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Abstract- Spectrum sensing, the problem of detecting the presence of licensed user in the channd is
considered in this paper. Energy detection is best suited for the spectrum sensing when prior knowledge
about the primary users is unavailable. Existing works report improved versions of energy detection
which primarily focuses on maximizing the detection performance. Sensing error minimization is an
important aspect of spectrum sensing that needs attention. This paper focuses on the sensing error
minimization of the improved energy detection algorithm in which the decision datistic is computed
using an arbitrary positive index instead of squaring operation. First, an optimum decision threshold
satisfying Minimum Error Bound (MEB) is derived. Next, an optimum value of the arbitrary positive
index with minimum number of samples satisfying a Target Error Bound (TEB) is derived. A thorough

numerical analysis and simulations are performed and the results confirm the accuracy of the analysis.

Index terms. Spectrum sensing, Cognitive radio, Energy detection, Threshold optimization, Sensing error.

2014


https://core.ac.uk/display/226932192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

K.Muthumeenakshi and S.Radha, OPTIMAL TECHNIQUESRFEENSING ERROR MINIMIZATION
WITH IMPROVED ENERGY DETECTION IN COGNITIVE RADIOS

l. INTRODUCTION

Recent studies on wireless spectrum demonstrate thea wireless communication
systems suffer from spectrum scarcity and inefficigpectrum usage. This observation leads to
the reformation in the static spectrum assignmesiicips by the Federal Communications
Commission (FCC) [1]. The new policy schemes walldw the vacant portions of the licensed
spectrum bands to be used by the unlicensed uselled secondary users) without causing
interference to the licensed users (called primesgrs). Cognitive radio, identified as a novel
paradigm is anticipated to make this policy refaiorasuccessful.

Cognitive radios are devices that can alter itssimgission / reception parameters based on
the changes monitored in the environment and iffeapportunities to transmit data when the
incumbent is not using [2]. To achieve this inggint functionality, cognitive radios employ a
key enabling technology called spectrum sensingecBpm sensing techniques enable the
cognitive radio to find the best available spectioamds. The important challenge of spectrum
sensing is to reliably detect the presence of piyraaers and not to cause harmful interference to
them. A number of techniques have been proposé#tkititerature for spectrum sensing. Energy
detection [3], Matched filter detection [4], cydlaBonary feature detection [5], covariance based
detection [6], Eigen value based detection [7]edigbn using wavelets [8], correlation based
detection [9] and filter bank spectrum estimatid®][ are few among them. Among these
methods, energy detection is a simple and non eoahé&chnique which compares the energy of
the received signal with a pre-evaluated thresholee performance of the existing techniques
provide different trade-offs between detection aacy, sensing time and computational
complexity. But the practical applicability of tledechniques depends very much on the
information available about the primary signalseiy detection is the most preferred approach
for spectrum sensing when the CR is unable to gath#icient information about the primary
user signals.

The original energy detector was proposed in [bt]an unknown deterministic signal
assuming a flat band-limited Gaussian channel. iRBcehe energy detector proposed in [11] is
being used extensively for CR spectrum sensing @wirts simplicity and lesser computational
requirements. In [12], energy detection is analyteeoretically for AWGN, Rayleigh and
Nakagami channel models and expressions for thectiet probability are obtained. The
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secondary user spectrum sensing - throughput proldeanalyzed in [13]. Energy detection
sensing is used and an optimal sensing time whigkimmzes the secondary user throughput is
identified. The authors proved that for a 6 MHzmoie, when the frame duration is 100ms and at
90% detection probability, the optimum sensing timé4.2 ms. In [14], the authors proposed a
blindly combined energy detection technique whidesinot require any information about the
primary signal. The authors validated the propdsetinique using wireless microphone signals
and randomly generated signals and proved that theihod outperforms energy detection for
highly correlated signals. A detailed review of siag algorithms and various approaches to
distributed detection techniques for cognitive oagias discussed in [15].

An adaptive threshold based energy detection deithdy time varying nature of the
wireless channel and primary user activities igppeed in [16]. The authors of [17] put forward
the Barlett’'s estimate as the decision statisticefoergy detection. The authors investigated the
performance for unknown signals under Rayleigh Riwan fading channels. The accuracy of
their method is also compared with periodogram nieghe and found to achieve low miss
detection probability. But their technique is albeachieve low false alarm only for higher
detection threshold. In [18], an energy detecti@sed spectrum sensing is performed using
Welch periodogram technique. The authors obserygawed performance if the parameters of
the Welch periodogram are included in the distidoutof the decision statistic. They also
observed that improved detection performance igeaell at the expense of increased false alarm
probability under noise uncertainty. In [19], arpioved version of energy detection algorithm is
proposed for spectrum sensing. The improved detestheme initially employs the traditional
energy detection algorithm and confirms with adudlisil verifications to avoid any missed
detection due to instantaneous energy drops anairep the detection performance. The authors
analyzed the computational complexity of the imgaenergy detection algorithm and found to
be similar to that of the traditional energy detactalgorithm. Another approach to improve the
traditional energy detection algorithm is propoged20] and [21]. The algorithm computes an
arbitrary positive power operation on the receisgphal to compute the decision statistic instead
of squaring operation and showed better performambe authors of [22] define a formal
measure for the utilization of spectrum holes angew adaptive sensing duration for energy

detection based spectrum sensing is proposed. Bynaigally changing the sensing duration, the
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authors ensure that more transmission time isavailfor the secondary users thereby improving
their throughput.

Apart from these specific techniques, many hylatedectors are also proposed which
combines the advantages of two or more sensinguigpobs discussed above, but at the expense
of increased complexity [23]. Detection performarsealso well studied in the context of
wireless sensor networks where target detectiam nsajor concern. Threshold based detection
techniques and error probability analysis for a mamary fault tolerant event detection for a
sensor network is proposed in [24].

Most of the existing contributions on energy detectibased spectrum sensing focus on
maximizing the probability of detection by considerthe detection problem in the context of
Neyman Pearson. However, the fundamental requirenfeany spectrum sensing algorithm is
not to cause harmful interference to the incumbEetce, it is inevitable to minimize the total
error probability of the cognitive radio. Thus, vemalyze the improved energy detection
algorithm proposed in [20] in terms of the arbi§rgmositive index, decision threshold and the
number of samples with MEB and TEB as the desigaabilve. Two techniques are proposed to
minimize the total probability of error. In thedtrtechnique, an optimum decision threshold for
the improved energy detection algorithm satisfyiihg MEB criterion is identified. The second
technique proposes the improved energy detectitimminimum number of samples satisfying a
TEB criterion. The significant contributions addsed in this paper are thus summarized:

* The total probability of error for the improved egye detection algorithm is derived.

 The existence of optimum decision threshold satigfya MEB is identified by
simulations and the theoretical expression for ¢ipimum decision threshold is
derived. Further, the best choice of the arbitrpositive power used for the
computation of decision statistic is found numdlyclhy simulations.

* The minimum number of samples required to achieVER is derived. The existence
of an optimum value of the arbitrary positive powdrich minimizes the minimum
number of samples is identified.

* The optimum value of the arbitrary positive powemieth minimizes the minimum

number of samples is derived and verified numdgyidal simulations.
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Il. SPECTRUM SENSING PRELIMINARIES

The cognitive radio spectrum sensing is a binanyoklyesis testing problem and can be
formulated as follows.

_jw(n) H, _
y(n) _{s(n)+w(n) H, n=12,..N ()

where hypothesi$ly denotes the absence of the primary user and hggistH; denotes the

presence of the primary usefn) is the signal received at the secondary recewn) is the

AWGN of varianceg? ands(n) is the primary user signal assumed to be reals§an with

variances?. Moreover,s(n) andw(n) are assumed to be independent and the noise pewer

known a priori.
2.1 PERFORMANCE MEASURES FOR SPECTRUM SENSING

Ideally any spectrum sensing algorithm should $étigovhen the primary user is absent
andH; when it is present. Practically, spectrum sensiiggrithms are prone to errors and their
performance depends on various factors such agettision threshold, received SNR, channel
conditions etc., The important performance measuses to evaluate the quality of sensing are
discussed below:

» Probability of false alarmR) : It is defined as the probability that the spaet sensing
algorithm declares thatl; is true, when the primary user is actually absénbm the
secondary user perspective, increase in false aldlimeduce the spectrum opportunities
for them. Therefore, it is important to control thebability of false alarm for efficient
secondary user spectrum utilization.

» Probability of miss detectionPfy): It is defined as the probability that the spewctr
sensing algorithm declares thdg is true, when the primary user is present. Froe th

primary user perspective, increase in miss detestil increase the interference caused
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to them. Therefore, it is important to control timéss detection probability to avoid the
collisions between the primary and secondary usérs. complementary probability of
miss detection is known to as probability of datec(Py).

« SNR: The SNR of the received signal at the secgndaer depends on the channel
environment and the transmitted power of the pymaser. The quality of detection
improves with increase in SNR. A primary requireingia spectrum sensing algorithm is
the reliable detection of primary user signal ie lbw SNR regime.

» Sensing duratiorSensing duration is a very important parameter wploich the duration
of secondary data transmission depends. Shortersémsing duration, higher the
secondary user throughput. However, the accuratlyeo§pectrum sensing algorithm also
depends on the sensing duration. Hence it is desita achieve high performance in a
short sensing duration.

» Complexity: The detection algorithms should be simple, easynfgement and should
not be complex. The complexity analysis is also drtgnt for any spectrum sensing
algorithm.

Based on the performance measures, a sensingthigas analyzed using ROC curves, SNR
performance and complexity analysis which are lyri@ééscribed below.

* ROC curves: ROC curve is a plot of probability eftettion against probability of false
alarm for varying algorithm parameters. The ROCvature determines the detection
accuracy of the algorithm. The area under an IB€C curve is unity which means the
detection is 100% accurate. If the ROC curve meoesrd the 45 diagonal of the ROC
space, the detection accuracy deteriorates. Thereitois desirable for a good sensing
algorithm to have the ROC curve closer towardsidl®al curve. The ROC analysis is
very important to select the optimal design paransefor the detection algorithm.

* SNR performance: The SNR performance is the pldbtai probability of sensing error
against increasing SNR. The total probability ofsieg error is the sum of the false alarm
probability and miss detection probability. It iesitable for any sensing algorithm to
have a low sensing error probability for any vadi&SNR.

» Complexity analysis: A sensing algorithm with lownaplexity is always desirable. The
algorithm should be designed such that it achievigsh detection probability with

minimum number of samples.
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2.2 ENERGY DETECTION ALGORITHM

The conventional energy detector which uses squaojperation to compute the test
statistic is given by

N 2

_1
Y—Nz

n=1

y()
g,

w

()

whereY is the test statistic aridis the number of samples used for computation.t@stestatistic
Y is compared with a pre-evaluated thresbhialdif Y >A, the decision is hypothesidy,

otherwise hypothesid;. From [21] the probability density function ¥fis expressed as,

1 %‘1 _y/2 H
2V2M (N /2) °
fY(y): 1 Y (N-2)/4 (3)
- —(Y+a)/2 .
2(5:) e I,;_l(\/Ya) H,

2
where a =i§ is the SNR["(.)is the complete Gamma function aljfl) is them™ order Bessel
a-W

function of the first kind. Using central limit tbeem, asN increases the test statistic
approximately follow the normal distribution. Theopability density function o¥ is then given
by,

(Y-N)?
1 e_ 2(2N) H
oo V2N ° A
Y(y)_ _(Y—N(1+a))2 ( )
1 g 2N (wa) ‘H
N@+aW2r !

The error probabilities are defined as follows: T®bability of missed detection,

P, =P(H,/H,) and the probability of false alarmP, =P(H,/H,). The complementary

probability of missed detection is denoted?as P(H,/H,) =1-P,, . It is required to have large

P4 and lowPs for any spectrum sensing algorithm. However, tlexists a trade-off between the
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two values. To depict the relationship between tine values, ROC curves are useful and
expressed as,

3 =Q[\/WQ1(Pf)—NaJ )

J2N(@+a)

The total error probability depends on the valuésPg@ P:; and the probability of
occurrence oHp andHjs. It is denoted by and expressed as,
P.=(-P)P, +P(-R) ®)

whereP is the probability of occurrence of the primarguys.e.,P=P(H,;)and1-P=P(H,) .

Il. IMPROVED ENERGY DETECTION

An improved version of the energy detector propase[21] makes use of an arbitrary
positive indexp to compute the test statistic instead of squanipgration. The decision statistic

of the improved energy detectomith p™ power summer is given by,

Hy
-

y(n)|"

0.2

w

_13
Y—NZ

n=1

A (7)

3
Ho

where A is the modified decision threshold. For 2, the improved energy detection becomes
the traditional energy detection. For qmy{y(n)/aw|pare independent and identically distributed

random variables. Using [20], the mean and variarfidg(n)/ o, | is given by,

Under hypothesisl:
LSS ECC
Under hypothesisl;:
u=2" (3%“)‘”2 r( h 1] (10)
o= ZP(b%a)p[r(zp; 1)—&#( p;’ 1]} (11)
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As the random variabldg(n)/o,,|” follow normal distribution, the decision statistitso

follow normal distribution with mean and varianaues given by,

My Hg
E(Y)_{ﬂl H, (2)

o?/N :H
Var (Y)=1 " 0 (13)
g/ IN  H,;

The probability density of the decision statissdhence given by,

L
L, "
2%
W= N
1L, % "
2L
N

The expressions for the corresponding false alawid&tection probability are given by,

P, =Prob(Y > A, /H,)

_(Y—ug»2
:J. 1 2e ZW dy
A 277@
N
A~ H
P = m__ =0 14
! Q[O'O/\/ﬁj (14)

and

(Y-14)°
2
[ 1 Zi
:J' e N dy
p o?
m |2
N
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— /]m_lul
I:)d _Q[O'llx/ﬁJ (15)

Now, the total probability of sensing error is giMay,
R =(1-P)R +P(1-R)

P=(1- P)Q(im/_\/”ﬁJ + P(l—Q(;m/:/’%JJ (16)

V. OPTIMUM THRESHOLD FOR IMPROVED ENERGY DETECTION
SATISFYING MEB

In the proposed algorithm, we minimize the totaloerprobability by optimizing the

decision threshold. From (16), the total probapilit errorPe depends om,,, N, P andp and the

received SNR. The variation &% with respect to the decision threshold can be rwksein
Figure 1. It is clear that there exists an optimimmeshold for which the probability of error

attains a minimum value for any fix@dN, P anda. For different values g, the optimalA_ and
the value ofP. at the optimum_are different. This shows that the valugpgflays a vital role in

further minimizingPe. Thus it is possible to find an optimum value lofshold for a particulgr
value for whichPeis minimum. In the following the expression for thygtimal decision threshold

is derived analytically.

The optimum value of the decision threshold satigfya MEB is given by,
A, =argmin(R,)

Am

The above equation solved by settiag% =0.

9 |(1- M=o 1ol 1ol A=t ]2
el ofelirt)
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Figure 1. Total probability of sensing error agaidecision threshold for different fixed values
of pand SNR,=1000, P =0.45).

1

Jan

We have%Q(x) = 2 then,

1-P)e 2 Pe 2
( )e Uo+e

[Qfﬁjz[ NJ [iw%][ mj

Solving, we get,

2
_z(ﬂo_ﬂl} 4(%_/11J _{1_1] (ﬂf_ﬂéj_z.n(P%j
o’ o) g’ o? o? oll\cg? o? 1-Po
% 0 1 0 1 1 0 1 0 1

A = 17
m 1 1 (7)
2 2 o7
1 0

Equation (17) gives the optimum value of the thoéglwhich minimizes the probability

of error over AWGN channels. The best choice of dpémum threshold for which thBg is

2024



K.Muthumeenakshi and S.Radha, OPTIMAL TECHNIQUESRFEENSING ERROR MINIMIZATION
WITH IMPROVED ENERGY DETECTION IN COGNITIVE RADIOS

minimum can be chosen using (16). Equation (1pjate that the optimum threshold depends

mainly on the mean and variance of the two hypahe3$hese values further depend on the
arbitrary positive index. Thus, the solution fod, and the correspondirg which satisfies the
MEB can be analyzed numerically and presented aticse VI. It can be concluded that the

proposed algorithm with optimum threshold is welitad for potential applications of cognitive

radio requiring maximum accuracy like health card military surveillance.
V. OPTIMUM ‘p’ SATISFYING TEB

It is sometimes required to conduct spectrum sgnaitth minimum sensing time. For
time bound applications where sensing duration eitecal parameter, it is necessary to have
minimum number of samples for signal detection. BBTis specified and the minimum number
of samples required for sensing is computed. Thendptimum value op minimizing the
minimum number of samples to achieve the TEB isvddr Let the target probability of error be

denoted aB, . The target probability of false alarm be denaisf, . Then, from (16) we have,
P =(1-P)P +P| 1-Q| n A (18)
) f o, /N

a. B N
+ 0 1 P _ A A
SAIN R (j St P S ]
o, /NN P

\f {(uo — )+ jﬁ Q‘l(é H ok 1 Pe=(1-P)P:

Solving,

j} (19)
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The minimum number of samples required to achietagget probability or error depends
on the mean and variance of the two hypotheseshwhiturn depends on the arbitrary positive
power p. Figure 2 shows the plot of the minimum numbersaimples determined using (19)

againstp. It is observed that there exists an optimum valubl,, asp is varied. There exists

only one value op to minimizeNmi, for any giverP, P, and P, and SNR.

SNR=-8dB SNR=-10 dB

350 800 ‘ ‘ ‘
pe=0.2 /
pe =0.175

300k - pe=0.2 - - 7007\ -
pe=0.175

2500

9000

8000 —
2000

7000

z 1500 Z 6000

5000
1000
4000

500

3000

Figure.2Minimum number of sample of improved energy detecagainsp for different fixed
values of targelPe and SNR.

The optimal value op is given by,

p =argmin(N,;,) (20)

p

This can be obtained Whg%Im—"‘ =0. We derive the expression fgg@in the following.
Y p

ar(;lgm i Zi(ﬂocilﬂl) CJ .[[aiptﬂoﬁlﬂojcj _0%[%01) Q_l(é j] P

where
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c=o|1- I;e—(llg P) P,
el o el il e
‘Z;l = 22_1[();;’)3 {Dz In(2+20) +zﬂ(p+ijr[p+;j—\/%¢(p+;] Fz(p+;ﬂ (23)

S
%—%:#[r[mg(m(y 2a)+¢/(p+—;m (25)

R

and¢/(x) is the Euler-psi function given by

Y(x) :iln I(x)
dx

Substituting the equations (20)-(25), in (21) tbkigon toa'(\;—rnin =0can be obtained, which
Y

gives the optimum value @fthat minimizeNpn.

VI. NUMERICAL SIMULATIONS AND ANALYSIS

To verify the accuracy of the theoretical dedudione provide the simulated results of
the improved energy detection algorithm with optinteshold values and optimgl Initially,
the ROC performance of the conventional energyati@teand the improved energy detector is
presented. Next, a thorough analysis is perfornoedhfe optimal choices of decision threshold
andp for varying SNR values satisfying MEB. Then thefpenance of the improved energy

detector for MEB criterion is analyzed based on SKiRies and compared with the existing
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algorithm. Finally, the sample complexity analysigperformed for the proposed algorithm with
detector is shown in Figure 2 which clearly depitte performance enhancement of the
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improved algorithm over the conventional algorithm.

TEB against the existing algorithm.

|

|

|

|
I B

uonoalap Jo Ajiqeqoid

Probability of false alarm
(SNR = -15 dBN = 1000)
2028

Figure.3. ROC Performance of the proposed andiegistgorithms
Table 1 and Table 2 shows the total error proligbblased on the above theoretical

These values are observed from [25], in which thecum occupancy measurements are

deductions for varyingd and SNR values for primary user occupancy valdets®o and 25%.
observed as 45% in the cellular band typically awdr the licensed bands it is 25% on an

average.
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Table.1 Total error probability and optinpatietermined using optimal threshold satisfying MEB
when P =45%

SNR=-5dB| SNR=-8dB SNR=-10dBENR =-15dB

N Algorithm ) P ) P . P ) 5
100 Proposed | 2.11 0.16Q012.23 | 0.2917 2.33 | 0.3561 2.89 | 0.4348
Existing | 2.13| 0.1602 2.56 | 0.3027 2.79 | 0.3674 3.16 | 0.4354
Proposed | 1.91 0.01492.03 | 0.1202 2.05 | 0.2214 2.15 | 0.3926
°00 Existing | 1.73| 0.0560 2.02 | 0.1204 2.16 | 0.2314 2.36 | 0.4037
1000 Proposed | 1.96 0.00112.01 | 0.0494 2.02 | 0.1412 2.07 | 0.3568
Existing 0.65| 0.0550 1.91 | 0.0664 2.04 | 0.1417 2.22 | 0.3748

Table.2 Total error probability and optinatietermined using optimal threshold satisfying MEB
when P =25%

SNR=-5dB| SNR=-8dB SNR=-10dBNR =-15dB

N Algorithm . P . P . P . P
100 Proposed | 2.45 0.11762.99 | 0.2034 3.00 | 0.2345 3.00 | 0.2499
Existing | 2.13| 0.1334 2.56 | 0.2126 2.79 | 0.2485 3.16 | 0.2863
500 Proposed | 2.03 0.01182.15| 0.094Q0 2.25 | 0.1672 2.82 | 0.2477
Existing 1.73| 0.075¢ 2.02 | 0.1113 2.16 | 0.173Q 2.36 | 0.2687
1000 Proposed | 1.99 0.00092.07 | 0.0398 2.12 | 0.1112 2.38 | 0.2404
Existing 1.65| 0.0750 1.91 | 0.0813 2.04 | 0.1232 2.22 | 0.2527

Existing algorithm means the improved energy daacalgorithm with the decision
threshold set based on a taret The proposed algorithm is the improved energedin
algorithm with the optimized threshold. For botle #igorithms the optimum values maind the
corresponding error probability are tabulated. Wtren primary user occupancy is 45% and for
increasing number of samples, the total error iba is low for the proposed algorithm
compared to the existing algorithm. WHeis 25%, it is observed that the probability ofoeris
less for the proposed algorithm for any numberamfijgles and SNR. The optimum valuepas

also tabulated for both the algorithms. It can bgeoved that the optimplis not the same for all
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the cases and different from the traditional enedgiector for whichp is always 2. It also
depends on the collected number of samples. Asphiemal p depends on SNRY, andP, this
algorithm cannot be used instantaneously for prakcsensing. However, SNR can be estimated,
and the information regardirfg can also be predicted using techniques proposgzbin With
this prior knowledge, optimum values of threshotdi @ can be computed offline and the best
choice ofN can be selected based on the requirement of tireto@ radio.

The performance of the proposed algorithm withraptn threshold for varying SNR is
compared with the existing algorithm. It can be evbed from Figure. 4, when the SNR is
negative, the total error probability is high arepdnds on the number of samples. However, it is
lower than the values obtained with the existingnoved energy detection algorithm. When the
value of SNR is greater than O, the total errotbphility declines to values close to O for the

proposed algorithm when compared to the existiggrahm.

0.35

o
(V)

0.15

sensing error probability

o
-

0.05

Figure. 4. Performance of the proposed and existiggrithms against SNR
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Finally, the number of samples required for theppsed algorithm with a TEB is

compared with the existing traditional energy detecalgorithm.

7000

(10100 ] i i Tt _

Proposed

5000 Existing

N
o
o
o

No of samples

w
o
o
o

2000

1000 —— === === AN -

SNR(dB)

Figure 5. Sample Complexity of the proposed andtig algorithms.

The minimum number of samples required for thetegsalgorithm is given by [19],

N, = {%(Q‘l(é j—Q‘l(%)mﬂ (26)

From (26), the sample complexity is found to béhia order of /a®. Figure. 5 depicts the
obtainedN for the considered SNR values for both the algorg# numerically. The target
probability of false alarm is set to 0.1 for botie ttases. The TEB is set to 0.15 for the proposed
algorithm. The curve corresponding to the proposlgdrithm appears similar to the existing
algorithm except for a narrow shift downwards. Thieans the sample complexity of the
proposed algorithm also scales to the ordér af . However, it is observed that in the low SNR
regime (< -5dB), the number of samples requiredtierproposed algorithm is lesser compared
to the traditional energy detection algorithm. FRIXR values greater than -5 dB, both the
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algorithms require very less number of samples.elbeless in this SNR region, it is easy to
decide the presence or absence of the primaryldignany signal detection algorithm with less

number of samples.

VII. CONCLUSIONS

Energy detection has gained much popularity owing its simplicity and low
computational complexity. In this paper, we progbde/o implementations with improved
energy detection to improve the performance of tspet sensing. The total sensing error
probability is the parameter considered for theigfe®f the proposed techniques. First, the
optimization of decision threshold for the improvetergy detection is performed with MEB as
the design goal. Next the optimization of the a#bit positive index with respect to the minimum
number of samples for a TEB is carried out. Nunarignd simulation results validate the
efficacy of the proposed algorithms thereby conifiigrto be superior over the existing algorithm

and found to be well suited for practical spectsansing.
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