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ABSTRACT 

The choice of the normalization method is one of the steps for constructing 
a composite indicator for metric data (see, e.g. Nardo et al., 2008, pp. 19-21). 
Normalization methods lead to different rankings of the set of objects based on 
composite indicator values. In the article 18 normalization methods and 5 
aggregation measures (composite indicators) were taken into account. In the first 
step the groups of normalization methods, leading to identical rankings of the set 
of objects, were identified. The considerations included in Table 3 reduce this 
number to 10 normalization methods. Next, the article discusses the procedure 
which allows separating groups of normalization methods leading to similar 
rankings of the set of objects separately for each composite indicator formula. The 
proposal, based on Kendall’s tau correlation coefficient (Kendall, 1955) and cluster 
analysis, can reduce the problem of choosing the normalization method. Based on 
the suggested research procedure the simulation results for five composite 
indicators and ten normalization methods were presented. Moreover, the 
proposed approach was illustrated by an empirical example. Based on the 
analysis of the dendrograms three groups of normalization methods were 
separated. The biggest differences in the results of linear ordering refer to 
methods n2, n9a against the other normalization methods. 

Key words: variables normalization, rankings, composite indicators, Kendall’s tau 
correlation coefficient, cluster analysis. 

1. Introduction 

Simulation studies, allowing the alignment of linear ordering (ranking) of the 

set of objects, via composite indicators values, procedures (the procedure takes 

into account weights of variables, selected normalization methods and selected 

constructions of aggregation measures), from the perspective of determining the 

correctness (quality) of aggregated variables, were conducted by (Grabiński, 

1984) and (Bąk, 1999). T. Grabiński (see Grabiński, 1984, pp. 58–62; Grabiński, 

                                                        
1 Wroclaw University of Economics, Department of Econometrics and Computer Science, Jelenia 

Góra. Poland. E-mail: marek.walesiak@ue.wroc.pl. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/226933121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


694                                                           M. Walesiak: The choice of normalization… 

 

 

Wydymus and Zeliaś, 1989, pp. 122–123) suggested five groups of correctness 

(quality) measures for determining the value of aggregated variables: 

1. Measures of compatibility of distance matrices calculated for objects in m-
dimensional space of the variables and 1-dimensional space of the 
aggregated variable (3 measures). 

2. Measures based on Pearson product-moment correlation coefficient 
between m variables and the aggregated variable (2 measures). 

3. Measures based on Spearman’s rank correlation coefficient between m 

variables and the aggregated variable (3 measures). 

4. Measures determining an average taxonomic distance of the aggregated 
variable from the m variables (2 measures). 

5. Measures characterizing the variability level and concentration for the 
aggregated variable (2 measures). 

The better a given linear ordering procedure (taking into account weights of 
variables, selected normalization methods and selected constructions of 
aggregation measures), the lower are the values of these measures (Grabiński, 
Wydymus and Zeliaś, 1989, p. 125). The author does not justify substantively the 
introduced measures. The doubts related to their application are presented based 
on two groups of measures. 

The first group of measures covers the selected compatibility functions 
applied in multidimensional scaling (e.g. STRESS-1 function – see Borg and 
Groenen, 2005, p. 42). Based on the distance matrix between objects in m-
dimensional space, such mapping of the set of objects into a set of points in r-
dimensional space is sought (𝑟 < 𝑚, in linear ordering 𝑟 = 1 – of the aggregated 
variable values), which allows achieving the best possible compatibility. The 
objects distant from each other in m-dimensional space shall also remain distant 
in r-dimensional space (1-dimensional). The situation is, however, different in the 
case of linear ordering. A distant object, from the perspective of the initial set of m 
variables, can be found at the same distance from the pattern object. Therefore, 
the distance between them, in terms of the aggregated variable, may equal zero.  

In the second group, e.g. the measure of linear correlation of the aggregated 
variable with diagnostic variables was suggested, which takes the following form 
(the so-called uncertainty coefficient): 

 𝑀4 = 1 −
1

𝑚
∑ 𝑟⋅𝑗

𝑚
𝑗=1 , (1) 

where:𝑟∙𝑗 – linear correlation coefficient for j-th variable with the aggregated 

variable, 
𝑗 = 1, … , 𝑚 – variable number. 

The most preferred value of this measure is 0, when all correlation coefficients 
of diagnostic variables with the aggregated variable equal 1. Such approach is 
missing substantive justification in the case of linear ordering. 

Due to an ambiguous interpretation of correctness (quality) measures for 
determining values of aggregated variables a different approach was used in the 
article.  

There is a growing demand for various rankings of the set of objects (e.g. 
countries, regions) due to, for example, their competitiveness, tourist 
attractiveness, social cohesion, socio-economic development, and environmental 
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pollution. Analyses using aggregate measures require normalization of variable 
values. Normalization methods lead to different rankings of the set of objects 
based on aggregation measures (composite indicators) values. The proposed 
approach allows to objectivize the results of analyses in this area. 

In the article 18 normalization methods and 5 aggregation measures 
(composite indicators) were taken into account. Two elements of the article 
should be considered innovative:  
– identification of groups of normalization methods resulting in identical values 

and identical orderings for the aggregation measures (see Table 3), 
– the proposal of the procedure allowing the separation of the groups of 

normalization methods leading to similar rankings of the set of objects (see 
section 3). 

The proposal, based on Kendall’s tau correlation coefficient and cluster 
analysis, can reduce the problem of choosing the normalization method. Based 
on the suggested research procedure the simulation results were presented. 
Moreover, the proposed approach was illustrated by an empirical example. 

2. Steps for Constructing a Composite Indicator 

The general procedure in linear ordering (ranking) of the set of objects via 
composite indicators values, carried out based on metric data (measured on an 
interval scale and ratio scale)2, takes the following form (see Grabiński, Wydymus 
and Zeliaś, 1989, p. 92; Pawełek, 2008, pp. 110–111; Nardo et al., 2008,  
pp. 19–21): 
a) for methods based on pattern object (there are two types of pattern objects: 

upper pattern – ideal object, upper pole, lower pattern – anti-ideal object, lower 
pole): 

 𝑃 → 𝐴 → 𝑋 → [𝑥𝑖𝑗] → 𝑆𝐷𝑁 → 𝑇𝑤 → 𝑁 → 𝑆𝑀𝑤 → 𝑅, (2) 

where: 

𝑃 – choice of a complex phenomenon (the overriding multidimensional 
phenomenon for ordering A set elements, which is not subject to direct 

measurement), 

𝐴 – choice of objects, 

𝑋 – selection of variables, 

[𝑥𝑖𝑗] – collecting data and the construction of data matrix (𝑥𝑖𝑗 – value for j-th 

variable for i-th object), 

𝑆𝐷𝑁 – identifying preferential variables (stimulant, destimulant, nominant). 𝑀𝑗 

variable is a stimulant (see Hellwig, 1981, p. 48), when for every two of its 

observations 𝑥𝑖𝑗
𝑆 , 𝑥𝑘𝑗

𝑆  referring to objects 𝐴𝑖 , 𝐴𝑘, it takes 𝑥𝑖𝑗
𝑆 >  𝑥𝑘𝑗

𝑆 ⟹ 𝐴𝑖 ≻  𝐴𝑘 (≻ 

means 𝐴𝑖 object domination over  𝐴𝑘 object). 𝑀𝑗 variable is a destimulant (see 

Hellwig, 1981, p. 48), when for every two of its observations 𝑥𝑖𝑗
𝐷 , 𝑥𝑘𝑗

𝐷  referring to 

objects 𝐴𝑖 , 𝐴𝑘 take 𝑥𝑖𝑗
𝐷 >  𝑥𝑘𝑗

𝐷 ⟹ 𝐴𝑖 ≺  𝐴𝑘 (≺ means 𝐴𝑘 object domination over 

                                                        
2 The characteristics of measurement scales is presented, e.g. in the studies by (Stevens, 1946; 

Walesiak, 1995; Walesiak, 2011, pp. 13–16). 
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𝐴𝑖 object). Therefore, 𝑀𝑗 variable represents a unimodal nominant (see Borys, 

1984, p. 118), when for every two of its observations 𝑥𝑖𝑗
𝑁 , 𝑥𝑘𝑗

𝑁  referring to 

objects 𝐴𝑖 , 𝐴𝑘 (𝑛𝑜𝑚𝑗 means the nominal level of j-th variable) if 𝑥𝑖𝑗
𝑁 , 𝑥𝑘𝑗

𝑁 ≤ 𝑛𝑜𝑚𝑗, 

then 𝑥𝑖𝑗
𝑁 >  𝑥𝑘𝑗

𝑁 ⟹ 𝐴𝑖 ≻ 𝐴𝑘; if 𝑥𝑖𝑗
𝑁 , 𝑥𝑘𝑗

𝑁 > 𝑛𝑜𝑚𝑗, then 𝑥𝑖𝑗
𝑁 >  𝑥𝑘𝑗

𝑁 ⟹ 𝐴𝑖 ≺ 𝐴𝑘, 

𝑇𝑤 – transformation of nominants into stimulants (required for an anti-ideal 
object only). Transformation formulas can be found, e.g. in the study by 
(Walesiak, 2011, p. 18), 

𝑁 – normalization of variable values, 

𝑆𝑀𝑤 – composite indicator calculation by aggregating normalized variables – 
the application of distance measures from pattern object using weights. The 
coordinates of upper pattern object covers the most preferred variable values 
(maximum for a stimulant, minimum for a destimulant). The coordinates of 
lower pattern object cover the least preferred variable values (minimum for a 
stimulant, maximum for a destimulant), 

𝑅 – ordering of objects (ranking) in accordance with the composite indicator 
values. 

b) for methods not based on pattern object: 

 𝑃 → 𝐴 → 𝑋 → [𝑥𝑖𝑗] → 𝑆𝐷𝑁 → 𝑇𝑏 → 𝑁 → 𝑆𝑀𝑏 → 𝑅, (3) 

where: 

𝑇𝑏 – transformation of destimulants and nominants into stimulants. Transformation 
formulas are presented, e.g. in the study by (Walesiak, 2011, p. 18), 

𝑆𝑀𝑏 – composite indicator calculation by aggregating normalized variables – 
averaging normalized variable values using weights.  

In linear ordering, carried out based on metrical data, the choice of the 
normalization method for variable values remains one of the stages. The purpose 
of normalization is to adjust the size (magnitude) and the relative weighting of the 
input variables (see, e.g. Milligan and Cooper, 1988, p. 182). An overview of 
normalization methods for variable values is presented in the study by (Walesiak, 
2014b). Table 1 presents normalization methods of linear transformation (see e.g. 
Jajuga and Walesiak, 2000, pp. 106–107; Zeliaś, 2002, p. 792): 

 𝑧𝑖𝑗 = 𝑏𝑗𝑥𝑖𝑗 + 𝑎𝑗 =
𝑥𝑖𝑗−𝐴𝑗

𝐵𝑗
=

1

𝐵𝑗
𝑥𝑖𝑗 −

𝐴𝑗

𝐵𝑗
 (𝑏𝑗 > 0), (4) 

Table 1. Normalization methods 

Type Method 

Parameter 
Measurement scale 

of variables 

𝐵𝑗 𝐴𝑗 
before 

normalization 
after 

normalization 

n1 Standardization 𝑠𝑗 �̅�𝑗 ratio or interval Interval 

n2 
Positional 
standardization 

𝑚𝑎𝑑𝑗 𝑚𝑒𝑑𝑗 ratio or interval Interval 

n3 Unitization 𝑟𝑗 �̅�𝑗 ratio or interval Interval 

n3a 
Positional 
unitization 

𝑟𝑗 𝑚𝑒𝑑𝑗 ratio or interval Interval 
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Table 1. Normalization methods (cont.) 

n4 
Unitization with zero 
minimum 

𝑟𝑗 min
𝑖

{𝑥𝑖𝑗} ratio or interval Interval 

n5 
Normalization in 
range [–1; 1] 

max
𝑖

|𝑥𝑖𝑗 − �̅�𝑗| �̅�𝑗 ratio or interval Interval 

n5a 
Positional 
normalization in 
range [–1; 1] 

max
𝑖

|𝑥𝑖𝑗 − 𝑚𝑒𝑑𝑗| 𝑚𝑒𝑑𝑗 ratio or interval Interval 

n6 

Quotient 
transformations 

𝑠𝑗 0 ratio Ratio 

n6a 𝑚𝑎𝑑𝑗 0 ratio Ratio 

n7 𝑟𝑗 0 ratio Ratio 

n8 max
𝑖

{𝑥𝑖𝑗} 0 ratio Ratio 

n9 �̅�𝑗 0 ratio Ratio 

n9a 𝑚𝑒𝑑𝑗 0 ratio Ratio 

n10 ∑ 𝑥𝑖𝑗

𝑛

𝑖=1
 0 ratio Ratio 

n11 √∑ 𝑥𝑖𝑗
2

𝑛

𝑖=1
 0 ratio Ratio 

n12 Normalization √∑ (𝑥𝑖𝑗 − �̅�𝑗)
2𝑛

𝑖=1
 �̅�𝑗 ratio or interval Interval 

n12a 
Positional 
normalization √∑ (𝑥𝑖𝑗 − 𝑚𝑒𝑑𝑗)

2𝑛

𝑖=1
 𝑚𝑒𝑑𝑗 ratio or interval Interval 

n13 
Normalization with 
zero being the 
central point 

𝑟𝑗

2
 𝑚𝑗 ratio or interval Interval 

�̅�𝑗 – mean for j-th variable, 𝑠𝑗 – standard deviation for j-th variable, 𝑟𝑗 – range for j-th 

variable, 𝑚𝑗 =
max

𝑖
{𝑥𝑖𝑗}+min

𝑖
{𝑥𝑖𝑗}

2
 – mid-range for j-th variable, 𝑚𝑒𝑑𝑗 = med

𝑖
(𝑥𝑖𝑗) – median for 

j-th variable, 𝑚𝑎𝑑𝑗 = mad
𝑖

(𝑥𝑖𝑗) – median absolute deviation for j-th variable. 

Source: (Walesiak, 2014b, pp. 364–365). 

where: 

𝑥𝑖𝑗 – value for j-th variable for i-th object, 

𝑧𝑖𝑗  – normalized value for j-th variable for i-th object, 

𝐴𝑗 – shift parameter to arbitrary zero for j-th variable, 

𝐵𝑗 – scale parameter for j-th variable, 

𝑎𝑗 = −𝐴𝑗 𝐵𝑗⁄ , 𝑏𝑗 = 1 𝐵𝑗⁄  – parameters for j-th variable presented in Table 1. 
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Column 1 in Table 1 presents the type of normalization formula adopted as 
the function data.Normalization of clusterSim package (see Walesiak and Dudek, 
2018) of R program (R Core Team, 2018). 

An aggregation measure 𝑆𝑀𝑖 represents the tool for linear ordering methods 
as a sub-function aggregating partial information contained in particular variables 
and determined for each object from the set of objects. Generally, the 
constructions of aggregation measures (composite indicators) can be divided as 
follows (cf. e.g. Grabiński 1984, p. 38): 

– based on pattern object (e.g. Hellwig’s measure of development; GDM1 
distance; TOPSIS measure), 

– not based on pattern object (arithmetic mean, harmonic mean, geometric 
mean; median). 

Table 2 presents five constructions of aggregation measures (composite 
indicators) (four based on pattern object ones to be followed by one not based on 
pattern object) applied for metric data to be used later in the article.  

Table 2.  Constructions of aggregation measures (composite indicators) used for 
linear ordering (ranking) of objects 

No. Name 𝑆𝑀𝑖 

1 

GDM1 distance 
(Walesiak, 2002; 
Jajuga, Walesiak and 
Bąk, 2003) 

1 − 𝐺𝐷𝑀1𝑖
+ =

1

2
+ 

∑ 𝛼𝑗(𝑧𝑖𝑗 − 𝑧𝑤𝑗)(𝑧𝑤𝑗 − 𝑧𝑖𝑗) + ∑ ∑ 𝛼𝑗(𝑧𝑖𝑗 − 𝑧𝑙𝑗)(𝑧𝑤𝑗 − 𝑧𝑙𝑗)𝑛
𝑙=1

𝑙≠𝑖,𝑤

𝑚
𝑗=1

𝑚
𝑗=1

2 [∑ ∑ 𝛼𝑗(𝑧𝑖𝑗 − 𝑧𝑙𝑗)
2

∙ ∑ ∑ 𝛼𝑗(𝑧𝑤𝑗 − 𝑧𝑙𝑗)
2𝑛

𝑙=1
𝑚
𝑗=1

𝑛
𝑙=1

𝑚
𝑗=1 ]

0,5  

2 
Measure of 
development (Hellwig, 
1968; 1972) 

1 −
𝑑𝑖𝑤

+

�̅�.𝑤
+ + 2𝑠𝑑

 

3 
TOPSIS measure 
(Hwang and Yoon, 
1981) 

𝑑𝑖𝑤
−

𝑑𝑖𝑤
− + 𝑑𝑖𝑤

+  

4 

GDM1_TOPSIS – 
TOPSIS measure with 
GDM1 distance 
(Walesiak, 2014a) 

𝐺𝐷𝑀1𝑖
−

𝐺𝐷𝑀1𝑖
− + 𝐺𝐷𝑀1𝑖

+ 

5 Arithmetic mean ∑ 𝛼𝑗𝑧𝑖𝑗

𝑚

𝑗=1
 

𝑆𝑀𝑖 – aggregation measure (composite indicator) value for i-th object (the resulting 
aggregate variable has stimulant interpretation), 𝑖, 𝑙 = 1, … , 𝑛 – object number, 𝑤 – 

pattern object number, 𝑗 = 1, … , 𝑚 – variable number, 𝑧𝑤𝑗  – j-th coordinate of a pattern 

object, 𝛼𝑗 – weight for j-th variable (𝛼𝑗 ∈ [0; 1] and ∑ 𝛼𝑗
𝑚
𝑗=1 = 1), 𝑑𝑖𝑤 =

√∑ 𝛼𝑗
2(𝑧𝑖𝑗 − 𝑧𝑤𝑗)

2𝑚
𝑗=1  – weighted Euclidean distance for i-th object from a pattern object, 

𝐺𝐷𝑀1𝑖
− and 𝐺𝐷𝑀1𝑖

+ – GDM1 distance for i-th object from the lower pole (anti-ideal 

object) and the upper pole (ideal object), 𝑑𝑖𝑤
−  and 𝑑𝑖𝑤

+  – weighted Euclidean distance for i-

th object from the lower and upper pole, �̅�.𝑤 =
1

𝑛
∑ 𝑑𝑖𝑤

+𝑛
𝑖=1 , 𝑠𝑑 = √

1

𝑛
∑ (𝑑𝑖𝑤

+ − �̅�.𝑤)
2𝑛

𝑖=1 . 

Source: Author’s compilation. 
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3.  Research Procedure Allowing Separation of the Groups of 
Normalization Methods Resulting in a Similar Linear Ordering of 
a Set of Objects 

The research procedure allowing separation of the groups of normalization 
methods for variable values resulting in a similar linear ordering (ranking) of a set 
of objects covers the following steps: 
1. Linear ordering of the set of objects is performed in accordance with the 

general procedure used in linear ordering methods illustrated in section 2 
(scheme (2) or (3)). Any acceptable methods presented in Table 1 are used in 
the normalization of variable values (for ratio variables 18 normalization 
methods are possible and for interval variables – 10 normalization methods). 

2. Object ordering obtained for the acceptable normalization methods is 
compared with the application of Kendall’s tau correlation coefficient Γ𝑟𝑠 (see 
Kendall and Buckland, 1986, p. 266; Kendall, 1955, p. 19; Walesiak, 2011, 
pp. 36-38). Kendall’s tau correlation coefficient takes values in interval [−1; 1]. 
The value of 1 means complete compatibility of orderings, whereas the value  
−1 implies their complete opposition. For the purposes of cluster analysis, 
Kendall’s tau correlation coefficients are transformed into distances using the 
following formula: 

 𝑑𝑟𝑠 =
1

2
(1 − Γ𝑟𝑠), (5) 

where: 

 𝑑𝑟𝑠 ∈ [0; 1], 𝑑𝑟𝑠 = 0, when Γ𝑟𝑠 = 1 and  𝑑𝑟𝑠 = 1, when Γ𝑟𝑠 = −1, 
𝑟, 𝑠 – numbers of normalization methods. 

3. Cluster analysis is carried out based on the distance matrix [𝑑𝑟𝑠], which allows 
separating groups of normalization methods for variable values resulting in 
similar linear ordering of a set of objects. In this case it is possible to use one 
of many classification methods (see, e.g. Everitt et al., 2011). The 
agglomerative hierarchical method of the farthest neighbour clustering was 
applied in the article. 
Certain observations can be put forward regarding normalization methods 

presented in Table 3 for aggregation measures (𝑆𝑀𝑖) obtained using the following 
distance measures: GDM1, Hellwig’s measure of development, TOPSIS, 
GDM1_TOPSIS and 𝑆𝑀𝑖 taking the form of an arithmetic mean. 

Table 3.  Groups of normalization methods resulting in identical values and 

identical orderings for the aggregation measures (𝑆𝑀𝑖) from Table 2 

Groups 
of 

methods 

Identical 𝑆𝑀𝑖 values 
Identical orderings 

(rankings) 

Distances: GDM1 and 
GDM1_TOPSIS 

Hellwig’s measure of 
development, TOPSIS 

all 𝑆𝑀𝑖 constructions 
from Table 2 

A n3, n3a, n4, n7, n13 n3, n3a, n4, n7 n3, n3a, n4, n7, n13 

B n1, n6, n12 n1, n6 n1, n6, n12 

C n2, n6a n2, n6a n2, n6a 

D n9, n10 – n9, n10 

Source: Author’s compilation. 
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Identical 𝑆𝑀𝑖 values (and thus identical orderings) for A, B, C and D groups of 
formulas in the case of GDM1 and GDM1_TOPSIS distance measures result from 
the fact that GDM1 distance does not depend on the shift parameter used in 
normalization methods (4). Furthermore, multiplying normalized values by a 
constant does not change GDM1 distance: 

– for n13 formula the constant equals 2:  

 𝑧𝑖𝑗 =
𝑥𝑖𝑗

𝑟𝑗 2⁄
−

𝑚𝑗

𝑟𝑗 2⁄
= 2 (

𝑥𝑖𝑗

𝑟𝑗
−

𝑚𝑗

𝑟𝑗
), (6) 

– for n12 formula the constant equals √
1

𝑛−1
:  

 𝑧𝑖𝑗 =
𝑥𝑖𝑗

√∑ (𝑥𝑖𝑗−�̅�𝑗)
2𝑛

𝑖=1

−
�̅�𝑗

√∑ (𝑥𝑖𝑗−�̅�𝑗)
2𝑛

𝑖=1

= √
1

𝑛−1
(

𝑥𝑖𝑗

𝑠𝑗
−

�̅�𝑗

𝑠𝑗
), (7) 

– for n10 formula the constant equals 1 𝑛⁄ :  

 𝑧𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

=
1

𝑛

𝑥𝑖𝑗

�̅�𝑗
. (8) 

Identical 𝑆𝑀𝑖 values (and thus identical orderings), in the case of Hellwig’s 
measure of development and TOPSIS, result from the fact that Euclidean 
distance applied in these measures does not depend on the shift parameter used 
in normalization methods, but only on the scale parameter which is identical for A, 
B and C groups of methods (see Pawełek, 2008, p. 94).  

Additionally, n13 is present in A group of normalization methods, while in 
group B – n12 formula. Two normalization methods n9 and n10 result in identical 
object ordering. For n13, n12 and n10 formulas normalized values are multiplied 
by a constant. This causes a change in Euclidean distance, however, does not 
change the ordering of objects. 

In the case of a aggregation measure, taking the form of an arithmetic mean, 
identical orderings result from the fact that the shift parameter, used in 
normalization methods, does not change the order of objects (in fact a constant is 
subtracted from 𝑆𝑀𝑖 value of each object). Multiplying 𝑆𝑀𝑖 value by a constant 
does not alter the order of objects either. For example, for n1, n6 and n12 
formulas from group B the following is obtained: 

 for n1: 𝑆𝑀𝑖 = ∑ (
𝑥𝑖𝑗

𝑠𝑗
−

�̅�𝑗

𝑠𝑗
)𝑚

𝑗=1 = ∑
𝑥𝑖𝑗

𝑠𝑗

𝑚
𝑗=1 − ∑

�̅�𝑗

𝑠𝑗

𝑚
𝑗=1 ,       (9) 

   for n6: 𝑆𝑀𝑖 = ∑
𝑥𝑖𝑗

𝑠𝑗

𝑚
𝑗=1 ,               (10) 

for n12: 𝑆𝑀𝑖 = ∑ (
𝑥𝑖𝑗

√∑ (𝑥𝑖𝑗−�̅�𝑗)
2𝑛

𝑖=1

−
�̅�𝑗

√∑ (𝑥𝑖𝑗−�̅�𝑗)
2𝑛

𝑖=1

) = √
1

𝑛−1
(∑

𝑥𝑖𝑗

𝑠𝑗

𝑚
𝑗=1 − ∑

�̅�𝑗

𝑠𝑗

𝑚
𝑗=1 )𝑚

𝑗=1 . (11) 

The order of objects, determined in line with n6 normalization method, does 
not change n1 formula (subtracting a constant from each 𝑆𝑀𝑖 value obtained for 
n6 formula) and for n12 formula (here subtracting a constant takes place and next 
multiplying by a different constant). 
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4. The Results of Simulation Analyses 

The research procedure discussed in section 3 was used in simulation 
analyses, which allows separating groups of normalization methods for variable 
values resulting in similar linear orderings of a set of objects using a specific 
aggregation measure (𝑆𝑀𝑖): 
1. Multivariate normal distribution was used to generate data (function rmnorm 

from the mnormt package – see Genz and Azzalini, 2016) based on models 
presented in Table 4. A simplifying assumption was adopted that the set of 
analysed variables includes stimulants only. Correlation with aggregate 
variable (vector of 𝑆𝑀𝑖 values) is positive for stimulants (see Grabiński, 1992, 
p. 138). Due to the transitivity of variables correlation3 (Hellwig, 1976) it was 
adopted that the correlation between stimulants will also be positive. 
Therefore, models in Table 4 take values of correlation coefficients from 0.2 to 
0.95 between variables in data matrix. The generated data differ in terms of 
variables’ order of magnitude (see mean values for variables) and the 
variability measured by the coefficient of variation (0.20, 0.16, 0.24, 0.10). 

Table 4. The characteristics of models in simulation analysis  

No. 
Mean values 
for variables 

Covariance matrix Σ Correlation matrix [𝑟𝑗𝑙] 

1 (10, 125, 250, 1000) [

4 14 42 70
14 400 420 700
42 420 3600 2100
70 700 2100 10000

] 
𝑟𝑗𝑗 = 1, 𝑟𝑗𝑙 = 0.35 

1 ≤ 𝑗, 𝑙 ≤ 4 

2 (10, 125, 250, 1000) [

4 26 78 130
26 400 780 1300
78 780 3600 3900

130 1300 3900 10000

] 
𝑟𝑗𝑗 = 1, 𝑟𝑗𝑙 = 0.65 

1 ≤ 𝑗, 𝑙 ≤ 4 

3 (10, 125, 250, 1000) [

4 38 114 190
38 400 1140 1900

114 1140 3600 5700
190 1900 5700 10000

] 
𝑟𝑗𝑗 = 1, 𝑟𝑗𝑙 = 0.95 

1 ≤ 𝑗, 𝑙 ≤ 4 

4 (10, 125, 250, 1000) [

4 36 90 120
36 400 1080 1000
90 1080 3600 3600

120 1000 3600 10000

] [

1 0.9 0.75 0.6
0.9 1 0.9 0.5

0.75 0.9 1 0.6
0.6 0.5 0.6 1

] 

5 (10, 125, 250, 1000) [

4 8 60 140
8 400 480 1200

60 480 3600 1800
140 1200 1800 10000

] [

1 0.2 0.5 0.7
0.2 1 0.4 0.6
0.5 0.4 1 0.3
0.7 0.6 0.3 1

] 

Source: Author’s compilation. 

2. Normalization of variables was carried out using the methods from Table 1. 
Due to the fact that the groups of A, B, C and D normalization methods result 

                                                        
3 Let Y  represent the aggregated variable, whereas 𝑋1 and 𝑋2 two variables from the data matrix. For 

𝑟𝑋1𝑌 = 0.9 and 𝑟𝑋2𝑌 = 0.95 correlation coefficient 𝑟𝑋1𝑋2
 can only take values in the interval 0.719 ≤

𝑟𝑋1𝑋2
≤ 0.991. On the other hand, for 𝑟𝑋1𝑌 = 0.6 and 𝑟𝑋2𝑌 = 0.8, correlation coefficient 𝑟𝑋1𝑋2

 can only 

take values in the interval 0 ≤ 𝑟𝑋1𝑋2
≤ 0.96. 
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in identical ordering, further analysis covered first methods from the indicated 
groups (n1, n2, n3, n9) and the other methods (n5, n5a, n8, n9a, n11, n12a). 

3. Linear ordering was conducted using five aggregation measures (𝑆𝑀𝑖) listed in 
Table 2 (equal weights were used for variables).  

4. For each individual aggregation measure (𝑆𝑀𝑖) the ordering of objects was 
compared by applying 10 normalization methods. Kendall’s tau correlation 
coefficient Γ𝑟𝑠 was used to compare the ordering of objects, which gave 10 x 
10 matrix. 

5. Cluster analysis of normalization methods for variable values was carried out 
for 10 x 10 matrix. For the purposes of the analysis Kendall’s tau correlation 
coefficient was transformed into distances using formula (5). The 
agglomerative hierarchical method of the farthest neighbour clustering was 
applied to separate groups of normalization methods for variable values 
resulting in similar linear orderings of the set of objects using a specific 𝑆𝑀𝑖. 

20 sets of data were generated for each model from Table 4, the procedure 
was conducted in accordance with points 2-5 divided into 2, 3 and 4 classes and 
next the obtained classification results of five aggregation measures (𝑆𝑀𝑖) from 
Table 2 were compared using the adjusted Rand index (see Hubert and Arabie, 
1985). Table 5 presents the outcome of compatibility comparison for cluster 
analysis results of normalization methods for five aggregation measures (𝑆𝑀𝑖) 
taking the mean value of the adjusted Rand index. 

Table 5. Compatibility comparison of cluster analysis results of normalization 

methods for five aggregation measures (𝑆𝑀𝑖) taking the mean value of 
the adjusted Rand index 

Model 1 Model 2 

    1        2          3         4         5 
1  1.000  0.914  0.886  0.891  0.870 
2  0.914  1.000  0.916  0.922  0.865 
3  0.886  0.916  1.000  0.890  0.908 
4  0.891  0.922  0.890  1.000  0.859 
5  0.870  0.865  0.908  0.859  1.000 

    1         2         3         4         5 
1  1.000  0.922  0.841  0.826  0.813 
2  0.922  1.000  0.833  0.839  0.834 
3  0.841  0.833  1.000  0.899  0.824 
4  0.826  0.839  0.899  1.000  0.867 
5  0.813  0.834  0.824  0.867  1.000 

Model 3 Model 4 

    1        2          3         4         5 
1  1.000  0.865  0.800  0.824  0.823 
2  0.865  1.000  0.801  0.774  0.808 
3  0.800  0.801  1.000  0.853  0.806 
4  0.824  0.774  0.853 1.000  0.806 
5  0.823 0.808  0.806  0.806  1.000 

    1         2         3         4         5 
1  1.000  0.884  0.885  0.893  0.862 
2  0.884  1.000  0.861  0.817  0.844 
3  0.885  0.861  1.000  0.892  0.873 
4  0.893  0.817  0.892  1.000  0.896 
5  0.862  0.844  0.873  0.896  1.000 

Model 5 Mean (models 1-5) 

    1        2          3         4         5 
1  1.000  0.955  0.879  0.898  0.869 
2  0.955  1.000  0.870  0.930  0.877 
3  0.879  0.870  1.000  0.908  0.857 
4  0.898  0.930  0.908  1.000  0.878 
5  0.869  0.877  0.857  0.878  1.000 

    1         2         3         4         5 
1  1.000  0.908  0.858  0.866  0.847 
2  0.908  1.000  0.856  0.856  0.845 
3  0.858  0.856  1.000  0.888  0.853 
4  0.866  0.856  0.888  1.000  0.861 
5  0.847  0.845  0.853  0.861  1.000 

1 – GDM1 distance, 2 – Hellwig’s measure of development, 3 – TOPSIS measure, 
4 – TOPSIS measure with GDM1 distance, 5 – arithmetic mean. Minimum values are 
underlined, maximum values are in bold (excluding the main diagonal).  

Source: Author’s compilation using R program. 
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Having analysed the obtained results of compatibility comparison for cluster 
analysis of normalization methods for five aggregation measures (𝑆𝑀𝑖), taking the 
mean value of the adjusted Rand index, the following conclusions can be drawn: 
1. Values of the adjusted Rand index for models 1-5 vary in the interval 

[0.774, 0.955]. Mean values of the adjusted Rand index taken from five models 
are in the interval [0.845, 0.908]. Therefore, the results of cluster analysis of 
normalization methods for the analysed aggregation measures (𝑆𝑀𝑖) are 
similar to each other. 

2. Dendrite of cluster analysis results’ similarity of normalization methods for five 
aggregation measures is presented in Figure 1 (developed based on the 
matrix for models 1-5 from Table 5).  

 

0.908

2

1 40.866

3

0.888

50.861

 

Figure 1. Dendrite of cluster analysis results’ similarity of normalization methods 
for five aggregation measures 

1 – GDM1 distance, 2 – Hellwig’s measure of development, 3 – TOPSIS measure, 
4 – TOPSIS measure with GDM1 distance, 5 – arithmetic mean. 

Source: Author’s compilation. 

5. Empirical Research Results 

The evaluation of tourism competitiveness level of the Sudety communes in 
Poland, covering 52 out of 169 communes in Lower Silesia region, was carried 
out in the article (Gryszel and Walesiak, 2018). The Sudety communes are 
located in the geographical area of the Sudety in the southern part of Lower 
Silesia region. They are characterized by the most valuable tourism advantages, 
where the tourism function either dominates or is of great importance among 
other economic functions in a commune. The following variables were used in the 
study: 

x1 – beds in hotels per 1 km2 of a commune area, 

x2 – beds in other accommodation facilities per 1 km2 of a commune area, 

x3 – number of nights of resident tourists (Poles) falling per day per 1000 
inhabitants of a commune, 

x4 – number of nights of foreign tourists falling per day per 1000 inhabitants 
of a commune, 

x5 – communal expenditure for tourism per 1000 inhabitants in PLN, 

x6 – funds obtained from the European Union and from the state budget to 
finance the EU programs and projects per 1 inhabitant in PLN, 
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x7 – number of tourist economy entities per 1000 inhabitants of a commune 
(natural persons conducting economic activity), 

x8 – number of tourist economy entities per 1000 inhabitants of a commune 
(legal persons and organizational entities without legal personality). 

All variables represent stimulants. Statistical data were collected in 2012 and 
retrieved from the Local Data Bank (LDB). The research procedure discussed in 
section 3 was used in the article, which allows separating the groups of methods 
for the normalization of variable values, resulting in similar linear ordering of the 
set of communes in terms of their tourism competitiveness level. The analysed 
variables are measured using ratio scale, therefore all normalization methods 
listed in Table 1 are acceptable.  

The results of linear ordering compatibility for 52 Sudety communes, in terms 
of their tourism competitiveness level, using 18 normalization methods and 5 𝑆𝑀𝑖 
from Table 2 are presented in Figure 1. Due to the fact that the groups of A, B, C 
and D normalization methods result in identical orderings, further analysis 
covered first formulas from the indicated groups (n1, n2, n3, n9) and other 
formulas (n5, n5a, n8, n9a, n11, n12a). 

Regardless of the adopted 𝑆𝑀𝑖 construction, the results of linear ordering 
compatibility for 52 Sudety communes, in terms of their tourism competitiveness 
level, using 10 normalization methods are analogical in this case. Table 6 
contains compatibility comparison of cluster analysis results of normalization 
methods (after splitting the dendrograms from Figure 2 into 2, 3 and 4 clusters) 
for five aggregation measures (𝑆𝑀𝑖) taking the mean value of the adjusted Rand 
index. 

Table 6. Compatibility comparison of cluster analysis results of normalization 
methods (after splitting the dendrograms into 2, 3 and 4 clusters) for 
five aggregation measures (𝑆𝑀𝑖) taking the mean value of the adjusted 
Rand index. 

Aggregation measure 1 2 3 4 5 

1 1.0000 1.0000 0.7674 0.7674 0.7674 

2 1.0000 1.0000 0.7674 0.7674 0.7674 

3 0.7674 0.7674 1.0000 1.0000 1.0000 

4 0.7674 0.7674 1.0000 1.0000 1.0000 

5 0.7674 0.7674 1.0000 1.0000 1.0000 

1 – GDM1 distance, 2 – Hellwig’s measure of development, 3 – TOPSIS measure, 4 – 
TOPSIS measure with GDM1 distance, 5 – arithmetic mean. 

Source: Author’s compilation. 
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Taking into account results from Table 6 the following conclusions can be 
drawn: 
1. The results of cluster analysis of normalization methods (after splitting the 

dendrograms into 2, 3 and 4 clusters) for TOPSIS measure, TOPSIS measure 
with GDM1 distance, and arithmetic mean are the same. 

2. The results of cluster analysis of normalization methods (after splitting the 
dendrograms into 2, 3 and 4 clusters) for GDM1 distance and Hellwig’s 
measure of development are the same. 

3. The differences between groups of aggregation methods listed in points 1 and 
2 relate to the division of dendrograms into two clusters. 

Based on the analysis of the dendrograms in Figure 2 three groups of 
normalization methods were separated: 

group 1 (6 methods): n1, n3, n5, n5a, n8, n12a, 

group 2 (2 methods): n2, n9a, 

group 3 (2 methods): n9, n11. 

The results presented in Figure 2 regarding the adopted 𝑆𝑀𝑖 construction 
differ, for the separated groups of normalization methods, in the level of class 
links in a dendrogram. 

The biggest differences in the results of linear ordering refer to methods n2, 
n9a against the other normalization methods. 

The presented proposal allows reducing the problem of a normalization 
method selection. Significant differences between the results of linear ordering 
appear in the analysed case for the normalization methods from different groups. 

In the current practice, not considering the proposed procedure, selecting 18 
methods for normalizing variable values for metric data, we had 18 proposals to 
choose from (see Table 1). The considerations included in Table 3 reduce this 
number to 10 normalization methods. The choice still becomes arbitrary and 
difficult to justify. The proposed approach does not completely solve the problem, 
but it allows distinguishing groups of normalization methods leading to similar 
results of linear ordering (rankings) of objects. In the analysed example, we 
already have three types of normalization methods to choose from (normalization 
methods in the same groups give similar results of linear ordering of objects). 
Therefore, the presented proposal allows limiting the problem of selecting the 
normalization method of variable values. 
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Figure 2. The results of linear ordering compatibility for 52 Sudety communes in 
terms of their tourism competitiveness level using 10 normalization 
methods and 5 aggregation measures (dendrograms of normalization 
methods similarity) 

Source: Author’s compilation using R program. 
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6. Conclusions 

Normalization methods lead to different rankings of the set of objects based 
on aggregation measure (composite indicator) values. The study includes 18 
normalization methods and 5 aggregation measures (composite indicators).  

The groups of normalization methods were indicated, which results in identical 
𝑆𝑀𝑖 values and identical orderings for 𝑆𝑀𝑖 obtained using the following distance 
measures: GDM1, Hellwig’s measure of development, TOPSIS, GDM1_TOPSIS 
and aggregation measure (𝑆𝑀𝑖) taking the form of arithmetic mean. Due to the 
fact that the groups of A, B, C and D normalization methods result in identical 
ordering (see Table 3), further analysis covered 10 methods of normalization: n1, 
n2, n3, n5, n5a, n8, n9, n9a, n11, n12a. 

The article discusses the proposal of research procedure (section 3), based 
on Kendall’s tau correlation coefficient and cluster analysis, which allows reducing 
the problem of normalization method selection for variable values.  

The effects of simulation studies for 5 aggregation measures and 10 
normalization methods were presented (section 4). Mean values of the adjusted 
Rand index taken from five models are in the interval [0.845, 0.908]. Therefore, 
the results of cluster analysis of normalization methods for the analysed 
aggregation measures are similar to each other (dendrite of cluster analysis 
results’ similarity of normalization methods for five aggregation measures is 
presented in Figure 1). 

The results of conducted research were illustrated by an empirical example 
presenting the application of five aggregation measures and ten normalization 
methods in linear ordering of Lower Silesian districts in terms of their tourism 
attractiveness level. Based on the analysis of the dendrograms three groups of 
normalization methods were separated. The biggest differences in the results of 
linear ordering refer to methods n2, n9a against the other normalization methods.  

The author’s own scripts, prepared in R environment, were applied in the 
calculations. 
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