
Deterministic Blockmodeling of Two-Mode Binary

Networks Using a Two-Mode KL-Median Heuristic

Michael Bruscoa, Hannah J. Stolzeb, Michaela Hoffmanc,

Douglas Steinleyd, and Patrick Doreiane

Abstract

Deterministic blockmodeling of a two-mode binary network matrix based on structural

equivalence is a well-known problem in the social network literature. Whether implemented in a

standalone fashion, or embedded within a metaheuristic framework, a popular relocation

heuristic (RH) has served as the principal solution tool for this problem. In this paper, we

establish that a two-mode KL-median heuristic (TMKLMedH) seeks to optimize the same

criterion as the RH for deterministic blockmodeling. The TMKLMedH runs much faster than the

RH, so many more restarts of the TMKLMedH can be accomplished when the two methods are

constrained to the same time limit. Three computational comparisons of RH and TMKLMedH

were conducted using both synthetic and real-world networks. In all three comparisons, the

superiority of TMKLMedH was unequivocal.

Keywords: Deterministic blockmodeling; Heuristics; Two-mode networks

aCorresponding author: Department of Business Analytics, Information Systems, and Supply

Chain, Florida State University, Tallahassee, Florida, USA, mbrusco@business.fsu.edu
bBusiness and Economics Department, Wheaton College, Wheaton, Illinois, USA

hannah.stolze@wheaton.edu
cDepartment of Psychiatry and Behavioral Sciences, Medical University of South Carolina,

Charleston, SC, USA, hoffmami@musc.edu
dDepartment of Psychological Sciences, University of Missouri, Columbia, Missouri, USA

steinleyd@missouri.edu
eFaculty of Social Sciences, University of Ljubljana, Ljubljana, Slovenia, and Department of

Sociology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA pitpat@pitt.edu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Exeley Inc.

https://core.ac.uk/display/226932926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mbrusco@business.fsu.edu
mailto:hannah.stolze@wheaton.edu
mailto:hoffmami@musc.edu
mailto:steinleyd@missouri.edu
mailto:pitpat@pitt.edu

1

Introduction

There are numerous examples of two-way, two-mode data in the context of social networks. In

affiliation networks (Faust, 1997;Wasserman & Faust, 1994), the rows of the network matrix

commonly pertain to individuals (actors), while the columns often correspond to events the

actors attended (Davis, Gardner, & Gardner, 1941) or clubs of which the actors are members

(Galaskiewicz, 1985). Other examples of two-mode network data include the participation of

social/political groups in community projects (Mische & Pattison, 2000), the participation of

individuals in electronic forums (Opsahl, 2013), the ratings viewers provided for movies (Harper

& Konstan, 2015), the endorsement of political advertisements by organizations (Brusco &

Doreian, 2015a), subject-by-item response data (Coombs, 1964; Hubert, 1974), U.S. Supreme

Court voting data (Doreian, Batagelj, & Ferligoj, 2004, 2005), United Nations General Assembly

(UNGA) voting data (Brusco, Doreian, Lloyd, & Steinley, 2013a; Doreian, Lloyd, & Mrvar,

2013), and the presence of words in documents (Xu, Liu, & Gong, 2001).

A variety of methods have been used to analyze two-mode social network data, including

centrality analysis (Faust, 1997), Q-analysis (Doreian, 1979; Freeman, 1980), permutation

procedures (Arabie, Hubert, & Schleutermannm 1990; Brusco & Steinley, 2006), and matrix

factorization methods (Brusco, 2011; Everett & Borgatti, 2013; Pattison, 1993; Pattison &

Bartlett, 1982; Pattison & Brieger, 2002). Here, we restrict our focus to deterministic two-mode

blockmodeling procedures for social networks, as they have been particularly common in recent

years (Brusco & Doreian, 2015a, 2015b; Brusco et al., 2013a; Brusco, Doreian, Mrvar, &

Steinley, 2013b; Brusco & Steinley, 2007a, 2011; Doreian et al., 2004, 2005, 2013). More

specifically, we focus on partitioning methods for deterministic blockmodeling of binary two-

mode networks based on the principles of structural equivalence (Lorrain & White, 1971).

As formalized by Doreian et al. (2004, 2005), the goal of the deterministic two-mode

blockmodeling problem (DTMBP) is to produce K clusters of the n row objects and L clusters of

the m column objects with the goal of producing submatrices defined by the row and column

clusters that consist of either all ones (or all zeros) to the greatest extent possible. Essentially, the

DTMBP seeks to find partitions minimizing the inconsistency with this structure, as measured by

the total number of ones in submatrices containing mostly zeros, plus the number of zeros in

submatrices containing mostly ones. An exact algorithm for the DTMBP was developed by

Brusco et al. (2013b), but is limited to relatively small two-mode matrices. A relocation heuristic

RH for the DTMBP was described by Doreian et al. (2004). The RH is often implemented in a

multistart framework, whereby the heuristic is applied to large numbers of initial randomly-

generated partitions. However, the RH has also been embedded within the framework of more

sophisticated heuristic procedures, such as tabu search (Brusco & Steinley, 2011) and variable

neighborhood search (Brusco et al., 2013a).

One of the limitations of the RH is that its computational requirement increases significantly as

the number of objects (n and m) and the number of clusters (K and L) increase. Here, we present

an alternative heuristic algorithm, one dramatically more efficient than the RH. We refer to this

algorithm as a two-mode KL-median heuristic (TMKLMedH). The TMKLMedH seeks to

2

partition the row and column objects with the goal of minimizing the sum of the absolute

deviations between matrix elements and the median of the elements in their submatrices. The

TMKLMedH is an adaptation of a two-mode KL-means heuristic that has been popular in both

social network and broader classification literature (Baier, Gaul, & Schader, 1997; Brusco &

Doreian, 2015a, 2015b; Brusco & Steinley, 2007a; Gaul & Schader, 1996; Van Rosmalen,

Groenen, Trejos, & Castillo, 2009; Vichi, 2001). Although TMKLMedH is not restricted to

binary network matrices, our emphasis here is limited to such networks. More importantly, it

generalizes naturally to valued networks, something much harder to accomplish with RH.

The next section presents the motivation for the intended contribution of our paper. This is

followed by a section providing a precise formulation of the DTMBP and a section that describes

two competitive algorithms for its solution: RH and TMKLMedH. A simulation-based

computational comparison of RH and TMKLMedH is subsequently provided, followed by a

comparison of RH and TMKLMedH for voting data from the UNGA (Brusco et al., 2013a) and a

larger network corresponding to movie ratings. The paper concludes with a summary of our

findings and an identification of extensions for future research.

Motivation for Intended Contribution

There are two primary sources of motivation for this paper: (i) our discovery that TMKLMedH is

a direct competitor of RH for solving the DTMBP; and (ii) previous findings concerning the

relationships among different implementation of K-means clustering algorithms (Forgy, 1965;

MacQueen, 1967; Steinhaus 1956; Steinley, 2006a). As noted previously, two-mode KL-means

partitioning has received some attention in the social network literature (Brusco & Doreian,

2015a, 2015b). Pursuant to this work, we discovered that, in the case of binary networks, if the

mean of submatrices is replaced with the corresponding medians, then the resulting optimization

problem has the same criterion function as DTMBP, a point developed in more detail in the next

section.

There are a variety of different implementations of K-means clustering (Brusco & Steinley,

2007b; Hansen & Mladenović, 2001; Späth, 1980; Steinley, 2006a, b). The most popular one

begins with a partition of objects into K clusters. An iterative process consisting of the

computation of cluster centroids and the reassignment of each case to its nearest centroid is then

repeated until convergence. Although this procedure is commonly referred to as K-means

clustering, some authors refer to it as H-means clustering (see Brusco & Steinley, 2007b; Hansen

& Mladenović, 2001; Späth, 1980). Another variant that is sometimes referred to as K-means

clustering is another relocation heuristic, where each object is tested in turn for reassignment

from its current cluster to each of the other clusters. This algorithm, called K-means by Hansen

and Mladenović (2001), converges when no object can be relocated to further improve the

criterion function.

The advantage of H-means relative to K-means is that it is much faster, allowing many more

restarts if the two algorithms are allotted the same amount of time. The disadvantage of H-means

relative to K-means is that it does not necessarily converge to a locally-optimal solution

regarding all possible object relocations. In fact, H-means solutions can even be degenerate in

3

the form of having either empty clusters or two or more clusters with identical centroid values.

To capitalize on the strengths of both methods, Hansen and Mladenović (2001) devised a

procedure called HK-means, where H-means is used first to rapidly obtain a solution and K-

means is then applied to refine that solution so as to improve the criterion function value. Brusco

and Steinley (2007b) showed HK-means performed exceptionally well compared to a variety of

different heuristic approaches.

The relationship between TMKLMedH and RH is directly analogous to the relationship between

H-means and K-means. This suggested that TMKLMedH was likely to be a good alternative to

RH, as it can allow for many more restarts within the same prescribed time limit. Computational

studies were undertaken to investigate this claim.

To summarize, the contributions of our paper are:

(1) The introduction of two-mode KL-median partitioning. To the best of our knowledge,

this has not been studied.

(2) The recognition that, for binary networks, TMKLMedH is a solution procedure for

the DTMBP and, therefore, a direct competitor for RH.

(3) The identification that TMKLMedH is to RH what H-means is to K-means (as defined

by Hansen and Mladenović, 2001).

(4) The provision of computational comparisons between TMKLMedH and RH across a

diverse array of datasets, which shows the superiority of TMKLMedH over RH.

DTMBP Formulation
We use the following notation to formulate the DTMBP:

n := the number of row objects (commonly actors/individuals);

m := the number of column objects (commonly events or organizations);

X := the n  m binary network matrix;

K := the number of clusters for the row objects;

L := the number of clusters for the column objects;

 := the set of all partitions of the row objects into K clusters;

π := a partition, (π = {S1,…,SK})  , of the row objects into K clusters, where Sk contains

the objects assigned to cluster k and nk = Sk is the number of objects in Sk, for all 1

≤ k ≤ K;

 := the set of all partitions of the column objects into L clusters;

 := a partition, ( = {T1,…,TL})  , of the column objects into L clusters, where Tl

contains the objects assigned to cluster l and ml = Tl is the number of objects in Tl,

for all 1 ≤ l ≤ L.

Using this notation, a formulation of the DTMBP follows: (See also Brusco et al., 2013; Brusco

& Steinley, 2007a, 2011).

4

 


 




K

k

L

l

klklg
1 1

,
},min{),(:Minimize , (1)

where: 
 


k lSi Tj

ijkl x ,  1  k  K and 1  l  L, (2)

and 
 


k lSi Tj

ijkl x)1(,  1  k  K and 1  l  L. (3)

The goal of the DTMBP is finding the row-object () and column-object () partitions

minimizing the number of inconsistencies with perfect structural equivalence, whereby all blocks

are either null or complete. The values of kl and kl are, respectively, the number of ones and

zeros in the submatrix corresponding to row cluster k and column cluster l. For each submatrix, if

kl  kl, then the kl zeros would be the inconsistencies in the submatrix. This count is

accumulated in the objective function. Likewise, if kl < kl, then the kl ones would be the

inconsistencies in the submatrix. This count is also accumulated in the objective function, which

is the sum of these inconsistency counts over all K  L blocks as expressed in equation (1).

Next, we propose an alternative formulation of the DTMBP using submatrix medians. The

following additional terms are necessary:

dkl := the median of the elements in the submatrix (or block) formed by the row objects in

cluster Sk and the column objects in cluster Tl, for all 1 ≤ k ≤ K and 1 ≤ l ≤ L;

vkl := the intra-block sum-of-absolute error variation in the submatrix formed by the row

objects in cluster Sk and the column objects in cluster Tl,

 
 


k lSi Tj

klijkl dxv , for all 1 ≤ k ≤ K and 1 ≤ l ≤ L. (4)

With these definitions in place, an alternative formulation of the DTMBP based on submatrix

medians is as follows:

 


 




K

k

L

l

klvf
1 1

,
),(:Minimize , (5)

Establishing the equivalence of g(, ) in equation (1) and f(, ) in equation (5) is

straightforward. For a binary network matrix, the median of the submatrix defined by row cluster

k and column cluster l ( 1  k  K and 1  l  L) will be dkl = 1 if there are more ones than zeros

in the submatrix, dkl = 0 if there are more zeros than ones in the submatrix, and dkl = 0.5 if there

are an equal number of zeros and ones in the submatrix. Furthermore, ( 1  k  K and 1  l 

L), vkl is equal to the number of zeros in the submatrix when dkl = 1, vkl is equal to the number of

ones in the submatrix when dkl = 0, and vkl is equal to the number of ones (or, equivalently, the

number of zeros) in the submatrix when dkl = 0.5. It follows that, for binary data, the vkl values

5

reflect the number of inconsistencies in the submatrices with respect to the ideal condition under

structural equivalence. That is, if dkl = 1, then vkl = kl, the sum of the zeros in the submatrix.

Similarly, if dkl = 0, then vkl = kl, the sum of the ones in the submatrix. Finally, if if dkl = 0.5,

then vkl = kl = kl, the sum of the zeros (or ones) in the submatrix. In summary, equivalence of

the two representations stems from the fact that the value of vkl = min{kl, kl,}.

Heuristic Solution Methods for the DTMBP

A relocation heuristic (RH)

A relocation heuristic (RH) for the DTMBP was developed by Doreian et al. (2004, 2005,

Chapter 8). In its original design, the RH used two neighborhood search operations: (i) transfers

of objects from one cluster to another; and (ii) exchanges of cluster memberships for pairs of

objects. Brusco and Steinley (2011) found the second of these operations to be ineffective when

RH was implemented in a multistart framework using a fixed time limit. More specifically, the

computational requirement associated with the examination of all possible exchanges is high,

which implies fewer restarts of the algorithm can be realized within any prescribed time limit.

Based on this finding, we implement a version of the RH using only transfers (see also Brusco et

al., 2013a). The precise steps of the relocation algorithm are described below. In addition to

previously defined terms, the description uses flagR and flagC, to indicate, respectively, whether

a successful relocation has been found for either row objects or column objects. Also, flag1 is an

indicator to control termination of the algorithm if the current solution is locally-optimal with

respect to all possible relocations of row and column objects.

Step 0. Initialization. Input an initial K-cluster partition of the row objects, , and an initial L-

cluster partition for the column objects, . Compute g(, ) using equations (1) through

(3).

Step 1. Evaluate all transfers of row objects.

 Step 1a. Set flag1 = 0, flagR = 0, i = 0, and go to Step 1b.

 Step 1b. Set i = i + 1. If i > n, then go to Step 1i; otherwise, set h = h : i  Sh and go to

Step 1c.

 Step 1c. If Sh > 1, then set k = 0 and go to Step 1d; otherwise, return to Step 1b.

 Step 1d. Set k = k + 1 and go to Step 1e.

 Step 1e. If k = h, then go to Step 1d; otherwise go to Step 1f.

 Step 1f. If k > K, then go to Step 1b; otherwise go to Step 1g.

 Step 1g. Set }}{{}}{\{},{\ iSiSSS khkh  , compute),(g , and then

proceed to Step 1h.

 Step 1h. If),(g <),(g , then set  = , flag1 = 1, flagR = 1, h = k, and return to

Step 1d; otherwise return to Step 1d.

 Step 1i. If flagR = 0, then proceed to Step 2; otherwise return to Step 1a.

Step 2. Evaluate all transfers of column objects.

6

 Step 2a. Set flagC = 0 and j = 0 and go to Step 2b.

 Step 2b. Set j = j + 1. If j > m, then go to Step 2i; otherwise, set h = h : j  Th and go to

Step 2c.

 Step 2c. If Th > 1, then set l = 0 and go to Step 2d; otherwise, return to Step 2b.

 Step 2d. Set l = l + 1 and go to Step 2e.

 Step 2e. If l = h, then go to Step 2d; otherwise go to Step 2f.

 Step 2f. If l > L, then go to Step 2b; otherwise go to Step 2g.

 Step 2g. Set }}{{}}{\{},{\ jTjTTT lhlh  , compute),(g , and then proceed

to Step 2h.

 Step 2h. If),(g <),(g , then set  = , flag1 = 1, flagC = 1, h = l, and return to

Step 2d; otherwise return to Step 2d.

 Step 2i. If flagC = 0, then proceed to Step 3; otherwise return to Step 2a.

Step 3. Termination check.

 If flag1 = 1, then return to Step 1a; otherwise, return , ,),(g and STOP.

The RH begins in Step 0 with the selection of an initial blockmodeling solution. This solution

can be randomly-generated or produced via some other type of heuristic procedure (see Brusco et

al., 2013a). A cycle through Step 1 provides a search of all possible relocations of the n row

objects from their current cluster to each of the other K-1 clusters. Relocations that improve the

objective function are accepted as they arise. The algorithm will continue cycling through its

search of row-object relocations until no further improvement in the criterion function can be

realized. At this point, control is passed to Step 2, where a similar process is implemented for

column objects. The algorithm terminates in Step 3 when no relocations of row objects or

column objects can further improve the objective function.

This formulation of RH is not without its limitations. First, a potential source of bias can accrue

from column-object relocations that are not considered until all improvements via row-object

relocations have been made. Second, as noted by Brusco et al. (2013a), the algorithm is left-

biased in the sense that row objects are evaluated in their natural order (1, 2,…,n), as are column

objects. Third, the evaluation of n(K-1) and m(L-1) relocations on each cycle of Steps 1 and 2,

respectively, can be computationally demanding as n, m, K, and L increase. This can seriously

limit the number of restarts of the RH that can be completed within a prescribed time limit.

A two-mode KL-median heuristic

We apply the TMKLMedH, an adaptation of a heuristic for two-mode KL-means partitioning

that has proven effective in previous studies (Baier et al., 1997; Brusco & Doreian, 2015a,b;

Brusco & Steinley, 2007a; Van Rosmalen et al., 2009; Vichi, 2001). The heuristic process is a

direct extension of the classic K-means (or, as defined by Hansen and Mladenović (2001), H-

means) clustering heuristic for one-mode data (Forgy, 1965; Steinhaus 1956). The heuristic is

implemented via the following steps:

7

Step 0. Randomly assign the row objects to K clusters to create the initial partition, π. Randomly

assign the column objects to L clusters to create the initial partition, . Compute f* =

f(π,).

Step 1. Row-object reassignment.

 Step 1a: Compute dkl  1 ≤ k ≤ K and 1 ≤ l ≤ L.

 Step 1b. Compute 
 


L

l Tj

klijik

l

dx
1

  1 ≤ i ≤ n and 1 ≤ k ≤ K.

 Step 1c. Update π by setting i  Sk : }{min
1

ih
Kh

ik 


 ,  1 ≤ i ≤ n.

 Step 1d. If Sk =  for any k (1 ≤ k ≤ K), then set i  Sk : }}{min{max
11

ih
Khni

i 


  . Set ik

= 0 and repeat this step as necessary to guarantee no empty clusters.

Step 2. Column-object reassignment.

 Step 2a: Compute dkl  1 ≤ k ≤ K and 1 ≤ l ≤ L.

 Step 2b. Compute 
 


K

k Si

klijjl

k

dx
1

  1 ≤ j ≤ m and 1 ≤ l ≤ L.

 Step 2c. Update  by setting j  Tl : }{min
1

jh
Lh

jl 


 ,  1 ≤ j ≤ m.

 Step 2d. If Tl =  for any l (1 ≤ l ≤ L), then set j  Tl : }}{min{max
11

jh
Lhmj

ji 


 . Set jl =

0 and repeat this step as needed to guarantee no empty clusters.

Step 3. Compute f(π,). If f(π,) < f*, then set f* = f(π,) and return to Step 1; otherwise, stop.

The heuristic begins with the random assignment of row objects and column objects to clusters

in Step 0. Step 1 is a refinement process that, holding the column assignments fixed, assigns row

objects to their best cluster based on minimum deviation from the current submatrix medians.

Step 2 is similar, but holds the row assignments fixed and reassigns the column objects. The

algorithm terminates in Step 3 when a complete cycle through Steps 1 and 2 does not produce an

improvement in the criterion function value. Because of the potential for empty clusters after

Steps 1c and 2c, Steps 1d and 2d are positioned to rectify this problem by reassigning the row

object or column object that is farthest from its current cluster centroid to fill the empty cluster.

The TMKLMedH is sensitive to the initial partitions in Step 0 and does not necessarily converge

to a globally-optimal solution for the problem posed in Equation (3). As with RH, a common

practice is to restart the algorithm many times using different random initial partitions in Step 0,

and selecting the results from a restart that produces the best value of the criterion function (see

Brusco & Doreian, 2015a,b; Brusco & Steinley, 2007a; Van Rosmalen et al., 2009). This

multistart restart practice was adopted in our implementation.

8

A Simulation-Based Comparison of RH and TMKLMedH

Experimental design

We conducted a simulation-based comparison of RH and TMKLMedH across test problems that

were generated through the manipulation of eight design features: (i) number of row objects (n);

(ii) number of column objects (m); (iii) number of row-object clusters (K); (iv) the number of

column-object clusters (L); (v) the relative sizes of the row-object clusters; (vi) the relative sizes

of the column-object clusters; (vii) the density of the image matrix; and (viii) the strength of the

null and complete blocks. Two levels of each design feature were considered, resulting in a total

of 28 = 256 experimental cells. Three replicates were generated for each cell, resulting in a total

of 768 test problems.

The two levels for the first design feature were n = 180 and n = 540. Likewise, for the second

design feature, the levels were m = 180 and m = 540. The justification for these settings is based

on several factors. First, we wanted the test problems to be large enough to discover real

differences in performance between RH and TMKLMedH; hence, the lower settings of n = 180

and m = 180 are more than 50% larger than the highest setting used in similar research designs

implemented by Brusco and Steinley (2007a) and Brusco et al. (2013a). Second, we wanted to

keep the test problems of a sufficiently modest size to allow for the completion of the experiment

within a reasonable time; hence we capped problem size at n = m = 540. Third, by separating n

and m into distinct design features, we are able to look at problem instances where n and m are

equal, as well as instances where n it three times larger than m (and vice versa).

The two levels for the third design feature were K = 3 and K = 6. Likewise, for the fourth design

feature, the levels were L = 3 and L = 6. These are the same settings used in a two-mode

blockmodeling simulation study conducted by Brusco and Steinley (2007a). Although these

settings seem modest at first glance, it is important to remember that the simulation study

considers all possible crossings of K and L. Therefore, the total number of clusters is either six

(when K = L = 3), nine (where K= 6 and L = 3, or K = 3 and L = 6), or 12 (when K = L = 6). The

total number of blocks that is established from these settings exhibits even greater variation,

assuming values of nine (when K = L = 3), 18 (where K= 6 and L = 3, or K = 3 and L = 6), or 36

(when K = L = 6).

The two levels for the fifth design feature were: (i) an equal distribution of the row objects across

the row clusters; and (ii) 60% of the row objects in one row cluster and an equal distribution of

row objects across the remaining row clusters. The same two levels were used for the sixth

design feature, which corresponded to the distribution of column objects across column clusters.

These settings for distributions of objects across clusters are common in both the general

clustering literature (Milligan, 1980) and the two-mode blockmodeling literature (Brusco &

Doreian, 2015a; Brusco & Steinley, 2007a).

The seventh design feature pertained to the density of the image matrix. The image matrix, A =

[akl], is a K  L binary matrix containing ones for the locations of complete blocks and zeros in

9

the locations of null blocks in the ideal block structure. So, for example, if akl = 1, the submatrix

formed by the row objects in row cluster k and the column objects in column cluster l should be

complete to the greatest extent possible (more ones than zeros). At the first setting of this design

feature, the image matrix density was 33% (i.e., one-third of the elements of the image matrix

were ones and the other 2/3 were zeros). For the second setting, the image matrix density was

66%.

The eighth design feature pertained to the strength of the null and complete blocks. Under perfect

structural equivalence, the null and complete blocks would have 100% zeros and ones,

respectively. However, the generation of such problems would be much too easy for the

algorithms. Even reducing the percentage to 90% or 80% was judged insufficient to differentiate

between the algorithms. Therefore, the two settings for the eighth design feature were 70% and

60%. For example, at the 70% setting, complete blocks in the image matrix were generated to

have roughly 70% ones and 30% zeros, whereas null blocks were generated to have roughly 70%

zeros and 30% ones. At the 60% setting of the design feature, the strength of the blocks was

further weakened, which tends to make the problems more formidable for the algorithms.

Implementation and performance measures

The RH and TMKLMedH algorithms were programmed in Fortran 90 and implemented on a

desktop computer with an Intel ® Core ™ i7-4790 CPU @ 3.6GHz with 8 GB of RAM. Both

algorithms were allotted a fixed time limit of three CPU minutes per test problem. For each test

problem, the following performance measures were collected: (i) the value of the criterion

function; (ii) the total number of restarts realized within the time limit; (iii) the adequacy of the

recovery of the underlying cluster structure of the row objects, as measured by the adjusted Rand

index (ARI: Hubert & Arabie, 1985); and (iv) the adequacy of the recovery of the underlying

cluster structure of the column objects as measured by the ARI.

There are two performance measures in the simulation study that are particularly important. One

is value of the criterion function as the minimized value is sought. The second is the extent to

which the real partition structure is identified as captured by the ARI values. Accordingly, our

primary emphasis is on these measures. We knew in advance that TMKLMedH would have far

more restarts than RH within the allotted time limit. However, we did not know how the ratio of

the numbers of restarts for these two algorithms would behave as a function of n, m, K, and L.

Therefore, the number of restarts was stored to shed light on this issue. Although our emphasis is

on the ability of TMKLMedH and RH to optimize the criterion that they seek to optimize, it is

critical to also measure cluster recovery. We report ARI information for the recovery of

underlying structure of row and column clusters. The ARI assumes a value of zero for chance

agreement and a value of one for perfect agreement. We use Steinley’s (2004) recommendation

regarding the interpretation of the adequacy of ARI values regarding pairs of partitions of the

same network

10

Simulation results

The key finding of the simulation study was that TMKLMedH always produced a criterion

function that was as good as or better than the criterion function for RH. Considering this

finding, we focus on two measures for the comparison of the criterion functions obtained by the

two algorithms: (i) MPRCF: the mean percentage reduction in the criterion function realized

from using TMKLMedH instead of RH; and (ii) MPBetter: the mean percentage of test problems

for which TMKLMedH found a better criterion function than RH. Table 1 reports MPRCF and

MPBetter for the complete set of 768 test problems, as well as for each level of each design

feature.

Across the complete set of 768 test problems, TMKLMedH produced a blockmodel with a better

criterion function value than the one obtained by RH for 347 (47.786%) of the 768 test problems

(i.e., MPBetter = 47.786%). Likewise, across all test problems, the mean improvement in the

criterion function resulting from the use of TMKLMedH instead of RH was MPRCF = .344%,

with a maximum improvement of 4.672%. Table 1 reveals that the number of row (K) and

column (L) clusters were the design features associated with the greatest importance for

revealing performance distinctions between the two methods. For example, at the setting of K =

3, the measured results were MPBetter = 29.167% and MPRCF = .039%. However, at K = 6, the

corresponding measures were MPBetter = 66.406% and MPRCF = .649%. Similar findings are

observed when comparing the MPBetter and MPRCF results for L = 3 and L = 6.

The superior performance of TMKLMedH stems from getting far more restarts than RH within

the same time limit. Across the 768 test problems, the minimum, mean, and maximum ratios of

the number of TMKLMedH restarts to RH restarts were 3.0, 24.8, and 72.2, respectively. Table 1

shows the mean ratio of restarts (MRR) was most strongly affected by the design features

corresponding to the number of row (n) and column (m) objects. At the setting of n = 180, the

MRR was 20.5; yet, at the setting of n = 540, the MRR was 29.1. Also, the MRR values for m =

180 and m = 540 were 18.5 and 31.1, respectively.

We turn our attention to the recovery of the cluster structures of the row and column objects.

Across the 768 test problems, the average ARI values for row objects were .745 and .831 for RH

and TMKLMedH, respectively. The average ARI values for column objects (.741 for RH and

.829 for TMKLMedH) were markedly like those of the row objects. These differences are

nontrivial, as the TMKLMedH averages exceed the threshold for good recovery of 0.8

recommended by Steinley (2004). In contrast, the RH averages seldom met this threshold. The

ARI results in Table 1 reveal the superior recovery of TMKLMedH was systematic across most

design feature levels. The two exceptions are the recovery of the row-cluster structure when K =

3 and the recovery of the column cluster structure when L = 3. For these two conditions, the

recovery of both methods is outstanding, with average ARI values in the .96 to .97 range. By

contrast, the results at K = 6 and L = 6 reveal the sharpest superiority of cluster recovery for

TMKLMedH relative to RH. Table 1 also shows TMKLMedH as providing much stronger

average recovery of row-cluster structure (column-cluster structure) than RH under the 60%

density condition for row (column) clusters.

11

Table 1. Simulation results: (i) MPICF: mean percentage improvement in the criterion function

realized from using TMKLMedH instead of RH; (ii) MPbetter: Mean percentage of test

problems for which TMKLMedH provided a better criterion function value than RH; (iii) MRR:

mean ratio of the number of restarts for TMKLMedH to the number for RH within the three-

minute time limit; and (iv) ARI recovery measures for row and column clusters for RH and

TMLKMedH.

Design feature levels MPICF MPbetter MRR
RH
(Row-ARI)

TMKLMedH

(Row-ARI)

RH
(Col-ARI)

TMKLMedH

(Col-ARI)

Overall average .344 47.786 24.824 .745 .831 .741 .829

n = 180 row objects .264 48.698 20.543 .748 .810 .715 .778

n = 540 row objects .425 46.875 29.105 .741 .852 .767 .880

m = 180 column objects .300 50.521 18.512 .710 .779 .736 .807

m = 540 column objects .388 45.052 31.136 .780 .853 .746 .850

K = 3 row clusters .039 29.167 23.709 .967 .966 .695 .791

K = 6 row clusters .649 66.406 25.938 .523 .696 .787 .866

L = 3 column clusters .038 29.948 21.900 .698 .790 .968 .968

L = 6 column clusters .651 65.625 27.747 .792 .872 .514 .690

Even row cluster density .280 41.146 27.886 .785 .817 .765 .849

60% row cluster density .409 54.427 21.762 .705 .845 .717 .808

Even column cluster density .240 41.667 28.412 .771 .853 .788 .820

60% column cluster density .449 53.906 21.236 .719 .809 .694 .837

33% Image matrix density .367 48.438 26.753 .745 .829 .740 .830

66% Image matrix density .321 47.135 22.895 .744 .833 .742 .827

70% block strength .364 26.042 24.647 .808 .911 .804 .911

60% block strength .325 69.531 25.001 .682 .751 .678 .747

 Note – the overall averages and the results for the design features with the two biggest effects in each column

 are highlighted for emphasis.

12

United Nations General Assembly (UNGA) Voting Data
\

Our first example for demonstrating the TMKLMedH uses United Nations General Assembly

voting data, originally compiled by Doreian et al. (2013). Two network matrices were analyzed.

The first was a 141  276 binary network matrix pertaining to votes of 141 countries on 276

ideological resolutions. The second was a 153  129 matrix for the votes of 153 countries on 129

military resolutions. Brusco et al. (2013a) performed a comparison of the performance of three

two-mode blockmodeling algorithms on these two networks: (i) the relocation heuristic (RH)

described in Section 3; (ii) a tabu search (TS) heuristic developed by Brusco and Steinley (2011);

and (iii) a variable neighborhood search (VNS) heuristic developed by Brusco et al. (2013a) for

two-mode blockmodeling. Each algorithm was applied to these network matrices for all numbers

of clusters in the intervals 2  K  7 and 2  L  7. For each combination of K and L, the

algorithms were constrained to a time limit of 10 CPU minutes on a 2.2 GHz Pentium 4 PC with

1 GB of RAM. There was little difference in the performance of the three methods for problems

where K < 4 and/or L < 4. This suggests few differences for smaller t-mode binary networks.

For comparison to the results obtained by Brusco et al. (2013a), we ran the TMKLMedH

heuristic for all combinations of 4  K  7 and 4  L  7 on both networks using the same 10-

minute time limit on the same 2.2 GHz Pentium 4 PC with 1 GB of RAM. These ranges for K

and L resulted in 16 test problems for each of the military and ideological networks, and a total

of 32 problems overall. A comparison of the results for the four methods is displayed in Table 2.

The results in Table 2 are quite surprising. Across the 32 test problems, TMKLMedH matched

the best-found criterion function value for 31 of the 32 test problems. By contrast, the TS, VNS,

and RH methods only matched the best-found criterion function value for 24, 24, and 17 of the

test problems, respectively. It is also noteworthy that, for three test problems (military resolution

network with K = 7 and L = 4, ideological network with K = 4 and L = 7, and ideological

network with K = 7 and L = 5), TMKLMedH obtained a new best-found criterion function value

never matched by any of the other three methods.

We also collected, for each test problem, the elapsed time for TMKLMedH to find its best-found

solution. For 22 of the 32 problems, TMKLMedH found its best solution within the first minute

of its allotted 10-minute time limit. Moreover, there were only three problems where the best-

found solution was not realized until after five minutes of elapsed time.

To summarize, the results using the UNGA data strongly support the simulation study. The

TMKLMedH yielded a better criterion function value than RH for 15 problems, and the same

criterion function value for the remaining 17 problems. The RH never produced a better result

than TMKLMedH within the allotted time. Although the performance of TMKLMedH relative to

TS and VNS is very favorable, considerable care is warranted. The TS and VNS procedures use

relocation heuristics in their implementation and, therefore, are significantly slower than

TMKLMedH. If the TS and VNS algorithms were redesigned to use the same process of finding

medians and reassigning cases, perhaps their performances could improve substantially.

13

Table 2. Comparison of criterion function values for the UNGA networks.

 UNGA Military resolutions network UNGA Ideological resolutions network

K L TMKLMedH RH TS VNS TMKLMedH RH TS VNS

4 4 1743 1743 1743 1743 4220 4220 4220 4220

4 5 1730 1730 1730 1730 4144 4144 4144 4144

4 6 1730 1730 1730 1730 4136 4136 4144 4136

4 7 1730 1730 1730 1730 4131 4136 4136 4136

5 4 1713 1713 1713 1713 4200 4200 4200 4200

5 5 1663 1663 1663 1663 4020 4020 4020 4020

5 6 1649 1657 1649 1649 3947 3950 3947 3947

5 7 1646 1650 1646 1649 3890 3896 3947 3890

6 4 1707 1707 1709 1709 4194 4198 4194 4196

6 5 1633 1633 1633 1633 4001 4001 4001 4001

6 6 1614 1619 1612 1612 3841 3841 3841 3841

6 7 1599 1613 1608 1599 3763 3772 3763 3763

7 4 1702 1707 1707 1707 4194 4194 4194 4196

7 5 1627 1634 1627 1630 3997 4001 3999 3998

7 6 1577 1588 1577 1577 3822 3822 3825 3822

7 7 1565 1566 1565 1565 3691 3695 3691 3691

 Note: The criterion function values for the RH, TS, and VNS methods were taken from the article by Brusco et al. (2013a,

 Tables 2 and 3, pp. 204-205). The cell values shown in bold font reflect instances where the heuristic method failed to match
 the best criterion function value found across all four methods

MovieLens Data

The second comparison of RH and TMKLMedH for a real-world network was undertaken using

movie-rating data from the MovieLens database (Harper & Konstan, 2015). This data was

retrieved from the KONECT (the Koblenz Network Collection: http://konect.uni-

koblenz.de/networks/) website. Although the edges of the available network are weighted to

reflect the ratings, our binary adaptation consists of n = 943 individuals who either did (xij = 1) or

did not (xij = 0) provide ratings for each of m = 1682 movies. This network is less dense (density

of 6.3%) than the UNGA networks.

We ran the RH and TMKLMedH algorithms for all combinations of 2  K  7 row clusters and 2

 L  7 column clusters. Again, the algorithms were implemented on the desktop computer with

an Intel ® Core ™ i7-4790 CPU @ 3.6GHz with 8 GB of RAM, but with a 10-minute time limit

for all combinations of K and L. The results are summarized in Table 3.

http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/

14

Table 3. Comparison of criterion function values and number of restarts for the MovieLens

network.

 Criterion function values Number of restarts

K L TMKLMedH RH PICF TMKLMedH RH Ratio
TMKLMedH / RH

2 2 90971 90971 0.000 2000 342 5.848

2 3 90889 90901 0.013 1980 201 9.851

2 4 90875 90900 0.028 1863 171 10.895

2 5 90875 90899 0.026 1799 129 13.946

2 6 90875 90892 0.019 1749 113 15.478

2 7 90875 90889 0.015 1687 103 16.379

3 2 90971 90971 0.000 1494 129 11.581

3 3 88846 88859 0.015 1345 86 15.640

3 4 88799 88858 0.066 1176 80 14.700

3 5 88783 88864 0.091 1130 59 19.153

3 6 88781 88852 0.080 1109 56 19.804

3 7 88773 88823 0.056 1111 52 21.365

4 2 90971 90971 0.000 1218 86 14.163

4 3 88846 88864 0.020 1079 57 18.930

4 4 87603 87907 0.347 936 42 22.286

4 5 87205 87237 0.037 893 42 21.262

4 6 87142 87550 0.468 806 36 22.389

4 7 87124 87748 0.716 782 36 21.722

5 2 90971 90971 0.000 1041 68 15.309

5 3 88850 88863 0.015 897 42 21.357

5 4 87165 87662 0.570 779 34 22.912

5 5 86498 87146 0.749 747 33 22.636

5 6 86043 86514 0.547 680 28 24.286

5 7 86010 86082 0.084 647 24 26.958

6 2 90971 90971 0.000 897 56 16.018

6 3 88846 88876 0.034 784 32 24.500

6 4 87172 87720 0.629 673 29 23.207

6 5 86105 87338 1.432 651 24 27.125

6 6 85790 86678 1.035 597 21 28.429

6 7 85529 86197 0.781 567 18 31.500

7 2 90971 90971 0.000 792 46 17.217

7 3 88846 88883 0.042 690 30 23.000

7 4 87169 87456 0.329 603 22 27.409

7 5 85999 86330 0.385 572 20 28.600

7 6 85573 85982 0.478 511 15 34.067

7 7 85188 85617 0.504 498 14 35.571

 Note: PICF is the percentage improvement in the criterion function from using TMKLMedH instead of RH.

15

Table reveals that TMKLMedH produced a better criterion function value than RH for 30 of the

36 combinations of K and L. The two algorithms obtained the same criterion function value for

the remaining six combinations. Across the 36 combinations of K and L, the average percentage

improvement in the criterion function value resulting from the use of TMKLMedH instead of RH

was .267%, and the maximum improvement was 2.309%. Again, the relative superiority of

TMKLMedH stemmed from the fact that it accumulated far more restarts within the 10-minute

time limit. Across the 36 test problems, the minimum, average, and maximum ratios of the

number of TMKLMedH restarts to the number of RH restarts were 1.2, 20.7, and 35.6,

respectively.

We recognized that the small percentage differences in the criterion values obtained by

TMKLMedH and RH might not necessarily translate into meaningful differences with respect to

blockmodel interpretation. The first step in this process was to select appropriate values for K

and L to facilitate a comparison. Several criteria for selecting K and L have been proposed in the

literature, such as examination of the number of local optima (Brusco et al., 2013b) and the Chull

procedure (Brusco, Doreian, & Steinley, 2016; Ceulemans & Van Mechelen, 2005; Wilderjans,

Ceulemans, & Meers, 2013). In this application, we use a visual aid for choosing K and L that is

based on the use of heatmaps for the criterion values obtained by RH and TMKLMedH at

different combinations of K and L

.

Heatmaps for the criterion function values obtained by RH and TMKLMedH are displayed in

Figure 1. These heatmaps were produced using the conditional formatting capabilities in

Microsoft Excel using a red-yellow-green color scheme. Deep red values reflect the poorest of

the criterion function values obtained, whereas deep greens signify the finest of the criterion

values obtained. The progression in the heatmaps from red to reddish-yellow to yellow (and from

yellow to greenish-yellow to green) visually illustrates improvement in the criterion function.

An examination of the heatmaps in Figure 1 reveals some similarities and differences. Both

heatmaps show deep red cells in the first row (K = 2) and first column (L = 2). This reflects the

fact that very little (if any) improvement can be achieved by increasing K when L = 2, or by

increasing L when K = 2. In a similar manner, both heatmaps show a deep yellow in the row for

K = 3 (when L  3), as well as the column for L = 3 (when K  3). For conditions where K  4

and L  4, both heatmaps show shades of green, but to somewhat different extents. For example,

a fairly sharp green begins to appear in the TMKLMedH heatmap at K = 5 and L = 5, and we

used this as motivation for selecting the K = 5 and L = 5 solution for interpretation. By contrast,

the green at K = 5 and L = 5 is not as sharp for the RH heatmap. Thus, if an analyst were looking

at only the RH heatmap, a different K and L combination might be selected. This possibility of a

different choice for K and L depending on whether RH or TMKLMedH is used is not unique to

heatmaps, but could also occur for criteria such as the number of local optima or the rules used in

the Chull procedure.

The criterion function values for RH and TMKLMedH at K = 5 and L = 5 were 87146 and

86498, a difference of less than one percent. However, for this same combination of K and L, the

agreement between the RH and TMKLMedH partitions of the n = 943 individuals rating the

movies was only ARI = .382. Similarly, the agreement between the partitions of the m = 1682

16

 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7

K = 2 90971 90901 90900 90899 90892 90889

K = 3 90971 88859 88858 88864 88852 88823

K = 4 90971 88864 87907 87237 87550 87748

K = 5 90971 88863 87662 87146 86514 86082

K = 6 90971 88876 87720 87338 86678 86197

K = 7 90971 88883 87456 86330 85982 85617

 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7

K = 2 90971 90889 90875 90875 90875 90875

K = 3 90971 88846 88799 88783 88781 88773

K = 4 90971 88846 87603 87205 87142 87124

K = 5 90971 88850 87165 86498 86043 86010

K = 6 90971 88846 87172 86105 85790 85529

K = 7 90971 88846 87169 85999 85573 85188

Figure 1. Heatmaps for RH (top panel) and TMKLMedH (bottom panel) criterion values for the

MovieLens network.

movies that were rated was ARI = .571. Both ARI measures fall to far below the 0.65 threshold

for even fair agreement as recommended by Steinley (2004). Figure 2 helps to further clarify the

distinctions between the RH and TMKLMedH blockmodels by providing their image matrices

and cluster sizes. The image matrix in Figure 2 uses the term complete to signify blocks with

greater than 50% density and null to indicate those with less than 50% density.

The most striking similarity of the blockmodels obtained by RH and TMKLMedH is that each

has one large cluster of individuals and one large cluster of movies that are loosely tied to the

network (i.e., not associated with any complete blocks). However, once these two large clusters

are accounted for, it is evident that TMKLMedH does a better job of identifying relationships

between the remaining individuals and movies. The clean, interpretable structure of

TMKLMedH is evidenced by the presence of all complete blocks below the main diagonal of its

image matrix. This means that the five clusters of individuals associated with the TMKLMedH

blockmodel were strongly tied to 0, 1, 2, 3, and 4 clusters of movies, respectively. Likewise, the

five clusters of movies associated with the TMKLMedH blockmodel were strongly tied to 0, 1,

2, 3, and 4 clusters of individuals, respectively. The RH blockmodel does not have this structure.

For example, TMKLMedH identified a cluster of n5 = 32 individuals who form complete blocks

with the four latter clusters of movies. By contrast, RH did not identify such a cluster of

individuals. In a similar manner, TMKLMedH obtained a cluster of m5 = 17 movies that form

complete blocks with the four latter clusters of individuals. Again, RH did not identify such a

cluster of movies.

17

 m1 = 1388 m2 = 133 m3 = 24 m4 = 66 m5 = 71

n1 = 555 Null Null Null Null Null

n2 = 132 Null Null Complete Null Null

n3 = 132 Null Null Null Null Complete

n4 = 90 Null Null Null Complete Complete

n5 = 34 Null Complete Null Complete Complete

 m1 = 1385 m2 = 139 m3 = 89 m4 = 52 m5 = 17

n1 = 490 Null Null Null Null Null

n2 = 203 Null Null Null Null Complete

n3 = 131 Null Null Null Complete Complete

n4 = 87 Null Null Complete Complete Complete

n5 = 32 Null Complete Complete Complete Complete

Figure 2. RH (top panel) and TMKLMedH (bottom panel) image matrices for blockmodels

obtained using K = L = 5. The sizes of each cluster of individuals (n1,…, n5) and movies (m1,…,

m5) are also provided.

Conclusions

Summary

We have introduced a model known as two-mode KL-median partitioning. It is similar to the

well-established two-mode KL-means partitioning problem (Baier et al., 1997; Brusco &

Steinley, 2007; Brusco & Doreian, 2015a,b; Hansohm, 2002; Trejos & Castillo, 2000; Van

Rosmalen et al., 2009), but differs, as the criterion function is based on absolute deviations from

submatrix medians instead of squared deviations from submatrix means. We discovered an

interesting aspect of the two-mode KL-median criterion function: for binary network matrices, it

is identical to a well-known criterion from the social network literature for the deterministic two-

mode blockmodeling problem (DTMBP) based on structural equivalence (Brusco & Steinley,

2007, 2011; Doreian et al., 2004, 2005). The result is that a two-mode KL-median heuristic

(TMKLMedH) can serve as a direct competitor to a relocation heuristic from the literature (RH).

We also noted that the relationship between TMKLMedH and RH is analogous to the

relationship between H-means and K-means clustering (Brusco & Steinley, 2007b; Hansen &

Mladenović, 2001; Späth, 1980).

Several comparisons of TMKLMedH and RH were undertaken. The first comparison was based

on a simulation experiment that showed TMKLMedH dramatically outperformed RH regarding

criterion function values and partition recovery. The superior performance of TMKLMedH can

18

be attributed to it realizing anywhere from 3 to 72 times more restarts than RH within the same

three-minute time limit. The second evaluation based on previously published results for RH

(and two other procedures) for two UNGA voting networks (Brusco et al., 2013a; Doreian et al.,

2013). They revealed TMKLMedH as always outperforming RH. Moreover, TMKLMedH also

outperformed both the tabu search and variable neighborhood search heuristics evaluated by

Brusco et al. (2013a). Finally, TMKLMedH and RH were applied to a larger two-mode network

from the KONECT database. The results reinforced the findings from the simulation and UNGA

analyses, but also showed that the improvements realized from TMKLMedH relative to RH

could lead to salient differences with respect to model selection and blockmodel interpretation.

Limitations and extensions

Some limitations and extensions associated with the research presented in this paper can broadly

be divided into three categories: (i) restriction of our attention to binary two-mode networks; (ii)

limitations of the algorithmic and experimental implementations; and (iii) the issue of

metaheuristics.

As noted in Sections 1 and 2, a key focus of this paper showed TMKLMedH as a direct

competitor for RH for binary network matrices. However, TMKLMedH is not restricted to

binary network data. For example, TMKLMedH could be directly applied to the movie rating

data using the actual 1 to 5 ratings as weighted edges. In fact, in circumstances where edge

weights are restricted to a narrow range, TMKLMedH could well be an effective alternative to

the two-mode KL-means partitioning methods described by Brusco and Doreian (2015a, b)

The RH and TMKLMedH algorithms were both written in Fortran 90 and programmed using

similar conventions. Nevertheless, it is possible that the programming of the same algorithms by

other researchers on different software platforms could results in different findings with respect

to the number of restarts within the prescribed limits. Moreover, it is reasonable to expect that, as

the time limits are increased, the relative performance differences between RH and TMKLMedH

are apt to shrink. Nevertheless, we are confident about the general findings of our simulation

experiment and real-world examples being sound. The TMKLMedH is much faster than RH and

allows for many more restarts within a specified time constraint. This is likely to be important

for larger, more computationally demanding networks.

While RH and TMKLMedH were identified as competitors for the DTMBP problem, however,

the use of a metaheuristic approach uses the two methods in tandem may have additional value.

Such a pairing of the two methods would mimic the HK-means procedure combining H-means

and K-means for within-cluster sum-of-squares partitioning (see Brusco & Steinley, 2007b;

Hansen & Mladenović, 2001). We are not touting TMKLMedH as superior to previously

published methods, such as tabu search (Brusco & Steinley, 2011) and variable neighborhood

search (Brusco et al., 2013a). However, we do maintain that the computational efficiency of

these latter methods might be significantly improved if the relocation heuristic was replaced with

the two-mode K-median partitioning approach.

19

References
Arabie, P., Hubert, L., & Schleutermann, S. (1990). Blockmodels from the bond energy

algorithm. Social Networks, 12, 99-126.

Baier, D., Gaul, W., & Schader, M. (1997). Two-mode overlapping clustering with applications

in simultaneous benefit segmentation and market structuring. In R. Klar & O. Opitz (Eds),

Classification and knowledge organization (pp. 557-566), Heidelberg: Springer.

Brusco, M. (2011). Analysis of two-mode network data using nonnegative matrix factorization.

Social Networks, 33, 201-210.

Brusco, M., & Doreian, P. (2015a). A real-coded genetic algorithm for two-mode KL-means

partitioning with application to homogeneity blockmodeling. Social Networks, 41, 26-35.

Brusco, M. J., & Doreian, P. (2015b). An exact algorithm for two-mode KL-means partitioning.

Journal of Classification, 32, 481-515.

Brusco, M., Doreian, P., Lloyd, P., & Steinley, D. (2013a). A variable neighborhood search

method for a two-mode blockmodeling problem in social network analysis, Network

Science, 1 (2), 191-212.

Brusco, M., Doreian, P., Mrvar, A., & Steinley, D. (2013b). An exact algorithm for

blockmodeling of two-mode network data. Journal of Mathematical Sociology, 37, 61-84.

Brusco, M. J., Doreian, P., & Steinley, D. (2016). Biclustering methods for one-mode

asymmetric matrices. Behavior Research Methods, 48, 487-502.

Brusco, M., & Steinley, D. (2006). Inducing a blockmodel structure for two-mode binary data

using seriation procedures. Journal of Mathematical Psychology, 50, 468-477.

Brusco, M., & Steinley, D. (2007a). A variable neighborhood search method for generalized

blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51,

325-338.

Brusco, M. J., & Steinley, D. (2007b). A comparison of heuristic procedures for minimum

within-cluster sums of squares partitioning. Psychometrika, 72, 583-600.

Brusco, M., & Steinley, D. (2011). A tabu search heuristic for deterministic two-mode

blockmodeling of binary network matrices. Psychometrika, 76, 612-633.

Ceulemans, E., & Van Mechelen, I. (2005). Hierarchical classes models for three-way three-

mode binary data: interrelations and model selection. Psychometrika, 70, 461-480.

Coombs, C. H. (1964). A theory of data. New York: Wiley.

Davis, A., Gardner, B., & Gardner, M. R. (1941). Deep south. Chicago, University of Chicago

Press.

Doreian, P. (1979). On delineation of small group structure. In: Hudson, H. C. (Ed.), Classifying

social data (pp. 215-230), San Francisco: Jossey-Bass.

Doreian, P., Batagelj, V., & Ferligoj, A. (2004). Generalized blockmodeling of two-mode

network data. Social Networks, 26, 29-53.

Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling. Cambridge:

Cambridge University Press.

Doreian, P., Lloyd, P., & Mrvar, A. (2013). Partitioning large signed two-mode networks:

Problems and prospects. Social Networks, 35, 1-21.

Everett, M. G., & Borgatti, S. P. (2013). The dual-projection approach for two-mode networks.

Social Networks, 35, 204-210.

Faust, K. (1997). Centrality in affiliation networks. Social Networks, 19, 157-191.

20

Forgy, E. W. (1965). Cluster analyses of multivariate data: Efficiency versus interpretability of

classifications. Abstract in Biometrics, 21, 768-769.

Freeman, L. C. (1980). Q-analysis and the structure of friendship networks. International

Journal of Man-Machine Studies, 12, 367-378.

Galaskiewicz, J. (1985). Social organization of an urban grants economy. New York: Academic

Press.

Gaul, W., & Schader, M. (1996). A new algorithm for two-mode clustering. In H. Bock & W.

Polasek (Eds.), Data analysis and information systems (pp. 15-23), Berlin: Springer.

Hansen, P., & Mladenović, N. (2001). J-Means: A new local search heuristic for minimum sum

of squares clustering. Pattern Recognition, 34, 405-413.

Hansohm, J. (2002). Two-mode clustering with genetic algorithms. In W. Gaul & G. Ritter

(Eds.), Classification, automation and new media (pp. 87-93), Berlin: Springer.

Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM

Transactions on Interactive and Intelligent Systems, 5 (4), Article 19, 1-19.

Hubert, L. (1974). Problems of seriation using a subject by item response matrix. Psychological

Bulletin, 81, 976-983.

Hubert L, & Arabie P. (1985). Comparing partitions. Journal of Classification, 2, 195-218.

Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks.

Journal of Mathematical Sociology, 1, 49-80.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations. In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Vol. 1 (pp. 281-297), Berkeley,

CA: University of California Press.

Milligan, G. W. (1980). An examination of the effects of six types of error perturbation on

fifteen clustering algorithms. Psychometrika, 45, 325-342.

Mische, A., & Pattison, P. (2000). Composing a civic arena: Publics, projects, and social

settings. Poetics, 27, 163-194.

Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local

clustering coefficients. Social Networks, 35, 159-167.

Pattison, P. E. (1993). Algebraic models for social networks. New York: Cambridge University

Press.

Pattison, P. E., & Bartlett, W. K. (1982). A factorization procedure for finite algebras. Journal of

Mathematical Psychology, 25, 51-81.

Pattison, P. E., & Brieger, R. L. (2002). Lattices and dimensional representations: matrix

decompositions and ordering structures. Social Networks, 24, 423-444.

Späth, H. (1980). Cluster analysis algorithms for data reduction and classification of objects.

Chichester, England: Ellis Horwood.

Steinhaus, H. (1956). Sur la division des corps matériels en parties. Bulletin de l’Académie

Polonaise des Sciences, Classe III, IV(12), 801-804.

Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psychological

Methods, 9, 386-396.

Steinley, D. (2006a). K-means clustering: A half-century synthesis. British Journal of

Mathematical and Statistical Psychology, 59, 1-34.

Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic

technique. Psychological Methods, 11, 178-192.

21

Trejos, J., & Castillo, W. (2000). Simulated annealing optimization for two-mode partitioning. In

Gaul, W., Decker, R. (Eds.), Classification and information at the turn of the millennium

(pp. 135-142), Heidelberg: Springer.

van Rosmalen, J., Groenen, P. J. F., Trejos, J., & Castillo, W. (2009). Optimization strategies for

two-mode partitioning. Journal of Classification, 26, 155-181.

Vichi, M. (2001). Double K-means clustering for simultaneous classification of objects and

variables. In Borra, S., Rocchi, R., Schader, M. (Eds.), Advances in classification and data

analysis – studies in classification, data analysis and knowledge organization (pp. 43-52),

Heidelberg: Springer.

Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications.

Cambridge: Cambridge University Press.

Wilderjans, T. F., Ceulemans, E., & Meers, K. (2013). CHull: A generic convex hull based

model selection method. Behavior Research Methods, 45, 1-15.

Xu, W., Liu, X, & Gong, Y. (2001). Document clustering based on non-negative matrix

factorization. Proceedings of the 26th ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 267-273.

