-

tion of EWAS tools suite combination, Figure 3.2, can provide additional in-

sights into e.g. melanoma therapeutic resistance. Workflow published on the

kpbioteam docker instance allow users to repeat the analysis performed on

melanoma data with their own examples and feedback improvements. Diag-

nostic biomarkers currently used to assist in the diagnosis of melanoma were

founded in chosen dataset. However, the study fails to consider the differing

categories of treatment. Recent cases reported by (Hugo et al., 2015) showed

that gene and signature based transcriptomic alterations in acquired MAPKi

resistant melanoma were highly recurrent. This can help to explain clinical
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relapse comprehensively with new genetic and epigenetic mechanism find-

ings (Gilbertson et al., 2006). Initial observations suggest that there may be

a link between MAPKi resistance and DNAmethylation changes itself. Here,

we showed that specific genes and pathways subject to differential regulation

in resistant tumour cells. I highlighted a group of hypermethylated genes al-

ready connected to cancer which a lack of MAPKi research. This data demon-

strates that PDGFR, which is suggested to be responsible for RAS/MAPK

pathway activation can truly regulate the MAPKi mechanism in non respon-

sive tumours, but its altered methylation regulation requires additional stud-

ies (Hugo et al., 2015). Hypermethylation can be associated with expression

down-regulation. The PITX1 protein is a member of the bicoid-related home-

obox transcription factors and was founded as contributor to the progression

of human cutaneous malignant melanoma (Osaki et al., 2013). Previous pub-

lished studies are limited to local surveys and serial biopsies. Thus, stimulus

of innate or acquired MAPKi resistance may converge on epigenetics. I also

presented that homeodomain transcription factor MSX1 and CBX2 polycomb

protein are likely to be treatment resistance factors, reported as downregu-

lated and inactivated in melanoma tumours (Clermont et al., 2014). Additional

analysis performed on MAPKi treatment sensitivity data reveal new potential

directions for therapeutic approaches.
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Appendix A

Galaxy EWAS Training

450K Array Data Upload

The first step of EWAS - Galaxy data anylalysis is raw methylation data load-

ing (intensity information files for each two color micro array)

1. Create a new history for this tutorial and give it a proper name

2. Import the following IDAT files from Zenodo ()

3. Run minfi_read450k with the following parameteres for input files A.1

red files: GSM1588704_8795207135_R01C02_Red.idat pre-treatment,

GSM1588705_8795207119_R05C02_Red.idat pre-treatment,

GSM1588706_8795207135_R02C02_Red.idat BRAFi treatment resistant,

GSM1588707_8795207119_R06C02_Red.idat BRAFi treatment resistant

green files: GSM1588704_8795207135_R01C02_Grn.idat pre-treatment,

GSM1588705_8795207119_R05C02_Grn.idat pre-treatment,

GSM1588706_8795207135_R02C02_Grn.idat BRAFi treatment resistant,

GSM1588707_8795207119_R06C02_Grn.idat BRAFi treatment resistant

4. Inspect generated set of data

Preprocessing and Quality Assessment

Preprocessing and data quality assurance is an important step in Infinium

Methylation Assay analysis (Aryee et al., 2014). RGChannelSet represents

two color data with a green and a red channel and can be converted into

methylated and unmethylated signals assigned to MethylSet or into Beta val-

ues build in RatioSet. User can convert from RGChannelSet into MethylSet

using the minfi_mset or compute Beta values using minfi_set. The minfi_qc

tool extracts and plots the quality control data frame with two columns mMed



Appendix A. Galaxy EWAS Training 41

Figure A.1: Data Upload minfi_read450k Tool Interface

and uMedwhich are themedians ofMethylSet signals (Meth andUnmeth).Com-

paring them against one another allows user to detect and remove low-quality

samples A.2

1. Run minfi_mset to create MethylSet object

2. Run minfi_qc to estimate sample-specific quality control

3. Convert methylation data from the MethylSet , to ratios with minfi_rset

4. Then map ratio data to the genome using minfi_maptogenome tool

Removing probes affected by genetic variation

1. Run minfi_dropsnp to remove the probes that contain either a SNP at the

metylated loci interrogation or at the single nucleotide extension, highly rec-

ommended by (Aryee et al., 2014)

DMPs and DMRs Identification

The main goal of the EWAS suite is to simplify the way differentially methy-

lated loci sites are detected. The EWAS suite contains minfi_dmp tool de-

tecting differentially methylated positions (DMPs) with respect to a pheno-

type covariate, and more complex minfi_dmr solution for finding differentially

methylated regions (DMRs). Genomic regions that are differentially methy-

lated between two conditions can be tracked using a bumphunting algorithm.

The algorithm first implements a t-statistic at each methylated loci location,
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Figure A.2: Quality Assessment (minfi_qc) Tool Interface

with optional smoothing, then groups probes into clusters with a maximum

location gap and a cutoff size.

1. Import phenotypeTable.txt from Zenodo ()

2. Run minfi dmp with the following parameters

Input set:GenomicRatioSet

Phenotype Table:phenotypeTable.txt

Phenotype Type:categorical

qCutoff Size:0.5 (DMPs with an FDR q-value greater than this will not be re-

turned)

Variance Shrinkage:TRUE (is recommended when sample sizes are small

<10)

3. Run minfi_dmr A.3

Input set:GenomicRatioSet

Phenotype Table:phenotypeTable.txt

factor1: sensitive

factor2: resistant

maxGap Size:250

coef Size:2

Cutoff Size:0.1
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nullMethod:permutation

verbose:TRUE

4. Visualize Differentially Methylated Regions with UCSC

- Click on the minfi_dmr output in your history to expand it

- Click on the pencil button displayed in your dataset in the history set

- Database/Build Human Feb. 2009 (GRCh37/hg19) (hg19)

- Press Save

- Towards the bottom of the history item, find the line starting with display at

UCSC

- This will launch UCSC Genome Browser (Kent et al., 2002) with your Cus-

tom Track A.4

Figure A.3: minfi_dmr Tool Interface

Annotation and Visualization

In addition to downstream analysis users can annotate the differentially methy-

lated loci to the promoter regions of genes with gene function description, and

relationships between these concepts.

1. Run chipeakanno_annopeaks with the following parameters

Differentialy methylated data: use output of Differentially Methylated Posi-

tions analysis from Step 4

bindingType: StartSite
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FigureA.4: DMRTraining Track launchUCSCGenomeBrowser

bindingRegionStart:-5000

bindingRegionEnd:3000

Additional Column of Score:8 position of column of score optional value if it

is required

2. Cut gene_name Column from Table of Annotated Peaks to get List of

Genes with the following parameters

Cut columns: c16

Delimited by: Tab

3. Remove beginning of Gene List with the following parameter

Remove first: 1

4. Convert List of Genes to List of entrez ID using clusterProfiler bitr with the

following parameters

Input Type Gene ID: SYMBOL

Output Type Gene ID: ENTREZID

5. Run GO Enrichment Analysis with clusterProfiler go using output of step 4
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Appendix B

Table of Differentially Methylated

Regions

Supplementary Data File

Description: The accompanying table shows the Differentially Methylated

Regions founded in melanoma biopsies pre and post MAPKi treatment. The

start and end columns indicate the limiting genomic locations of the DMR with

width beetwen them. The value column indicates the average difference in

methylation in the methylated region, and the area column indicates the area

of this region with respect to the 0 line.
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seqnames start end width value

chr11 637035 637175 141 −0.124012888048672

chr6 28584155 28584172 18 −0.10798311230643801

chr13 20710941 20711042 102 −0.103599195678859

chr16 14403004 14403022 19 −0.14040893898075399

chr8 11560486 11560510 25 −0.136436552550316

chr2 225307070 225307259 190 −0.13627480203925599

chr3 119421667 119421868 202 −0.129286989416137

chr7 2143886 2143942 57 0.12731922331307499

chr14 95235402 95235489 88 −0.12657979944939499

chr5 74907592 74907694 103 −0.12238116743333401

chr8 11539320 11539405 86 −0.118715555887448

chr5 180632948 180633063 116 0.117538987740608

chr16 1521617 1521656 40 0.116705694748048

chr6 33255241 33255400 160 0.115841009579616
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chr17 77751069 77751089 21 0.11544281219399299

chr3 49027210 49027225 16 −0.11447089631264699

chr6 17282333 17282354 22 0.11134776487086499

chr12 14927345 14927351 7 −0.109710621025649

chr4 76555772 76555777 6 −0.10960929761368

chr11 63258744 63258779 36 −0.108360433208011

chr22 46688823 46688823 1 0.16053500897133899

chr19 55889216 55889216 1 0.15305514017642999

chr11 2292000 2292000 1 −0.14823121136736001

chr1 2987645 2987645 1 −0.14733788727401501

chr12 12008666 12008666 1 0.14329740027684401

chr12 66134770 66134770 1 0.13955551276179201

chrX 82763706 82763706 1 −0.13885729522767701

chr6 117584665 117584665 1 −0.13674957088845799

chr12 114845868 114845868 1 −0.134920614463754

chr8 141370229 141370229 1 0.134914365547156

chr6 170553845 170553845 1 0.13420248495128001

chr2 222435351 222435351 1 0.13203352052036099

chr1 230406371 230406371 1 0.13160625663473399

chr4 1623883 1623883 1 0.13095355759851199

chr17 37024625 37024625 1 0.130321842759

chr14 65007512 65007512 1 −0.130098860102633

chrX 132548278 132548278 1 0.12832582289404099

chr6 13326842 13326842 1 0.12831656980001699

chr2 242756362 242756362 1 0.12764825400728799

chr14 57274763 57274763 1 −0.12735053095825299
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chr10 62761575 62761575 1 0.12726090174218599

chrX 48980610 48980610 1 −0.12688506472781799

chr15 59729553 59729553 1 0.12685394191065899

chr17 81014667 81014667 1 0.12622185598444399

chr6 28603779 28603779 1 −0.126196570119602

chr10 115999174 115999174 1 −0.12618908061598799

chr19 58220370 58220370 1 −0.12603239674417299

chr2 242756029 242756029 1 0.12537568512165301

chr7 35301188 35301188 1 −0.12514987300042599

chr17 26554610 26554610 1 −0.12463814819647499

chr5 134370282 134370282 1 0.124071381395868

chr13 111521981 111521981 1 0.123596167075517

chr7 27161749 27161749 1 −0.123318125974862

chr3 177315882 177315882 1 0.122654143071462

chr6 33255172 33255172 1 0.12215916290196301

chr3 137301727 137301727 1 0.1218114078845

chr20 30640256 30640256 1 −0.121679439121747

chr21 27945125 27945125 1 −0.121515821155445

chr12 4398508 4398508 1 0.12149381802154

chr8 142428240 142428240 1 −0.12104738724242201

chr11 68081226 68081226 1 0.12077674636437

chr2 242830161 242830161 1 0.120644928832901

chr10 88718317 88718317 1 0.12055366697212699
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chr8 120868748 120868748 1 0.12002641277069299

chr13 25085301 25085301 1 −0.119932776811815

chrX 27999538 27999538 1 −0.119824688825988

chr3 157261021 157261021 1 −0.11974114896269

chr7 27224873 27224873 1 0.11970903424680999

chr9 117372723 117372723 1 0.119031262957996

chr12 124144432 124144432 1 −0.118915955262726

chr1 50884480 50884480 1 −0.11824224544209

chr3 49027243 49027243 1 −0.11756965654969299

chr11 72851913 72851913 1 0.11752549983777701

chr10 16562626 16562626 1 −0.11743482801303599

chr2 51259807 51259807 1 −0.117328845913815

chr19 15360953 15360953 1 −0.11666845196612199

chr7 6199980 6199980 1 0.116654583278869

chr6 33041218 33041218 1 −0.11631137363175

chr17 8926158 8926158 1 −0.11597704742722401

chr4 41883164 41883164 1 −0.115736384202522

chr4 154710750 154710750 1 −0.115709145966333

chr21 44851244 44851244 1 −0.115289672564198

chr16 85659946 85659946 1 0.11523346935845399

chr3 8671361 8671361 1 −0.115233017453939

chr8 65281496 65281496 1 −0.11476238720759301

chrX 68727150 68727150 1 −0.114706822290637

chr8 55380185 55380185 1 −0.114666685582534

chr11 6953558 6953558 1 −0.114601482040839

chr16 54967389 54967389 1 −0.11454073849728499

chr6 27235843 27235843 1 −0.114349696886029

chr12 1948648 1948648 1 −0.11432918842155999

chr20 30640022 30640022 1 −0.114211058386022

chr5 148810177 148810177 1 0.11387892996193701
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chr7 47344608 47344608 1 0.113712054963099

chr1 22141170 22141170 1 −0.11351137352818

chr3 121741209 121741209 1 −0.113343572230443

chr1 2524890 2524890 1 0.113241054936184

chr2 242008100 242008100 1 0.113094021200255

chr1 3332188 3332188 1 0.113053786666189

chr6 170554795 170554795 1 0.112955245971986

chr2 220117771 220117771 1 0.112940541389401

chr1 13910667 13910667 1 −0.112356385525081

chr11 130271817 130271817 1 0.11223967583349601

chr4 164088478 164088478 1 0.112205903170614

chr1 874697 874697 1 0.112158136613177

chrX 30327778 30327778 1 0.11213589444989901

chrX 134305728 134305728 1 −0.111928225752649

chr11 60225240 60225240 1 −0.11165621383909299

chr14 97059005 97059005 1 −0.111652075228202

chr7 73803588 73803588 1 0.11148853924242901

chr6 28584103 28584103 1 −0.11147170176575701

chr2 160761085 160761085 1 −0.111359586185865

chrX 138276972 138276972 1 −0.111340640997727

chr17 17929033 17929033 1 −0.11023598405450299

chr7 15726466 15726466 1 −0.110191504951083

chr7 33080496 33080496 1 −0.110077665461544
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chr15 33010399 33010399 1 −0.110006567837051

chr6 158834216 158834216 1 0.10999645741552

chrX 114957471 114957471 1 −0.10999201454742399

chr6 27513479 27513479 1 −0.109987017774902

chr18 44527026 44527026 1 −0.10998635677157299

chr1 1110107 1110107 1 0.109893101979087

chr6 33041343 33041343 1 −0.109868885925718

chr10 16562998 16562998 1 −0.10977522125084301

chr3 157261106 157261106 1 −0.10963935043367801

chr6 32920962 32920962 1 −0.10942442445153699

chr12 125034283 125034283 1 0.109238850116584

chr5 172671526 172671526 1 −0.109232336122665

chr4 24913973 24913973 1 −0.109168717974375

chr20 30640121 30640121 1 −0.109007215333146

chr12 103355958 103355958 1 −0.108909828259471

chr17 78955599 78955599 1 0.10888949659701599

chr7 1563708 1563708 1 0.10865079819256

chr11 20181725 20181725 1 −0.10859791759907

chr4 81189927 81189927 1 −0.108480853512708

chr9 100614879 100614879 1 −0.108460640192918

chr10 729226 729226 1 −0.108418232846721

chr11 32449821 32449821 1 −0.108412173538479

chrX 151620975 151620975 1 −0.108322288361311

chr10 127569905 127569905 1 0.108221794436341

chr17 6024017 6024017 1 −0.108161056408916

chr15 39871923 39871923 1 −0.108012224702111

chr1 16553549 16553549 1 −0.10800653773188899
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chr1 1286917 1286917 1 0.107997667928319

chr17 63555244 63555244 1 −0.10793463833573499

chr5 758981 758981 1 −0.107887747828479

chr3 119832292 119832292 1 −0.107759788699141

chr1 119527638 119527638 1 −0.107720105666243

chr7 1883139 1883139 1 0.10760821356136401

chr10 43332443 43332443 1 −0.107599168427578

chr7 27232412 27232412 1 −0.10749113418684

chr3 73671377 73671377 1 −0.10747876722784699

chr7 96652481 96652481 1 0.107441203156391

chr4 55095209 55095209 1 0.107429344813642

chr7 104444687 104444687 1 0.107334363324657

chr9 115835616 115835616 1 −0.107318497484808

chr7 156736159 156736159 1 0.10730918740216799

chr10 73565625 73565625 1 0.107275081561613

chr20 9489749 9489749 1 −0.10726681239973899

chr12 133179338 133179338 1 0.10719873147812201

chr19 18497143 18497143 1 0.107180741689341

chr22 49067022 49067022 1 0.107160453820571

chr7 14025907 14025907 1 −0.107155044831899

chr14 101193038 101193038 1 −0.10705750690709399

chr15 75248086 75248086 1 0.10701489299339401

chr16 88499083 88499083 1 0.106969491433567

chr17 9080989 9080989 1 0.106864994393845

chr18 44526743 44526743 1 −0.106855303542586

chr1 2425888 2425888 1 0.106787124473451
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chr1 200993200 200993200 1 0.10670070046810499

chr21 45811432 45811432 1 −0.10664739344672999

chr8 65291513 65291513 1 −0.106642175623474

chr2 19561482 19561482 1 0.106639719481052

chr12 124991139 124991139 1 0.10642104197168401

chr7 15726479 15726479 1 −0.106407197379582

chr17 57918500 57918500 1 −0.106337745838559

chr7 1234925 1234925 1 0.10630299054127

chr1 13910700 13910700 1 −0.106242503306801

chr7 2144579 2144579 1 0.10614186866653499

chr16 3088480 3088480 1 0.106020719334687

chr6 27526256 27526256 1 −0.105985650992152

chr16 4013337 4013337 1 0.105873126230512

chr17 48546193 48546193 1 −0.105780580885399

chr8 145013728 145013728 1 −0.10572300881592001

chr10 131641580 131641580 1 0.105659833057068

chr10 81946545 81946545 1 0.10545283207622599

chr6 11711971 11711971 1 −0.105382017269966

chr17 38984421 38984421 1 −0.10533591587878099

chr14 57265910 57265910 1 −0.105262348390998

chr5 140800929 140800929 1 −0.105229756006415

chr18 30352975 30352975 1 0.105227187967704

chr12 101603453 101603453 1 −0.105161186803192

chr13 102105440 102105440 1 0.105060953675732
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chr11 32009163 32009163 1 −0.105029431478791

chr6 28477973 28477973 1 −0.10498215017005399

chr19 17610751 17610751 1 0.104948452961803

chr1 172886544 172886544 1 0.10491614248061799

chr11 68417376 68417376 1 −0.104905039443941

chr3 172166242 172166242 1 −0.104886809586504

chr6 170479840 170479840 1 0.10488226318586601

chr7 27184030 27184030 1 0.104859995048034

chr8 24772137 24772137 1 −0.104854886848308

chr16 46919112 46919112 1 0.10480590801688799

chr14 59038939 59038939 1 −0.104713619798806

chr4 154710523 154710523 1 −0.104518164900059

chr3 89164223 89164223 1 0.10451440965561699

chr11 111250093 111250093 1 −0.10451297615451501

chr15 81426610 81426610 1 −0.104499752568863

chr14 75153307 75153307 1 0.104490964925798

chr2 222333289 222333289 1 0.10435832104432299

chr1 241519652 241519652 1 −0.104279302631394

chrX 103268309 103268309 1 −0.104247652076186

chr10 28288192 28288192 1 −0.104246364439679

chr4 182862370 182862370 1 0.104243531040668

chr11 88069169 88069169 1 0.104212710647739

chr8 98290229 98290229 1 −0.10418878749230701

chr14 62068941 62068941 1 0.10416661372495301
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chr6 33255541 33255541 1 0.10403223430929

chr19 595705 595705 1 0.10400729134155599

chr12 13043728 13043728 1 0.103865906867918

chr17 74260692 74260692 1 −0.103836859804503

chr17 75276428 75276428 1 0.10382569025496

chr12 66123127 66123127 1 −0.10382279315894601

chr15 25414716 25414716 1 −0.10370450501645

chr7 1095005 1095005 1 0.103665737875729

chr14 91752093 91752093 1 −0.103659140301418

chr3 172166517 172166517 1 −0.10361076137165701

chr16 1076283 1076283 1 0.1034982175643

chr8 37557348 37557348 1 0.103494253879458

chr7 51544475 51544475 1 −0.103484496718387

chr6 159084599 159084599 1 0.10346642150404201

chr2 11672761 11672761 1 −0.10301523610233899

chr2 172958324 172958324 1 0.102865114465247

chr19 18540330 18540330 1 0.102851604206926

chr2 222064243 222064243 1 0.10282718638032901

chr6 3054085 3054085 1 −0.102745208692728

chr7 92645767 92645767 1 0.10272223311284299

chr8 58056113 58056113 1 −0.102622883478428

chr8 17353980 17353980 1 0.10257945756098601

chr20 3229402 3229402 1 −0.102376606295041
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chr2 242606122 242606122 1 0.102372151482944

chr21 40145361 40145361 1 −0.102349240990334

chr10 29186681 29186681 1 0.102347581984831

chr1 156612436 156612436 1 0.102330099226989

chr10 76727919 76727919 1 0.10232007528624699

chr15 96868971 96868971 1 0.10229919224851899

chr19 12306198 12306198 1 −0.102230147125593

chr18 67959378 67959378 1 0.102164030230496

chr2 182543233 182543233 1 −0.102125446159189

chr11 122612858 122612858 1 0.102097752801121

chr3 49027156 49027156 1 −0.102058470880869

chr12 41087520 41087520 1 0.101988875236978

chr1 92942075 92942075 1 0.101985251286454

chr8 65281397 65281397 1 −0.10197902083079299

chr8 110988071 110988071 1 −0.10189553138667699

chr18 59483441 59483441 1 −0.10189418183363901

chr2 219857231 219857231 1 0.101866327505896

chr7 48129904 48129904 1 −0.10179139338468

chr10 70847350 70847350 1 −0.101470034442445

chr1 47882322 47882322 1 −0.101353260878196

chr10 504497 504497 1 0.101307091968666

chr7 1233469 1233469 1 0.101251969857042
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chr3 26663593 26663593 1 −0.101207719948323

chr12 124990897 124990897 1 0.101196428120161

chrX 153770983 153770983 1 −0.101179944369073

chrY 9385586 9385586 1 −0.101155812375696

chr10 129861770 129861770 1 0.10110526762918701

chr10 80523167 80523167 1 −0.10109858573823299

chr22 49137906 49137906 1 0.101094556847243

chr15 93633408 93633408 1 0.10108409025040201

chr2 163695776 163695776 1 −0.100983554882114

chr14 57275967 57275967 1 −0.100920098537103

chr6 42738967 42738967 1 −0.10087877674661901

chr6 27258466 27258466 1 −0.100870954020625

chr13 114086994 114086994 1 0.100799446744015

chr10 85997177 85997177 1 −0.100700692309193

chr4 122686038 122686038 1 −0.100674866753929

chr16 10449523 10449523 1 −0.100622143068377

chr16 82044957 82044957 1 −0.10056489087438

chr11 6913644 6913644 1 −0.100467407127736

chr6 27342632 27342632 1 −0.100280738631745

chr6 111888446 111888446 1 0.100264975037983

chr14 59742285 59742285 1 −0.1002495184215

chr12 53227816 53227816 1 −0.10022075519222599

chr6 10398601 10398601 1 −0.100188920898861

chr11 32458714 32458714 1 −0.100119136435286

chr17 37894397 37894397 1 0.10004974772408801

chr4 4857506 4857506 1 0.10003454190038
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Appendix C

Table of DMR’s Annotation

Supplementary Data File

Description: The accompanying tables shows the annotation of DMR’s

founded in melanoma biopsies pre and post MAPKi treatment.

seqnames start end width gene_name

chr11 637035 637175 141 DRD4

chr6 28584155 28584172 18 SCAND3

chr16 14403004 14403022 19 MIR365A

chr3 119421667 119421868 202 MAATS1

chr14 95235402 95235489 88 GSC

chr5 74907592 74907694 103 ANKDD1B

chr5 180632948 180633063 116 TRIM7

chr5 180632948 180633063 116 CTC − 338M12.1

chr16 1521617 1521656 40 LA16c− 390E6.3

chr6 33255241 33255400 160 WDR46

chr6 33255241 33255400 160 PFDN6

chr17 77751069 77751089 21 CBX2

chr3 49027210 49027225 16 RP13− 131K19.2

chr3 49027210 49027225 16 RP13− 131K19.7
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chr3 49027210 49027225 16 P4HTM

chr6 17282333 17282354 22 RBM24

chr12 14927345 14927351 7 HIST4H4

chr12 14927345 14927351 7 H2AFJ

chr4 76555772 76555777 6 CDKL2

chr11 63258744 63258779 36 HRASLS5

chr22 46688823 46688823 1 GTSE1

chr19 55889216 55889216 1 TMEM190

chr19 55889216 55889216 1 CTD − 2105E13.15

chr11 2292000 2292000 1 ASCL2

chr1 2987645 2987645 1 LINC00982

chr1 2987645 2987645 1 PRDM16

chrX 82763706 82763706 1 RP3− 326L13.2

chrX 82763706 82763706 1 POU3F4

chrX 82763706 82763706 1 RP3− 326L13.3

chr6 117584665 117584665 1 V GLL2

chr12 114845868 114845868 1 TBX5

chr12 114845868 114845868 1 TBX5− AS1

chr2 222435351 222435351 1 CTD − 2308L22.1

chr1 230406371 230406371 1 RP5− 956O18.2

chr17 37024625 37024625 1 LASP1

chr14 65007512 65007512 1 RP11− 973N13.4

chr14 65007512 65007512 1 RP11− 973N13.5

chrX 132548278 132548278 1 GPC4

chr6 13326842 13326842 1 TBC1D7

chr2 242756362 242756362 1 AC114730.3

chr14 57274763 57274763 1 OTX2
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chr10 62761575 62761575 1 RHOBTB1

chrX 48980610 48980610 1 GPKOW

chr17 81014667 81014667 1 B3GNTL1

chr6 28603779 28603779 1 RP11− 373N24.2

chr10 115999174 115999174 1 VWA2

chr19 58220370 58220370 1 ZNF154

chr2 242756029 242756029 1 AC114730.3

chr7 35301188 35301188 1 AC009531.2

chr17 26554610 26554610 1 PY Y 2

chr5 134370282 134370282 1 PITX1

chr5 134370282 134370282 1 C5orf66

chr13 111521981 111521981 1 LINC00346

chr6 33255172 33255172 1 WDR46

chr6 33255172 33255172 1 PFDN6

chr20 30640256 30640256 1 HCK

chr21 27945125 27945125 1 CY Y R1

chr11 68081226 68081226 1 LRP5

chr10 88718317 88718317 1 SNCG

chr8 120868748 120868748 1 DSCC1

chr13 25085301 25085301 1 PARP4

chrX 27999538 27999538 1 DCAF8L1

chr3 157261021 157261021 1 C3orf55

chr7 27224873 27224873 1 HOXA10

chr7 27224873 27224873 1 HOXA11

chr7 27224873 27224873 1 HOXA11− AS

chr9 117372723 117372723 1 C9orf91
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chr3 49027243 49027243 1 RP13− 131K19.2

chr3 49027243 49027243 1 RP13− 131K19.7

chr3 49027243 49027243 1 P4HTM

chr11 72851913 72851913 1 FCHSD2

chr10 16562626 16562626 1 C1QL3

chr2 51259807 51259807 1 NRXN1

chr2 51259807 51259807 1 AC007682.1

chr6 33041218 33041218 1 HLA−DPB1

chr17 8926158 8926158 1 NTN1

chr4 41883164 41883164 1 LINC00682

chr4 154710750 154710750 1 SFRP2

chr21 44851244 44851244 1 SIK1

chr8 65281496 65281496 1 RP11− 32K4.1

chr8 65281496 65281496 1 LINC00966

chrX 68727150 68727150 1 FAM155B

chr16 54967389 54967389 1 CRNDE

chr16 54967389 54967389 1 IRX5

chr16 54967389 54967389 1 CTD − 3032H12.2

chr6 27235843 27235843 1 XXbac−BPGBPG24O18.1

chr20 30640022 30640022 1 HCK

chr5 148810177 148810177 1 MIR145

chr1 22141170 22141170 1 LDLRAD2

chr3 121741209 121741209 1 ILDR1

chr2 242008100 242008100 1 AC005237.4
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chr2 220117771 220117771 1 TUBA4B

chr1 13910667 13910667 1 PDPN

chr4 164088478 164088478 1 NAF1

chrX 30327778 30327778 1 NR0B1

chrX 134305728 134305728 1 CT55

chr11 60225240 60225240 1 MS4A1

chr11 60225240 60225240 1 LRG_140

chr14 97059005 97059005 1 RP11− 433J8.1

chr6 28584103 28584103 1 SCAND3

chr2 160761085 160761085 1 LY 75

chr2 160761085 160761085 1 LY 75− CD302

chr7 15726466 15726466 1 MEOX2

chr7 15726466 15726466 1 AC005550.4

chr7 33080496 33080496 1 AC074338.4

chr15 33010399 33010399 1 RP11− 758N13.1

chr15 33010399 33010399 1 GREM1

chrX 114957471 114957471 1 RP1− 241P17.4

chrX 114957471 114957471 1 AC005000.1

chrX 114957471 114957471 1 RP1− 241P17.1

chr1 1110107 1110107 1 TTLL10

chr6 33041343 33041343 1 HLA−DPB1

chr10 16562998 16562998 1 C1QL3

chr3 157261106 157261106 1 C3orf55
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chr6 32920962 32920962 1 XXbac−BPG181M17.5

chr20 30640121 30640121 1 HCK

chr12 103355958 103355958 1 PAH

chr11 20181725 20181725 1 DBX1

chr4 81189927 81189927 1 FGF5

chr9 100614879 100614879 1 FOXE1

chrX 151620975 151620975 1 GABRA3

chr15 39871923 39871923 1 THBS1

chr1 16553549 16553549 1 ANO7P1

chr1 1286917 1286917 1 DV L1

chr17 63555244 63555244 1 AXIN2

chr17 63555244 63555244 1 LRG_296

chr3 119832292 119832292 1 RN7SL762P

chr10 43332443 43332443 1 RNU6− 885P

chr7 27232412 27232412 1 RP1− 170O19.14

chr3 73671377 73671377 1 PDZRN3

chr3 73671377 73671377 1 PDZRN3− AS1

chr7 96652481 96652481 1 DLX5

chr4 55095209 55095209 1 PDGFRA

chr7 104444687 104444687 1 LHFPL3− AS1

chr7 156736159 156736159 1 RP5− 1121A15.3
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chr19 18497143 18497143 1 MIR3189

chr14 101193038 101193038 1 DLK1

chr15 75248086 75248086 1 RPP25

chr15 75248086 75248086 1 SCAMP5

chr17 9080989 9080989 1 RP11− 85B7.2

chr1 2425888 2425888 1 RP3− 395M20.2

chr1 2425888 2425888 1 RP3− 395M20.3

chr1 200993200 200993200 1 KIF21B

chr1 200993200 200993200 1 RP11− 168O16.1

chr8 65291513 65291513 1 MIR124− 2

chr2 19561482 19561482 1 OSR1

chr7 15726479 15726479 1 MEOX2

chr7 15726479 15726479 1 AC005550.4

chr17 57918500 57918500 1 MIR21

chr1 13910700 13910700 1 PDPN

chr16 3088480 3088480 1 CCDC64B

chr17 48546193 48546193 1 CHAD

chr10 131641580 131641580 1 MIR4297

chr5 140800929 140800929 1 PCDHGA11

chr5 140800929 140800929 1 PCDHGB8P

chr18 30352975 30352975 1 KLHL14

chr12 101603453 101603453 1 SLC5A8



Appendix C. Table of DMR’s Annotation 65

chr13 102105440 102105440 1 ITGBL1

chr3 172166242 172166242 1 GHSR

chr7 27184030 27184030 1 HOXA5

chr8 24772137 24772137 1 RP11− 624C23.1

chr8 24772137 24772137 1 GS1− 72M22.1

chr8 24772137 24772137 1 NEFM

chr16 46919112 46919112 1 GPT2

chr4 154710523 154710523 1 SFRP2

chr11 111250093 111250093 1 RNU2− 60P

chr1 241519652 241519652 1 RGS7

chrX 103268309 103268309 1 H2BFWT

chrX 103268309 103268309 1 H2BFM

chr10 28288192 28288192 1 ARMC4

chr10 28288192 28288192 1 RP11− 218D6.4

chr11 88069169 88069169 1 CTSC

chr11 88069169 88069169 1 LRG_50

chr8 98290229 98290229 1 TSPY L5

chr6 33255541 33255541 1 WDR46

chr6 33255541 33255541 1 PFDN6

chr19 595705 595705 1 AC005559.3

chr12 13043728 13043728 1 GPRC5A

chr17 74260692 74260692 1 UBALD2
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chr17 75276428 75276428 1 RP11− 285E9.6

chr17 75276428 75276428 1 40057

chr15 25414716 25414716 1 TMEM261P1

chr15 25414716 25414716 1 SNORD115− 1

chr15 25414716 25414716 1 SNORD115− 2

chr3 172166517 172166517 1 GHSR

chr2 11672761 11672761 1 GREB1

chr6 3054085 3054085 1 RP1− 40E16.2

chr8 58056113 58056113 1 RP11− 513O17.2

chr8 17353980 17353980 1 SLC7A2

chr1 156612436 156612436 1 RP11− 284F21.9

chr1 156612436 156612436 1 BCAN

chr1 156612436 156612436 1 RP11− 284F21.10

chr15 96868971 96868971 1 NR2F2− AS1

chr15 96868971 96868971 1 NR2F2

chr19 12306198 12306198 1 CTD − 2666L21.1

chr2 182543233 182543233 1 CERKL

chr2 182543233 182543233 1 NEUROD1

chr2 182543233 182543233 1 AC013733.3

chr3 49027156 49027156 1 RP13− 131K19.2

chr3 49027156 49027156 1 RP13− 131K19.7

chr3 49027156 49027156 1 P4HTM

chr12 41087520 41087520 1 CNTN1

chr8 65281397 65281397 1 RP11− 32K4.1

chr8 65281397 65281397 1 LINC00966

chr8 110988071 110988071 1 KCNV 1

chr2 219857231 219857231 1 CRY BA2

chr7 48129904 48129904 1 UPP1
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chr10 70847350 70847350 1 SRGN

chr1 47882322 47882322 1 FOXE3

chr3 26663593 26663593 1 AC099754.1

chr3 26663593 26663593 1 LRRC3B

chrX 153770983 153770983 1 IKBKG

chrY 9385586 9385586 1 FAM197Y 1

chrY 9385586 9385586 1 TSPY 15P

chr15 93633408 93633408 1 RGMA

chr2 163695776 163695776 1 KCNH7

chr14 57275967 57275967 1 OTX2

chr14 57275967 57275967 1 OTX2− AS1

chr4 122686038 122686038 1 TMEM155

chr4 122686038 122686038 1 AC079341.1

chr16 10449523 10449523 1 RP11− 609N14.1

chr16 82044957 82044957 1 SDR42E1

chr11 6913644 6913644 1 OR2D2

chr6 27342632 27342632 1 ZNF204P

chr6 27342632 27342632 1 ZNF391

chr12 53227816 53227816 1 KRT79

chr12 53227816 53227816 1 RP11− 153F5.3

chr11 32458714 32458714 1 WT1

chr11 32458714 32458714 1 WT1− AS

chr17 37894397 37894397 1 GRB7

chr4 4857506 4857506 1 MSX1
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gene_name score distanceToSite

DRD4 −0.124012888048672 117

SCAND3 −0.10798311230643801 165

MIR365A −0.14040893898075399 119

MAATS1 −0.129286989416137 0

GSC −0.12657979944939499 1072

ANKDD1B −0.12238116743333401 307

TRIM7 0.117538987740608 654

CTC − 338M12.1 0.117538987740608 56

LA16c− 390E6.3 0.116705694748048 1028

WDR46 0.115841009579616 1903

PFDN6 0.115841009579616 1678

CBX2 0.11544281219399299 841

RP13− 131K19.2 −0.11447089631264699 195

RP13− 131K19.7 −0.11447089631264699 3813

P4HTM −0.11447089631264699 93

RBM24 0.11134776487086499 755

HIST4H4 −0.109710621025649 3279

H2AFJ −0.109710621025649 74

CDKL2 −0.10960929761368 122
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HRASLS5 −0.108360433208011 77

GTSE1 0.16053500897133899 3814

TMEM190 0.15305514017642999 1011

CTD − 2105E13.15 0.15305514017642999 276

ASCL2 −0.14823121136736001 181

LINC00982 −0.14733788727401501 2643

PRDM16 −0.14733788727401501 1912

RP3− 326L13.2 −0.13885729522767701 515

POU3F4 −0.13885729522767701 436

RP3− 326L13.3 −0.13885729522767701 2597

V GLL2 −0.13674957088845799 2055

TBX5 −0.134920614463754 378

TBX5− AS1 −0.134920614463754 127

CTD − 2308L22.1 0.13203352052036099 1874

RP5− 956O18.2 0.13160625663473399 2141

LASP1 0.130321842759 1486

RP11− 973N13.4 −0.130098860102633 425

RP11− 973N13.5 −0.130098860102633 4914

GPC4 0.12832582289404099 1239

TBC1D7 0.12831656980001699 1972

AC114730.3 0.12764825400728799 3250

OTX2 −0.12735053095825299 2433

RHOBTB1 0.12726090174218599 376
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GPKOW −0.12688506472781799 458

B3GNTL1 0.12622185598444399 4980

RP11− 373N24.2 −0.126196570119602 2407

VWA2 −0.12618908061598799 155

ZNF154 −0.12603239674417299 208

AC114730.3 0.12537568512165301 2917

AC009531.2 −0.12514987300042599 1847

PY Y 2 −0.12463814819647499 1020

PITX1 0.124071381395868 220

C5orf66 0.124071381395868 1311

LINC00346 0.123596167075517 180

WDR46 0.12215916290196301 2131

PFDN6 0.12215916290196301 1906

HCK −0.121679439121747 264

CY Y R1 −0.121515821155445 477

LRP5 0.12077674636437 1148

SNCG 0.12055366697212699 57

DSCC1 0.12002641277069299 497

PARP4 −0.119932776811815 1646

DCAF8L1 −0.119824688825988 27

C3orf55 −0.11974114896269 13

HOXA10 0.11970903424680999 4992

HOXA11 0.11970903424680999 30

HOXA11− AS 0.11970903424680999 735



Appendix C. Table of DMR’s Annotation 71

C9orf91 0.119031262957996 762

RP13− 131K19.2 −0.11756965654969299 177

RP13− 131K19.7 −0.11756965654969299 3846

P4HTM −0.11756965654969299 75

FCHSD2 0.11752549983777701 1392

C1QL3 −0.11743482801303599 1377

NRXN1 −0.117328845913815 132

AC007682.1 −0.117328845913815 67

HLA−DPB1 −0.11631137363175 2484

NTN1 −0.11597704742722401 1298

LINC00682 −0.115736384202522 1463

SFRP2 −0.115709145966333 477

SIK1 −0.115289672564198 4235

RP11− 32K4.1 −0.11476238720759301 380

LINC00966 −0.11476238720759301 4388

FAM155B −0.114706822290637 2065

CRNDE −0.11454073849728499 4287

IRX5 −0.11454073849728499 2614

CTD − 3032H12.2 −0.11454073849728499 1435

XXbac−BPGBPG24O18.1 −0.114349696886029 48

HCK −0.114211058386022 30

MIR145 0.11387892996193701 327

LDLRAD2 −0.11351137352818 2411

ILDR1 −0.113343572230443 157
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AC005237.4 0.113094021200255 4566

TUBA4B 0.112940541389401 193

PDPN −0.112356385525081 706

NAF1 0.112205903170614 404

NR0B1 0.11213589444989901 62

CT55 −0.111928225752649 405

MS4A1 −0.11165621383909299 2014

LRG_140 −0.11165621383909299 1957

RP11− 433J8.1 −0.111652075228202 64

SCAND3 −0.11147170176575701 113

LY 75 −0.111359586185865 174

LY 75− CD302 −0.111359586185865 135

MEOX2 −0.110191504951083 28

AC005550.4 −0.110191504951083 1536

AC074338.4 −0.110077665461544 4501

RP11− 758N13.1 −0.110006567837051 808

GREM1 −0.110006567837051 223

RP1− 241P17.4 −0.10999201454742399 3801

AC005000.1 −0.10999201454742399 3785

RP1− 241P17.1 −0.10999201454742399 173

TTLL10 0.109893101979087 842
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HLA−DPB1 −0.109868885925718 2359

C1QL3 −0.10977522125084301 1005

C3orf55 −0.10963935043367801 70

XXbac−BPG181M17.5 −0.10942442445153699 62

HCK −0.109007215333146 129

PAH −0.108909828259471 3769

DBX1 −0.10859791759907 433

FGF5 −0.108480853512708 2173

FOXE1 −0.108460640192918 656

GABRA3 −0.108322288361311 1144

THBS1 −0.108012224702111 1356

ANO7P1 −0.10800653773188899 972

DV L1 0.107997667928319 2186

AXIN2 −0.10793463833573499 2520

LRG_296 −0.10793463833573499 2495

RN7SL762P −0.107759788699141 2658

RNU6− 885P −0.107599168427578 4444

RP1− 170O19.14 −0.10749113418684 654

PDZRN3 −0.10747876722784699 2713
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PDZRN3− AS1 −0.10747876722784699 512

DLX5 0.107441203156391 1927

PDGFRA 0.107429344813642 54

LHFPL3− AS1 0.107334363324657 132

RP5− 1121A15.3 0.10730918740216799 1255

MIR3189 0.107180741689341 228

DLK1 −0.10705750690709399 995

RPP25 0.10701489299339401 1718

SCAMP5 0.10701489299339401 1473

RP11− 85B7.2 0.106864994393845 1445

RP3− 395M20.2 0.106787124473451 1190

RP3− 395M20.3 0.106787124473451 29

KIF21B 0.10670070046810499 371

RP11− 168O16.1 0.10670070046810499 122

MIR124− 2 −0.106642175623474 192

OSR1 0.106639719481052 3067

MEOX2 −0.106407197379582 41

AC005550.4 −0.106407197379582 1523
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MIR21 −0.106337745838559 126

PDPN −0.106242503306801 739

CCDC64B 0.106020719334687 1552

CHAD −0.105780580885399 133

MIR4297 0.105659833057068 57

PCDHGA11 −0.105229756006415 166

PCDHGB8P −0.105229756006415 4923

KLHL14 0.105227187967704 49

SLC5A8 −0.105161186803192 731

ITGBL1 0.105060953675732 473

GHSR −0.104886809586504 3

HOXA5 0.104859995048034 742

RP11− 624C23.1 −0.104854886848308 2550

GS1− 72M22.1 −0.104854886848308 92

NEFM −0.104854886848308 1611

GPT2 0.10480590801688799 821

SFRP2 −0.104518164900059 250
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RNU2− 60P −0.10451297615451501 3723

RGS7 −0.104279302631394 877

H2BFWT −0.104247652076186 49

H2BFM −0.104247652076186 39

ARMC4 −0.104246364439679 214

RP11− 218D6.4 −0.104246364439679 524

CTSC 0.104212710647739 1785

LRG_50 0.104212710647739 1771

TSPY L5 −0.10418878749230701 52

WDR46 0.10403223430929 1762

PFDN6 0.10403223430929 1537

AC005559.3 0.10400729134155599 4101

GPRC5A 0.103865906867918 11

UBALD2 −0.103836859804503 590

RP11− 285E9.6 0.10382569025496 1550

40057 0.10382569025496 222

TMEM261P1 −0.10370450501645 106

SNORD115− 1 −0.10370450501645 1153

SNORD115− 2 −0.10370450501645 3065

GHSR −0.10361076137165701 270

GREB1 −0.10301523610233899 1480

RP1− 40E16.2 −0.102745208692728 2038

RP11− 513O17.2 −0.102622883478428 864
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SLC7A2 0.10257945756098601 616

RP11− 284F21.9 0.102330099226989 1639

BCAN 0.102330099226989 1253

RP11− 284F21.10 0.102330099226989 2242

NR2F2− AS1 0.10229919224851899 1618

NR2F2 0.10229919224851899 195

CTD − 2666L21.1 −0.102230147125593 367

CERKL −0.102125446159189 2158

NEUROD1 −0.102125446159189 2369

AC013733.3 −0.102125446159189 4606

RP13− 131K19.2 −0.102058470880869 264

RP13− 131K19.7 −0.102058470880869 3759

P4HTM −0.102058470880869 162

CNTN1 0.101988875236978 1275

RP11− 32K4.1 −0.10197902083079299 281

LINC00966 −0.10197902083079299 4487

KCNV 1 −0.10189553138667699 4

CRY BA2 0.101866327505896 911

UPP1 −0.10179139338468 1678

SRGN −0.101470034442445 511

FOXE3 −0.101353260878196 577

AC099754.1 −0.101207719948323 587

LRRC3B −0.101207719948323 703
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IKBKG −0.101179944369073 1568

FAM197Y 1 −0.101155812375696 892

TSPY 15P −0.101155812375696 130

RGMA 0.10108409025040201 974

KCNH7 −0.100983554882114 535

OTX2 −0.100920098537103 1229

OTX2− AS1 −0.100920098537103 3933

TMEM155 −0.100674866753929 543

AC079341.1 −0.100674866753929 297

RP11− 609N14.1 −0.100622143068377 2913

SDR42E1 −0.10056489087438 135

OR2D2 −0.100467407127736 185

ZNF204P −0.100280738631745 3327

ZNF391 −0.100280738631745 237

KRT79 −0.10022075519222599 262

RP11− 153F5.3 −0.10022075519222599 3370

WT1 −0.100119136435286 1537

WT1− AS −0.100119136435286 1649

GRB7 0.10004974772408801 216

MSX1 0.10003454190038 3886
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Appendix D

Table of DMR’s Functional

Annotation (GO)

Supplementary Data File

Description: The accompanying table shows the functional enrichment of

Gene Ontology biological processes of DMR’s founded in melanoma biopsies

pre and post MAPKi treatment.

ID Description GeneRatio

GO : 0007389 patternspecificationprocess 18/116

GO : 0003002 regionalization 16/116

GO : 0009952 anterior/posteriorpatternspecification 13/116

GO : 0048705 skeletalsystemmorphogenesis 13/116

GO : 0048736 appendagedevelopment 12/116

GO : 0060173 limbdevelopment 12/116

GO : 0030326 embryoniclimbmorphogenesis 10/116

GO : 0035113 embryonicappendagemorphogenesis 10/116

GO : 0001501 skeletalsystemdevelopment 17/116

GO : 0035107 appendagemorphogenesis 10/116

GO : 0035108 limbmorphogenesis 10/116



Appendix D. Table of DMR’s Functional Annotation (GO) 80

GO : 0048562 embryonicorganmorphogenesis 13/116

GO : 0048568 embryonicorgandevelopment 15/116

GO : 0023019 signaltransductioninvolvedinregulationofgeneexpression 5/116

GO : 0061448 connectivetissuedevelopment 11/116

GO : 0060485 mesenchymedevelopment 11/116

GO : 0035270 endocrinesystemdevelopment 8/116

GO : 0060021 palatedevelopment 7/116

GO : 0001837 epithelialtomesenchymaltransition 8/116

GO : 0051216 cartilagedevelopment 9/116

GO : 0048762 mesenchymalcelldifferentiation 9/116

GO : 0090596 sensoryorganmorphogenesis 10/116

GO : 0042471 earmorphogenesis 7/116

GO : 0007548 sexdifferentiation 10/116

GO : 0045137 developmentofprimarysexualcharacteristics 9/116

GO : 0035239 tubemorphogenesis 11/116

GO : 0010717 regulationofepithelialtomesenchymaltransition 6/116

GO : 0060349 bonemorphogenesis 6/116

GO : 0060348 bonedevelopment 8/116

GO : 0007369 gastrulation 8/116

GO : 0048704 embryonicskeletalsystemmorphogenesis 6/116
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GO : 0060562 epithelialtubemorphogenesis 10/116

GO : 2000027 regulationoforganmorphogenesis 9/116

GO : 0045165 cellfatecommitment 9/116

GO : 0009954 proximal/distalpatternformation 4/116

GO : 0035051 cardiocytedifferentiation 7/116

GO : 0060537 muscletissuedevelopment 11/116

GO : 0035115 embryonicforelimbmorphogenesis 4/116

GO : 0042733 embryonicdigitmorphogenesis 5/116

GO : 0043583 eardevelopment 8/116

GO : 0008406 gonaddevelopment 8/116

GO : 0048608 reproductivestructuredevelopment 11/116

GO : 0035136 forelimbmorphogenesis 4/116

GO : 0061458 reproductivesystemdevelopment 11/116

GO : 0072148 epithelialcellfatecommitment 3/116

GO : 0048706 embryonicskeletalsystemdevelopment 6/116

GO : 0030900 forebraindevelopment 10/116

GO : 0072210 metanephricnephrondevelopment 4/116

GO : 0072224 metanephricglomerulusdevelopment 3/116

GO : 0040013 negativeregulationoflocomotion 9/116
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ID Official Gene Symbol

GO:0007389 LRP5/SFRP2/DBX1/AXIN2/ARMC4/NR2F2/WT1/MSX1

GO:0003002 OTX2/LRP5/SFRP2/MEOX2/GREM1/DBX1/AXIN2/NR2F2/NEU-

ROD1/WT1/MSX1

GO:0009952 OTX2/SFRP2/MEOX2/AXIN2/OSR1/HOXA5/NR2F2/NEU-

ROD1/WT1/MSX1

GO:0048705 GSC/SFRP2/IRX5/AXIN2/DLX5/PDGFRA/CHAD/HOXA5/MSX1

GO:0048736 PITX1/HOXA10/SFRP2/MEOX2/GREM1/DLX5/OSR1/NR2F2/MSX1

GO:0060173 PITX1/LRP5/HOXA11/SFRP2/MEOX2/GREM1/DLX5/MSX1

GO:0030326 PITX1/LRP5/HOXA10/SFRP2/GREM1/DLX5/OSR1/MSX1

GO:0035113 PITX1/LRP5/HOXA11/SFRP2/GREM1/DLX5/OSR1/MSX1

GO:0035107 TBX5/PITX1/LRP5/HOXA10/SFRP2/GREM1/DLX5/OSR1/MSX1

GO:0035108 TBX5/PITX1/LRP5/HOXA11/SFRP2/GREM1/DLX5/OSR1/MSX1

GO:0048562 GSC/POU3F4IRX5/FOXE1/DVL1/DLX5/PDGFRA/OSR1/NEU-

ROD1/MSX1

GO:0048568 GSC/ASCL2/POU3F4/IRX5/FOXE1/DVL1/DLX5/PDGFRA/EU-

ROD1/MSX1

GO:0023019 GSC/FGF5/PDGFRA/NEUROD1/MSX1

GO:0061448 PITX1/LRP5/SFRP2/GREM1/AXIN2/OSR1/MIR21/WT1/MSX1

GO:0060485 SFRP2/PDPN/GREM1/AXIN2/OSR1/MIR21/HOXA5/WT1/MSX1

GO:0035270 PITX1/NR0B1/FOXE1/PDGFRA/HOXA5/NEUROD1/WT1/MSX1

GO:0060021 PRDM16/MEOX2/FOXE1/DLX5/PDGFRA/OSR1/MSX1

GO:0001837 GSC/TBX5/SFRP2/PDPN/GREM1/AXIN2/MIR21/MSX1

GO:0051216 PITX1/HOXA11/SFRP2/GREM1/AXIN2/OSR1/MIR21/MSX1

GO:0048762 GSC/TBX5/SFRP2/PDPN/GREM1/AXIN2/OSR1/MIR21/MSX1

GO:0090596 GSC/POU3F4/LRP5/NTN1/IRX5/DVL1/DLX5/OSR1/FOXE3/MSX1

GO:0042471 GSC/POU3F4/NTN1/DVL1/DLX5/OSR1/MSX1
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GO:0007548 CDKL2/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/WT1

GO:0045137 CBX2/SFRP2/IRX5/PDGFRA/OSR1/WT1

GO:0035239 LRP5/HOXA11/SFRP2/GREM1/DVL1/PDGFRA/MIR21/HOXA5/WT1

GO:0010717 TBX5/SFRP2/PDPN/GREM1/AXIN2/MIR21

GO:0060349 LRP5/HOXA11/SFRP2/AXIN2/DLX5/MSX1

GO:0060348 LRP5/HOXA11/SFRP2/GREM1/AXIN2/DLX5/CHAD/MSX1

GO:0007369 GSC/OTX2/LRP5/SFRP2/MIR145/DVL1/OSR1

GO:0048704 GSC/HOXA11/IRX5/PDGFRA/OSR1/HOXA5

GO:0060562 LRP5/HOXA11/SFRP2/GREM1/DVL1/OSR1/MIR21/WT1

GO:2000027 TBX5/GPC4/SFRP2/GREM1/DVL1/CHAD/WT1/MSX1

GO:0045165 GSC/PITX1/HOXA11/SFRP2/PDPN/DBX1/NR2F2/NEUROD1/WT1

GO:0009954 HOXA10/HOXA11/GREM1/OSR1

GO:0035051 TBX5/SIK1/MIR145/GREM1/PDGFRA/MIR21/WT1

GO:0060537 VGLL2/TBX5/PITX1/MIR145/GREM1/PDGFRA/OSR1/NR2F2/WT1

GO:0035115 TBX5/HOXA11/OSR1/MSX1

GO:0042733 LRP5/HOXA11/SFRP2/OSR1/MSX1

GO:0043583 GSC/POU3F4/NTN1/DVL1/DLX5/OSR1/NEUROD1/MSX1

GO:0008406 HOXA10/HOXA11/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/WT1

GO:0048608 ASCL2/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/GHSR/NR2F2/WT1

GO:0035136 TBX5/HOXA11/OSR1/MSX1

GO:0061458 ASCL2/SFRP2/IRX5/NR0B1/PDGFRA/OSR1/GHSR/NR2F2/WT1

GO:0072148 PDPN/NR2F2/NEUROD1

GO:0048706 GSC/HOXA11/IRX5/PDGFRA/OSR1/HOXA5

GO:0030900 POU3F4/OTX2/PITX1/DLX5/BCAN/NR2F2/NEUROD1/MSX1

GO:0072210 GREM1/PDGFRA/OSR1/WT1

GO:0072224 PDGFRA/OSR1/WT1

GO:0040013 TBX5/SFRP2/MEOX2/GREM1/THBS1/MIR124-

2/MIR21/GHSR/NR2F2
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