
1. INTRODUCTION
In the early stages of design the building designer
faces different questions in relation to: building loca-
tion (which is usually not really a decision of the build-
ing designer but of the owner of the building), build-
ing orientation, building shape, structural system to be
adopted, building envelope and interior finishes.
Naturally, this is a challenging procedure as each
question has a wide range of different alternatives that
globally will lead to an even wider range of different
solutions. In addition, from the point of view of the
environmental assessment, the problem is more com-
plex as one solution may be beneficial in some envi-
ronmental categories and simultaneously harmful in
others [1].
Several design features can affect the energy efficien-
cy of buildings, including the shape of the building,

wall and roof construction, foundation type, insulation
levels, window type and area, thermal mass, and shad-
ing. For a given floor area, determining the envelope
configuration that results in minimum annual energy
consumption can be a challenging task, but ultimately
not very useful, since economic considerations must
play a role in the construction of any real building.
Indeed, the problem of building energy efficiency
becomes more complex as economic factors are intro-
duced. A building that consumes the absolute mini-
mum amount of energy for its size is most likely not
very cost-effective, since additional construction costs
would overwhelm any savings from reduced energy
use. Therefore, a balance must be found between
increases in investment cost and recurring annual sav-
ings [2].
Each combination of design variables leads to a cer-
tain annual energy demand, under standard building
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use conditions. It therefore is of interest to charac-
terize the full spectrum of possible combinations of
variables, in order to identify those that have expect-
ed lower initial costs and those that have lower life-
cycle costs, but also how distant from “the best” some
other solution (e.g. one preferred due to architectur-
al/non-energy criteria) may be. Therefore, it is impor-
tant to develop methodologies that allow building
designers to identify the combinations of design vari-
ables that, while insuring the achievement of the
energy and environmental targets established, also
have near-optimal lowest life cycle costs, or lowest
investment costs, or a good compromise between
investment costs and life cycle costs [3].
The designers often adopt building performance sim-
ulation (BPS) tools for analyzing the energy behav-
iours of buildings [4]. In order to improve the energy
performance of buildings, one of the first developed
approaches has been the “parametric simulation
method”. This approach makes variable, within a
proper range, some design parameters, in order to
see their effects on some objective functions, while
other variables are constant. Under the point of view
of computation, this method is very expensive and
not completely reliable because of the non-linear
interactions among the design variables. Therefore,
starting from the 1990s, numerical optimizations
and/or simulation-based optimizations [5] are adopt-
ed more and more frequently, also thanks to the very
rapid diffusion of the computer science. A numerical
optimization methodology can be defined as an iter-
ative procedure that provides progressive improve-
ments of the solution until the achievement of a sub-
optimal configuration (the “actual optimal” is nor-
mally unknown) [6–8]. In the last years, many studies
focused on the combination of BPS tools and opti-
mization programs, in order to improve the optimiza-
tion algorithms, above all for reducing the required
computational time. Presently, several algorithms are
available, typically classified as local or global meth-
ods, heuristic or metaheuristic methods, derivative-
based or derivative-free methods, deterministic or
stochastic methods, single-objective or multi-objec-
tive algorithms and many more [9].
This paper presents the multi-variable optimization
of chosen design parameters in a single-family build-
ing. The aim is to determine optimum solutions that
will enable maximum energy and economic benefits
during the lifetime of the building. The optimization
procedure is developed by means of the coupling
between MATLAB and EnergyPlus and implement-
ing the optimization tools. Many works in this field

used grand simplifications: thermal zones included
several rooms or the analyses only one zone, the
same casual gains assumed in the whole building,
window size defined by the window-to-wall ratio. In
this study a detailed analysis of the selected building
has been performed. The rooms are modeled as sep-
arate zones with scheduled casual gains. The con-
structed algorithm individually selects optimum val-
ues from discreet sets for each design variable as well
as automatically selects an external wall for a window
in each room. Only such an algorithm enables to
determine optimum design solutions for the opti-
mized building. This paper also aims to present the
comparison of three metaheuristic methods for the
evaluation of the cost-optimality. Optimizations
using one selected method (genetic algorithms) have
already been carried out in earlier authors’ research
[26, 27]. The choice of method can affect the final
optimal result, therefore this study presents the dif-
ferences resulting from the application of the opti-
mization method.

2. RELEVANT STUDIES
Normally, in building performance optimization, an
analytical formulation of the objective functions is
not available [9]. Thus, the most used optimization
algorithms in this matter are derivate-free, simula-
tion-based ones, which provide the iterative improve-
ment of the solution until the fulfillment of a stop cri-
terion. Among these methods, the dominant ones are
the metaheuristic stochastic population-based algo-
rithms [5], such as particle swarm optimization [10],
differential evolution [11, 12] or genetic algorithms
[9, 13, 14, 15].
More recently, optimization-based selection
approaches have been proposed to select building
shapes [16, 17], wall and roof constructions and insu-
lation levels [18], or several other building envelope
design features [19, 20]. In addition to selecting the
best materials, some studies have focused on identi-
fying the optimum window to wall ratio and windows
geometry [21, 22]. Other researches like Tuhus-
Dubrow and Krarti [23], Magnier and Haghighat [24]
and Znouda et al. [25], Ferdyn-Grygierek and
Grygierek [26, 27] developed models with the use of
genetic algorithm method to select the best combina-
tion of several components of the building envelope
(orientation, wall, roof and foundation insulation,
window area, glazing type, air leakage level and ther-
mal mass). In turn Bichiou and Krarti [28] compared
the performance of three optimization techniques
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(genetic algorithm, particle swarm optimization, and
sequential search methodology) to select HVAC sys-
tem design features and its operation settings.
To perform the optimization analysis the simulation-
optimization environment can consider a various
objective functions, most often it is an annual energy
demand, annual energy costs or life cycle costs of
building. Gasparella et al. [22] studied the impact of
different types of glazing systems (two double and
two triple glazing), window size and the orientation
of the main windowed façade on winter and summer
energy demand of a well insulated residential build-
ing in four different central and southern European
climates. A similar problem, but with energy cost as
the objective function, is analyzed in the work by
Ferdyn-Grygierek and Grygierek [29] (a detached
house in Polish climate conditions). In turn, Bichiou
and Krarti [28], Ihm and Krarti [30], Ferdyn-
Grygierek and Grygierek [26, 27] and Ferrara et al.
[31], in their works applied life cycle costs as the
objective function to optimize many design variables
in the construction of single-family detached houses.
Some researches apply multi-objective optimization
models. In the study conducted by Ascione et al. [32],
a procedure combines EnergyPlus simulation and a
genetic algorithm which was implemented to deter-
mine the best solutions for the HVAC system control
in a residential building. The objective of this study
was to minimize the primary energy demand and
investment cost. Azari et al. [33] utilized a multi-objec-
tive optimization algorithm to explore optimum build-
ing envelope design with respect to energy use and life
cycle contribution to the impacts on the environment
in a low-rise office building in Seattle. The simulation
tool eQuest was used to assess the operational energy
use. A hybrid genetic algorithm and artificial neural
net-works was used for the optimization [34].
The optimization of the insulation thickness of a
house considering both economic and environmental
concerns is presented by Carreras et al. [35]. The
authors proposed a systematic framework for the
design of buildings that combines a rigorous objective
reduction method with a surrogate optimization
model. In turn, Ascione et al. [36] proposed a new
multi-stage framework for cost-optimal analysis by
multi-objective optimization and artificial neural net-
works, called CASA. A genetic algorithm and
EnergyPlus simulation allowed to select recommend-
ed retrofit packages by minimizing energy consump-
tion and thermal discomfort. The same energy simu-
lation software and a heuristic algorithm was used by
Mostavi et al. [37]. The effect of 65 different building

construction materials was analyzed by the authors.
The multi-objective design optimization model to
minimize life cycle cost and life cycle emission, and
maximize occupant satisfaction level in a typical com-
mercial building was developed.

3. METHOD
Multi-variable optimizations by coupling the building
performance simulation program with optimization
environment using genetic algorithms (GA) or parti-
cle swarm optimizer (PSO) or teaching-learning-
based optimization (TLBO) were performed to
determine the best path to minimize life cycle costs
while reducing the energy use of a typical single-fam-
ily house in Poland.
The energy modeling tool EnergyPlus [38], which
allows integrated calculations of the transfer of mass
and energy inside the building, taking into account
heating and air-conditioning systems and the strategy
of control was used for simulation of the heating and
cooling demand. In addition, EnergyPlus makes it
possible to carry out parallel simulations and conse-
quently to accelerate the optimization process. The
multi-zone model, containing all the heated and
unheated rooms, was built in a simulation program.
The optimization algorithm methods and all proce-
dures to exchange data between the simulation and
the optimization tools were implemented in MAT-
LAB R2017a language. Figure 1 shows the structure
of the simulation and optimization environment.
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Figure 1.
Flowchart diagram for the developed simula-
tion/optimization
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The simulations were performed using reference
weather data for Katowice. The simulations were run
with a fifteen-minute time step. Internal heat gains
were introduced into the model: occupants, equip-
ment and lighting. An hourly schedule for heat gains
was adopted in each room [26].

3.1. Reference building
The single-family detached house without a cellar
and with unused attic was chosen for the research.
The ground floor of the building is shown in Figure 2.
Table 1 summarizes the basic characteristics of the
reference building.

The house has four bedrooms and an open space
kitchen and a living room. The building is air condi-
tioned (split system) and equipped with a hot water
central heating system. The cooling set point is kept
at 24°C and heating set point at 20°C. The ventilation
air flow was adopted in accordance with the Polish
standard [39]. For the analyzed house the minimum
air flow is 120 m3/h (it is about 0.3 air change per
hour).

3.2. Design variables
In optimization analysis the most common design
options available in Poland are chosen as design vari-
ables (Table 2):
• Glazing type characterized by two parameters of

the glazing, i.e.: heat transfer coefficient (U) and
solar heat gain coefficient (SHGC). The optimiza-
tion was performed for four different types of glaz-
ing. Glazing systems were prepared with the use of
Window 7.4 software [40].

• Windows area (glazing + frame) defined by the six-
teen discrete values of windows size. Depending on
the size of the window the frame surface is auto-
matically calculated for each window.

• External walls, ground floor and ceiling to the
unheated attic defined by the thickness of poly-
styrene and mineral wool. Six options for all kinds
of partition are considered.

• Orientation defined by the azimuth angle between
the north and the front of the house. Sixteen
options for the orientation are considered.
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Figure 2.
Ground floor view (dimensions in cm), adopted from Ferdyn-
Grygierek and Grygierek [26]

Table 1.
Characteristics of the reference building

Number of occupants 4

Number of heated floors 1

Area of heated floor 150 m2

Floor-to-floor height 2.6 m

External wall construction Brick with polystyrene insulation, U = 0.22 W/m2K

Ceiling construction Ferroconcrete with mineral wool insulation, U = 0.18 W/m2K

Roof construction Covered with ceramic tiles and uninsulated

Ground floor construction Concrete with polystyrene insulation, U = 0.29 W/m2K

Windows construction Double glazed, PCV frame, Uglass =1.00 W/m2K

Opaque external wall 102.15 m2

Window area 23.25 m2

Ventilation Natural

Cooling System Split system air conditioner (electricity)

Heating System Central heating with radiators (natural gas boiler)
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The newly-constructed buildings in Poland must
meet Technical Conditions [41]. The partitions’ struc-
ture (Table 1) in a reference building (RB) (which
will be used in the comparison) was determined so
that heat transfer coefficients of external partitions
would be according to these requirements. Technical
Conditions [41] also specify the minimum ratio of
glazed area of the windows to the floor area of the
rooms they are located in. It should be minimum 1:8.
Such a minimum glass area in the analyzed building
is 14.4 m2. In the reference building the glazing area
amounts to 15.7 m2. The overestimated value results
from the adopted assumptions: there are all windows
in each room (Figure 2), they have the same surface
area and are selected from the allowable options
(Table 2). Figure 2 shows the windows’ dimensions in
the reference building (they are the overall dimen-
sions with a frame).

3.3. Objective function
Objective functions are the selected simulation
results which vary depending on the parametric input
combinations, and are the values to be minimized by
the optimization algorithm. In this study, the cost
function is selected as the life cycle cost (LCC). The
LCC is “the sum of the present value of investment
and operating costs for the building and service sys-
tems, including those related to maintenance and
replacement, over a specified lifespan” [42].
In the study life cycle cost was defined by Eq. (1). The
investment costs of the analyzed design variables
have been used for calculations. The remaining

investment costs are equal in each case and do not
affect the optimization result. Only extra investment
costs involved in the reference building that result
from the changes introduced in each optimization
option have been analyzed.

where:
dIC – the differences between sum of investment cost
for implementing all the design and operating fea-
tures in the reference and optimized case of the
building. In this study it is the cost (material and
labor) of external walls, ceiling and floor insulation,
cost of windows and external walls structural materi-
al. Table 2 provides the cost data for various design
and operating options,
EC – the annual energy cost (heating and cooling) to
maintain indoor temperature within the building for
the selected design, from Eq. (2),
a – discount factor which takes into account the effect
of inflation and escalation of energy price. More
information on how this parameter was calculated
can be found in the paper by Ferdyn-Grygierek and
Grygierek [26].

Where:
QH – annual heating demand, kWh,
QC – annual cooling demand, kWh,η H – annual efficiency of heating system,
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LCC = dIC + a(re, N)·EC, (1)
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Table 2.
Cost data for design variables and options used for the optimization analysis

*1 PLN = ~0.23 EURO

Design variable Options Cost*

Glazing type for window

G10 (Uglass=1.0 W/m2 K, SHGC=0.49)
G07 (Uglass=0.7 W/m2 K, SHGC=0.61)
G06 (Uglass=0.6 W/m2 K, SHGC=0.51)
G05 (Uglass=0.5 W/m2 K, SHGC=0.43)

148 PLN/m2

278 PLN/m2

230 PLN/m2

249 PLN/m2

Windows area

Height: 1.5 m
Width: 0 and 0.75 m – 4.25 m

with step 0.25 m
Windows area for RB: 23.25 m2

0 PLN for all options

Insulation

Ground floor: polystyrene (λ =0.031 W/mK) 5, 6, 8, 10, 12, 15 cm (thickness) 223 PLN/m3

External wall: polystyrene (λ =0.031 W/mK) 12, 15, 18, 20, 22, 25 cm (thickness) 198 PLN/m3

Ceiling to unheated attic: mineral wool (λ =0.038 W/mK) 20, 22, 25, 28, 30, 35 cm (thickness) 1.36 PLN/ m2 for 1 cm of thickness

Azimuth (orientation of the building relatively to the north) 0–337.5 with step 22.5 0 PLN for all options

Additionally included the costs of window frame and installation and cost of external wall construction

c
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η C – annual efficiency of cooling system,
PH(gas) – price of energy from natural gas, according to
the applicable tariffs,
PC(el.) – price of electrical energy, according to the
applicable tariffs.
The following data are assumed for the LCC calcula-
tions:
• efficiency of heating system η H = 0.78 [43],

• efficiency of cooling system η C = 3.79 [43],
• price of energy from natural gas

PH(gas) = 0.1694 PLN/kWh at 1st June 2018,
• price of electrical energy PC(el.) = 0.5565 PLN/kWh

at 1st June 2018,
• investment costs (Table 2),
• nominal interest rate i = 7%, inflation rate f = 2%

and escalation in energy price e = 2%. Accordingly,
the real interest rate re = 2.8%,

• lifespan N = 30 years [44, 45].

3.4. Optimization algorithm
The energy performance of a building depends on a
great number of parameters and is further influenced
by external conditions and internal gains. In order to
improve the energy performance of a building the
correct parameters should be determined, which
requires the right optimization tool. Bearing in mind
a great number of variables which can be combined
we might end up facing a vast number of combina-
tions while the building itself will not be so complex.
It is of vital importance to choose the right tool to
solve such a complex problem [25].
Metaheuristic search techniques are developed to
make this search within computationally acceptable
time period. They also are classified as population-
based or nature-inspired optimization methods The
main idea of all metaheuristic optimization methods
is to follow some heuristics in order to obtain the best
solution for an optimization problem. In this study,
three optimum design algorithms are applied for the
solution of the discrete programming problem:
genetic algorithm (GA), particle swarm optimizer
(PSO) and teaching-learning-based optimization
(TLBO). The first two are most often used in build-
ing envelope optimization. TLBO is a relatively new
method and requires a minimum number of parame-
ters (population size and number of iteration steps).
In this work, it was assumed that design variables are
discrete, therefore the special version of these meth-
ods are used.

GAs are the most popular methods, which have
found vast amount of applications in a wide spectrum
of diverse engineering disciplines [2, 18, 19, 46],
including structural and energy optimization. The
fundamentals of this algorithm are outlined in the
work of Goldberg [47] in 1989. Today, many varia-
tions and extensions of the technique have been pro-
posed in the literature for applications to discrete
and continuous variable problems. In the present
study, method proposed by Deep [48] is applied. In
this method special creation, crossover, and mutation
functions enforce variables to be integers.
PSO was proposed by Kennedy and Eberhart in 1995
[49]. The method is based on the social behavior of
animals such as fish schooling, insect swarming and
birds flocking. This behavior is concerned with group-
ing by social forces that depend on both the memory
of each individual as well as the knowledge gained by
the swarm. The original method [49] performs very
well on small-scale problems as well as on problems
with continuous design variables. However, when
applied to large-scale discrete optimization prob-
lems, the performance of the algorithm has been
observed to degenerate significantly. Due this fact in
this study modification proposed by Hasançebi et al.
[50] is used to solve our problem.
Rao et al. [51] in 2011 introduced a TLBO method
which used simple models of teaching and learning
within a classroom as the basis for an evolutionary
optimization algorithm. A TLBO algorithm has two
main parts: a teacher phase, where the average per-
formance or knowledge of the class is moved toward
that of a teacher, and a learner phase, where students
share information and cooperatively interact with
each other. TLBO method is a relatively simple algo-
rithm with no intrinsic parameters controlling its per-
formance. In the present paper the original version of
algorithm is applied.
These methods have already been used in many opti-
mization problems. The optimization algorithm used
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Figure 3.
Life cycle costs convergence history
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in this study, based on all-year building performance
simulations, is time-consuming. Therefore, it is
important to choose a method that gives good results
in an acceptable time. This study is to demonstrate
the method with the best compromise between the
simulation duration and the quality of the obtained
results. 48 individuals and 80 (40 for TLBO) simula-
tion steps were assumed in the simulations. The dura-
tion of the simulation on the AMD Ryzen 5 1600X
processor is 1.5 h (12 parallel simulations in
EnergyPlus).

4. RESULTS
The results will be compared to the reference build-
ing. The aims of the simulations are: to determine
whether higher investments costs that improve the
thermal performance of a building are cost-effective
for an investor and to check which optimization
method gives better results.
It was assumed that there must be at least one win-
dow in each of the rooms and two windows in the liv-

ing room. In the simulations it was assumed that the
minimum glazing area is at least 1:8 of the floor area
in the room (according to Technical Conditions [41]).
The glazing area was calculated automatically in opti-
mization program depending on the total area of the
window.
Figure 3 shows the LCC convergence that was
obtained for the three chosen methods (in the Figure
there is the mean value from three simulations for
each method). The best results were obtained for the
TLBO method and the worst for GA method. The
results for PSO method are similar to TLBO method.
TLBO and PSO methods have better performance in
local searches and therefore their convergence is bet-
ter than GA method, which has a better global per-
formance. This method (GA) needs more number of
simulations to improve results. Therefore, in opti-
mizations limited by a small number of simulations
(e.g. due to the duration of calculations) it is better to
use TLBO or PSO methods.
Table 3 lists LCC costs, heating and cooling demand
and savings for optimal results of design variables for
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Table 3.
Optimal results

Case Reference building
Building after optimization

GA PSO TLBO

Type of glazing G10 G05 G05 G05

Window area, m2

W1 3.375 5.250 3.000 3.000

W2 3.375 4.500 0 6.375

W3 3.375 4.125 6.375 0

W4 2.250 3.375 2.250 2.250

W5 1.875 4.125 2.250 3.375

W6 1.875 0 1.500 0

W7 3.375 3.375 3.375 3.375

W8 1.875 3.000 2.250 0

W9 1.875 1.125 1.500 3.375

Insulation, cm

external walls 12 15 18 18

ground floor 5 15 10 12

ceiling 20 22 28 28

Building orientation, deg (clockwise) 0 180 247.5 247.5

Sum of windows area, m2 23.25 28.875 22.500 21.750

Sum of glazing area, m2 15.711 19.592 15.396 14.941

LCC, PLN 38 408 32 611 31 760 31 299

LCC savings, % 0 15 17 19

Heating demand, kWh/m2 52.6 32.1 30.9 29.1

Cooling demand, kWh/m2 9.7 19.1 13.2 13.4

Total energy savings, % 0 18 29 32

c
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each method and for reference building. In the fol-
lowing, the best result was analyzed, which was
obtained in the TLBO method.
After optimization, the thermal parameters of the
external partitions have changed in comparison to
the reference building. The insulation thicknesses
increased by 6 cm (50%) for external walls, by 8 cm
(40%) for ceiling to the unheated attic, and by 7 cm
(140%) for floor on the ground. A window with the
lowest U-value and lowest SHGC-value has been
selected, even despite the fact that it is the most
expensive option. It should be noted, that after opti-
mization only the heating demand decreased, while
the cooling demand increased. High insulated exter-
nal partitions limit free cooling of the building in
summer, hence the cooling demand is higher.
However, the location and climate of Poland deter-
mine the need to heat buildings for most of the year,
i.e. from September to May. The demand for cooling
is a much smaller share of total energy demand. In
reference building, the demand for cooling is only
about 18% of the heat demand. Therefore the total
energy demand (heating+cooling) decreased by as
much as 32%.
The total area of the glazing has changed slightly,
decreased by 5%. However, the number of windows
has decreased to the minimum value (one in rooms
and two in the living room). As a result, the area of
some windows increased significantly, for example
W2 window (almost twice).
The building has been rotated so that the windows of
rooms with small internal gains (rooms 2–4) face the
south-east side. In turn the largest window of the liv-
ing room (large internal gains) was directed to the
north-west side. What makes it possible to balance
the heat in the whole building both in winter and in
summer.
Despite the choice of the most expensive window
option and additional costs related to thicker isola-
tion of external partitions, optimization has reduced
life cycle costs by 19%.

5. SUMMARY
The paper presents the methodology and the tool
aimed at supporting the choice of economically effec-
tive building solutions. The detailed multi-zone
model of a building and the gains that are attributed
to the relevant zones contributed to maximize the
obtained results (reduced LCC). In many works on
this subject, the size of the windows is determined
only by the ratio of their area to the façade area [28].
The window optimization tool built in this study
analyses each window separately and allows to
remove windows that overstate the energy consump-
tion.
The analyses have shown the possibility of reducing
the life cycle costs through the optimal selection of
the building structure. The high initial investment
(above the required standard) pays off in the long run
when using a building.
The developed simulation environment can also be
used to optimize other building parameters. The sim-
ulation environment can easily be extended to other
types of buildings.
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