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A BAYESIAN INFERENCE OF MULTIPLE STRUCTURAL
BREAKS IN MEAN AND ERROR VARIANCE IN PANEL
AR (1) MODEL

Varun Agiwal?, Jitendra Kumar?, Dahud Kehinde Shangodoyin?®

ABSTRACT

This paper explores the effect of multiple structural breaks to estimate the
parameters and test the unit root hypothesis in panel data time series model under
Bayesian perspective. These breaks are present in both mean and error variance
at the same time point. We obtain Bayes estimates for different loss function using
conditional posterior distribution, which is not coming in a closed form, and this is
approximately explained by Gibbs sampling. For hypothesis testing, posterior odds
ratio is calculated and solved via Monte Carlo Integration. The proposed
methodology is illustrated with numerical examples.

Key words: panel data model, autoregressive model, structural break, MCMC,
posterior odds ratio.

1. Introduction

Statistical inference of panel data time series model received great attention
in the last several decades in both econometrics and statistics literature. The
main idea behind the use of panel data time series model is to overcome the
difficulty of unobserved variation in cross-section data sets over individual units as
well as variation, which may change the structure also. It was assumed that this
change was taken by some observations at a fixed and common time point in
each series referred to as break point. Thus, structural break concept in panel
data set-up is important to handle the permanent effects in the series and impacts
other simultaneous variables. For this, an extensive literature concentrates on
testing, estimation and detection of the existence of single or multiple structural
breaks from univariate to multivariate time series. Bai and Perron (1998, 2003)
considered the problem of estimation and testing for break point in linear model
and determine the number of breaks using double maximum tests. They have
also further addressed various issues such as estimation and testing number of
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breaks, forming confidence interval related to multiple linear regression with
multiple structural break. Altissimo and Corradi (2003) suggested an approach for
detecting and estimation of the number of shifts in mean of a nonlinear process,
which is having dependent and heterogeneous observations. They proposed a
new estimator for long run variance, which was consistent in the presence of
breaks and verified via a simulation exercise. Li (2004) applied quasi-Bayesian
approach to detect the number and position of structural breaks in China’s GDP
and labour productivity data using predictive likelihood information criterion.

Apart from the above literature, which mainly dealt with the classical
approach, a generalized form of estimation and testing the structural break by
using Bayesian inference is less explored. Geweke and Jiang (2011) developed
Bayesian approach to modelling in-sample structural breaks and forecasting out-
of-sample breaks. Eo (2012) used Bayesian approach to estimate the number of
breaks in autoregressive regressions with structural breaks in intercept,
persistence, and residual variance. A model selection criterion was also
considered to select the best model from U.S. GDP deflator data. Aue and
Horvath (2013) discussed several approaches for estimating the parameter and
locating multiple break points. They considered CUSUM procedure as well as
likelihood statistic to adjust the serial dependence in presence of structural break.
Recently, Melighotsiduo et al. (2017) suggested a Bayesian approach for
autoregressive model allowing multiple structural changes in both mean and error
variance of economic series occurring at unknown times, and Bayesian unit root
testing is also proposed.

In current scenario, a growing literature on estimation and testing of multiple
structural breaks in generalized univariate model such as panel data as well as
multivariate time series model. A partial list of contributions in multiple structural
breaks include Sugita (2006), Liu et al. (2011), Jin et al. (2013), Preuss et al.
(2015) and Eo and Morley (2015) to analysis the procedure for detection and
estimation of change point in vector error correction model, panel data model. In
recent time, detection and estimation of multiple change points in panel data with
interactive fixed effect and dynamic structure is introduced. Li et al. (2016)
through penalized principal component (PPC) estimation procedure with an
adaptive group fused LASSO.

An overview of the above description, this paper provides a general
methodology to estimate and inference for panel data model under the presence
of multiple change points in mean and error variance parameters. Our approach
provides a flexible way to the interpretation of the result in real situation because
in most economic and time series data are varying by trend and variance
component. If one considers a break in mean also, then the impact of the series
changes due to both type of break versus no break point. Thus, a Bayesian
approach is introduced to capture the impact of break points in the panel data
model. For Bayes estimation, we apply both symmetric and asymmetric loss
function to posterior density in order to get better estimators and compare them
with ordinary least square estimator. In addition, we also examine the model
selection criterion to find the appropriate model, which may or may not contain
multiple break points in a real data set.
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2. Model Specification

Let {yi, t=1,2,...,T; i=1,2...,n} be a panel data time series model having B
multiple break points in mean and error variance where breaks occur in both
parameters in the same location. In that case our panel data model can be
expressed as

A+ Q= pluy + oy To<t<T

(1)

Yit = ira + A= pluij + o & T4 <t<T;j

it +(1_P)ﬂi,B+1 +0ogafit; T <t<Tg,y =T

for j = 1,2,..., B and where n denotes number of cross sectional units, p is the
autoregressive coefficient, ;is a ( n x 1) vector of mean coefficients at j*

division and &it are assumed to be independent and normally distributed with zero
mean and division specific variance aJ?. This is a partial structural change model

since the parameter p is not subject to shifts and is estimated using the entire
sample space. The model in (1) can also be casted in the form of matrix notation
with .* Kronecker delta product indicating element by element array
multiplication, Z as the nT x (B+1) matrix whose ji column is equal to one if Tj1 <t
< T;j and zero otherwise, and consider mean and residual variance parameters as
a vector form.

y=py g +0-p)lu+e i e~N(O I -*S)
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Our study attempts to estimate the parameters in structural break model
under Bayesian framework and test the unit root hypothesis by using posterior
odds ratio. Under unit root case, model (1) reduces to a pure structural change
model where all the model’s coefficients are subject to change

O.&is Ty <t=<T,

(@)

I} 't’ J

Ay, = o.&; T, <t<T,

Opufits g <t=Tg,

As mentioned, if we follow the usual approach defined in the literature to test
for stationarity model reduces by (2) under the null hypothesis Ho: p = 1 is
difference stationary with multiple breaks in error variance against the alternative
hypothesis Hi: p € S, series is stationary with multiple breaks in mean as well as
error variance.

3. Bayesian Inference

In this section, we discuss issues related to the estimation and inference
about the parameters and testing of unit root hypothesis. In order to perform
Bayesian inference we need the likelihood function and specify prior distribution
for the model parameters. Posterior probability is obtained by using sample
information contained in the likelihood function combined with the joint prior
distribution. The likelihood function for this model is

B +1 j

n T
Lp 0| y) = (272) ZH( TT*)] Z L > ie-Aiga =Pl P 1| 3)

j=1 =1 U T

For panel data model generally normal prior distribution is considered for
Hij N(}/”,O'J), for error variance (o- ) assume conjugate inverted gamma prior

IG(¢; , d) and uniform prior is taken for autoregressive coefficient (p), see
[Schotman and Van Dijk (1991) and Phillips (1991)]. The joint prior distribution is
given as

0@ g g
”(p'#'UZ)I(Z”TZﬁ ?_::]j("f)_ 7 e

j=1

Bifg{dﬁ%i(ﬂu—m)z}] @)

=17

3.1. Bayesian Estimation via Gibbs Sampling

Given the likelihood function and prior density defined by eq" (3) and eq" (4),
the posterior distribution is given by
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The posterior distribution in (5) is very complicated and hence no closed form
inference appears to be possible. For Bayesian estimation, we proceed via Gibbs
sampler, a MCMC method, proposed by Geman and Geman (1984). The Gibbs
sampler procedure, which we used, is described by Wang and Zivot (2000) in a
time series regression model with multiple structural breaks. By means of this
procedure, it gives a chain of estimated parameters values, which is frequently
obtained by conditional probability distribution. Here, our aim is to generate a
sequence of random variables from the conditional probability distribution using
the current value of the parameters. For this we have derived the form of
conditional posterior distributions given below:

T

L-p) Z(yit ~ i)+ 7

=T Gi

M- PPy -Tia)e1 - pPlry -Tja)+1

”(ﬂij |P’GJZ'X)" N (6)
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Using the generated samples from the above posteriors, Bayes estimates of
the parameter are evaluated by different loss functions under Gibbs sampling
algorithm. A loss function is a decision rule to select the best estimator and
represent each of the possible estimates. Here, we consider squared error
(symmetric) loss function as well as entropy (asymmetric) loss function for getting
better understanding of the Bayesian estimation. Under squared error and

entropy loss function, Bayes estimator are E(&lg) and [E(Q’H)_()F.
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3.2. Testing Unit Root Hypothesis via Posterior Odds Ratio

In a hypothesis testing problem, one is generally interested in testing the
stationary condition of a model. Here, null hypothesis is used as a unit root
hypothesis against the alternative of a stationary model. In Bayesian framework,
testing is often convenient to summarize the information in terms of posterior
odds ratio. The posterior odds ratio is the ratio of posterior probability under null
versus alternative hypothesis with the product of prior odds, notation given as:

Por= Po M 9)
—po P(yIHy)

Theorem: To test the null hypothesis that yit is a non-stationary 1(1) process, i.e.
p=1 in equation (2), against the alternative hypothesis that yit is a stationary 1(0)
process, i.e. p € S in equation (1). The posterior odds ratio can be constructed
according to equation (9)

(1T ez
B+l T; 2
H d; +- Z Z Yit — Vit 1
B pO j=1 i=1 t=T; 10
Po . 1o '_TJ 1%20 (10)
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where
A (p) = p (T, —T; 1 J+1

T,
Z Yit — Yit-1 +7lj

=T,

Ci(p)=d; +%z Z (yit _Yi,t—l)z +7ﬁ - [B;fj((/;);

i<l =T,

Proof: The proof of the theorem is given in the appendix.

In the equation (10), closed form expression of posterior odds ratio is not
obtained. Therefore, we use an alternative technique as Monte Carlo integration
for approximately solving the integrals and get the value of posterior odds ratio.

4. Simulation Study

In this section, we conduct a set of simulated experiments to evaluate the
performance of our model and compare different estimators based on Monte
Carlo simulation. To estimate the model parameters, assume that the number of
breaks and the location of break points are known so that the remaining
objectives in equation (1) are estimated via an iterative procedure. In simulation
experiment we have generated artificial time series from our model with varying
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numbers of structural breaks at the same time points in mean and error variance
parameters. We are starting with the initial observation yoi = (10, 15, 20) to
generate panel data time series from the suggested model having three panel
(n=3) and each panel contains T observations. For better interpretation, we took
different size of time series T = (50, 75, 100) and also varying autoregressive
coefficients p = (0.9, 0.95, 0.99). The number of possible structural break (B) has
been 3. Thus, the disturbances ¢ are generated as i.i.d. for all i and j with four
different variance, namely (af,ag,og,af)=(0.1,o.2,o.3,0.4). For inverse gamma prior

distribution with hyper parameters is to known. For numerical purpose we have
taken as cj= dj= 0.01 for all break points. In the case of normal prior, hyper prior
mean is equal to mean of the generated series at every break point interval (Tj-1,
Tj) with parallel variance given in disturbances term. The true value of mean term
for each panel having four partitions is written as (J11, P12, Y13) = (14, 16, 18); (Y2,
M22, M23) = (20, 22, 24); (Us1, K32, M33) = (26, 28, 30); (Ma1, Ma2, Ma3) = (32, 34, 36).
All results are based on 5000 replications. From the generated sample, we
obtained Bayes estimate of parameters and compared the performance with
ordinary least square (OLS) estimate. We report the estimated value and its mean
square error in Table-4.1 to 4.3.

Table-4.1. Estimators with varying time series at p = 0.9

T=50 T=75 T=100

oLS SELF ELF oLs SELF ELF oLS SELF ELF
0.8607 0.9037 0.9036 0.8724 0.9049 0.9048 0.8763 0.9043 0.9043
p 0.0025 0.0000 0.0000 0.0012 0.0001 0.0001 0.0009 0.0001 0.0001
13.7381 | 13.9853 | 13.9785 | 13.8519 | 13.9959 | 13.98903 | 13.7567 | 13.9815 | 13.9749
Hi 0.5840 0.0104 0.0107 0.5529 0.0098 0.0100 0.5706 0.0091 0.0094
16.1184 | 15.9989 | 15.9929 | 16.0870 | 159938 | 159880 | 16.1338 | 16.0026 | 15.9969
Hi2 0.7121 0.0124 0.0125 0.5515 0.0106 0.0107 0.6236 0.0110 0.0111
18.2558 | 17.9770 | 17.9717 | 18.2331 | 17.9833 | 17.9782 | 18.2917 | 17.9964 | 17.9912
Hi3 0.7394 0.0104 0.0106 0.7099 0.0108 0.0110 0.7042 0.0100 0.0101
18.9938 | 20.0110 | 20.0014 | 19.4758 | 20.0186 | 20.0098 | 19.6677 | 20.0093 | 20.0015
H21 2.6156 0.0100 0.0099 1.2051 0.0235 0.0234 0.6942 0.0386 0.0385
20.8791 | 21.9925 | 21.9838 | 21.4667 | 22.0115 | 22.0035 | 21.7912 | 22.0295 | 22.0224
H22 2.6572 0.0151 0.0154 1.5227 0.0293 0.0292 0.6849 0.0359 0.0356
23.1734 | 24.0115 | 24.0035 | 23.5620 | 24.0168 | 24.0094 | 23.7996 | 24.0274 | 24.0209
Hz3 2.2536 0.0116 0.0114 1.2840 0.0278 0.0275 0.5568 0.0325 0.0322
24.9505 | 26.0408 | 26.0295 | 255998 | 26.0509 | 26.0410 | 25.7780 | 26.0333 | 26.0244
Ha 4.4370 0.0257 0.0248 1.7431 0.0381 0.0373 0.7004 0.0381 0.0376
26.7468 | 28.0131 | 28.0026 | 27.6054 | 28.0537 | 28.0445 | 27.7914 | 28.0448 | 28.0364
Ha2 4.8589 0.0230 0.0228 1.7379 0.0385 0.0377 0.9369 0.0557 0.0550
28.6660 | 30.0059 | 29.9961 | 29.5123 | 30.0316 | 30.0230 | 29.6804 | 30.0104 | 30.0027
Hss 5.1925 0.0218 0.0218 1.7849 0.0359 0.0355 0.8159 0.0444 0.0443
30.0830 | 32.0348 | 32.0234 | 31.1368 | 31.9948 | 31.9832 | 31.4541 | 32.0210 | 32.0093
Ha 3.6570 0.0363 0.0358 3.9274 0.0448 0.0450 2.8567 0.0384 0.0382
32.0950 | 34.0339 | 34.0232 | 33.5021 | 34.0500 | 34.0391 | 33.6176 | 34.0352 | 34.0243
He2 4.4146 0.0376 0.0369 2.5846 0.0370 0.0361 2.8885 0.0380 0.0374
34.8637 | 36.0233 | 36.0132 | 35.1567 | 36.0032 | 35.9929 | 35.4250 | 36.0242 | 36.0139
Ha3 3.7348 0.0342 0.0340 3.4651 0.0386 0.0388 2.5830 0.0353 0.0349
2 0.1071 0.1085 0.0988 0.1042 0.1053 0.1014 0.1038 0.1046 0.1005
o1 0.0007 0.0007 0.0000 0.0004 0.0005 0.0000 0.0005 0.0005 0.0000
2 0.2104 0.2094 0.1961 0.2065 0.2069 0.2052 0.2031 0.2037 0.2030
92 0.0040 0.0034 0.0000 0.0017 0.0015 0.0001 0.0006 0.0006 0.0000
2 0.3121 0.3189 0.3028 0.3002 0.3031 0.2920 0.3054 0.3060 0.2984
3 0.0075 0.0071 0.0003 0.0034 0.0034 0.0001 0.0018 0.0018 0.0000
D) 0.4058 0.4116 0.4027 0.4140 0.4193 0.3987 0.4252 0.4241 0.4221
g4 0.0055 0.0055 0.0004 0.0078 0.0078 0.0002 0.0100 0.0094 0.0011
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Table-4.2. Estimators with varying time series at p = 0.95

T=50 T=75 T=100
oLs SELF ELF oLs SELF ELF oLs SELF ELF
09277 | 09511 | 09511 | 09239 | 09511 | 09510 | 09231 | 09515 | 0.9515
P 00010 | 00000 | 00000 | 00012 | 00000 | 00000 | 00011 | 0.0000 | 0.0000
14.2813 | 14.0055 | 13.9979 | 14.3639 | 14.0031 | 13.9955 | 14.2784 | 14.0008 | 13.9934
b 28644 | 00026 | 00026 | 28140 | 00026 | 00027 | 24136 | 00021 | 0.0021
17.0431 | 16.0055 | 15.9989 | 16.8423 | 15.9981 | 15.9916 | 17.0321 | 16.0007 | 15.9942
Haz 49016 | 00027 | 00027 | 43718 | 00020 | 00029 | 37536 | 00022 | o0.0022
19.2725 | 17.9970 | 17.9910 | 19.2403 | 17.9869 | 17.9811 | 10.5766 | 17.9947 | 17.9889
His 58300 | 00026 | 00027 | 57341 | 00021 | 00022 | 6.0203 | 0.0021 | 0.0022
19.1892 | 20.0027 | 19.9902 | 19.1421 | 20.0079 | 19.9981 | 10.0485 | 20.0086 | 19.9988
Hat 18.5998 | 00029 | 00030 | 6.4266 | 00088 | 0.0087 | 3.9955 | 0.0082 | 0.0082
21.1867 | 21.9990 | 21.9876 | 21.3103 | 22.0017 | 21.9928 | 21.2755 | 21.9997 | 21.9907
Hz2 105883 | 00025 | 00027 | 46515 | 00079 | 00080 | 32040 | 0.0079 | 0.0080
23.8031 | 24.0070 | 23.9966 | 23.6473 | 24.0044 | 23.9962 | 23.7322 | 24.0062 | 23.9980
Hze 117370 | 00029 | 00028 | 38351 | 00074 | 00074 | 30148 | 0.0089 | 0.0088
23.5217 | 259969 | 25.9830 | 23.9895 | 25.9922 | 259803 | 24.5652 | 26.0025 | 25.9912
Hat 302210 | 00041 | 00043 | 94940 | 00073 | 00076 | 6.4169 | 00145 | 0.0146
26.4880 | 28.0077 | 27.9947 | 26.7673 | 28.0165 | 28.0056 | 26.7426 | 28.0081 | 27.9977
Haz 22,0991 | 00037 | 00037 | 9.3507 | 00110 | 00117 | 55741 | 00151 | 0.0151
28.4393 | 29.9977 | 29.9856 | 28.7290 | 30.0130 | 30.0027 | 28.7848 | 30.0002 | 29.9904
Hae 259163 | 00038 | 00039 | 74535 | 00120 | 00119 | 52416 | 00146 | 0.0148
29.9873 | 31.9863 | 31.9745 | 30.8228 | 32.0145 | 32.0025 | 31.0121 | 32.0101 | 31.9987
Ha 105213 | 00195 | 00201 | 84309 | 00336 | 00335 | 45547 | 0.0305 | 0.0305
32.9922 | 34.0512 | 34.0402 | 32.9787 | 34.0263 | 34.0151 | 33.0487 | 34.0116 | 34.0008
He2 8.6453 | 00235 | 00224 | 53532 | 00246 | 00242 | 41663 | 0.0207 | 0.0296
34.7339 | 36.0139 | 36.0035 | 35.2679 | 36.0439 | 36.0333 | 35.0919 | 36.0133 | 36.0032
Has 8.8365 | 00193 | 00192 | 51718 | 00286 | 00278 | 4.1124 | 00292 | 0.0291
9 01087 | 01058 | o0.1019 | 0.077 | o0.1048 | 01017 | 0.1065 | 0.1047 | 0.0999
91 00011 | 00010 | 0.0000 | 00007 | 00007 | 00000 | o0.0008 | 0.0008 | 0.0000
2 02566 | 0.2515 | 02244 | 0.889 | 02040 | 0.978 | 02057 | 0.2030 | 0.2000
o2 00126 | 00100 | 00019 | 00016 | 00017 | 00002 | 0.0015 | 0.0014 | 0.0000
5 03739 | 03679 | 03372 | 03182 | 03137 | 02080 | 03004 | 03062 | 0.3036
o3 00265 | 00211 | 00016 | 00049 | 00048 | 00003 | 0.0026 | 0.0026 | 0.0000
) 03961 | 04001 | 03946 | 04132 | 04091 | 04032 | 03940 | 04016 | 0.3984
04 00043 | 00043 | 00002 | 00035 | 00034 | 00001 | 00024 | 00024 | 0.0000
Table-4.3. Estimators with varying time series at p = 0.99
T=50 T=75 T=100
oLs SELF ELF oLs SELF ELF oLs SELF ELF
09887 | 09900 | 0.9900 | 09896 | 0.9900 | 09900 | 0.9896 | 0.9900 | 0.9900
P 00000 | 0.0000 | 0.0000 | 00000 | 00000 | 00000 | 00000 00000 | 0.0000
14.0541 | 13.9008 | 13.9995 | 13.8541 | 13.9996 | 13.0993 | 13.9496 | 13.9991 | 13.0088
b 25280 | 0.0000 | 00000 | 22032 | 00000 | 00000 | 14473 | 0.0000 | 0.0000
157119 | 159994 | 159992 | 16.1693 | 16.0004 | 16.0002 | 16.1484 | 16.0006 | 16.0004
bz 27599 | 00000 | 00000 | 1.7276 | 00000 | 00000 | 1.9185 | 0.0000 | 0.0000
18.0323 | 18.0016 | 18.0014 | 17.9392 | 18.0001 | 17.9998 | 18.0924 | 18.0009 | 18.0006
bz 28263 | 00000 | 00000 | 24351 | 00001 | 00001 | 202903 | 0.0000 | 0.0000
20.0894 | 20.0014 | 200011 | 20.1550 | 20.0008 | 20.0005 | 19.7357 | 19.9988 | 19.9985
bz 153991 | 00001 | 00001 | 5.6088 | 00001 | 00001 | 41294 | 0.0001 | 0.0001
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Table-4.3. Estimators with varying time series at p = 0.99 (cont.)

T=50 T=75 T=100

OoLS SELF ELF OoLS SELF ELF OoLS SELF ELF

22.1373 21.9999 21.9996 21.8658 22.0008 22.0005 22.0746 22.0001 | 21.9998

17.3947 0.0001 0.0001 6.3083 0.0001 0.0001 3.4212 0.0001 0.0001

24.1136 24.0001 23.9998 23.8898 23.9995 23.9992 24.1808 24.0002 23.9999

20.6617 0.0001 0.0001 3.6968 0.0001 0.0001 4.7187 0.0001 0.0001

25.4894 26.0006 26.0002 25.9236 26.0004 26.0001 25.8274 25.9991 25.9988

50.4575 0.0001 0.0001 9.9667 0.0001 0.0001 9.8900 0.0001 0.0001

27.7662 27.9993 27.9991 27.8165 28.0000 27.9997 27.5075 28.0013 | 28.0010

37.2489 0.0001 0.0001 15.0037 0.0001 0.0001 11.5979 0.0001 0.0001

29.7095 30.0006 30.0003 29.7752 30.0009 30.0006 30.0822 29.9988 | 29.9985

36.9404 0.0001 0.0001 12.4540 0.0001 0.0001 7.6263 0.0001 0.0001

31.7953 32.0001 31.9998 32.1870 32.0006 32.0004 31.7316 31.9987 | 31.9985

72.6862 0.0001 0.0001 7.7369 0.0001 0.0001 2.9958 0.0001 0.0001

33.7731 34.0002 33.9999 33.9305 34.0000 33.9998 33.8511 34.0027 | 34.0024

2
e 72.3302 0.0001 0.0001 6.8616 0.0001 0.0001 2.8177 0.0001 0.0001

35.9221 35.9988 35.9985 35.9559 35.9998 35.9995 35.8189 36.0004 | 36.0002

43
. 75.6086 0.0001 0.0001 6.9744 0.0001 0.0001 2.9922 0.0001 0.0001

2 0.1191 0.1088 0.1006 0.1221 0.1121 0.0993 0.1153 0.1122 0.1017

0.0024 0.0020 0.0000 0.0034 0.0017 0.0003 0.0024 0.0016 0.0001

2 0.2396 0.2082 0.1962 0.2306 0.2288 0.1845 0.2405 0.2236 0.2025

0.0088 0.0077 0.0002 0.0097 0.0093 0.0003 0.0122 0.0071 0.0001

2 0.3452 0.3208 0.2999 0.3418 0.3215 0.2642 0.3502 0.3313 0.2817

0.0172 0.0123 0.0002 0.0227 0.0139 0.0018 0.0253 0.0207 0.0009

2 0.3953 0.4094 0.3891 0.3920 0.4080 0.4013 0.4067 0.4005 0.4011

0.0036 0.0032 0.0004 0.0017 0.0018 0.0000 0.0012 0.0012 0.0001

Table-4.1-4.3 shows the behaviour of ordinary least square (OLS) and Bayes
estimators of parameter with varying values of time series at different
autoregressive coefficient. It can be easily seen that MSEs of all estimators
decrease as the sample size of series increases. The difference between the
estimated value and the true value in OLS is large, which explains that average
bias is maximum as compared to Bayes estimator. The Bayes estimator under
both loss functions performs better because of additional information given about
the parameter. A better estimated value for autoregressive coefficient, mean term
and error variance is obtained by ELF as compared to SELF due to less MSE for
low value of p. For a high value of p, Bayes estimator obtained under different
loss function is equally applicable to estimate the parameters since both the
estimators show more or less same magnitudes for their MSE. An increase in the
number of breaks points, MSE also increases because of the length of the
segment is small and take less observation to estimate the parameters.

After estimation of structural break parameters, testing of the unit root is
considered. We can calculate posterior odds ratio values with different values of p
and varying size of the series, which are reported in Table-4.4. The table shows
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that as the value of p increases, POR reduces to zero and this rejects the null
hypothesis, i.e. unit root hypothesis. Thus, the model which contains multiple
breaks in mean and variance have a stationary model for this simulated series.

Table-4.4. Posterior odds ratio with varying p and T

T p=0.90 p-0.92 p=0.94 p=0.96 p=0.98

50 0.0750 0.0416 0.0245 0.0098 0.0037
60 0.0645 0.0412 0.0291 0.0118 0.0044
70 0.0723 0.0447 0.0316 0.0149 0.0060
80 0.0647 0.0441 0.0338 0.0159 0.0067

5. Real Data Analysis

To provide a practical application of our model and verify the result obtained
by simulation study, we apply our proposed work to a real data set. We use
agricultural production and productivity of various crops of food grains data set
consisting of 60 years’ time series of Rice (R), Wheat (W) and Coarse Cereals
(CC) variables for the annually book of “Handbook of Statistics on Indian
Economy” from 1954-55 to 2014-15. The source of food grains data set is taken
through Ministry of Agriculture & Farmers Welfare, Government of India by
Reserve Bank of India and the book was published by Data Management and
Dissemination Division (DMDD), Department of Statistics and Information
Management (DSIM), Reserve Bank of India (RBI). This book provides statistical
data on a wide range of economic and financial indicators related to national
income variable, output, prices, money, banking, financial markets, etc. To
determine the number of break points and their positions in food grains data set,
we can use “strucchange” package developed by Zeileis et al. (2002) in R-
language. The command “breakpoints” is considered to suggest the number of
break points and identify their location in respective individual series. The results
are reported in Table-5.1, which is given below:

Table-5.1: Structural break point present in different cereals

Break Point Rice Wheat Coarse Cereals
T, 12 12 12
T, 22 22 33
Ts 33 30 51
T, 42 39
Ts 51 51

From the above table one can observe that each series could not contain
equal number of break points and their positions also differ from one series to
another because of finding the break points individually. After applying the
procedure we observe that each series includes two similar break points 12 and
51, which is near and far from the series. The remaining break points (22, 30, 33,
39, 42) mainly occur in between these points. For analysis, we make different
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combinations of break points containing various numbers of breaks. There are
seven break points established; 127 combinations included single as well as
multiple breaks. To identify a suitable model for this data set by using log-
likelihood function, Akaike information criterion (AIC) and Bayes information
criterion (BIC) define how many break points and their location is present in the
model. For examination, consider only starting eight combinations, which have
minimum AIC and BIC values, as shown in the Table-5.2.

Table-5.2. Break point detection

Break point POR p AlIC BIC LogL
(22,42,51) 0.00878 0.9803 1433.0263 1474.3162 -703.5131
(22,30,51) 0.01617 0.9778 1454.7726 1496.0625 -714.3863

(22,30,42,51) 0.00362 0.9732 1460.8775 1511.6959 -714.4387
(22,42) 0.06997 0.9808 1471.8446 1513.6061 -725.9223
(12,30,51) 0.01872 0.9749 1477.9163 1519.2062 -725.9581
(12,30,42,51) 0.00745 0.9693 1487.6784 1538.4968 -727.8392
22 0.51915 0.9881 1524.1465 1546.3796 -755.0733
(22,30,42) 0.01195 0.9738 1524.5874 1565.8773 -749.2937

By using information criterion, Table-5.2 gives appropriate conclusion about
the number of break points and their positions to obtain a suitable model for this
data set. The table shows that data follow a PAR(1) model having three break
points (22, 42, 51) because of minimum AIC and BIC. Considering higher number
of break points, i.e. 5, 6 or 7 in the series, no combination occurs in the last eight
observations because the increase in the break point is inconvenient to partition
the series in small segments. The maximum number of break points is 4 in this
table, which can be considered after 3 break points. When the break point
position occurs at only single point, i.e. 22, then AIC and BIC have large value as
compared to two break points (22, 42). If we think about these two break points,
AIC and BIC values may or may not be larger than three or four break points at
different locations. If positions occur mostly at 22 and 51, statistic values is

minimum in our combination so that mean’c;, | = 1 to 7. Minimum difference

between break points may increase the statistic values, which directly reject these
points of the model. An increase in the number of break points, posterior odds
ratio value tends to zero, which concludes our model, which contains multiple
breaks in mean and variance, is a better model compared to no-break model, i.e.
PAR(1) model. The table also shows that data series is a stationary series for any
combination of break point considered in the model. As a break point increases,
the value of POR tends to zero, which concludes the model is stationary and no
unit root is present in the model to make this as a difference stationary.

Once we acquire the number of break points and their positions in the
proposed model, use this to estimate the parameters of the model for the data set
using Gibbs procedure. The results are summarized in the Table-5.3. The table
gives an appropriate value of the estimate parameter for the food grains data set
in different types of estimation technique.
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Table-5.3. Estimates Value Using Real Data Set

Parameter oLS SELF ELF
o 0.7786 0.7788 0.7788
Y11 42.6226 41.6685 41.6810
U1z 21.3355 20.8544 20.8631
U1 26.8882 26.2820 26.2926
Ua1 72.9170 71.2050 71.2258
a2 57.7628 56.4043 56.4220
W23 31.0778 30.3408 30.3538
a1 94.2339 91.1963 91.2235
sz 77.5137 75.0114 75.0358
Uss 34.8718 33.7356 33.7521
a1 109.4301 105.7798 105.8104
a2 95.1015 91.9243 91.9550
Va3 46.2301 44.6730 44.6951
of 12.9941 12.9820 12.9262
o; 25.5067 25.4830 25.3736
a3 51.1556 51.1081 50.8886
o 25.9380 25.9139 25.8027

6. Conclusions

This paper deals with multiple structural breaks, which are present in mean
and error variance in panel AR (1) model. Bayesian framework is used for
estimating and testing the unit root hypothesis. Bayesian estimator gives better
estimated value of the parameter as compared to OLS estimator in simulation as
well as in real data. Testing of the hypothesis gives appropriate conclusion about
the simulated series, which is stationary, and this is also verified by the real data
set at each combination of break points. Break point identification is also done in
real data set by using information criterion. This model may be extended to panel
AR (p) model with similar types of breaks as well as to VAR model.
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APPENDIX

In this appendix, we have derived the posterior probability with the help of
likelihood function and prior distribution, which are given below:

(A.1) For alternative hypothesis H, : p € S,y uip, 07 # o2 , expression of posterior

probability can be derived with the help of likelihood function (3) and prior
distribution given (4), which is given as

P(y|H,)
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Let us consider

Ay = (- plfT T+
Tj

Bij =(1-p) Z(Yit _pyi,t—l)+ 7ij

=T,

Then we may write
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(A.2) Under unit root hypothesis Hg: p =1,uy# ujp.0f o5, the joint likelihood
function is given as

B+1 B+1 nT -T; ) (T T ) 1 n j )
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By using similar mathematical manipulations as above, we get the posterior
probability
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