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Abstract- This paper proposed an image fusion method  based on a novel scheme with joint 

nonsubsampled contourlet and overcomplete brushlet transform. And an improved region energy 

operator is employed as the fusion strategy, which can take full advantage of the anisotropic texture 

information and multidimensional singular information in the new multiresolution domain. 

Experimental results shows that the proposed method improved the fusion results not only in visual 

effects but also in objective evaluating parameters. 

 

Index terms: Non-subsampled contourlet transform, Over-complete brushlet transform, image fusion, region 

energy feature. 
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I. INTRODUCTION 

 

Image fusion is the process by which two or more images are combined into a single image 

retaining the important features from each of the original images. The fusion of images is often 

required for images acquired from different instrument modalities or capture techniques of the 

same scene or objects. Important applications of the fusion of images include medical imaging, 

microscopic imaging, remote sensing,computer vision,and robotics. 

Most of fusion techniques are based on combining the multiscale decomposions(MSD) of the 

source images.MSD-based fusion schemes provide much better performance than the simple 

methods studied previously.Recently many new MSD transforms are introduced in image fusion 

(i.e., bandelet, curvelet, contourlet,etc.)[1] to overcome the limits of  original discrete wavelet 

transform. Contourlet was recently pioneered by Do[2]. Compared with wavelet, it provides 

different and flexible number of directions at each scale and can capture the intrinsic geometrical 

structure. However, the original contourlet lacks shift-invariance and causes pseudo-Gibbs 

phenomenon around singularities. Nonsub- sampled contourlet transform (NSCT)[3], as a fully 

shift-invariant form of contourlet, leads to better frequency selectivity and regularity. Brushlet[4] 

is new biorthogonal bases which are obtained by segmenting the fourier plane[5-7].It can achieve 

precise representation of the image in terms of oriented textures with all possible directions, 

frequencies, and locations,but the original brushlet tranform also lacks shift-invariance[8-9] and 

yields blocks artifical phenomenon .Here we adopt the overcomplete brushlet transform 

(OCBT)[10] as a remedy for the problem. 

In this paper, we first project a novel scheme with joint NSCT and OCBT. The motivation of the 

proposed MSD transform not only can represent the geometrical features such as edges and 

textures more sparsely but also capture and preserve the anisotropic edges information and detail 

directions of images effectively. The proposed scheme decomposition coefficients can also 

highlight the energy features more effectively than other traditional MSD coefficients.In terms of 

these excellent properties,we apply it in fusing multifocus and medical images ,and employ an 

improved region energy features as the fused strategy. The fusion process is divided into several 

stages.In the first stage ,the source images are decomposed by NSCT, then we obtain the 

coefficient matrice of all directional subbands at each of high frequency levels. Here, each of 

coefficient matrice represents its directional information.Considering the source images may 
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include lots of details, the coefficient matrice in the NSCT domain also embody complex 

directions and textures information[11-12]. In order to highlight salient features of each 

directional subband,OCBT is employed to decompose all the directional subbands at each high 

frequency level in NSCT domain.Then the obtained coefficient matrice here can fully represent 

the feature information of all possible directions, frequencies, and locations. In the second stage, 

we select all the coefficient matrice and divide them into subregions with an uniform suitable 

size.Then the subregions which are located in the same location of  the same directional subbands 

across all high frequency levels are picked out to  calculate and aggregate their region energy 

values. In the last stage , a hybrid region and pixel energy values used as the match measure 

parameters are employed to obtain high-frequency and low-frequency fused coefficients 

respectively. Finally, the fused image is reconstructed by inverse OCBT and NSCT successively. 

Experimental results show that the proposed algorithm outperforms the existing energy- based 

image fusion algorithms. (i.e., global energy merging-based fusion algorithm(GEB)[13],a region- 

based multisolution image fusion algorithm(REMR)[14] and sum-modified-laplacian-based 

multifocus image fusion algorithm in cycle spinning sharp frequency localized contourlet 

transform domain (SML_SFLCT)[15]). and also is visually superior to other mentioned methods. 

 

II. PRINCIPLE OF NSCT AND OCBT 

 

In the foremost contourlet transform, downsamplers and upsamplers are presented in both the 

laplacian pyramid (LP)[16] and the directional filter banks (DFB)[17]. Thus, it is not shift-

invariant, which causes pseudo-Gibbs phenomenon around singularities. NSCT is an improved 

form of contourlet transform.  

In contrast with contourlet transform, nonsubsampled laplacian pyramid(NLP)[18-21] structure 

and nonsubsampled directional filter banks (NDFB)[22-23] are employed in NSCT. The NLP 

structure is achieved by using two-channel nonsubsampled 2D filter banks. The NDFB is 

achieved by switching off the downsamplers/upsamplers in each two-channel filter bank in the 

DFB tree structure and upsampling the filters accordingly. As a result, NSCT is shift-invariant 

and leads to better frequency selectivity and regularity than contourlet transform.figure.1 shows 

the decomposition framework of NSCT. 
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Brushlet functions, first introduced by Coifman and Meyer for compression of highly texturized 

images，are well localized in both time and frequency.The major difference between the brushlet 

basis and wavelet packets is the arbitrary tiling of the time-frequency plane and the perfect 

localization of a single frequency in one coefficient. Brushlets is a complex valued function with 

a phase.The phase of the 2D brushlet provides valuable information about the orientation. These 

properties make the brushlets suitable for texture and directional image analysis. 

Lowpass 

subband
Bandpass 

directional 

subbands

Input   image

 

Figure 1.  Decomposition framework of NSCT 

 

Here , In order to illustrate the orientation selective property of the 2D brushlet, we have 

calculated the brushlet expansion of an image named Lena (see figure. 2).  

A first expansion was performed with a partitioning of the Fourier plane into four quadrants. The 

four sets of brushlets have the orientation , 0,1,2,3
4 2

 
 k k .A second expansion has been 

performed by using a finer grid. Each quadrant was further divided into four sub-quadrants. The 

sixteen set of brushlets have twelve different orientations. The orientations 
4 2

 
 k are associated 

with two different frequencies. The four lattice squares around the origin characterize the DC 

terms of the expansion. The other squares correspond to higher frequency. 

Brushlets has been proven efficient in texture and directional image analysis. In the process of  

brushlet transform ,it need to select the overlapping subintervals of the Fourier plane and expand 

them into a local Fourier basis. This can cause the aliasing effects. To avoid this and at the same 

time increase the number of coefficients for the same subinterval size along each dimension, Elsa 

D. Angelini etc. projected onto an extended Fourier basis adopted it to construct a new scheme of 
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brushlet transform called overcomplete brushlet transform(OCBT).The basic idea of this new 

transform is stated as follows: 

The overcomplete projection is efficiently implemented by padding the folded signals with zeros 

along each dimension and computing its Fourier transform(FT)[24-25]. Since padding a signal 

will increase the resolution of the FT, overcomplete projections increase the number of 

coefficients for the same interval and therefore, increase resolution in the transform (coefficient) 

plane. For an overcomplete projection, each subinterval of the Fourier domain is projected onto a 

brushstroke of dimension equal to the original number of elements. The orientation and size of 

the original brushstroke are preserved, as the phase of the brushstroke is not modified. However, 

the number of points defining each brushstroke in 2D is increased to match the original size of 

the volumetric data. Inside a subvolume of the FT, the coefficients are stored in the same manner 

as the data points in the original signal.  
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Figure 2. Brushlet decompositions(imaginal parts) of Lena and their associated directions. 

From top to bottom: Original image of Lena; Level 1 decomposition; Level 2 decomposition. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 9, NO. 4, DECEMBER 2016 

2190



64

6464

64

64

64

 

Figure 3. Decimated and overcomplete brushlet analysis with  4 4  tiling of the Fourier plane. 

From left corner to right corner: Original imageof size   64 64 , The 16 coefficient planes for a 

decimated brushlet analysis. Each coefficient quadrant is of dimension  16 16 , four times 

smaller than the original image. The 16 coefficient planes for an overcomplete brushlet analysis. 

Each coefficient quadrant is of dimension  64 64 , the same size as the original image. 

Therefore, in the overcomplete case, there is a perfect homomorphism between the location of 

data points in the original set and the position of the coefficients in each projected subvolume. 

OCBT as an  overcomplete multiscale representation is suited for image analysis and yields a 

translation invariant representation, as observed in figure. 3. 

 

 

III. IMAGE FUSION ALGORITHM BASED ON JOINT NSCT AND OCBT 

TRANSFORMS 

 

Region-based and pixel-based energy algorithms in multiresolution decomposition(MSD) domain 

have proven to be very useful for image fusion.However, two problems existing in these methods 

have confused us.One of them is that,in the majority of applications,we are interested in the 

representation of the objects which are often possessed of complex details and no matter employ 

what kind of individual energy-based fusion methods could not accurately fuse them. The other 

problem is , in what kind of the MSD domain, these energy-based fusion methods are the most 

effective for image fusion. 

Firstly, to overcome the first disadvantage, it is reasonable to come up with an idea of 

incorporating the pixel and region information into fusion process.We project a strategy with two 
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steps.For the step one ,an energy value of each matrix region with suitable size is calculated in 

the MSD domain. Then,in terms of a certain rule, we pick out the regions which are located in the 

place of clear parts and bluzzy parts of source images and use a pixel energy-based fusion 

method to handle the coefficients.This new strategy can capture and preserve the anisotropic edge 

information and detail direction texture of collected images effectively. 

Then, to settle the second problem, a novel scheme with joint NSCT and OCBT is proposed . 

First the source images  are decomposed into different frequency subbands by the NLP, and then 

the high frequency subband is further decomposed into directional subbands by NDFB .Next , the 

OCBT is taken on each directional subband . The directional subbands in NSCT provide 

excellent directional details information of high frequency levels for source images. And 

overcomplete brushlet is a complex valued function with a phase.The phase of the 2D brushlet 

provides valuable information about the orientation. These properties make the brushlets suitable 

for texture and directional image analysis. Therefore,in the  directional subbands at each high 

frequency level, the coefficient matrice which are achieved by combining these two 

multiresolution transforms can represent the geometrical features such as edges and texture more 

sparsely. In addition , NSCT and OCBT are both shift-invariant, when a local energy  operator is 

provided as the fusion strategies to handle the coefficient matrice , it will not yield blocks 

artifical phenomenon and capture the region detail information accurately. 

The proposed fusion algorithm can be divided into four different stages with reference to figure.4. 

Stage I 

1) Read the two source images A and B to be fused. 

2) Make source images via NSCT and illustrate one of them,the mapping is assumed to be of the 

form: 

  0 1 2, , , K Kx y y y x                                                                  (1) 

where, ky is the detail image at level k and Kx is the appriximation at the coarsest level K. Then 

ky , 1,2k K is further separated into subbands according to its orientation, namely, 

1 2{ , , , }k k k k

Dy y y y                       representing D directions. Here the number of direcional 

subbands at all high-frequency levels is the same with each other, which is for  preparation of  

combination of region-based energy values in the same directional subband across levels.    
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3)    , 1, 1, k

dy d D k K are decomposed by a level 2 OCBT.Consider that the overcomplete 

brushlets are complex functions .so we obtain both real part and imaginary part brushlets 

coefficient matrices, namely: k

dyBreal , k

dyBimg ,    1, 1, d D k K . 

Stage II 

1)Divides k

dyBreal  into subregions which can be denoted as 

      1 , 2 , ,k k k

d d dyBreal yBreal yBreal P , P is the num of subregions. then we caculate the 

energy values of  k

dyBreal p ,  1,p P . k

dyBimg  is made the same deal with k

dyBreal and 

obtain  k

dyBimg p . Assume that  k

dyBreal p  ,i j  and  k

dyBimg p  ,i j   represent each real 

part and imaginary part coefficient respectively  in pth subregion. The energy value is calculated 

by using following formula: 

      2 2

,

( ) , ,
 

 k k k

d d d

i I j J

E p yBreal p i j yBimg p i j                                 (2)  

where I, J are sizes of subregions. 

2)Combine energy values of the subregions which are located in the same position of the same 

directional subbands at all high-frequency levels. the algorithm is caculated as follows: 

 _ ( )


 k

d d

k K

Sum E p E p                                                               (3) 

Stage III 

  1)Assum 
   1

_ dSum E p and 
   2

_ dSum E p are from source image A and B respectively.By 

comparing these two energy values , a map matrix can be generated: 

  

       
       

1 2

1 2

1 _ _
( )

0 _ _

 
 



d d

d d

Sum E p Sum E p
map p

Sum E p Sum E p
                                              (4) 

the map matrix size is decided by the number of subregions. and each element of matirx is a 

match measure parameter which represents which corresponding subregion of source images 

should be adopted in the fused image. 

2)Considering that the detail complexity of source image ,which may yield some miscarriage of 

justice in some subregions if only use the region-based energy algorithm as the fuse approach, 

and therefore cause fuzzy details and contours appeared in the fused image. To slove these two 

problems, we project two effective rules to deal with the map matrix, which are stated as follows: 
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firstly , a 3 3 window filter of the form 

1 1 1

1 1 1

1 1 1

 
 


 
  

W  is proposed and used to filter the map 

matrix. for certain subregions, their corresponding elements values in the matrix are different 

from  all the neighbors’ around them. We regard this situation as a miscarriage of justice. the  

approach can slove the proplem. Equation(5) is a statement of  the  concrete rule. 

 
 

1,1

1,1

1 ( , ) 6

( )

0

 

 

   


 




i

j

if map p i p j

map p

else

                                         (5) 

Then, taking into account the contours  and textures often appear at the staggered place of clear 

regions and fuzzy regions in source images. We employ  a rule to  pick out corresponding 

elements of these subregions in map matrix. 

 
 

 
 

 
 

1,1

1,1

1,1

1,1

1,1

1,1

1 ( , ) 7

( ) 0 ( , ) 3

3 3 ( , ) 7

 

 

 

 

 

 




  



   


    









i

j

i

j

i

j

if map p i p j

map p if map p i p j

if map p i p j

                                      (6) 

when it encounters   3map p ,that means the corresponding subregion is located in staggered 

place of clear regions and fuzzy regions of source images. These subregions are often composed 

of both clear part and fuzzy part coefficients, therefore,it , as a whole subregion ,is hard to be 

classified.To better preserve the details of  these subregions .We hence abandon the proposed 

region energy values measure maximum(REM)-based rule. and employ pixel energy values 

measure maximum(PEM)-based rule to caculate each of coefficients energy values of the 

subregions .And by comparing each coefficient energy value of subregions from two source 

images, it can distinguish the coefficients which are from the clear parts or blurry parts of images 

more accurately. 

3) The approach of  PEM is stated as follows: 
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2

2
1,1

1,1

,
_ ( ) ,

, 

 

  
 
    


k

dk

d
k

p
d

q

yBreal p i p j q
E pixel p i j

yBimg p i p j q
                                        (7) 

 ,i j is the coefficient orientation of subregions. 

4) Choose a approprate measure maximum-based rule in term of the elements of map matrix. 

The fusion rule is chosen by : 

 

 

0 1
_

3


 



REM if map p or
Fusion rule

PEM if map p
                                                   (8) 

Assum (
   1 k

dyBreal p , 
   1 k

dyBimg p )and ( 
   2 k

dyBreal p , 
   2 k

dyBimg p ) are from source 

image A and B respectively and the REM is implemented as follows: 

 
     
     

1

2

1

0

 
 



k

dk

d
k

d

yBreal p if map p
yBreal p

yBreal p if map p
                                            (9) 

 
     
     

1

2

1

0

 
 



k

dk

d
k

d

yBimg p if map p
yBimg p

yBimg p if map p
                                              (10) 

Assum 
   1

_ ( ) ,k

dE pixel p i j  and 
   2

_ ( ) ,k

dE pixel p i j  represent the coefficient energy values of  

source image subregions respectively. PEM is  implemented as follows: 

  
            
            

1 1 2

2 1 2

, _ ( ) , _ ( ) ,
,

, _ ( ) , _ ( ) ,

 
 



k k k

d d dk

d
k k k

d d d

yBreal p i j if E pixel p i j E pixel p i j
yBreal p i j

yBreal p i j if E pixel p i j E pixel p i j
        (11) 

  
            
            

1 1 2

2 1 2

, _ ( ) , _ ( ) ,
,

, _ ( ) , _ ( ) ,

 
 



k k k

d d dk

d
k k k

d d d

yBimg p i j if E pixel p i j E pixel p i j
yBimg p i j

yBimg p i j if E pixel p i j E pixel p i j
         (12) 

 k

dyBreal p and  k

dyBimg p  represent the real part and the imaginary part coefficients of 

subregions in each directional subband at all high-frequency levels respectively. 

Stage IV 

1)Use the selected-out k

dyBreal and k

dyBimg  via inverse OCBT to obtain the k

dy which represents 

the coefficients matirx in d diretional subband at k level in NSCT domain. 

2)we adopt the fusion rule mentioned above to fuse the low pass subband in NSCT domain and 

obtain coefficient matrix  x K .the fused process is similar with the one in high frequency levels. 

Taking into account the limited space, not repeat them here. 
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3)Use the selected-out  x K and k

dy  to reconstruct the fused image via inverse NSCT .  

NSCT

   1
x K  1 k

dy
 1 k

dy
 1 k

dy
   2

x K 2 k

dy

OCBT

Source 

image

Source 

image

 1 k

dyBreal
 2 k

dyBreal
 1 k

dyBimg  2 k

dyBimg

REM+PEM

 x K k

dyBreal k

dyBimg

Inverse 

OCBT

Inverse 

NSCT

k

dy

Fused 

image  

Figure 4. Schematic diagram of proposed fusion algorithm 

 

IV.   EXPERIMENTAL RESULTS  AND ANALYSIS 

 

The performance evaluation criteria of image fusion are still a hot topic in the research of image 

fusion, besides visual observation, mutual information(MI) [25], and /AB FQ  [26] are used as 

information-based objective criteria. The reason is that image fusion aims at combining 

information and these criteria do not require the information of ideal fused image. MI essentially 

computes how much information from source images is transferred to the fused image, 
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whereas /AB FQ  computes and measures the amount of edge information transferred from the 

source images to the fused images using a sobel edge detector.  

To evaluate the performance of the proposed fusion algorithm, it is compared with GEB, REMR 

and SML_SFLCT image fusion algorithms. Objective criteria on MI and /AB FQ are listed in Table 

1. Table 1 shows that MI and /AB FQ values of the proposed algorithm are the largest. It proves 

that the fused image of the proposed algorithm is strongly correlated with the source images and 

more image features are preserved in the fusion process. When all is said and done, our proposed 

algorithm outperforms other algorithms, no matter in visual observation and objective evaluation 

criterion. 

TABLE 1.  Comparison of objective criteria of different fused methods 

Images 
Fused method 

Criteria          GEB                REMR                SML            Proposed 

ClockA/B 
MI 6.6301 7.0804 7.4092 8.3787 

/AB FQ  0.6819 0.7183 0.7270 0.7439 

LenaA/B 
MI 5.5934 6.1809 6.3520 7.4982 

/AB FQ  0.5640 0.6007 0.6371 0.7023 

HoedA/B 
MI 6.9538 7.0110 7.4139 7.5589 

/AB FQ  0.6712 0.6859 0.7786 0.8008 

CT&MIR 
MI 3.0298 4.0209 4.2105 4.3625 

/AB FQ  0.6146 0.6314 0.6783 0.7343 

We select three multi-focus images( 256 256  in size and 256 levels in gray) for testing. One of 

the fusion results using source image clocks are shown in figure.5 .From figure.5，It can be seen 

that fused image of GEM fusion method is not satisfactory in visual observation. The reason is 

that difference between multi-focus images is slight and transitional regions often exist because 

of many vague pixels. Coefficients are inaccurately selected using only region features as the 

fused stratagy. And REMR methods  is also not excellent in visual appearance for its MSD 

schemes is shift-variant. Though SML_SFLCT outperforms other two methods , NSCT lacks a 

better representation of the contours and textures  than the joint NSCT and OCBT schemes, so its 

fused image is not clearer and more natural than the proposed fused results. Our experiments 

show that the proposed approach outperforms other fused method in visual effect. 
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Figure 5. Multifocus image fusion results 

From top left corner to bottom right corner: clockA.tif: focus on left; clockB.tif: focus on right; 

Fused images using GEB, REMR, SML_SFLCT and the proposed image fusion algorithms 

respectively; Difference images between clockB image and the listed fused images. 
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Figure 6. Medical image fusion results 

From top left corner to bottom right corner:CT image; MRI image; Fused medical images using 

GEB, REMR, SML_ SFLCT and the proposed image fusion algorithms respectively; Difference 

images between CT image and the listed fused images. 
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We also apply the proposed method in medical image fusion.A CT image that shows structures of 

bone, while MRI image shows areas of soft tissue. However, in clinical applications, doctors 

need to see the position of both bone and tissue to determine pathology and aid in diagnosis. So 

the mixed image is usually needed in practice, which includes as much of  the information in CT 

and MRI as possible. the fusion results are shown in figure.6.From figure.6, it is clear that fused 

image of GEM fusion method is quite blurry and contrains artificial textures; The fused image of 

REMR method yields blocks aliasing phenomenon. and the fused image constructed by 

SML_SFLCT method  is inaccurate for  losing some details of source CT image. Obviously, our 

proposed method is superior to others.  

 

VI. CONCLUSIONS 

 

In this paper we first project  proposed a novel scheme with joint NSCT and OCBT.This 

proposed MSD transform not only can represent the geometrical features such as edges and 

textures more sparsely but also capture and preserve the anisotropic edge information and detail 

direction textures of collected images effectively. In terms of these excellent properties,we apply 

it in fusing multifocus and medical  images ,and employ the hybrid region and pixel energy 

features as the fused strategy.  

In this way, we overcome the disadvantages of traditional region-based fusion methods in MSD 

domain and achieved a good image fusion performance.The simulation results indicated that the 

proposed method is visually superior to others in preserving details and textures in the fused 

images and also achieved the largest MI and /AB FQ values. 
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