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Abstract- In this paper, a design of a full-order observer for linear time-invariant (LTI) 

multivariable systems with multiple time-delays and unknown inputs (UI) is proposed. The main idea is 

to reduce the problem of the unknown input observer (UIO) for systems with multiple time-delays to 

that of a standard one. To that purpose, the orthogonal collocation method is used to transform the 

infinite dimensional model of the delayed system described by a set of linear partial differential 

equations (PDEs) to a finite dimensional one described by a set of linear ordinary differential equations 

(ODEs). Even using an approximation method, the asymptotic stability of the UIO is well proven. The 

efficiency of the proposed algorithm is shown using the quadruple-tank benchmark. The two cases of 

minimum and non-minimum phase models are considered. 

 

Index terms: Asymptotic stability, Delay systems, Observer, Unknown Inputs. 
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I. INTRODUCTION 

 

In the past few years, the emergence of delays in dynamical systems was diagnosed as one of 

the major causes of loss of stability and degradation of performances and robustness [1, 2, 3, 4]. 

The systems represented by a set of delayed ordinary differential equations (ODEs) are called 

time-delay systems and, in many cases, considered as distributed parameter systems (DPSs) [5]. 

They are generally described by a set of partial differential equations (PDEs) and belong to the 

family of infinite dimensional systems. Their analysis and synthesis methods are not belonging, 

in that case, to those of standard ones. Massive research activities have been developed to solve 

stability and stabilization problems of delay systems (see for example [6, 7, 8, 9, 10, 11, 12, 13, 

14] and references therein). In that context, many interests have been also given to systems with 

multiple time-delays [15, 16, 17, 18, 19] for which the well-known limitations are the presence of 

delays either in the states of the plant, in the inputs as well in the outputs [20, 21]. The problem 

of estimating state variables is of much significance in many applications [22, 23]. For linear 

time-invariant (LTI) multivariable systems with multiple time-delays, only several elaborated 

results can be found in this framework [21, 24, 25, 26]. One of the rare research papers dealing 

with the design problem of unknown inputs observers (UIO) is found in [27].  

In this paper, we propose a different approach to address UIO design for LTI systems with 

multiple time- delays. The basic idea is to transform the problem of UIO for LTI system with 

multiple time-delays to that of a standard one. Even using an approximation method for modeling 

the multiple time-delay system, the asymptotic stability of the UIO is well proven. 

The paper is organized as follows: In section II, the design problem is stated. Section III, 

presents the mathematical model of the LTI system with multiple time-delays. Section IV, gives 

necessary and sufficient conditions for asymptotic stability of the finite dimensional UIO.  In 

section V, the efficiency of the proposed approach is shown through simulation results for the 

quadruple tank benchmark.  
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II.  PROBLEM STATEMENT 

  

Consider the following class of the infinite dimensional LTI multivariable systems with 

multiple time-delays and unknown inputs described by [28]: 

 

   

0 1 1 0 2 1 3x(t) A x(t) A x(t- ) B u(t- ) B u(t- ) Dd t

y t Cx t

       


 

 where   nx t  ,   mu t  ,   py t   and   qd t   are the state vector, the control 

vector, the output vector and the unknown input vector, respectively. 
n n

0A  ,  
n n

1A  , 

0B 
n m ,  1B 

n m , p nC   and 
n qD   are  constant matrices with  appropriate 

dimensions and, 1 , 2  and 3   are known and constant delays of the system (1). Consider now 

from (1), an approximated finite dimensional LTI system with free-time delays described by:                                                            

       

   

t A t Bu t Dd t

y t C t

    

 
                               (2) 

where  t 
n ' , u(t)

m ,  y t 
p  and  d t 

q  are the state vector, the control vector, 

the output vector and the unknown input vector, respectively. A 
n ' n ' , B 

n ' m ,
p n 'C   

and n ' qD  are known constant matrices with appropriate dimensions. 

The objective is to design a finite dimensional UIO for the linear system (1) described by: 

       

       

t N t Ly t Gu t

ˆ t t Ey t Qr t

    

    
                                      (3) 

where   n 't  ;  ˆ t  n '  is the estimated state vector. The approximation error,  r t , 

defined between the DPS system (1) and the system (2), is given by: 

     r t t Tx t                                                          (4) 

where  n ' nT    is a constant matrix. Q  is the observer constant gain. N, L , G  and E  are 
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constant matrices of appropriate dimensions to be designed. The last design problem is solved 

under the following assumptions: 

(1) p ≥ q 

(2) rank(D) q  

(3) rank(C) p  

(4) The pair  A,C  is observable at least detectable. 

Notation 

In the following, we consider the following error variables and vectors: 

 r t : Approximation error vector between the DPS (1) and the lumped system (2). 

 Ne z, t : Interpolation error. 

e(t) : Observer error vector.  

 

III. THE FINITE DIMENSIONAL MODEL 

 

 

In this section, the finite dimensional model (2) will be elaborated. Many approximated 

methods are used in the literature to transform time-delay systems on standard models without 

delays. The most known is the padé approximation [29, 30, 31] which gives approximated 

systems with very high dimension.  In this paper, we present a different approach, the orthogonal 

collocation method having the advantage to give lower dimensional lumped systems [32]. First, 

the LTI multivariable system with multiple time-delays and unknown inputs will be transformed 

into a DPS described by a set of linear PDEs. Then, using the orthogonal collocation method, the 

DPS is reduced in a lumped one described by a set of ODEs. 

 

a. Modeling each delayed variable by a PDE 

 

Each delayed variable can be modeled as a DPS described by a PDE as follows [5]: 

(z, t) 1 (z, t)

t z

 
 

  
                                           (5) 
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with the boundary condition: 

v(t) (0, t)                                                       (6) 

and the output equations: 

v(t ) (1, t)                                                     (7) 

where t and z are time and pseudo-space variables, respectively.  v(t) , (z, t)   and v(t )  are 

the input, the state variable and the output of the delay block, respectively.    is a constant time 

delay. 

 

b. Transformation of PDEs on ODEs 

 

The PDE described by (5) augmented by the boundary conditions (6) and the output equations 

(7) can be transformed into ODEs using functional approximation methods [30, 31]. Within the 

framework of weighted residuals methods, the orthogonal collocation method can be useful. The 

orthogonal collocation method [32, 33, 34] is particular suited for digital computation when 

compared with other approximation methods. The orthogonal collocation offers the advantages of 

a fairly easy implementation: the residual function is minimized without integral or averaging 

computation. Another benefit lies in that the nature and dimension of state variables remain 

unchanged after reduction. The principle of the orthogonal collocation method is to search an 

approximation in the form ODEs using the collocation formula given by: 

 

     
N 1

i i

i 0

z, t L z t




                                         (8) 

where (t) denote the approximation and 
iL  is the Lagrange interpolation polynomials evaluated 

at the (N+2) collocation points collocation points chosen on the pseudo-spatial interval [0, 1]. 

The Lagrange polynomials  iL z  have the following property:  

 

 

i j

i j

L z 1 if i j

L z 0 if i j

  


 

                               (9) 
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The collocation points  iz , i 0,1, , N are chosen as follows 

0 1 N 1 Nz 0 z z z 1                                    (10) 

The N  internal collocation points are obtained by calculating the zeros of orthogonal Jacobi 

polynomials 
 ,

NP
 

 having the following property [35]:  

          , , ,

N N N 1 N N 2P z g , P h , P
     

                      (11) 

with 
 ,

0P 1
 

  and where coefficients  Nh ,   

 

   

    

  

   

2

N

2

if N 2

N 1 N 1 N 1

2N 1 2N 2 2N 3
h , :

if N 2

1 1
(12)

2 3




    
      

   


   

   

 

and 

 

 
 

2 2

N 2

0 otherwise

1
g , : 1 if N 1

2 2N 1 1

1
if N 1

2




   

     
     


 

 

        (13) 

 

where α, β are two constant parameters affecting the position of the collocation points. 

 

c. Approximation error analysis 

 

Referring to equations (5) where Li is the Lagrange interpolation polynomials evaluated at the 
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N+1 collocation points collocation points chosen on the pseudo-spatial interval [0,1] such that 

0 1 Nz z ... z 1     and using the Cauchy formula involves an upper error bounded for such 

approximations. Indeed, the interpolation error is given by [35]: 

       
N

N i ii 0
e z, t w z, t w t P z


                        (14) 

We assume the unknown solution  w z, t  is sufficiently continuously differentiable, we obtain: 

   
  

 

N 1

z

N

w z , t
e z, t : v z

N 1 !

 



                               (15) 

where     

   
N

ii 0
v z : z z


     and      z 1, 1               (16) 

According to [33], Chebyshev polynomials obtained for 
1

2
     , has the minimal norm of 

 v z  as: 

     N 1 N 2*

kk 1
v z z z 2

  

 

                         (17) 

Thus, the minimal norm of the interpolation error is given by: 

   

 

* N 1

z

N N 2

w ., t
e

N 1 !2









                                        (18) 

where  

 
*

k

2k 1
z : cos for k 0 N 2

2 N 1

 
      

       (19) 

We can then conclude that interpolation error is always bounded when 0.5     . 

 

d. The finite dimensional Model 
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  In this section, we apply the collocation approximation method for each delayed variable of the 

vectors 
1x(t ) , 

2u(t )  and 
3u(t ) . The following 3(N+1) finite dimensional equations can 

be then obtained [31]:  

1 1 1 1

1 1

1 1
(t) A B x(t)    

 
                                (20) 

2 2 2 2

2 2

1 1
(t) A B u(t)    

 
                              (21) 

3 3 3 3

3 3

1 1
(t) A B u(t)    

 
                               (22) 

augmented by the following outputs : 

1 1 1 1x(t ) (1, t) C (t)                                      (23)                                                                        

2 2 2 2u(t ) (1, t) C (t)                                    (24)                                                              

3 3 3 3u(t ) (1, t) C (t)                                    (25)  

where for k=1,2,3 

1 2 N 1

T

k,i k,i k,i k,i 

        

1 2 N 1

T

k, j k, j k, j k, j 

                

     

i

j N 1 N 1

k k,ij

z z

dL z
A a , i, j 1, , N 1

dz

  



       , 

     

n

i i

N 1 n0 0

1 k,i1 k,i

z z z z

dL z dL z
B b b , i 1, , N 1

dz dz

 

 

 
        

  

 

     

i i

N 1 m0 0

2 3

z z z z

dL z dL z
B B

dz dz

 

 

 
   
  

 

 T n N 1

1 1,ij 1,ij

0 if j 1, , N
C c c

1 if j N 1

  
       

,   

 T T m N 1

2 3 2,ij 3,ij

2,ij 3,ij

C C c c

0 if j 1, , N
c c

1 if j N 1

 
         


  

 

 

Thus, using the equations (23), (24) and (25), the system (1) can be written as: 

 0 1 1 1 0 2 2 1 3 3x(t) A x(t) A C B C B C Dd t          (26) 
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Let      T T T T T

1 2 3x (t) t t t        the state vector of the new augmented system and 

T

1 2 3y C [C C C C ]     its output vector. Imposing the constraint   n = N+1, we can 

deduce that the dynamics of the lumped system can be written as: 

       

   

t A t Bu t Dd t

y t C t

    

 
                              (27) 

where 

0 1 1 0 2 1 3

1 1

1 1

2

2

3

3

A A C B C B C

1 1
B A 0 0

A 1
0 0 A 0

1
0 0 0 A

 
 
 
  
 

  
 
 
 
  

 4n 4n , 2

2

3

3

0

0

1
BB

1
B

 
 
 
 

  

 
 
 
 

 4n m , 

1 2 3C C C C C    
p 4n , 

 3n q

D
D

0


 
  
  

     

IV. THE ROBUST OBSERVER 

 

Theorem 1 

 

The finite dimensional observer (3) converges asymptotically to the system (1) for all 

4n 4nT   if the following conditions hold:  

- The matrix N is Hurwitz 

- The approximation error dynamics  r t , given by (4), are described by the asymptotically 

stable system: 

 

r Nr                                                                           (28) 

- There exists a matrix   4n 4nP I EC    such that the following equations are satisfied: 
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NP LC PA 0                                                          (29) 

G PB 0                                                                    (30) 

PD 0                                                                         (31) 

 

 

Proof 

 

Define the observer reconstruction error by: 

ˆe                                                                          (32) 

We can write that 

e Ey Qr                                                           (33) 

The dynamics of the observer error are then given by 

e Ey Qr                                                           (34) 

Using (3) and (2), it can be shown that (34) is equivalent to: 

 

e N LC Gu EC A Bu Dd Qr A Bu Dd                               (35)                         

 

Substituting (32) into (35) gives  

 

 e N e P Qr LC Gu ECA A ECB B u ECD D d Qr                             (36)                                                                       

when  P I EC  , equation (36) can be written as 

 e Ne NP LC PA G PB u PDd Q r Nr                              (37)                                      

Imposing to the error r  to follow the dynamics of an asymptotic stable system (28) and if the 

conditions (29), (30) and (31) are satisfied, we have: 

 
t
lime t 0


                                                      (38) 

The asymptotic stability of the UIO (3) is then well proven. On the other hand, following the 

Darouach and Zasadzinsk works [36, 37, 38] we can state the following: 
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Theorem 2 

For the LTI multivariable system (2), the full-order observer (3) exists if and only if:  

(1)  rank(CD) q                       

(2) rank(D) q  

(3)  
sP PA

rank n ' s C, Re s 0
C

 
    

 
 

 

Theorem 3 

If the condition (1) holds and rank(P) n q  , the following three conditions are equivalent: 

(1) The pair  PA,C  is observable, at least detectable  

(2)  
sP PA

rank 4n s C, Re s 0
C

 
    

 
 

(3)  
sP A D

rank 4n q s C, Re s 0
C 0

 
     

 
 

We may conclude that, according to the above two theorems, only three existence conditions 

must be fulfilled. If the theorem 2 and the assumption (1) are satisfied, then it is possible to 

define a generalized inverse of the matrix  CD  as a matrix  CD


 such that 

      CD CD CD CD


 . From the condition (31), we easily obtain the expression of matrix E: 

 

 E D CD


                                                                 (39) 

where        
1 T

CD CD CD CD


 
 

. Let: 

11 12

21 22

N N
N

N N

 
  
 

,
11 12

21 22

P P
P

P P

 
  
 

, 11 12

21 22

A A
A

A A

 
  
 

1

2

L
L

L

 
  
 

, T 1

2

C
C

C

 
  
 

                                            

The UIO (3) can be designed according the following theorem:  
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Theorem 4: Observer design 

If the rank conditions in theorem 2 are satisfied, p q  and the pair  A,C  is observable, the UIO 

(3) can be designed for the multivariable LTI with UI (2) if the following conditions hold:  

   
   

11 12 11 12 22 21 1 2 22 21 2 22

21 22 21 22 22 21 1 2 22 21 2 22

N F F F P P C C P P C P

N (40)

N F F F P P C C P P C P


  


  

   
 

  
   
 

                                                                

  

  

11 12 22 21 1 2 22 21

21 22 22 21 1 2 22 21

F F P P C C P P
L

F F P P C C P P


 


 

  
 
 

   

                  (41) 

 4nG PB I D CD C B
   

  
                              (42) 

 E D CD


                                                         (43) 

where  

11 11 11 12 21 11 11

12 11 12 12 22 11 12

21 21 11 22 21 21 11

22 21 12 22 22 21 21

F P A P A N P ,

F P A P A N P ,

F P A P A N P ,

F P A P A N P

  

  

  

  

                                (44) 

and 
11N  and 

21N  are random matrices. 

Proof:  

Therefore, inequality (29) can be written in the following form: 

   

 

 

11 11 12 21 1 1 11 11 12 21 4n p 4n p

11 12 12 22 1 2 11 12 12 22 4n p p

21 11 22 21 2 1 21 11 22 21 p 4n p

21 12 22 22 2 2 21 12 22 22 p p

N P N P L C P A P A 0

N P N P L C P A P A 0

N P N P L C P A P A 0

N P N P L C P A P A 0

  

 

 



    

    

    

    

 (45) 

Using the equalities (44), the system (45) can be written as the two following systems: 
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12 21 1 1 11

12 22 1 2 12

N P L C F

N P L C F

 

 
                                                      (46) 

22 21 2 1 21

22 22 2 2 22

N P L C F

N P L C F

 

 
                                                       (47) 

 The solutions of system (46) are given by: 

   
  

12 12 11 12 22 21 1 2 22 21 2 22

1 11 12 22 21 1 2 22 21

N F F F P P C C P P C P

L F F P P C C P P


  

 

   

  

    (46) 

 

whereas the solutions of system (47) are given by: 

   
  

22 22 21 22 22 21 1 2 22 21 2 22

2 21 22 22 21 1 2 22 21

N F F F P P C C P P C P

L F F P P C C P P


  

 

   

  

  (47) 

 

Finally, for random matrices 
11N  and 

21N , matrices N,L,G and E  can be found solving (46) 

and (47) and using (40)-(43).  

In this section, the UIO is reduced in to a standard one where the unknown input vector will 

not interfere in the observer equations. The designed observer is of higher dimension than the 

delayed system (1) since it will be based on the near model (2).  

The last approach is in part inspired from [39] for the simplicity and direct design for high 

dimension models compared to the O’Reilly’s observer [40] or Hui and Zak observer [41]. 

V. APPLICATION 

 

a. The quadruple- tank process 
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    This section briefly described the quadruple-tank benchmark extensively used in the literature 

(see for example [21, 42, 43, 44, 45, 46, 47]) and shown by Figure 1. The process comports four 

interconnected water tanks and two pumps.   

The target is to control the level in the two lower tanks using the two pumps, where iS  is the 

cross-section of tank i and ia is a parameter area of the pipe flowing out from tank i. 1  is ratio of 

water diverting to tank 1 and tank 4 and 2  is ratio of water diverting to tank 2 and tank 3. ih  is 

the level of water in tank i, 1 2and  are manipulated inputs. 

 

                       Figure 1. The quadruple tank process 

b. The quadruple-tank process model  

The nonlinear model of the process is described by [44]:  

 

31 1 1 1 1
1 3

1 1 1

2 2 4 2 2 2
2 4

2 2 2

3 3 2 2 2
3

3 3

4 4 1 1 1
4

4 4

adh a k v
2gh 2gh

dt A A A

dh a a k v
2gh 2gh

dt A A A

dh a (1 )k v
2gh

dt A A

dh a (1 )k v
2gh

dt A A


   


   

 
  

 
  

                  (48) 

Seifeddine Ben Warrad and Olfa Boubaker, FULL ORDER UNKNOWN INPUTS OBSERVER FOR MULTIPLE TIME-DELAY SYSTEMS 

1763



Let T

1 2 3 4x [h h h h ]  the state vector,  
T

1 2u     the control vector and T

1 2y [y y ]  

is the output vector. Furthermore, to have a more realistic description of the process, let take into 

account transport delays between valves and tanks. The differential equations of the quadruple-

tank process with time-delays will be described by: 

3 1 1 1 51 1
1 3 1

1 1 1

2 2 2 62 2 4
2 4 2

2 2 2

3 3 2 2 2 3
3

3 3

4 4 1 1 1 4
4

4 4

a k v (t t )dh a
2gh 2gh (t t )

dt A A A

k v (t t )dh a a
2gh 2gh (t t )

dt A A A

dh a (1 )k v (t t )
2gh

dt A A

dh a (1 )k v (t t )
2gh

dt A A

 
    

 
    

  
  

  
  

   (49) 

 

Assume that the transport delays it  , i=1,…,6 are perfectly symmetric, we can write that 1 2t t , 

3 4t t  and 5 6t t . Linearizing the non linear system (49) around the equilibrium point, one can 

obtain the MIMO LTI model with multiple delays (1) with: 

 

1

1 10

2

2 20

0

3

3 30

4

4 40

a g
- 0 0 0

A 2h

a g
0 - 0 0

A 2h
A

a g
0 0 - 0

A 2h

a g
0 0 0 -

A 2h

 
 
 
 
 
 

  
 
 
 
 
 
  

 

3

1 30

4
1

2 40

a g
0 0 0

A 2h

a g
A 0 0 0

A 2h

0 0 0 0

0 0 0 0

 
 
 
 
 
 
 
 
 
 

,

1 1

1

2 2

0

2

k
0

A

k
0B

A

0 0

0 0

 
 
 

 
  
 
 
 
 

, 2 2

1

3

1 1

4

0 0

0 0

(1 )k
0B

A

(1 )k
0

A

 
 
 
  

  
 
  
 
 

   (50)                                                                                                                        
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with 1 1t   , 2 5t   and 3 3t   .         

c. Minimum phase and non minimum phase numerical models 

 

Using the numerical values of the process parameters found in Table 1 and Table 2 [43], one can 

obtain the minimum phase model and the minimum phase model of the quadruple-tank process 

with multiple delays. 

Table 1. Parameter values of the quadruple-tank process 

Parameter Description Value unit 

1 3A ,A  Area of the tanks 28 [cm 2 ] 

2 4A ,A  Area of the tanks 32 [cm 2 ] 

1 3a ,a  Area of the outlet 

pipes 

0.071 [cm 2 ] 

2 4a ,a  Area of the outlet 

pipes 

0.057 [cm 2 ] 

k
c
 Constant 0.5 [V/cm] 

g Acceleration due 

to gravity 

9.81 [cm 2 /s] 

 

 

Table 2. Operating parameters of minimum and non-minimum phase models 
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The minimum phase model is described by (1) where: 

0

-0.1978 0 0 0

0 -0.1406 0 0
A

0 0 -0.0753 0

0 0 0 -0.0467

 
 
 
 
 
 

,
1

0 0 0.0753 0

0 0 0 0.0467
A

0 0 0 0

0 0 0 0

 
 
 
 
 
 

,

0

0.0833 0

0 0.0628
B

0 0

0 0

 
 
 
 
 
 

, 
1

0 0

0 0
B

0 0.0479

0.0312 0

 
 
 
 
 
 

 

The non-minimum phase model is described by (1) where: 

0

-0.1993 0 0 0

0 -0.1422 0 0
A

0 0 -0.1230 0

0 0 0 -0.0873

 
 
 
 
 
 

,
1

0 0 0.1230 0

0 0 0 0.0873
A

0 0 0 0

0 0 0 0

 
 
 
 
 
 

,

0

0.0482 0

0 0.0350
B

0 0

0 0

 
 
 
 
 
 

, 
1

0 0

0 0
B

0 0.0775

0.0559 0

 
 
 
 
 
   

Parameter Description Minimum 

phase values 

Non-minimum 

phase values 

Unit 

0
1h ,  0

2h  Steady-state value for the 

water level i 

12.4, 12.7 12.6 , 13 [cm] 

0
3h , 0

4h  Steady-state value for the 

water level i 

1.8 , 1.4 4.8 , 4.9 [cm] 

0

1 , 0

2  Voltage applied to pump i 3.00, 3.00 3.15 , 3.15 [V] 

1k , 2k  Gain from pump i 3.33, 3.35 3.14 , 3.29 [cm 3 /V.s] 

1 , 2  Fraction of flow going to 

tank i from pump i 

0.7 , 0.6 0.43 , 0.34 - 
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d. The orthogonal collocation method 

 

To ensure a compromise between the model complexity and the accuracy of the approximation, 

we opted for the following numerical values N=3, 0.5     . Note also that N=3 is imposed 

by the observer design problem. In this case, the collocated points are given by: 

 

0z 0 , 1z 0.1727  , 2z 0.5 , 3z 0.8273  and 4z 1 . 

The finite dimensional system (27) is defined by the following matrices: 

1

0 3.4915 1.5275 0.5180

2.6732 0.0000 2.6732 0.7500
A

1.5275 3.4915 0.0000 2.4820

2.8203 5.3333 13.5130 10

 
 
  
 
  
 
  

 

1

2.4820 2.4820 2.4820 2.4820

0.7500 0.7500 0.7500 0.7500
B

0.5180 0.5180 0.5180 0.5180

1 1 1 1

    
 
 
    
 
 

1

0 0 0 1

0 0 0 1
C

0 0 0 1

0 0 0 1

 
 
 
 
 
 

 

2

0 3.4915 1.5275 0.5180

2.6732 0.0000 2.6732 0.7500
A

1.5275 3.4915 0.0000 2.4820

2.8203 5.3333 13.5130 10

 
 
  
 
  
 
  

, 2

2.4820 2.4820

0.75 0.75
B

0.5180 0.5180

1 1

  
 
 
  
 
 

, 

2

0 0 0 1
C

0 0 0 1

 
  
 

 

3

0 3.4915 1.5275 0.5180

2.6732 0.0000 2.6732 0.7500
A

1.5275 3.4915 0.0000 2.4820

2.8203 5.3333 13.5130 10

 
 
  
 
  
 
  

, 
3

2.4820 2.4820

0.75 0.75
B

0.5180 0.5180

1 1

  
 
 
  
 
 

 , 

3

0 0 0 1
C

0 0 0 1
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e. Simulation results 

 

Simulation results for the two case studies (minimum and non-minimum phase models) are 

conducted for the initial condition  
T

3n q0 4 4 6 5 0 
      and the constant time-

delays 1 5s  , 2 2s   and 3 4s  . The input signal is given by  u t sin(2 ft)   while the 

unknown input is given by  d t 0.3sin(2 ft)   and its related constant matrix is given by 

 

T

3n q
D D 0


 
 

providing that  
T

D 40 50 0 60 .  

 

The state variables (thank levels) and their approximation variables via collocation method for 

the minimum and non-minimum phase models are shown by Figure 2 and Figure 3, respectively.   

Figure 4 shows the observer estimation errors for the minimum phase model case study for 

different values Q=0, Q=0.3, Q=0.6 and Q=0.9 whereas observer estimation errors for the second 

case study are shown by Figures 5.  

It is noted that for the two case studies, the UIO converges asymptotically but more rapidly for 

the first case study.  
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Figure 2. Tank levels and their approximation state variables via orthogonal collocation 

method: Minimum phase model case study 
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Figure 3. Tank levels and their approximation state variables via orthogonal collocation 

method: Non-minimum phase model case study 
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Figure 4. Observer error dynamics: Minimum phase model case study 
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Figure 5. Observer error dynamics: Non-Minimum phase model case study 

 

Figures 6 and 7 represent the error dynamics (28) related to the approximation error vector  r t , 

defined between the time-delay system (1) and the lumped system (2) for the two case studies, 

respectively. For i 1,2,3,4 , ri (t) represent the estimation errors between the level of water in 

the tank i and its approximated level  using the orthogonal collocation method.  
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Figure 6. Error dynamics    r t Nr t : Minimum phase model case study 

 

Seifeddine Ben Warrad and Olfa Boubaker, FULL ORDER UNKNOWN INPUTS OBSERVER FOR MULTIPLE TIME-DELAY SYSTEMS 

1771



0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

6

Time [s]

r(
t)

 [
c
m

]

 

 

r
1
(t) 

r
2
(t)

r
3
(t) 

r
4
(t)

 

Figure 7. Error dynamics    r t Nr t :  Non-minimum phase model case study 

 

VI. CONCLUSION 

In this paper, we have presented a robust observer design for MIMO LTI systems with multiple 

time-delays and unknown inputs. A numerical example of a quadruple-tank benchmark has been 

used to illustrate the efficiency of the proposed method. The two case studies of minimum and 

non minimum phase models are used to show the asymptotic stability and the robustness of the 

designed observer. 
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