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Circuit Design and Experimental Investigations for a  
Predator-Prey Model

Abstract
In recent years, dynamical relationship between species in ecology 
has been intensively investigated and will continue to be one of the 
most significant themes. The dynamics of predator–prey’s systems 
are at the heart of these studies. Such models are generally depicted 
by nonlinear polynomials and exhibit many complex nonlinear phe-
nomena. In this paper, not only a prey–predator model displaying 
richer dynamical behaviors is analyzed but also its electronic circuit 
is also designed via the MultiSIM software proving the very good 
agreement between biological theory considerations and electronic 
experiments.
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Ecology is the study of interactions among organisms 
and their environment. There are many useful applica-
tions of ecology as natural resource management and 
city planning (Laktionov et al., 2017; Teay et al., 2017; 
Umar et al., 2017; Visconti et al., 2017). However, ecol-
ogy is also concerned by understanding and analyzing  
the dynamical behavior of populations in ecosystem 
in order to predict their undesired dynamics (Feng 
et al., 2017; Zhang et al., 2017b). On the other hand,  
understanding population dynamics are leading nowa-
days to many interesting optimization algorithms such 
as Particle Swarm algorithms (Mehdi and Boubaker, 
2011, 2016;), Ant Colony algorithms (Pang et al., 2017;  
Yongwang et al., 2017) and Prey-predator algorithms 
(Sidhu and Dhillon, 2017; Zhang and Duan, 2017).

It is obvious that it is not at all evident to construct a 
mathematical model that will fit entirely any natural pop-
ulation interactions. In the literature, several models for 
predator–prey’s systems have been already proposed 
and analyzed incorporating some specific effects  
(Bürger et al., 2017; Elettreby et al., 2017; Li et al.,  
2017a, 2017b; Liu et al., 2017, 2018; Liu and Dai; Liu 
and Wiang, 2018; Yuan et al., 2018; Zhang et al., 
2017a). The first proposed one was the Lotka Volterra 
predator–prey model (Volterra, 1928). However, to the 
best of our knowledge, there is no research work that 

attempt to reproduce the complex dynamics of such 
systems using an equivalent electrical circuit. While, 
certain biological systems such as biological tissue 
and biological neural network are modeled by electri-
cal circuit (Le Masson et al., 1999; Gómez et al., 2012). 
As such predator–prey systems exhibit complex  
dynamics as chaotic behaviors (Luo et al., 2016), such 
circuits can be adopted in the future in communication 
for encryption tasks (Lassoued and Boubaker, 2016; 
Lassoued and Boubaker, 2017; Kengne et al., 2017).

In this paper, the predator–prey system, already 
analyzed in Ben Saad and Boubaker (2015, 2017), 
and incorporating nonlinear polynomials in its complex 
model is considered for the weak Allee Effect case 
study. The objective is to design a suitable electronic  
circuit permitting to understand and conceptualize 
many aspects of ecological experimentation and theory  
by using only simple analog electronic components. 
It is clear that proving a good agreement between  
biological theory and electronic experiments is not evi-
dent due to the imperfections and uncertainties related 
to electronic components. Despite, these undesirable 
effects, the main nonlinearities of the biological model 
will be validated by means of experimental data. The 
circuit related to the prey–predator model will be then 
designed and simulated using the MultiSIM software.
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This work is arranged as follows: Sections “PRED-
ATOR–PREY MATHEMATICAL MODEL” and “WEAK 
ALLE EFFECT CASE STUDY ANALYSIS” recall the 
nonlinear model as well as its basic dynamics. Then, 
numerical simulation of the global dynamic behavior 
of the system is presented in Section “NUMERICAL 
SIMULATIONS VIA MATCONT SOFTWARE”. In Sec-
tion “EXPERIMENTAL VALIDATION OF MAIN NON-
LINEARITIES”, the circuit design, simulation results 
via the MultiSIM software as well as the experimental 
data of the main nonlinearities of the predator–prey 
model are investigated. In Section “CIRCUIT DESIGN 
VIA MULTISIM SOFTWARE”, the circuit design of  
the whole complex model is finally proposed and a 
good agreement between simulation results via MAT-
CONT and MultiSIM softwares are shown. Finally, 
an experimental implementation is illustrated in sec-
tion “EXPERIMENTAL IMPLEMENTATION OF THE  
PREDATOR–PREY MODEL”.

Predator–Prey mathematical model

Consider the predator–prey model with Allee Effect 
described by Ben Saad and Boubaker, (2015, 2017):
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where x1 is the size of the prey population and x2 the 
size of the predator population, ℓ  is the Allee Effect 
threshold, k is the carrying capacity, e is the feeding 
efficiency of Lotka–Volterra model and m is the pred-
ator mortality rate. Let consider also the biologically 
meaningful conditions x1 ≥ 0 and x2 ≥ 0.

Two case studies for the Allee effect ℓ can be con-
sidered (Dhooge et al., 2008):

•	 The Strong Allee effect when ℓ ∈  [0 1],
•	 The Weak Allee effect when ℓ ∈  [−1 0].

In the following, only the Weak Allee effect case 
study will be considered and the parameters k, e, and 
m are taken as k = e = 1 and m ∈ [0 1].

Weak alle effect case study analysis

For k = e = 1, ℓ ∈ [−1 0] and m ∈ [0 1], the system (1) 
admits three equilibriums Ei(i = 1, …, 3):

1. The zero equilibrium E0 = (0, 0),
2. The two non-isolated equilibriums E1 = (ℓ, 0),
3. The equilibrium E2 = (m, (m − ℓ) (1 − m)).

For i = 1, …, 3, the corresponding Jacobian matrix 
Ji and eigenvalues (λ1i, λ2i) are given by
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with tr(J2) = m (ℓ + 1 − 2 m); Δ = [m (ℓ + 1 − 2 m)]2 − 4[m(m − ℓ)
(1 − m)].

Based on the last results, the singularities and the 
phase portraits of the neighborhood of all equilibriums  
are summarized in Table 1.

Numerical simulations via  
matcont software

The global dynamics of the system (1), already de-
tailed in Table 1, will be proved numerically in this 
section using the Matcont software (Dhooge et al., 
2008). Since the two first equilibriums E0 and E1 exist 
∀m ∈  [0 1], only the singularity of the equilibrium E3 
will be shown numerically in the following for the initial 
condition (x1 = 0.4; x2 = 0.3). For m = −ℓ = 0.2, Figure 1 
shows the temporal evolution of the dynamics of sys-
tem (1) whereas the phase portrait of the system is 
shown in Figure 2.

As it is shown, a heteroclinic orbit appears indicat-
ing the existence of a global bifurcation described by 
an attractor which bifurcates from an unstable focus 
equilibrium point to a heteroclinic cycle. The two pop-
ulations’ dynamics oscillate between 0 and 1 density 
values. Figures 3 and 4 show the dynamic behavior 
of the system at the non-isolated point E3 (0.4, 0.36) 
when m = 0.4.

For the second case study, the obtained behavior 
of the two populations is periodic which is described 
as a circle around the equilibrium E3 (0.4, 0.36). When 
m = 0.6, the dynamic behavior of the system is shown 
in Figures 5 and 6.

The obtained phase portrait shows a stable  
focus. This latter closes to a fixed point with the  
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Table 1. Predator–prey model analysis.

Equilibrium Singularities Phase portraits

E0 (0,0) Re(λ1)  
≥ 0, Re(λ2) ≤ 0 Saddle point

E1 (1,0) Re(λ1)  
≥ 0, Re(λ2) ≤ 0 Saddle point

E2 (m, (m−ℓ) 
(1−m)) Im(λ1)  
≥ 0, Im(λ2) ≤ 0

m = 0.4  
Center

m = 0.4 Re(λ1) = Re(2) = 0  

m < 0.4 
Unstable focus

m <0.4 Re(λ1) = Re(λ2) ≥0   

m > 0.4  
Stable focus

m > 0.4 Re(λ1) = Re(λ2) ≤ 0
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following coordinates (0.6, 0.32) proven with the tem-
poral evolution.

Experimental validation  
of main nonlinearities

The aim of this section is to design an analog  
circuit that can build the nonlinear terms according 
to system (1). Therefore, equivalent electronic circuits 
of these nonlinear terms are designed and simulated  
via MultiSIM software (Yujun et al., 2010). Due to 
the complexity of the equivalent circuit design, we  
designed first the equivalent circuit of each nonlinear 
term x2 and x3. The first nonlinear term circuit needs 
one Multiplier AD6333. The multiplying core of this 

Figure 3: Temporal evolution of the predator–prey system for m = 0.4: (A) prey and (B) predator.

Figure 1: Temporal evolution of the predator–prey system for m = 0.2: (A) prey and (B) predator.

Figure 2: Phase portrait of the 
predator–prey system for m = 0.2.
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multiplier comprises a buried Zener reference providing 
an overall scale factor of 10 V. For that, an amplification 
of the output with a gain of 10 is required. Thus, the 
equivalent electrical model of x2 is realized as follows:

S x
x R R

R1
2

2
1 2

1

= =
10

 
( + )

.

As shown in Figure 7, by considering the compo-
nents datasheet, the electronic circuit of the nonlinear 
term x2 is modeled by one Analog multiplier AD633AN, 
one Amplifier AOP, two capacitors (C1, C2) and two re-
sistors (R2, R2). Due to the existence of internal loss in 
the electrical components, the ideal value of R2 chosen  
to obtain the best result is 0.9 kΩ. However, for the non-
linear term x3, the electronic circuit is modeled in Figure 8  
by two multipliers AD633AN, 2 Amplifiers AOP, four 
capacitors and four resistors, since its electrical model  
is realized as follows:

Figure 4: Phase portrait of the 
predator–prey system for m = 0.4.

Figure 5: Temporal evolution of the predator–prey system for m = 0.6: (A) prey and (B) predator.

Figure 6: Phase portrait of the 
predator–prey system for m = 0.6.
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The input which will be used for the equivalent  
circuit of system (1) is continuous. However, in this part, 
in order to verify the efficiency of the two nonlinear 
terms equivalent circuits, an alternative signal is used 
as an input with a weak frequency equal to 1 Hz and  
amplitude of 2 V. The square and the cube of the signal 
are presented with a pink curve in Figure 9 and Figure 10,  
respectively. For high frequencies (1 kHz, 10 kHz, 
100 kHz), we obtained the same following results.

As it is shown, we have chosen the same scale for 
the two nonlinearities. For the first nonlinearity x2, the 
obtained signal amplitude is equal to 4,108 V which 
obviously the square of the input signal amplitude. 
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Figure 8: Circuit design of the x3 function within MultiSIM software.

Figure 7: Circuit design of the x2 function within MultiSIM software.

In addition, for the second nonlinearity x3, the result 
proves that the obtained signal is the cubes of the 
input signal since the obtained amplitude is equal to 
7,980 V which is almost equal to 8 V the cube of the 
input amplitude.

Figures 11 and 12 show an experimental imple-
mentation for the last simulation results. The oscillo-
scope traces of the proposed circuit are illustrated in 
Figures 13 and 14.

Comparing the different results, it is proven that 
there is a good qualitative agreement between the 

numerical simulations with Matlab, the electrical  
simulations with MultiSIM and the experimental  
results for the two nonlinearities.

Circuit design via multisim software

In this section, the agreement between biological theory 
and electronic experiments of the predator–prey model 
will be analyzed by considering the three cases studies 
presented numerically by MATCONT. Therefore, a trans-
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Figure 9: Simulation results of the x2 function with MultiSIM Software.

Figure 10: Simulation results of the x3 function with MultiSIM Software.

formation of the biological predator–prey model (1) to an 
equivalent electrical model is realized as follows:
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m=  C1 and C2 are used for the integration of 

the circuit outputs in order to obtain as output the 
populations’ density x1 and x2.
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Figure 13: Experimental results of x2 
function.

Figure 12: Electronic circuit of the x3 
function.

Figure 11: Electronic circuit of the x2 
function.

Figure 14: Experimental results of x3 
function.

The electronic circuits corresponding to these 
cases are designed by the software MultiSIM and 
presented in the following. We have used three multi-
pliers, five AOP, two capacitors and 12 resistors. The 
resistors (R1, R2, …, R6) and capacitors values are 
fixed with respect to the parameters values. The val-
ue of the two capacitors C1 and C2 is fixed at 100 nF. 
In addition, two interrupters S1 and S2 are used to in-
troduce the initial conditions of the prey and predator 
density. In order to analyze the three case studies, we 
vary the value of the resistor R6 which corresponds to  

the parameter m since R
R

6
5=

m . In the first case study, 
we consider the mortality rate of the predator m = 0.2. 
Therefore, the fixed value of R6 in this case is equal to 
50 kΩ . Figure 15 describes the electrical circuit of the 
predator–prey model (5).

Then, the temporal evolution and the phase  
portrait when m = 0.2 are presented in Figure 16 and 
Figure 17, respectively.

We obtained two phase-shifted alternative  
signals. The pink curve corresponds to the dynamic  
evolution of the prey while the blue one corresponds 
to the dynamic evolution of the predator. Based 
on the scale chosen in the temporal evolution, 

the amplitude of the blue and pink curves are  
almost equal to 0.956 V and 0.836 V, respectively. 
Comparing with the numerical simulation present-
ed in Figures 1 and 2, we conclude that the per-
manent regime of the system dynamic obtained 
via MultiSIM is similar to that obtained using the  
Matcont software.

In the second case study, we consider the mor-
tality rate of the predator m = 0.4. Thus, Figure 18 
describes the electrical circuit of the model with 
R6 = 25 kΩ . Then, the temporal evolution and the 
phase portrait are illustrated in Figure 19 and Figure 20,  
respectively.

As it is illustrated in the temporal evolution, 
the maximum amplitude of the prey population 
is equal to 0.488 V and that of the predator pop-
ulation is equal to 0.441 V. The obtained values 
are obviously very close to the numerical values 
shown in Figure 3. Furthermore, the phase por-
trait proves the existence of the center singularity 
which is demonstrated numerically via the Matcont 
software in Figure 4.

In the third case study, the mortality rate of 
the predator m is fixed at 0.6. Therefore, Figure 21  



9

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Figure 15: Circuit design of the predator–prey system for m = 0.2.

Figure 16: Temporal evolution via MultiSIM software (m = 0.2).
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Figure 17: Phase portrait via MultiSIM software (m = 0.2).

Figure 18: Circuit design of the predator–prey system for m = 0.4.
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Figure 19: Temporal evolution via MultiSIM software (m = 0.4).

Figure 20: Phase portrait via MultiSIM software (m = 0.4).

presents the electrical circuit with R6 = 17 kΩ . Figures 
22 and 23 illustrate the corresponding temporal evo-
lution and phase portrait.

For the third case study, we change slightly the  
initial conditions ( 0.4, 0.1)x x1 2= =  to obtain the clearest 

results. The obtained temporal evolution and phase 
portrait prove that the model dynamic tends toward 
a fixed point. In Figure 22, it is noted that the dynamic  
behavior oscillates during the transitional regime, 
whereas in the permanent regime, it becomes 
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Figure 21: Circuit design of the predator–prey system for m = 0.6.

Figure 22: Temporal evolution via MultiSIM software (m = 0.6).
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Figure 24: STM3278 Technology.

Figure 23: Phase portrait via MultiSIM software (m = 0.6).

Figure 25: Experimental temporal 
evolution (m = 0.2).

continuous reaching a constant value equal to 
0.586 V for the prey population and to 0.326 V for 
the predator one. The pink curve correspond-
ing to the prey population dynamic reaches  

a pick of 0.978 V. However, the blue curve  
corresponding to the predator population reaches  
a pick equal to x2 = 0.399 V. This temporal behav-
ior is described by a stable focus in the obtained 
phase portrait. These electrical results are almost 
similar to the numerical ones presented in Figures 
5 and 6.

For the three cases study, we conclude that the 
electrical results obtained by the software MultiSIM 
obviously prove the numerical results obtained by the 
Matcont software.
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Figure 26: Experimental phase portrait 
(m = 0.2).

Figure 27: Experimental temporal 
evolution (m = 0.4).

Figure 28: Experimental phase portrait 
(m = 0.4).

Figure 29: Experimental temporal 
evolution (m = 0.6).

Experimental implementation  
of the predator–Prey model

In this section, an experimental implementation of the 
equivalent electrical circuit will be realized by placing 
the different electrical components on a bread board 
within the laboratory.

As it is mentioned previously, mathematical pred-
ator–prey model has several nonlinearities which are 
modeled by multipliers AD633 in the equivalent elec-
trical circuit. The cascade of components AD633 and 
AOP with gain of 10 amplifies most likely the imper-
fection and the uncertainties of the electronic com-
ponents and consequently distorts the experimental 
results. Therefore, in order to resolve this problem, 
the experimental validation is realized by using the 
technology STM3278 shown in Figure 24.

The experimental results of the three cases stud-
ies are obtained by using the oscilloscope and pre-
sented in Figures 25–30.

Comparing experimental results with numerical  
results obtained via the MATCONT software shown in 
Figures 1–6, we can conclude that good agreement is 
obtained between simulation results and experiments.

Conclusion

In this paper, an electronic circuit is designed for the 
model of a prey–predator model and its complex be-
havior is proved via numerical and electrical results. 
Furthermore, some experimental investigations are 
also shown and demonstrate that they can be used 
to characterize the ecological dynamics faster. In the 
future, we will try to prove, via experimental results, 
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Figure 30: Experimental phase portrait 

(m = 0.6).

the chaotic dynamics of such nonlinear systems in 
the presence of seasonally effects in order to use 
such circuits for encryption/decryption fields.
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