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Abstract
Ditylenchus dipsaci is a devastating pest to many crops worldwide. 
We present the first genome sequence for this species, produced with 
PacBio sequencing and assembled with CANU.
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The stem and bulb nematode, Ditylenchus dipsaci, is a plant-parasitic 
nematode affecting over 500 plant species with major destruction oc-
curring in onion, garlic, beet, strawberry, broad bean, potato, alfalfa, and 
oat (Sturhan and Brzeski, 1991). It is a quarantine pest in Europe (EPPO, 
2004) and well known in garlic production where it can cause losses 
of up to 90% (Abawi and Moktan, 2010). The species exhibits a variety 
of host preferences for which biological groups were proposed (Sturhan 
and Brzeski, 1991). In this study, we report the first genome assembly of 
D. dipsaci, a resource that will improve our understanding of this impor-
tant parasite.

A population of D. dipsaci (E-105) was obtained from the Canadian 
National Collection of Insects, Arachnids, and Nematodes and originally 
isolated from garlic in Northern Ontario (Qiao et al., 2013). The nematodes 
were multiplied in vitro on pea sprout inoculated with only 15 mixed-stages 
individuals, as described in Poirier et al. (2019), to reduce heterozygosity. 
DNA was extracted from ~7,500 mixed-stage D. dipsaci, using the Qiagen 
DNeasy Blood & Tissue Kit (Valencia, CA). MUGQIC (Montréal, Canada) 
performed the library preparation (sheared large insert) and sequencing on 
a PacBio RSII instrument using 12 SMRT cells yielding 941,946 long reads 
at a mean size of 10,207 bp for an estimated coverage of 42×. Two assem-
blies were generated using CANU v1.7 (Koren et al., 2017), one with de-
fault parameters and one optimized for high heterogeneity (corMhapSen-
sitvity = high, corMinCoverage = 0, and correctedErrorRate = 0.105). These 
pre-assemblies were merged using Quickmerge (Chakraborty et al., 2016) 
and decontaminated using Blobtools v1.0 (Laetsch and Blaxter, 2017). 
Before scaffolding, the assembly contained 3,559 contigs with a N50 of 
152 kb. Contigs were then scaffolded using MeDuSa v1.6 (Bosi et al., 2015) 
with the genomes of Caenorhabditis elegans (GCA_000002985.3; The C. 
elegans Sequencing Consortium, 1998), D. destructor (GCA_001579705.1; 
Zheng et al., 2016), Globodera pallida (GCA_000724045.1; Cotton et al., 
2014), G. rostochiensis (GCA_900079975.1; Eves-van den Akker et al., 
2016), and Meloidogyne incognita (GCA_900182535.1; Abad et al., 2008). 
Scaffolding was further improved using Rascaf (Song et al., 2016) and 
13,555,476 PE RNA-seq reads (Phred score > 20), obtained from mixed-
stage D. dipsaci (Illumina HiSeq 2 × 100 bp, TruSeq Library Prep Kit). 
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Then, Purge Haplotigs (Roach et al., 2018) resolved 
highly polymorphic regions and reduced artifactual 
duplication.

The D. dipsaci genome assembly is comprised 
of 1,394 scaffolds, a largest scaffold of ~3.6 Mb, 22 
scaffolds >1 Mb, and a N50 of 287 kb. The assembly 
is 227,234,012 bp (227.2 Mb), double the size of the D. 
destructor assembly (111.1 Mb). We used flow cytom-
etry on D. dipsaci nuclei to investigate this discrepan-
cy, revealing a haploid genome size of 160 to 170 Mb. 
Thus, obtaining 227 Mb with heterozygous material 
is not surprising. The GC content of the D. dipsaci 
assembly was 37.5% which is comparable to D. de-
structor (36.8%), C. elegans (35.4%), G. rostochiensis 
(38.1%), and G. pallida (36.7%). A completeness as-
sessment with BUSCO v 3.0.2 (Simão et al., 2015) 
using the Nematoda_odb9 database revealed 537 
complete sequences (506 single-copy, 31 duplicat-
ed), 133 fragmented, and 312 missing on a total of 
982 BUSCO genes searched in D. dipsaci. The num-
ber of complete genes was higher than G. pallida 
(431) but lower than D. destructor (749). Gene pre-
diction was performed with Braker 2.1.0 (Hoff et al.,  
2015) on a genome masked with Repeatmodeler/
Repeatmasker 4.0.7 (Chen, 2004), leaving simple re-
peats unmasked. Transcript information was relayed 
to Braker via HISAT2 2.1.0 alignments of D. dipsaci 
RNA-seq and exonerate 2.4.0 aligned Ditylenchus 
destructor proteins to produce a gene annotation 
of 26,428 putative genes. On average, these genes 
contained seven exons (max = 114) with a mean 
length of 120 bp (from 2 to 9,194 bp) and six introns 
(max = 113) with a mean length of 515 bp (from 36 to 
27,260 bp).

GenBank accession numbers: The raw sequenc-
es and genome assembly files are available under the 
NCBI BioProject PRJNA498219.
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