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Nematode Genome Announcement: A Draft Genome for 
Rice Root-Knot Nematode, Meloidogyne graminicola

Abstract
The rice root-knot nematode Meloidogyne graminicola has emerged 
as a devastating pest of rice in South-East Asian countries. Here we 
present a draft genome sequence for M. graminicola, assembled 
using data from short and long insert libraries sequenced on Illumina 
GAIIx sequencing platform.
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Rice is the second most important food crop in the 
world after corn based on the total production. In 
2016, rice was cultivated in 161.1 million ha area, 
and the global production was 482 million metric 
tons (World Rice Statistics, International Rice Re-
search Institute, Manila, Philipines, http://ricestat.irri.
org:8080/wrsv3/entrypoint.htm). The rice root-knot 
nematode, Meloidogyne graminicola, has emerged as 
a devastating pest of rice in South-East Asia (Dutta 
et al., 2012; Mantelin et al., 2016), where it is highly 
damaging under upland, rainfed lowland (Prot et al., 
1994) and irrigated (Netscher and Erlan, 1993) culti-
vation conditions. Severe M. graminicola infection is 
known to cause 100% damage to the rice nursery. 
Here, we report the sequencing and assembly of the 
genome of M. graminicola IARI strain. This resource 
would help researchers investigate and understand 
the unique biology of this nematode and discover new 
strategies for its management.

Considering the ~30 Mb genome size of M. 
graminicola as predicted by Feulgen densitometry 
(Lapp and Triantaphyllou, 1972), we planned to gen-
erate two libraries of varying insert length with ~150× 
depth of data (~4.5 Gb) per library using paired-end 
sequencing to achieve a comprehensive assembly. 
The M. graminicola population was collected from the 
infected rice fields from Indian Agricultural Research 
Institute farm, New Delhi, and multiplied from a single  
egg mass in pots under greenhouse conditions. 
Freshly hatched second stage juveniles were used for 

the genomic DNA extraction using Gentra Puregene 
Tissue Kit (Cat No.: 158667 Qiagen, Valencia, CA, 
USA). The short (150–200 bp) and long (300–500 bp)  
DNA fragments were obtained by diluting 1 µg of 
genomic DNA in 100 µl nuclease free water (Ambi-
on, Waltham, MA, USA) and sonication by Bioruptor 
(Diagenode, Seraing (Ougrée), Belgium) at 20 and  
13 pulses at 30 sec ON and 30 sec OFF, respectively.  
The resulting fragmented DNA was cleaned using  
QIAquick columns (Qiagen, Valencia, CA, USA). The 
size distribution was checked by running an aliquot of 
the fragmented DNA sample on Agilent high sensitivity  
bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). Subsequently, the libraries for whole genome 
sequencing were constructed as per the Illumina 
TruSeq DNA sample preparation guide (Illumina, San 
Diego, CA, USA). The sequencing was performed on 
Illumina GAIIx platform at the Genotypic Technology 
Pvt. Ltd., Bengaluru, India.

A total of ~130 million raw reads were generated 
comprising of 13 Gb sequence data using 100 bp 
paired-end sequencing. Approximately 120 million 
High Quality (HQ) reads were obtained from the raw 
data by using NGS QC Tool Kit v.2.3.3 (Patel and Jain, 
2012). These ~12 Gb of 120 million HQ reads were 
better than our planned strategy expecting nine Gb. 
The HQ reads obtained from both short and long in-
sert libraries were used to generate primary assembly 
using Platanus assembler v.1.2.4 (Kajitani et al., 2014), 
and the resulting contigs were further scaffolded using 
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Platanus Scaffolding module to generate secondary 
assembly. The secondary assembly was further re-
fined by Redundans pipeline (Pryszcz and Gabaldón,  
2016) to generate the final genome assembly with a 
minimum sequence length of 500 bp. The contami-
nating mitochondrial and bacterial sequences were 
identified by NCBI servers and removed from the 
draft genome assembly prior to submission to the 
NCBI GenBank. The mitochondrial genome was as-
sembled separately from complete HQ reads using 
SPAdes assembler (Bankevich et al., 2012) with cov-
erage cutoff of 500, wherein available M. graminicola 
mitochondrial genome sequences (accession nos. 
HG529223, KJ139963) obtained from GenBank were 
provided as trusted contigs to the SPAdes assembler. 
This resulted in only 4 scaffolds from the assembly. 
The resulted scaffolds from SPAdes assembler were 
further merged using EMBOSS merger tool (Rice et 
al., 2000) to construct full length mitochondrial ge-
nome. The assembled genome was further anno-
tated using MITOS (Bernt et al., 2013) and ARWEN 
(Laslett and Canbäck, 2008) servers.

The final M. graminicola genome sequence assem-
bly was of 38.18 Mb size, and included 4,304 scaffolds 
with an average scaffold length of 8.87 Kb. The min-
imum and maximum scaffold length was 501 bp and 
145 Kb, respectively. The N50 and N90 lengths for 
the final assembly were 20.4 Kb and 4.2 Kb, respec-
tively. The GC content of the assembled genome was 
23.05%, and there were 1.88% N’s in the assembly. 
Core Eukaryotic Genes Mapping Approach (CEGMA) 
(Parra et al., 2007) was used to assess the complete-
ness of the M. graminicola genome assembly, and out 
of 248 core genes, 209 complete (84.27%) and 225 
partial (90.73%) core eukaryotic genes (CEGs) were 
found to be present. Identification of protein-coding  
genes was carried out by using GenMark-ES tool 
(Borodovsky and McIninch, 1993) which predicted 
10,196 protein-coding genes, as compared with 6,712 
to 20,317 in other plant-parasitic nematode genomes 
(summarized in Kikuchi et al., 2017). Functional annota-
tion of predicted M. graminicola protein-coding genes 
performed using OrthoMCL (Li et al., 2003) identified 
5,427 proteins that shared high homology with other 
Meloidogyne spp. In addition, 245 tRNA genes were 
predicted. The mitochondrial genome sequence of  
M. graminicola IARI strain was 19,019 bp long and 
contained 12 protein-coding genes, 22 tRNA and 
two ribosomal RNA genes. Based on the mitochon-
drial genome sequence, the M. graminicola IARI strain 
appears phylogenetically closer to the M. graminicola  
strain from Philippines (HG529223, 20,030 bp, 
Besnard et al., 2014) as compared with the Chinese 
strain (KJ139963, 19,589 bp, Sun et al., 2014).

The present assembly size deviates from that of the 
~30 Mb as predicted by Feulgen densitometry (Lapp 
and Triantaphyllou, 1972). Using sequencing tech-
nologies that produce longer reads such as PacBio 
or mate pair sequencing to obtain better genome  
assemblies, and, inbreeding the nematode strain to be 
used for sequencing to reduce possible heterozygosity 
might help in correcting the mismatch between pre-
dicted and assembled genome sizes. However, N50 
value, complete and partial CEGs and other genome 
statistics for our M. graminicola assembly are compa-
rable to the closely related and published plant-parasit-
ic nematode genomes solved using similar sequencing 
platforms (Supplementary Table A1).

This draft genome sequence would be useful for 
the researchers working on comparative genomics  
of Meloidogyne and other tylenchid nematodes, and 
enable functional genomics in M. graminicola. We 
understand that the present M. graminicola draft  
genome is incomplete, and expect to improve it in the 
near future. The present assembly would work as a 
base for the further improvement of the M. graminicola  
genome sequence.

GenBank accession numbers: The Whole Genome  
Shotgun project has been deposited at DDBJ/ENA/
GenBank under the accession NXFT00000000. The 
raw DNA sequence data was deposited in GenBank 
under BioSample no. SAMN04041660, BioProject 
No. PRJNA411966 and SRX1224028 (long insert li-
brary) and SRX1223928 (short insert library), respec-
tively. The mitochondrial genome was submitted to 
GenBank under accession no. MG763561.
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Appendix

Supplementary Table A1

Supplementary Table A1. A comparison of Meloidogyne graminicola genome 
information with the published plant-parasitic nematode genomes.

Sl. 
no.

Nematode
Sequencing 
platform

Assembly 
approach/
assembler/
assembly-
pipeline

Assembly 
size

No. of 
scaffolds

N50 
value 
(kbp)

CEGMA 
score 

(complete/
partial 
%) or 

complete%

Reference Year

1 Meloidogyne 
incognita

Sanger, 
ABI3730x1 
DNA analyzer

De-novo, 
Arachne

86.1 2,995 62.5 77/80.6 Abad et al. 
(2008)

2008

2 Meloidogyne 
hapla

ABI3730, 
megabase 
dequence 
analyzer

De-novo, 
Arachne v2.0.1

53.0 3,452 37.6 94.8/96.8 Opperman et al. 
(2008)

2008

3 Bursaphelenchus 
xylophilus

454 FLX, 
illumina GAI

De-novo, 
Newbler v2.3, 
Velvet v 1.0.12, 
AbacasII, 
IMAGE, iCORN

74.6 5,527 949.8 97.6/98.4 Kikuchi et al. 
(2011)

2011

4 Meloidogyne 
floridensis

Illumina 
HiSeq2000

De-novo, Velvet 
v1.1.04

96.7 58,696 3.7 58.1/77.4 Lunt et al. 
(2014)

2014

5 Globodera 
pallida

ABI 3730 
Capillary DNA 
Analyser, 
454 GS-20 
and GS-FLX 
sequencer, 
Illumina GAIIx

De-novo, 
Celera, Newbler, 
Abyss v1.2.7, 
SSPACE v1

124.6 6,873 122 74.19/80.65 Cotton et al. 
(2014)

2014

6 Pratylenchus 
coffeae

Roche 454 De-novo, 
Newbler

19.7 5,821 10 NA Burke et al. 
(2015)

2015

7 Globodera 
rostochiensis

Illumina 
HiSeq2000

De-novo, 
SGA v0.9.7, 
Velvet v1.3.7, 
SSPACE, 
Gapfiller

95.9 4,377 89 93.55/95.56 Eves-van den 
Akker et al. 

(2016)

2016

8 Meloidogyne 
enterolobii

Illumina L30 De-novo, 
Platanus

162.4 46,090 9.2 81 /NA Szitenberg et al. 
(2017)

2017

9 Meloidogyne 
floridensis

Illumina SJF1 De-novo, 
Platanus

74.9 9,134 13.2 84 Szitenberg et al. 
(2017)

2017

10 Meloidogyne 
incognita

Illumina W1 De-novo, 
Platanus

122.1 33,735 16.4 83 Szitenberg et al. 
(2017)

2017

11 Globodera 
ellingtonae

HISeq, MiSeq, 
PacBio

De-novo 
assembler 
Allpaths-LG, 
PBJelly

119.1 2,248 360 92/96 Phillips et al. 
(2017)

2017

12 Meloidogyne 
javanica

Illumina VW4 De-novo, 
Platanus

142.6 34,394 14.2 90 Szitenberg et al. 
(2017)

2017
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13 Meloidogyne 
arenaria

Illumina HarA De-novo, 
Platanus

163.7 46,509 10.5 91 Szitenberg et al. 
(2017)

2017

14 Ditylenchus 
destructor

Illumina 
HiSeq2500, 
PacBio RSII

De-novo, 
ALLPATHS-
LG, SSPACE, 
pb-jelly, Gapfiller

112 1,761 570 91 Zheng et al. 
(2016)

2016

15 Meloidogyne 
incognita

454, Illumina 
HiSeq2000

De-novo, MIRA, 
SSPACE, 
GapCloser 
(SOAPdenovo 2)

183.5 12,091 38.6 97 Blanc-Mathieu 
et al. (2017)

2017

16 Meloidogyne 
javanica

454, Illumina 
HiSeq2000

De-novo, MIRA, 
SSPACE, 
GapCloser 
(SOAPdenovo 2)

256.3 31,341 10.4 96 Blanc-Mathieu 
et al. (2017)

2017

17 Meloidogyne 
arenaria

454, Illumina 
HiSeq2000

De-novo, MIRA, 
SSPACE, 
GapCloser 
(SOAPdenovo 2)

235.5 26,196 16.4 95 Blanc-Mathieu 
et al. (2017)

2017

18 Meloidogyne 
graminicola

Illumina GAIIx De-novo, 
Platanus, 
Redundans

38.18 4,304 20.4 84.27/90.73 This study 2018
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