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ABSTRACT 

This paper explores the effect of multiple structural breaks to estimate the 
parameters and test the unit root hypothesis in panel data time series model under 
Bayesian perspective. These breaks are present in both mean and error variance 
at the same time point. We obtain Bayes estimates for different loss function using 
conditional posterior distribution, which is not coming in a closed form, and this is 
approximately explained by Gibbs sampling. For hypothesis testing, posterior odds 
ratio is calculated and solved via Monte Carlo Integration. The proposed 
methodology is illustrated with numerical examples. 

Key words: panel data model, autoregressive model, structural break, MCMC, 
posterior odds ratio. 

1. Introduction 

Statistical inference of panel data time series model received great attention 
in the last several decades in both econometrics and statistics literature. The 
main idea behind the use of panel data time series model is to overcome the 
difficulty of unobserved variation in cross-section data sets over individual units as 
well as variation, which may change the structure also. It was assumed that this 
change was taken by some observations at a fixed and common time point in 
each series referred to as break point. Thus, structural break concept in panel 
data set-up is important to handle the permanent effects in the series and impacts 
other simultaneous variables. For this, an extensive literature concentrates on 
testing, estimation and detection of the existence of single or multiple structural 
breaks from univariate to multivariate time series. Bai and Perron (1998, 2003) 
considered the problem of estimation and testing for break point in linear model 
and determine the number of breaks using double maximum tests. They have 
also further addressed various issues such as estimation and testing number of 
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breaks, forming confidence interval related to multiple linear regression with 
multiple structural break. Altissimo and Corradi (2003) suggested an approach for 
detecting and estimation of the number of shifts in mean of a nonlinear process, 
which is having dependent and heterogeneous observations. They proposed a 
new estimator for long run variance, which was consistent in the presence of 
breaks and verified via a simulation exercise. Li (2004) applied quasi-Bayesian 
approach to detect the number and position of structural breaks in China’s GDP 
and labour productivity data using predictive likelihood information criterion. 

Apart from the above literature, which mainly dealt with the classical 
approach, a generalized form of estimation and testing the structural break by 
using Bayesian inference is less explored. Geweke and Jiang (2011) developed 
Bayesian approach to modelling in-sample structural breaks and forecasting out-
of-sample breaks. Eo (2012) used Bayesian approach to estimate the number of 
breaks in autoregressive regressions with structural breaks in intercept, 
persistence, and residual variance. A model selection criterion was also 
considered to select the best model from U.S. GDP deflator data. Aue and 
Horvath (2013) discussed several approaches for estimating the parameter and 
locating multiple break points. They considered CUSUM procedure as well as 
likelihood statistic to adjust the serial dependence in presence of structural break. 
Recently, Melighotsiduo et al. (2017) suggested a Bayesian approach for 
autoregressive model allowing multiple structural changes in both mean and error 
variance of economic series occurring at unknown times, and Bayesian unit root 
testing is also proposed. 

In current scenario, a growing literature on estimation and testing of multiple 
structural breaks in generalized univariate model such as panel data as well as 
multivariate time series model. A partial list of contributions in multiple structural 
breaks include Sugita (2006), Liu et al. (2011), Jin et al. (2013), Preuss et al. 
(2015) and  Eo and Morley (2015) to analysis the procedure for detection and 
estimation of change point in vector error correction model, panel data model. In 
recent time, detection and estimation of multiple change points in panel data with 
interactive fixed effect and dynamic structure is introduced. Li et al. (2016) 
through penalized principal component (PPC) estimation procedure with an 
adaptive group fused LASSO. 

An overview of the above description, this paper provides a general 
methodology to estimate and inference for panel data model under the presence 
of multiple change points in mean and error variance parameters. Our approach 
provides a flexible way to the interpretation of the result in real situation because 
in most economic and time series data are varying by trend and variance 
component. If one considers a break in mean also, then the impact of the series 
changes due to both type of break versus no break point. Thus, a Bayesian 
approach is introduced to capture the impact of break points in the panel data 
model. For Bayes estimation, we apply both symmetric and asymmetric loss 
function to posterior density in order to get better estimators and compare them 
with ordinary least square estimator. In addition, we also examine the model 
selection criterion to find the appropriate model, which may or may not contain 
multiple break points in a real data set. 
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2. Model Specification 

Let {yit , t=1,2,…,T; i=1,2…,n} be a panel data time series model having B 
multiple break points in mean and error variance where breaks occur in both 
parameters in the same location. In that case our panel data model can be 
expressed as 
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for j = 1,2,…, B and where n denotes number of cross sectional units,  is the 

autoregressive coefficient, j is a ( n × 1 ) vector of mean coefficients at jth 

division and εit are assumed to be independent and normally distributed with zero 

mean and division specific variance 2
j . This is a partial structural change model 

since the parameter  is not subject to shifts and is estimated using the entire 
sample space. The model in (1) can also be casted in the form of matrix notation 
with .*  Kronecker delta product indicating element by element array 
multiplication, Z as the nT × (B+1) matrix whose jth column is equal to one if Tj-1 < t 
≤ Tj and zero otherwise, and consider mean and residual variance parameters as 
a vector form. 
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Our study attempts to estimate the parameters in structural break model 
under Bayesian framework and test the unit root hypothesis by using posterior 
odds ratio. Under unit root case, model (1) reduces to a pure structural change 
model where all the model’s coefficients are subject to change 
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(2) 

As mentioned, if we follow the usual approach defined in the literature to test 

for stationarity model reduces by (2) under the null hypothesis H0:  = 1 is 
difference stationary with multiple breaks in error variance against the alternative 

hypothesis H1:  ϵ S, series is stationary with multiple breaks in mean as well as 
error variance.  

3. Bayesian Inference 

In this section, we discuss issues related to the estimation and inference 
about the parameters and testing of unit root hypothesis. In order to perform 
Bayesian inference we need the likelihood function and specify prior distribution 
for the model parameters. Posterior probability is obtained by using sample 
information contained in the likelihood function combined with the joint prior 
distribution. The likelihood function for this model is  
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(3) 

For panel data model generally normal prior distribution is considered for

 2,~ jijij N  , for error variance ( 2
j ) assume conjugate inverted gamma prior  

IG(cj , dj) and uniform prior is taken for autoregressive coefficient (), see 
[Schotman and Van Dijk (1991) and Phillips (1991)]. The joint prior distribution is 
given as 
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(4) 

3.1. Bayesian Estimation via Gibbs Sampling 

Given the likelihood function and prior density defined by eqn  (3) and eqn (4), 
the posterior distribution is given by 
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The posterior distribution in (5) is very complicated and hence no closed form 
inference appears to be possible. For Bayesian estimation, we proceed via Gibbs 
sampler, a MCMC method, proposed by Geman and Geman (1984). The Gibbs 
sampler procedure, which we used, is described by Wang and Zivot (2000) in a 
time series regression model with multiple structural breaks. By means of this 
procedure, it gives a chain of estimated parameters values, which is frequently 
obtained by conditional probability distribution. Here, our aim is to generate a 
sequence of random variables from the conditional probability distribution using 
the current value of the parameters. For this we have derived the form of 
conditional posterior distributions given below:  
 

 
   

       



































11
,

11

1

~,,|

1
2

2

1
2

1,

2 1

jj

j

jj

ij

T

Tt

tiit

jij
TTTT

yy

Ny

j

j









  (6) 

      

  




























































n

i

ijij

T

Tt

ijtiit

jj
jj

ijj

j

j

yy

dc
nTTn

IGy

1
2

2
1,

12
1

1

2

1
,

2
~,,|





  (7) 

 

 
  

   







































 







 



 






1,,,~,,|

1

1

1

2
1

21

1

1

2
1

1

1,

2

11

1
l

yy

yy

TNy

B

j
n

i

T

Tt

ijit

j
B

j
n

i

T

Tt

ijit

n

i

T

Tt

ijtiijit

jij
j

j

j

j

j

j









  (8) 

Using the generated samples from the above posteriors, Bayes estimates of 
the parameter are evaluated by different loss functions under Gibbs sampling 
algorithm. A loss function is a decision rule to select the best estimator and 
represent each of the possible estimates. Here, we consider squared error 
(symmetric) loss function as well as entropy (asymmetric) loss function for getting 
better understanding of the Bayesian estimation. Under squared error and 

entropy loss function, Bayes estimator are  xE |  and    11 |
 xE  . 
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3.2. Testing Unit Root Hypothesis via Posterior Odds Ratio 

In a hypothesis testing problem, one is generally interested in testing the 
stationary condition of a model. Here, null hypothesis is used as a unit root 
hypothesis against the alternative of a stationary model. In Bayesian framework, 
testing is often convenient to summarize the information in terms of posterior 
odds ratio. The posterior odds ratio is the ratio of posterior probability under null 
versus alternative hypothesis with the product of prior odds, notation given as:   
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Theorem: To test the null hypothesis that yit is a non-stationary I(1) process, i.e. 

=1 in equation (2), against the alternative hypothesis that yit is a stationary I(0) 

process, i.e.  ϵ S in equation (1). The posterior odds ratio can be constructed 
according to equation (9)  
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Proof: The proof of the theorem is given in the appendix.   

In the equation (10), closed form expression of posterior odds ratio is not 
obtained. Therefore, we use an alternative technique as Monte Carlo integration 
for approximately solving the integrals and get the value of posterior odds ratio. 

4. Simulation Study 

In this section, we conduct a set of simulated experiments to evaluate the 
performance of our model and compare different estimators based on Monte 
Carlo simulation. To estimate the model parameters, assume that the number of 
breaks and the location of break points are known so that the remaining 
objectives in equation (1) are estimated via an iterative procedure. In simulation 
experiment we have generated artificial time series from our model with varying 
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numbers of structural breaks at the same time points in mean and error variance 
parameters. We are starting with the initial observation y0i = (10, 15, 20) to 
generate panel data time series from the suggested model having three panel 
(n=3) and each panel contains T observations. For better interpretation, we took 
different size of time series T = (50, 75, 100) and also varying autoregressive 

coefficients  = (0.9, 0.95, 0.99). The number of possible structural break (B) has 
been 3. Thus, the disturbances εit are generated as i.i.d. for all i and j with four 

different variance, namely    4.0,3.0,2.0,1.0,,, 2
4

2
3

2
2

2
1  . For inverse gamma prior 

distribution with hyper parameters is to known. For numerical purpose we have 
taken as cj = dj = 0.01 for all break points. In the case of normal prior, hyper prior 
mean is equal to mean of the generated series at every break point interval (T j-1, 
Tj) with parallel variance given in disturbances term. The true value of mean term 
for each panel having four partitions is written as (μ11, μ12, μ13) = (14, 16, 18); (μ21, 
μ22, μ23) = (20, 22, 24); (μ31, μ32, μ33) = (26, 28, 30); (μ41, μ42, μ43) = (32, 34, 36). 
All results are based on 5000 replications. From the generated sample, we 
obtained Bayes estimate of parameters and compared the performance with 
ordinary least square (OLS) estimate. We report the estimated value and its mean 
square error in Table-4.1 to 4.3. 

Table-4.1. Estimators with varying time series at  = 0.9 

 

T=50 T=75 T=100 

OLS SELF ELF OLS SELF ELF OLS SELF ELF 

 
0.8607 0.9037 0.9036 0.8724 0.9049 0.9048 0.8763 0.9043 0.9043 

0.0025 0.0000 0.0000 0.0012 0.0001 0.0001 0.0009 0.0001 0.0001 

μ11 
13.7381 13.9853 13.9785 13.8519 13.9959 13.9893 13.7567 13.9815 13.9749 

0.5840 0.0104 0.0107 0.5529 0.0098 0.0100 0.5706 0.0091 0.0094 

μ12 
16.1184 15.9989 15.9929 16.0870 15.9938 15.9880 16.1338 16.0026 15.9969 

0.7121 0.0124 0.0125 0.5515 0.0106 0.0107 0.6236 0.0110 0.0111 

μ13 
18.2558 17.9770 17.9717 18.2331 17.9833 17.9782 18.2917 17.9964 17.9912 

0.7394 0.0104 0.0106 0.7099 0.0108 0.0110 0.7042 0.0100 0.0101 

μ21 
18.9938 20.0110 20.0014 19.4758 20.0186 20.0098 19.6677 20.0093 20.0015 

2.6156 0.0100 0.0099 1.2051 0.0235 0.0234 0.6942 0.0386 0.0385 

μ22 
20.8791 21.9925 21.9838 21.4667 22.0115 22.0035 21.7912 22.0295 22.0224 

2.6572 0.0151 0.0154 1.5227 0.0293 0.0292 0.6849 0.0359 0.0356 

μ23 
23.1734 24.0115 24.0035 23.5620 24.0168 24.0094 23.7996 24.0274 24.0209 

2.2536 0.0116 0.0114 1.2840 0.0278 0.0275 0.5568 0.0325 0.0322 

μ31 
24.9505 26.0408 26.0295 25.5998 26.0509 26.0410 25.7780 26.0333 26.0244 

4.4370 0.0257 0.0248 1.7431 0.0381 0.0373 0.7004 0.0381 0.0376 

μ32 
26.7468 28.0131 28.0026 27.6054 28.0537 28.0445 27.7914 28.0448 28.0364 

4.8589 0.0230 0.0228 1.7379 0.0385 0.0377 0.9369 0.0557 0.0550 

μ33 
28.6660 30.0059 29.9961 29.5123 30.0316 30.0230 29.6804 30.0104 30.0027 

5.1925 0.0218 0.0218 1.7849 0.0359 0.0355 0.8159 0.0444 0.0443 

μ41 
30.9830 32.0348 32.0234 31.1368 31.9948 31.9832 31.4541 32.0210 32.0093 

3.6570 0.0363 0.0358 3.9274 0.0448 0.0450 2.8567 0.0384 0.0382 

μ42 
32.9950 34.0339 34.0232 33.5021 34.0500 34.0391 33.6176 34.0352 34.0243 

4.4146 0.0376 0.0369 2.5846 0.0370 0.0361 2.8885 0.0380 0.0374 

μ43 
34.8637 36.0233 36.0132 35.1567 36.0032 35.9929 35.4250 36.0242 36.0139 

3.7348 0.0342 0.0340 3.4651 0.0386 0.0388 2.5830 0.0353 0.0349 

2
1  

0.1071 0.1085 0.0988 0.1042 0.1053 0.1014 0.1038 0.1046 0.1005 

0.0007 0.0007 0.0000 0.0004 0.0005 0.0000 0.0005 0.0005 0.0000 

2
2  

0.2104 0.2094 0.1961 0.2065 0.2069 0.2052 0.2031 0.2037 0.2030 

0.0040 0.0034 0.0000 0.0017 0.0015 0.0001 0.0006 0.0006 0.0000 

2
3  

0.3121 0.3189 0.3028 0.3002 0.3031 0.2920 0.3054 0.3060 0.2984 

0.0075 0.0071 0.0003 0.0034 0.0034 0.0001 0.0018 0.0018 0.0000 

2
4  

0.4058 0.4116 0.4027 0.4140 0.4193 0.3987 0.4252 0.4241 0.4221 

0.0055 0.0055 0.0004 0.0078 0.0078 0.0002 0.0100 0.0094 0.0011 
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Table-4.2. Estimators with varying time series at  = 0.95 

 

T=50 T=75 T=100 

OLS SELF ELF OLS SELF ELF OLS SELF ELF 

 
0.9277 0.9511 0.9511 0.9239 0.9511 0.9510 0.9231 0.9515 0.9515 

0.0010 0.0000 0.0000 0.0012 0.0000 0.0000 0.0011 0.0000 0.0000 

μ11 
14.2813 14.0055 13.9979 14.3639 14.0031 13.9955 14.2784 14.0008 13.9934 

2.8644 0.0026 0.0026 2.8140 0.0026 0.0027 2.4136 0.0021 0.0021 

μ12 
17.0431 16.0055 15.9989 16.8423 15.9981 15.9916 17.0321 16.0007 15.9942 

4.9016 0.0027 0.0027 4.3718 0.0029 0.0029 3.7536 0.0022 0.0022 

μ13 
19.2725 17.9970 17.9910 19.2403 17.9869 17.9811 19.5766 17.9947 17.9889 

5.8300 0.0026 0.0027 5.7341 0.0021 0.0022 6.0293 0.0021 0.0022 

μ21 
19.1892 20.0027 19.9902 19.1421 20.0079 19.9981 19.0485 20.0086 19.9988 

18.5998 0.0029 0.0030 6.4266 0.0088 0.0087 3.9955 0.0082 0.0082 

μ22 
21.1867 21.9990 21.9876 21.3103 22.0017 21.9928 21.2755 21.9997 21.9907 

10.5883 0.0025 0.0027 4.6515 0.0079 0.0080 3.2040 0.0079 0.0080 

μ23 
23.8031 24.0070 23.9966 23.6473 24.0044 23.9962 23.7322 24.0062 23.9980 

11.7370 0.0029 0.0028 3.8351 0.0074 0.0074 3.0148 0.0089 0.0088 

μ31 
23.5217 25.9969 25.9830 23.9895 25.9922 25.9803 24.5652 26.0025 25.9912 

30.2210 0.0041 0.0043 9.4940 0.0073 0.0076 6.4169 0.0145 0.0146 

μ32 
26.4880 28.0077 27.9947 26.7673 28.0165 28.0056 26.7426 28.0081 27.9977 

22.0991 0.0037 0.0037 9.3507 0.0119 0.0117 5.5741 0.0151 0.0151 

μ33 
28.4393 29.9977 29.9856 28.7290 30.0130 30.0027 28.7848 30.0002 29.9904 

25.9163 0.0038 0.0039 7.4535 0.0120 0.0119 5.2416 0.0146 0.0148 

μ41 
29.9873 31.9863 31.9745 30.8228 32.0145 32.0025 31.0121 32.0101 31.9987 

10.5213 0.0195 0.0201 8.4309 0.0336 0.0335 4.5547 0.0305 0.0305 

μ42 
32.9922 34.0512 34.0402 32.9787 34.0263 34.0151 33.0487 34.0116 34.0008 

8.6453 0.0235 0.0224 5.3532 0.0246 0.0242 4.1663 0.0297 0.0296 

μ43 
34.7339 36.0139 36.0035 35.2679 36.0439 36.0333 35.0919 36.0133 36.0032 

8.8365 0.0193 0.0192 5.1718 0.0286 0.0278 4.1124 0.0292 0.0291 

2
1  

0.1087 0.1058 0.1019 0.1077 0.1048 0.1017 0.1065 0.1047 0.0999 

0.0011 0.0010 0.0000 0.0007 0.0007 0.0000 0.0008 0.0008 0.0000 

2
2  

0.2566 0.2515 0.2244 0.1889 0.2040 0.1978 0.2057 0.2030 0.2000 

0.0126 0.0100 0.0019 0.0016 0.0017 0.0002 0.0015 0.0014 0.0000 

2
3  

0.3739 0.3679 0.3372 0.3182 0.3137 0.2980 0.3094 0.3062 0.3036 

0.0265 0.0211 0.0016 0.0049 0.0048 0.0003 0.0026 0.0026 0.0000 

2
4  

0.3961 0.4001 0.3946 0.4132 0.4091 0.4032 0.3940 0.4016 0.3984 

0.0043 0.0043 0.0002 0.0035 0.0034 0.0001 0.0024 0.0024 0.0000 

Table-4.3. Estimators with varying time series at  = 0.99 

 

T=50 T=75 T=100 

OLS SELF ELF OLS SELF ELF OLS SELF ELF 

 
0.9887 0.9900 0.9900 0.9896 0.9900 0.9900 0.9896 0.9900 0.9900 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

μ11 
14.0541 13.9998 13.9995 13.8541 13.9996 13.9993 13.9496 13.9991 13.9988 

2.5280 0.0000 0.0000 2.2032 0.0000 0.0000 1.4473 0.0000 0.0000 

μ12 
15.7119 15.9994 15.9992 16.1693 16.0004 16.0002 16.1484 16.0006 16.0004 

2.7599 0.0000 0.0000 1.7276 0.0000 0.0000 1.9185 0.0000 0.0000 

μ13 
18.0323 18.0016 18.0014 17.9392 18.0001 17.9998 18.0924 18.0009 18.0006 

2.8263 0.0000 0.0000 2.4351 0.0001 0.0001 2.0293 0.0000 0.0000 

μ21 
20.0894 20.0014 20.0011 20.1550 20.0008 20.0005 19.7357 19.9988 19.9985 

15.3991 0.0001 0.0001 5.6088 0.0001 0.0001 4.1294 0.0001 0.0001 
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Table-4.3. Estimators with varying time series at  = 0.99 (cont.) 

 

T=50 T=75 T=100 

OLS SELF ELF OLS SELF ELF OLS SELF ELF 

μ22 
22.1373 21.9999 21.9996 21.8658 22.0008 22.0005 22.0746 22.0001 21.9998 

17.3947 0.0001 0.0001 6.3083 0.0001 0.0001 3.4212 0.0001 0.0001 

μ23 
24.1136 24.0001 23.9998 23.8898 23.9995 23.9992 24.1808 24.0002 23.9999 

20.6617 0.0001 0.0001 3.6968 0.0001 0.0001 4.7187 0.0001 0.0001 

μ31 
25.4894 26.0006 26.0002 25.9236 26.0004 26.0001 25.8274 25.9991 25.9988 

50.4575 0.0001 0.0001 9.9667 0.0001 0.0001 9.8900 0.0001 0.0001 

μ32 
27.7662 27.9993 27.9991 27.8165 28.0000 27.9997 27.5075 28.0013 28.0010 

37.2489 0.0001 0.0001 15.0037 0.0001 0.0001 11.5979 0.0001 0.0001 

μ33 
29.7095 30.0006 30.0003 29.7752 30.0009 30.0006 30.0822 29.9988 29.9985 

36.9404 0.0001 0.0001 12.4540 0.0001 0.0001 7.6263 0.0001 0.0001 

μ41 
31.7953 32.0001 31.9998 32.1870 32.0006 32.0004 31.7316 31.9987 31.9985 

72.6862 0.0001 0.0001 7.7369 0.0001 0.0001 2.9958 0.0001 0.0001 

μ42 
33.7731 34.0002 33.9999 33.9305 34.0000 33.9998 33.8511 34.0027 34.0024 

72.3302 0.0001 0.0001 6.8616 0.0001 0.0001 2.8177 0.0001 0.0001 

μ43 
35.9221 35.9988 35.9985 35.9559 35.9998 35.9995 35.8189 36.0004 36.0002 

75.6086 0.0001 0.0001 6.9744 0.0001 0.0001 2.9922 0.0001 0.0001 

2
1  

0.1191 0.1088 0.1006 0.1221 0.1121 0.0993 0.1153 0.1122 0.1017 

0.0024 0.0020 0.0000 0.0034 0.0017 0.0003 0.0024 0.0016 0.0001 

2
2  

0.2396 0.2082 0.1962 0.2306 0.2288 0.1845 0.2405 0.2236 0.2025 

0.0088 0.0077 0.0002 0.0097 0.0093 0.0003 0.0122 0.0071 0.0001 

2
3  

0.3452 0.3208 0.2999 0.3418 0.3215 0.2642 0.3502 0.3313 0.2817 

0.0172 0.0123 0.0002 0.0227 0.0139 0.0018 0.0253 0.0207 0.0009 

2
4  

0.3953 0.4094 0.3891 0.3920 0.4080 0.4013 0.4067 0.4005 0.4011 

0.0036 0.0032 0.0004 0.0017 0.0018 0.0000 0.0012 0.0012 0.0001 

Table-4.1-4.3 shows the behaviour of ordinary least square (OLS) and Bayes 
estimators of parameter with varying values of time series at different 
autoregressive coefficient. It can be easily seen that MSEs of all estimators 
decrease as the sample size of series increases. The difference between the 
estimated value and the true value in OLS is large, which explains that average 
bias is maximum as compared to Bayes estimator. The Bayes estimator under 
both loss functions performs better because of additional information given about 
the parameter. A better estimated value for autoregressive coefficient, mean term 
and error variance is obtained by ELF as compared to SELF due to less MSE for 

low value of . For a high value of , Bayes estimator obtained under different 
loss function is equally applicable to estimate the parameters since both the 
estimators show more or less same magnitudes for their MSE. An increase in the 
number of breaks points, MSE also increases because of the length of the 
segment is small and take less observation to estimate the parameters.  

After estimation of structural break parameters, testing of the unit root is 

considered. We can calculate posterior odds ratio values with different values of  
and varying size of the series, which are reported in Table-4.4. The table shows 
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that as the value of  increases, POR reduces to zero and this rejects the null 
hypothesis, i.e. unit root hypothesis. Thus, the model which contains multiple 
breaks in mean and variance have a stationary model for this simulated series. 

Table-4.4. Posterior odds ratio with varying  and T 

T =0.90 =0.92 =0.94 =0.96 =0.98 

50 0.0750 0.0416 0.0245 0.0098 0.0037 

60 0.0645 0.0412 0.0291 0.0118 0.0044 

70 0.0723 0.0447 0.0316 0.0149 0.0060 

80 0.0647 0.0441 0.0338 0.0159 0.0067 

5. Real Data Analysis 

To provide a practical application of our model and verify the result obtained 
by simulation study, we apply our proposed work to a real data set. We use 
agricultural production and productivity of various crops of food grains data set 
consisting of 60 years’ time series of Rice (R),  Wheat (W) and Coarse Cereals 
(CC) variables for the annually book of  “Handbook of Statistics on Indian 
Economy”  from 1954-55 to 2014-15. The source of food grains data set is taken 
through Ministry of Agriculture & Farmers Welfare, Government of India by 
Reserve Bank of India and the book was published by Data Management and 
Dissemination Division (DMDD), Department of Statistics and Information 
Management (DSIM), Reserve Bank of India (RBI). This book provides statistical 
data on a wide range of economic and financial indicators related to national 
income variable, output, prices, money, banking, financial markets, etc. To 
determine the number of break points and their positions in food grains data set, 
we can use “strucchange” package developed by Zeileis et al. (2002) in R-
language. The command “breakpoints” is considered to suggest the number of 
break points and identify their location in respective individual series. The results 
are reported in Table-5.1, which is given below: 

Table-5.1: Structural break point present in different cereals 

Break Point Rice Wheat Coarse Cereals 

T1 12 12 12 

T2 22 22 33 

T3 33 30 51 

T4 42 39 
 

T5 51 51 
 

From the above table one can observe that each series could not contain 
equal number of break points and their positions also differ from one series to 
another because of finding the break points individually. After applying the 
procedure we observe that each series includes two similar break points 12 and 
51, which is near and far from the series. The remaining break points (22, 30, 33, 
39, 42) mainly occur in between these points. For analysis, we make different 
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combinations of break points containing various numbers of breaks. There are 
seven break points established; 127 combinations included single as well as 
multiple breaks. To identify a suitable model for this data set by using log-
likelihood function, Akaike information criterion (AIC) and Bayes information 
criterion (BIC) define how many break points and their location is present in the 
model. For examination, consider only starting eight combinations, which have 
minimum AIC and BIC values, as shown in the Table-5.2. 

Table-5.2. Break point detection 

Break point POR  AIC BIC Log L 

(22,42,51) 0.00878 0.9803 1433.0263 1474.3162 -703.5131 

(22,30,51) 0.01617 0.9778 1454.7726 1496.0625 -714.3863 

(22,30,42,51) 0.00362 0.9732 1460.8775 1511.6959 -714.4387 

(22,42) 0.06997 0.9808 1471.8446 1513.6061 -725.9223 

(12,30,51) 0.01872 0.9749 1477.9163 1519.2062 -725.9581 

(12,30,42,51) 0.00745 0.9693 1487.6784 1538.4968 -727.8392 

22 0.51915 0.9881 1524.1465 1546.3796 -755.0733 

(22,30,42) 0.01195 0.9738 1524.5874 1565.8773 -749.2937 

By using information criterion, Table-5.2 gives appropriate conclusion about 
the number of break points and their positions to obtain a suitable model for this 
data set. The table shows that data follow a PAR(1) model having three break 
points (22, 42, 51) because of minimum AIC and BIC. Considering higher number 
of break points, i.e. 5, 6 or 7 in the series, no combination occurs in the last eight 
observations because the increase in the break point is inconvenient to partition 
the series in small segments. The maximum number of break points is 4 in this 
table, which can be considered after 3 break points. When the break point 
position occurs at only single point, i.e. 22, then AIC and BIC have large value as 
compared to two break points (22, 42). If we think about these two break points, 
AIC and BIC values may or may not be larger than three or four break points at 
different locations. If positions occur mostly at 22 and 51, statistic values is 

minimum in our combination so that mean iC7 , I = 1 to 7. Minimum difference 

between break points may increase the statistic values, which directly reject these 
points of the model. An increase in the number of break points, posterior odds 
ratio value tends to zero, which concludes our model, which contains multiple 
breaks in mean and variance, is a better model compared to no-break model, i.e. 
PAR(1) model. The table also shows that data series is a stationary series for any 
combination of break point considered in the model. As a break point increases, 
the value of POR tends to zero, which concludes the model is stationary and no 
unit root is present in the model to make this as a difference stationary. 

Once we acquire the number of break points and their positions in the 
proposed model, use this to estimate the parameters of the model for the data set 
using Gibbs procedure. The results are summarized in the Table-5.3. The table 
gives an appropriate value of the estimate parameter for the food grains data set 
in different types of estimation technique. 
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Table-5.3. Estimates Value Using Real Data Set 

Parameter OLS SELF ELF 

 0.7786 0.7788 0.7788 

μ11 42.6226 41.6685 41.6810 

μ12 21.3355 20.8544 20.8631 

μ13 26.8882 26.2820 26.2926 

μ21 72.9170 71.2050 71.2258 

μ22 57.7628 56.4043 56.4220 

μ23 31.0778 30.3408 30.3538 

μ31 94.2339 91.1963 91.2235 

μ32 77.5137 75.0114 75.0358 

μ33 34.8718 33.7356 33.7521 

μ41 109.4301 105.7798 105.8104 

μ42 95.1015 91.9243 91.9550 

μ43 46.2301 44.6730 44.6951 

2

1

 

12.9941 12.9820 12.9262 

2

2  25.5067 25.4830 25.3736 

2

3  51.1556 51.1081 50.8886 

2

4  25.9380 25.9139 25.8027 

6. Conclusions 

This paper deals with multiple structural breaks, which are present in mean 
and error variance in panel AR (1) model. Bayesian framework is used for 
estimating and testing the unit root hypothesis. Bayesian estimator gives better 
estimated value of the parameter as compared to OLS estimator in simulation as 
well as in real data. Testing of the hypothesis gives appropriate conclusion about 
the simulated series, which is stationary, and this is also verified by the real data 
set at each combination of break points. Break point identification is also done in 
real data set by using information criterion. This model may be extended to panel 
AR (p) model with similar types of breaks as well as to VAR model.    
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APPENDIX 

In this appendix, we have derived the posterior probability with the help of 
likelihood function and prior distribution, which are given below: 

(A.1) For alternative hypothesis 2
2

2
1211 ,,:   iiSH , expression of posterior 

probability can be derived with the help of likelihood function (3) and prior 
distribution given (4), which is given as 
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(A.2) Under unit root hypothesis 2
2

2
1210 ,,1:   iiH , the joint likelihood 

function is given as 

 
   

 
 












































































 

 



  









  


















1

1 1

2

2

1

1

2

1

1 1

2

2
2

1

1

1

1

1

1
1

1

2

1
exp2

2

1
exp2)|()|(

B

j

n

i

T

Tt

it

j

B

j

TTn

j

nT

B

j

n

i

T

Tt

it

j

TTn

j

TTnB

j

j

j

j

jj

j

j

jj
jj

y

yLyL









 

By using similar mathematical manipulations as above, we get the posterior 
probability 
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