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Abstract- A distributed non-binary fault tolerant event detection technique is proposed for a wireless sensor 

network (WSN) consisting of a large number of sensors. The sensor nodes may be faulty due to harsh 

environment and manufacturing reasons. In the existing works on event detection, the detection of event is 

decided by only one threshold level. The objective of this paper is to extend the fault recognition and 

correction algorithm for non-binary event detection. The analysis presented here takes into account both 

the symmetric and non-symmetric error in a straightforward manner. In addition, simulation is done for 

symmetric error and 75 percentage of the errors can be corrected. The theoretical analysis shows that more 

than 95 percentage of symmetric errors can be corrected and almost 92 percentage of non-symmetric errors 

can be corrected (for k=2, i.e. half of the neighbors give correct decision), even when as many as 10 

percentage of the sensor nodes are faulty.  

 

Index terms: Distributed algorithm, fault-tolerance, non-binary event detection, non-symmetric error, symmetric error, 

wireless sensor networks. 
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I.     INTRODUCTION 

    Wireless sensor network consists of network of autonomous sensors, which are powered by batteries to 

perform various sensing, data processing and communicating tasks in a given environment. Environment can 

be physical world, biological system, or information technological world. Because of the typical functions of 

the wireless sensor networks, these are potential for use in a wide variety of applications such as detection, 

estimation, monitoring, tracking etc [1], [2], [3]. One particular application that has received a growing 

amount of attention in the recent years is event detection. 

In the detection application, the nodes are required to determine the occurrence of any event of 

interest. Event detection is commonly performed using a large number of unreliable low-cost sensor nodes. 

These nodes can have a very high probability of errors due to harsh environment and manufacturing reasons. 

It is, therefore, important to develop fault-tolerant mechanisms that can detect faulty sensor nodes and take 

appropriate actions. The sensors are generally deployed in high density manner and in large quantities. The 

measurements made by sensors are sometimes unreliable and erroneous. Some sensor node may fail or may 

be blocked due to lack of power, have physical damage or environmental interference. The failure of sensor 

nodes should not affect the overall task of the sensor network. This is the reliability or fault tolerance issue. 

Fault tolerance is the ability to sustain the sensor network functionality without any interruption due to sensor 

node failure [4]. 

There are wide varieties of applications in WSN. They include military applications, environmental 

applications, remote monitoring of physiological data, tracking and monitoring doctors and patients inside a 

hospital, drug administration, elderly assistance and home applications, environmental control in industrial 

and office buildings, inventory control, Vehicle tracking and detection. The works which are given below 

target these applications. 

N.Samanta et. al. (2014) in [5] proposed a low power and minimally invasive multi sensor network 

which consists of current sensor node, motion sensor node and wearable heart rate sensor node. This system 

has been developed for health monitoring of elderly people. By using this proposed system, an average of 

68% power saving has been achieved.  

N.K.Suryadevara et.al. (2012) developed a mechanism to monitor the wellness of elderly people living 

alone by monitoring their daily activities everyday. The mechanism is based on the usage of household 

appliances connected through a range of sensing units. In order to determine the position of the elderly on 

performing essential daily deeds two wellness functions have been defined [6]. 
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The authors Sachin Bhardwaj et.al (2008) focused on detection of arrhythmia disease, norm 

calculation, orientation calculation and fall detection to monitor an elderly person at home [7]. The analysis of 

ECG signals and fall detection of elderly patient could provide informative details to the doctors using 

PC/PDA. 

             Cheng Chunling et.al. (2013) proposed an algorithm for outlier detection in [8]. Outliers are the data 

sets which are inconsistent with other data observations. These data may convey some important information. 

A cluster algorithm based on flocking model has been developed to detect outliers. There by the accuracy and 

reliability of data collected by sensors could be enhanced for decision making.  

There are a number of related works where fault tolerant event detection techniques have been 

proposed. Dyi-Rong Duh, Ssu-Pei Li, and Victor W Cheng (2013) [9] proposed a distributed and fault-

tolerant algorithm to extend the uses of fault-event disambiguation. This algorithm can identify not only faulty 

and fault-free sensors but also the region where the event occurs. Simulation results demonstrated that it has 

high detection accuracy and low false alarm in any shape of event regions. 

Xuefeng Liu et.al (2013) proposed a fault-tolerant and a distributed event detection scheme in 

structural health monitoring (SHM) to detect faulty sensor node [10]. In addition, a method called iterative 

faulty node detection is proposed to detect nodes with faulty readings by taking vector data as input.   

E.Ould-Ahmed-Vall, B.H.Ferri and G.F.Riley (2012) [11], presented a general fault tolerant event 

detection scheme that allows nodes to detect erroneous local decisions by leveraging the local decisions 

reported by their neighbors. This approach considered the case where nodes can have different failure 

probability values. It also handled various types of failures such as noise related failures, biased measurement, 

drift over time, stuck-at failures, calibration-related failures and environmental related failures.  

Sung-Jib Yim and Yoon-Hwa Choi (2010) in [12] presented a distributed adaptive fault-tolerant event 

detection scheme for wireless sensor networks. This scheme employed a filter for tolerating transient faults 

and achieved high performance for a wide range of sensor fault probabilities. Depending on the fault status of 

sensor nodes, the threshold for event detection is adjusted dynamically. The status of sensor nodes is 

maintained using confidence levels. Sensor nodes behaving incorrectly for an extended period of time are 

isolated from the network and replaced later if some necessary conditions on confidence levels are set up. 

Both high event detection accuracy and low false alarm rate can be maintained even with increasing number 

of faults. 

In [13], Myeong-Hyeon Lee, Yoon-Hwa Choi (2008) exploited spatial and time information 

simultaneously to detect the sensor fault. In this, the status of each sensor node can be identified based on 

comparison of local neighboring sensors data with some thresholds. Using this scheme, faulty sensor nodes  
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are detected with high detection accuracy for a wide range of sensor fault probabilities, whereas the false 

alarm rate is maintained low.  A fault-tolerant distributed decision fusion in the presence of sensor faults is 

addressed in [14] by Tsang-Yi Wang et.al (2008). In addition, they proposed collaborative sensor fault 

detection (CSFD) scheme for removing unreliable local decisions when performing distributed decision 

fusion. 

Hong Li et.al (2008) in [15] proposed a distributed weighted fault-tolerant algorithm (DWFA) for nodes 

in regular deployment and an optimal fault-tolerant mechanism based on weighted distance (WDOFM) for 

nodes in irregular deployment. Both the algorithms exploited exchange of data between the sensor nodes and 

nearby nodes so that fault detection can be conducted on central nodes.  

Tsang-Yi Wang and Qi Cheng (2008) explored the problem of event-region detection and the related 

problem of boundary-region detection in wireless sensor networks (WSNs) in [16]. Sensor nodes regarded 

here could observe heterogeneous regions, and the underlying event at sensor nodes can be correlated. Each 

node makes its decisions regarding which region it locates and/or if it is a boundary sensor. A fusion rule has 

been proposed considering communication constraints and possible sensor faults.  

M.Li, Y.Liu, and L.Chen (2007) [17], proposed a non-threshold based approach for complex event 

detection in 3D environment monitoring applications. Event feature patterns are proposed to specify complex 

events and develop a pattern based event detection method on the obtained 3D gradient data map. Space OP 

model is proposed to describe the environment data distributions. Partial data maps are aggregated by merging 

OP regions with similar environmental data. 

J.Chen, S.Kher and A.Somani (2007) [18], proposed and evaluated a localized fault detection 

algorithm to identify the faulty sensors. The implementation complexity of the algorithm is low and the 

probability of correct diagnosis is very high even in the existence of large fault sets. 

X.Luo, M.Dong and Y.Huang (2006) [19], addressed two problems for distributed fault-tolerant 

detection in wireless sensor networks. Firstly, the noise related measurement error and sensor fault are 

addressed simultaneously in fault-tolerant detection. Secondly, an algorithm to choose a proper neighborhood 

size ‘n’ for fault correction of the sensor nodes is developed.  

B. Krishnamachari and S. Iyengar (2004) [20], proposed a solution for binary detection of interesting 

environmental events and a solution to the fault-event disambiguation problem in sensor network. They 

exploited the notion that measurement errors due to faulty equipments are likely to be uncorrelated, while  
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environmental conditions are spatially correlated. They proposed a mechanism letting an individual sensor 

node communicate with its neighbors and using their binary decision to correct its own decision. A majority 

voting scheme has been shown to be the optimal decision scheme for fault tolerance in their work. 

In binary fault disambiguation problem, when a node tries to decide whether a specific event is present 

or absent, a binary variable is used to code the decision. A value of 1 is shown when an event occurs and a 

value of 0 is shown to depict the absence of event [20]. The node uses the sensed data obtained by its local 

sensors as well as the decisions at its neighboring nodes.  

In environment like that of Mushroom Cultivation, various physical factors have to be monitored for 

proper growth and yield of it. During the spawning and growth phase of the Mushroom Cultivation, the 

temperature of the cultivation room should be maintained between 75 degree Fahrenheit and 80 degree 

Fahrenheit. The cultivation of mushroom is very vulnerable to temperature fluctuations. In case when 

majority of the sensor nodes show even a slight temperature deflection from the required range, it can be 

understood that there may be change in the temperature provided in the cultivation area, so necessary 

measures can be taken. Not just temperature, other physical factors like relative humidity level, substrate 

moist level etc should also be monitored. Here the Wireless Sensor Networks may be used for monitoring 

these factors. In such scenarios, the binary fault disambiguation problem and the binary level fault tolerance 

cannot be used. Thus, there comes a necessity to use two threshold levels, i.e., a lower threshold level and an 

upper threshold level. 

In this paper, a solution has been proposed for the non-binary event detection technique. The analysis 

has been done for two cases: symmetric error and non-symmetric error. Furthermore, simulation is done for 

symmetric error. In the symmetric error, the sensor fault probability is assumed to be uncorrelated and 

symmetric. i.e., Probability of sensor measurements indicating normal value given ground truth event value is 

equal to the probability of sensor measurements indicating event value given ground truth normal value. 

Moreover, in the non-symmetric error, the sensor fault probability is assumed uncorrelated and asymmetric. 

i.e., Probability of sensor measurements indicating normal value given ground truth event value is not equal to 

the probability of sensor measurements indicating event value given ground truth normal value. A majority-

voting rule (k-out-of-n rule) is used to find out the nodes to agree on a decision before accepting the decision. 

This research paper has been organized in the following manner: Section 2 defines the problem 

statement of the event detection technique. Section 3 discusses the analysis of the fault recognition algorithms 

for non-binary event detection in detail. The performance evaluation and results obtained are discussed in 

section 4. Finally, the concluding remarks and suggestions for further works are presented in Section 5. 
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II.   PROBLEM STATEMENT 

Consider a network of sensor nodes placed in an operational environment. The network is supposed to 

monitor the temperature of that particular environment within a range θ1 to θ2, where θ1 is the lower limit of 

the normal value and θ2 is the upper limit of the normal value. The real output of the sensor is x. The non-

binary model can result by placing two thresholds on the real valued readings of the sensor. The threshold 

may be specified with a query or made available to the nodes during deployment. The real situation at the 

sensor node to be modeled by a variable which is given as Ri. This variable Ri=0 if the ground truth is that the 

node is in normal region and Ri=1 or Ri=2 if it is in an event region. The real output of the sensor is mapped 

into variable Mi. This variable Mi=0 if the sensor measurement indicates normal value and Mi=1 if it 

measures a value which is lesser than the lower limit of the normal value and Mi=2 if it measures a value 

which is larger than the upper limit of the normal value. The mapping of real output of sensor x into the 

variable Mi is shown in the table below. 

Table 1: Mapping of real output x of sensors to Mi 

Output of the Sensor ‘x’ Mi 

x < θ1 1 

θ1 < x < θ2 0 

x > θ2 2 

 

In this case, an event is said to have occurred when the sensor gives output as 1, or 2, instead of 0, because 0 

represents the reading of the range of interest. Thus, there can be nine possible scenarios, which are shown in 

the table below. 

Table 2: Possible scenarios of sensors 

Mi Ri Scenario 

0 0 Sensor correctly reports a normal reading 

0 1 Sensor faultily reports a normal reading 

0 2 Sensor faultily reports a normal reading 

1 0 Sensor faultily reports an unusual/event reading 

1 1 Sensor correctly reports a unusual/event reading 

1 2 Sensor faultily reports an unusual/event reading 

2 0 Sensor faultily reports an unusual/event reading 

2 1 Sensor faultily reports an unusual/event reading 

2 2 Sensor correctly reports a unusual/event reading 
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Ei  is the decoded value which is an estimate of Ri . Therefore, by implementing the fault recognition 

algorithm, Ei can be determined from the true readings Ri after obtaining information about the sensor 

readings of the neighboring sensors. The discussion consists of two cases, first is that the sensor fault 

probability is uncorrelated and symmetric, and second is that the sensor fault probability is uncorrelated and 

non-symmetric. The table 3 summarizes the various notations, which are used in the discussion and analysis. 

Table 3: Summary of notations used for analysis and discussion of fault recognition 

 

Symbol Definitions 

N Total number of deployed nodes 

no Number of nodes in the normal region 

nf Number of nodes in the event region 

N The number of neighbors of each node 

Mi The variable indicating the ground truth at node i 

Ri The variable with decoded value 

P The sensor fault probability 

ck The probability that k out of N neighbors of node i are not faulty 

Ereduced The average number of errors reduced after decoding 

Ecorrected The average number of errors corrected 

Euncorrected The average number of errors uncorrected 

Enewerrors The average number of new errors introduced 

 

2.1 DECISION SCHEME FOR FAULT RECOGNITION 

 

The average number of errors after decoding is minimized by accepting a node’s own sensor reading if 

and only if at least half of its neighbors have the same reading. There are three decision schemes available for 

fault recognition. They are randomized decision scheme, threshold decision scheme and optimal-threshold 

decision scheme. The effect of uncorrelated sensor faults is minimized by using optimal-threshold decision 

scheme, which seems to be an exceedingly practicable mechanism [20]. So, here, only this scheme is 

considered for the analysis of the non-binary event detection algorithm. 
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The optimal threshold decision scheme consists of three basic steps. In the first step, the sensor 

readings Mj of all Ni neighbors of node i is obtained. Then ki is determined, which is the number of node i’s 

neighbors j with Mj=Mi. Finally it is checked if kmin ≥  0.5N.  Ei=Mi=a if and only if at least  kmin of its N 

neighbors report the same sensor measurements a.        

 

III. ANALYSIS OF THE FAULT-RECOGNITION ALGORITHM 

To begin with the analysis of the Fault-Recognition mechanisms, certain assumptions are made. They 

are, if the node i is in event region, then all its neighbors are also in event region and, if node i is not in event 

region, neither of its neighbors are in the event region. This assumption is valid only inside the region, i.e. it 

does not apply to the nodes, which lie in the boundary of the event region. 

 

3.1 ANALYSIS OF FAULT-RECOGNITION ALGORITHM WITH SYMMETRIC ERROR 

 

Suppose there is totally ‘n’ number of sensor nodes deployed. For a sensor node i, there are N numbers of 

sensors in its neighboring region. These neighboring sensors may show one among the three decision i.e. 1 or 

2 or 0. If the number 0 depicts the proper functioning of sensor node, then, the sensor is said to be faulty if 

decision 1 or 2 appears. Let the sensor fault probability be p. The sensor fault probability is actually the sum 

of probability that decision 1 appears instead of 2, and the probability that decision 2 appears instead of 1. In 

other words, the sensor fault probability can be expressed as, 

  te ppp                                             (1) 

Here, pe is the probability that decision 1 appears and pt is the probability that decision 2 appears. Let e is the 

number of nodes which show decision 1 and t is the number of nodes which show decision 2. Thus it can be 

also said that, 

                                                      tekNm                                                                          (2) 

where m  is the number of nodes, whose decision is different from the reference node. Also,   

k = r + s , where r is the number of nodes which has sensor fault probability  of  pe and s is the number of 

nodes which has sensor fault probability of pt.  

Let ck be the probability that exactly k out of N nodes of node i’s neighbors are not faulty and it can be given 

as 

                                                                                                                                                               (3) 
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Since the error is symmetric, pe is assumed to be equal to pt. Thus, equation (1) can be rewritten as,                  

tpp 2                          te pp    

ppt 5.0                                                                                                       (4) 

To simplify the analysis, an assumption is made that the number of nodes showing decision 1 is same as the 

number of nodes showing decision 2. Thus, equation (2) can be rewritten as, 

                    tkN 2                   te                                                                                       (5) 

Implementing the relation (4) and (5) in (3), the relation (3) can be expressed as, 

  
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           
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p
p













2
1                                                                                                                 (6) 

The Ri, Ei, and Mi can be combined in sixteen possible combinations. Some metrics may be obtained to 

analyze the fault recognition algorithm by using the conditional probabilities of the sixteen possible 

combinations. The algorithm estimates if there is any event present or not. The probability that there is no 

event reading when the sensor is not faulty and absence of such event is indicated and is given as 

 

                                                                                      (7) 

 

The probability that the sensor faultily reports a correct reading is given by, 

 

                                                                                    (8) 

Four performance metrics can be obtained from the relation (7) and (8). The first metric is the average number 

of errors after decoding denoted as Ereduced. The reduction in average number of errors is obtained by 

normalizing the average number of error after decoding by the total number of nodes and the sensor fault 

probability. 

     
21

020100 fiifiiiireduced pnREPpnREPpnREPE    

Here 
1f

n and 
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21 fff nnn   . Thus, Ereduced can be rewritten as,  
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Though the algorithm aims at doing fault tolerant event detection, there is some possibility for new errors 

getting introduced into the system because of the real nature of the sensor nodes lying at the  boundary of the 

region of interest which is not known. It is not clear if they display the correct reading or event reading.  

Thus another metric, which gives an estimate of the number of new errors introduced in to the system, is 

given as, 
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The average number of errors corrected by the algorithm can be obtained from the relation (8) and (10), which 

is given as 

                                                                                 

                                                                                                    (11)   

 

When Euncorrected represents the average number of errors uncorrected and Enewerrors represents the number of 

new errors introduced, then  Ereduced can be the sum of the two. In other words, 

Ereduced = Euncorrected + Enewerrors 
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Therefore, the average number of errors uncorrected can be given as, 

newerrorsreducedduncorrecte EEE   

                npC
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The diagnosis of the sensor nodes is said to be correct if the good sensors are not diagnosed as faulty and the 

faulty sensors are not diagnosed as good. The diagnosis is said to be successful if all the sensors are identified 

either as good or faulty in a stipulated time. The diagnosis of the sensors are said to be incorrect either when a 

good sensor is tagged as faulty or a faulty sensor is tagged as good. The diagnosis is said to be unsuccessful 

when any node’s status remains unknown. Therefore, a complete and proper diagnosis is required [21]. The 

probability that a good sensor is working properly and giving correct result is given as 
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Implementing relation (4) and (5) in (13), the above relation can be written as, 
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The probability that a good sensor is not working properly and giving incorrect result is given as  

   ite

s

t

r

e

N

i

teglf pppp
sri

N
ppP 








 





1
!!!

!
1

1
2

0

                                                                             (15) 

Implementing relation (4) and (5) in (15), the above relation can be written as 
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The probability that a faulty sensor has a tendency to show correct result is given as, 
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Implementing relation (4) and (5) in (17), the above relation can be written as, 
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The probability that a faulty sensor has a tendency to show incorrect result is given as, 
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Implementing relation (4) and (5) in (19), the above relation can be written as, 
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 The probability of a faulty sensor being diagnosed as good is thus given as, 
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Similarly, the probability of a good sensor being diagnosed as faulty is given as, 
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The probability that the faulty sensors are successfully diagnosed as faulty in the whole network is given as, 

 nFGNFG PpP  1                                                                  (23) 

The probability that the good sensors are diagnosed as faulty in the entire network is given as, 
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   nGGNGG PppP  1                                                                                                                                  (24) 

The relation (23) and (24) give the detection accuracy and the false alarm rate of the network respectively. 

Since the WSN is densely deployed, the detection accuracy is high and the false alarm rate is low. 

 

3.2 ANALYSIS OF FAULT RECOGNITION ALGORITHM FOR NON-SYMMETRIC ERROR 

In the non-symmetric error, as mentioned before, the pe is not equal to pt. Let N represent the number of 

cardinal neighbors of node i . Each neighboring sensor measurement can result in any of three possible 

outcomes. From Table 1, the three possible outcomes are normal value, intermediate value and high value. 

These possible outcomes are represented as E1, E2 and E3. Suppose, further, that each possible outcome can 

occur with probabilities epp),1(   and tp . Then, the probability that E1occurs k  times, E2 occurs e times and 

E3 occurs t times is  
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Here C is known as the multinomial co-efficient. The relation (9)-(12) can be used to obtain the first four 

performance metrics of the fault recognition for non-symmetric error. The diagnosis is said to be successful if 

all the sensors are identified either as good or faulty in a stipulated time, and the faulty sensors should not rise 

a false alarm in the network. The probability that a good sensor is working properly and giving correct result 

is given as, 
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The probability that a good sensor is not working properly and giving incorrect result is given as, 
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The probability that a faulty sensor has a tendency to show correct result is given as, 
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The probability that a faulty sensor has a tendency to show incorrect result is given as,  
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The probability of a faulty sensor being diagnosed as good is thus given as, 
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Similarly, the probability of a good sensor being diagnosed as faulty is given as, 

     


 

































1
2

0 0 0

lglg1

N

a

a

b

baN

c

c

glf

cbaN

flf

b

g

a

f

N

a
GG PPPppP                                                   (31) 

In this case, also, the relations (23) and (24) give the detection accuracy and the false alarm rate of the 

network respectively. Since the WSN is densely deployed, the detection accuracy is high and the false alarm 

rate is low. 

IV.  PERFORMANCE ANALYSIS AND RESULT 

In order to analyze the performance of the fault recognition algorithm, consider a 32 X 32 region with 1024 

sensor nodes deployed in a square grid of unit area as shown in the Figure 1. Each blue color dot denotes one 

sensor node. 
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Figure 1. A 32X32 region with 1024 sensor nodes deployed in a square grid of unit area 
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The measurement parameter of the network is assumed to be x, which is the temperature to be 

monitored in the range of 75-80 degree Fahrenheit. All the sensors report ‘0’ to indicate the normal range i.e. 

when x lies between 75-80 degree Fahrenheit, ‘1’ to indicate the temperature below 75 degree Fahrenheit  and  

‘2’ to indicate the temperature above 80 degree Fahrenheit. Sensor is said to be good if it displays the output 

‘0’, otherwise it is said to be faulty. Each node has an independent probability of error. In the algorithm two 

threshold values θ1 and θ2 are needed to map the sensors real output. Here θ1 and θ2 are set to 70 degree 

Fahrenheit and 85 degree Fahrenheit respectively. The average number of errors after decoding, the average 

number of sensor faults corrected, the average number of sensor faults uncorrected, the number of new errors 

introduced, detection accuracy and the false alarm rate are the six performance metrics used to evaluate the 

performance of the algorithm in test. In the theoretical analysis, the sensors are randomly chosen to be faulty 

with probabilities ranging from 0 to 0.50 with an interval of 0.05. The number of neighboring sensor chosen 

for the analysis is 4 i.e. only the neighbors, which are in direct connection with the reference sensors, are 

considered. 

Case-I: Performance metrics for the fault recognition algorithm with symmetric error 

The Figure 2 shows the first four parameters, i.e. the average number of errors after decoding, the 

average number of sensor faults corrected, the average number of sensor faults uncorrected, the number of 

new errors introduced, for symmetric errors. 
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Figure 2. Performance metrics versus sensor fault probability for symmetric errors 
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Here, alpha = Ereduced,   beta = Ecorrected,  gama = Euncorrected  and delta = Enewerrors 

It is seen that for sensor fault probability as high as 10 percent, more than 95 percent of the errors are 

corrected. Since most of the errors are corrected, the number of uncorrected errors is very low, which is less 

than 5 percent for sensor fault probability less than 10 percent. The theoretical analysis ignores the edge and 

boundary effects. This affects the performance because at the edge of the deployed network the number of 

neighbors per node is lesser than that of interior and also the nodes at the edge are more likely to show 

erroneous decision if their neighbors provide conflicting information. Such nodes are the most vulnerable sites  

for new error introduced by the fault tolerance algorithm. Because of this the the new errors introduced is seen 

to increase steadily. The Figure 3 shows the detection accuracy of the faulty sensors against the sensor fault 

probability. The detection accuracy for four neighbors decreases when the fault probability increases. . 
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Figure 3. Faulty sensor detection accuracy versus sensor fault probability for four neighbors 

Figure 4 shows the false alarm rate of the sensors versus the sensor fault probability. Higher the sensor 

fault probability, the higher will be the false alarm rate. This is because the faulty sensors test the good 

sensors and report them to be faulty, thus these good sensors are finally reported as faulty sensors. For 4 

neighboring sensors and for sensor fault probability below 0.25 , the false alarm rate is as low as 0. 
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 Figure 4. Fault alarm rate versus sensor fault probability for four neighbors  

 

The overall performance of this algorithm for the symmetric errors is good. It has good detection accuracy 

and a low false alarm rate. 

 

Figure 5. Normalized corrected and uncorrected errors 
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Figure 5 shows the graph for the fault recognition algorithm with the non – binary symmetric error from both 

the simulation as well as the theoretical equations. The main conclusion from these plots is that the simulation 

results are to some extend match with the theoretical predictions. The simulation results indicate that 75 

percentage of the symmetric errors can be corrected even when the sensor fault rate is as high as 10 

percentage. In addition, the theoretical results show that more than 95 percentage of the non - symmetric 

errors can be corrected for sensor fault probability more than 10 percent. 

Case-II: Performance metrics for the fault recognition algorithm with non-symmetric error 

 To analyze the fault recognition algorithm with non-symmetric errors, the relation (9)-(12), (24) and (25) are 

used. Seeing the relations, it can be observed that, to obtain ck the value of k should be varied from half of N 

to N. Thus for each k there are few combinations of e and t, in a way that,             

                                             tekN                                                                                     (32) 

Similarly, to obtain kNg  the value of k is again varied from half of N to N, which in turn gives certain 

combinations of r and s such that,                                                  srk                                          (33)                                                  

 

The experiment is conducted for different combinations of r, s, e, and t for each k, then the combination, 

which yields the best result, is considered and the performance metrics has been obtained for it. The various 

values of r, s, e, and t are given in the Table 4. 

Table 4: Combinations of e and t for various k 

Number of neighboring nodes whose 

reading is same as the reference 

node i , k 

Number of nodes which show 

decision 1, e 

Number of nodes which show 

decision 2, t 

2 1 1 

2 0 

0 2 

3 0 1 

1 0 

4 0 0 
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Table 5: Combinations of r and s for various k 

Number of neighboring nodes 

whose reading is same as the 

reference node i , k 

Number of nodes which 

have sensor fault 

probability  of pe , r 

 

Number of nodes which have sensor 

fault probability of pt, s 

2 1 1 

2 0 

0 2 

3 2 1 

1 2 

3 0 

0 3 

4 0 4 

4 0 

3 1 

1 3 

2 2 

 

The Figure 6 shows the performance metrics plotted against the sensor fault probability with k = 4. It is seen 

that almost all the errors are corrected when the sensor fault probability is as high as 50 percent. It can thus be 

said that the algorithm can correct maximum number of errors if more than half of the neighboring sensor 

nodes report the same reading as that of the reference sensor node. Since almost all the errors are corrected, 

the number of uncorrected errors is very negligible. Since there are three probable outputs for sensor, the 

probability for the boundary nodes to show conflicting results is higher. Hence, the number of new errors 

introduced increases with the sensor fault probability. The reduction in average number of errors is seen to 

decrease with increasing sensor fault probability. 
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Figure 6. Performance metrics versus sensor fault probability with k = 4 
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Here, alpha = Ereduced,   beta = Ecorrected,  gama = Euncorrected  and delta = Enewerrors 

The Figure 7 and Figure 8 show the detection accuracy and false alarm rate respectively. It is seen that the 

detection accuracy is very high, i.e. 1 when 20 percent of the nodes are faulty. Beyond this, the detection 

accuracy decreases with the increase in the sensor faults. Similarly, the false alarm rate is as low as 0 for 

sensor fault probability as high as 20 percent, and it increases when most of the sensors become faulty.  
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Figure 7. Faulty sensor detection accuracy versus sensor fault probability 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sensor fault probability

fa
ls

e 
al

ar
m

 ra
te

false alarm rate

 

Figure 8. False alarm rate versus sensor fault probability 
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V.  CONCLUSION AND FUTURE WORK 

The algorithm discussed here is distributed and localized. Each sensor identifies its real output to be 

acceptable or not, by obtaining the information from the neighboring sensor and then making a comparison. 

The fault recognition algorithm is analyzed with the non – binary symmetric error from both the simulation as 

well as the theoretical equations. The simulation results match with the theoretical predictions to some extend. 

The simulation results indicate that 75 percentage of the symmetric errors can be corrected even when the 

sensor fault rate is as high as 10 percentage. Whereas, the theoretical results show that more than 95 

percentage of the non - symmetric errors can be corrected for sensor fault probability more than 10 percent. 

Further, the algorithm is analyzed by using a probabilistic approach for both the symmetric errors and the 

non-symmetric errors. The analytical result shows that as much as 95 percent errors are corrected for fault rate 

as high as 10 percent with symmetric errors and for the same sensor fault probability, with non-symmetric 

errors almost 92 percentage errors are corrected. The results also show that with symmetric error, almost 98 

percentage of detection accuracy can be obtained even when 25 percent of the nodes are faulty and false alarm 

rate is very low too. At the same time, for the non-symmetric error, 100 percent detection accuracy and zero 

false alarm rate is seen with up to 20 percent sensor fault probability. The analysis thus proves that the 

algorithm is quiet efficient. In addition here the performance of the algorithm is seen to be affected by the 

introduction of new errors due to conflicting decisions from the neighboring boundary nodes. Thus, this work 

may be extended towards finding a solution to reduce the number of new errors introduced due to the 

boundary nodes. Much of the work presented here can be implemented on event region detection in 3D 

environment monitoring using real sensor network hardware. 
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