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Abstract- This paper addresses the problem of mobile sensor localization and tracking in an obstructed 

environment. To solve this problem, a combination of three approaches is proposed: a nonlinear 

Kalman Filter to estimate the mobile position, a sub filter used jointly with the nonlinear filter to 

estimate the bias due to the Non-Line Of Sight (NLOS) effect and a low complexity method for Line Of 

Sight (LOS) and NLOS identification.  Based on hypothesis testing, this method discriminates between 

the LOS and NLOS situations using a sequence of estimated biases. Simulation results show that the 

proposed method provides good positioning accuracy. 

 

Index terms: Localization, Tracking, Wireless Sensor Network, Non Line of Sight, Divided Difference Kalman 

Filter, Unscented Kalman Filter, Bias estimation, Hypothesis testing. 
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I. INTRODUCTION 

 

Static and dynamic location of an object or a person in a wireless sensor network (WSN) has 

become one of the most important tasks, due to its multiple applications (security and 

surveillance, health care, smart building …). It is true that for localization purposes, some sensor 

nodes may include a Global Positioning System (GPS), but this solution may not be suitable 

because it is financially and energetically costly and cannot be adopted for indoor applications. 

An alternative to this approach would be to exploit some parameters extracted from the radio 

frequency signals exchanged between the mobile and a number of reference sensors nodes, called 

"anchors". Among such parameters are the received signal strength (RSS) measurements, the 

angle of arrival (AOA) measurements, and the propagation time based measurements (time of 

arrival/ time difference of arrival TOA/TDOA) [1]. Generally, localization methods based on 

measurements of TOA, TDOA and AOA provide estimated position with good precision, but 

require accurate synchronization between the transmitter and the receiver and regular calibration, 

which increases the cost and the energy consumption of the localization system. A solution to this 

problem would be the use of the measured RSS information, which is always available and 

requires no additional hardware [2]. The presence of obstacles in the environment where the 

sensor nodes are deployed provokes NLOS propagation between the anchors nodes and the 

mobile node.  The measurements taken in LOS conditions are affected solely by errors while 

those taken in NLOS conditions are corrupted by errors and biases, which causes very inaccurate 

estimated positions [3]. It is therefore indispensable to identify NLOS situations to improve the 

location accuracy. This problem was the subject of several studies. Modeling the LOS/NLOS 

situations by a Markov chain process, the authors in [4,5] use the interacting multiple model 

algorithm, which runs several nonlinear Kalman filters in parallel, to cope with this problem. 

Other studies propose the use of statistical analysis methods. In [6, 7] the identification of NLOS 

conditions is achieved by employing the statistical decision theory based on different metrics 

such as TOA and RSS. The authors in [8] propose a novel NLOS identification technique based 

on the multipath channel statistics, such as the kurtosis, the mean excess delay spread, and the 

root mean square delay spread. 
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Hypothesis testing methods have also been used in this context. The work presented in [9] 

describes a non-parametric solution for accurate distance-based source localization requiring no 

prior knowledge of distance estimate statistics. In [10], the authors present a non-line-of-sight 

mitigation approach, which uses LOS and NLOS identification and a hypothesis testing analysis 

to achieve accurate identification. 

In this paper, we propose a low complexity method which uses a Kalman filter to provide bias 

estimates that are then used in a hypothesis test, for NLOS identification. This filter is used 

jointly with a nonlinear Kalman filter to estimate the mobile positions from RSS measurements.  

As a nonlinear Kalman filter, we propose to use the Unscented Kalman Filter (UKF) or the 

Divided Difference Kalman Filter (DDKF) because these  two filters are robust and provide good 

positioning  accuracy compared to other non-linear filters [11]. The rest of this paper is organized 

as follows: the measurement model and the proposed methodology are described in section II. In 

section III, computer simulation results are presented and analyzed. Finally, some conclusions are 

drawn in section IV. 

 

 

II. THE PROPOSED LOCALIZATION AND TRACKING ALGORITHM 

 

To determine its position, a mobile sensor node, in a wireless sensor network, detects the radio 

frequency signals transmitted by the anchors to extract parameters, such as RSS measurements. 

Then, the localization and tracking algorithm processes these parameters to estimate the position.    

The following figure illustrates this process. 

 

 

Figure1.  Steps for position estimation 

 

Before describing the proposed algorithm, we first define the measurement model under the LOS 

and the NLOS conditions. 
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II.1 RECEIVED SIGNAL STRENGTH (RSS) 

 

RSS is a measurement of the power of the received signal. A very common radio propagation 

model to represent the RSS as a function of the distance is the log-normal shadowing path loss 

model [12]. According to this model, the received signal strength is formally expressed as: 

 

P(d) = {
P0 − 10ηlog10 (

d

d0
) + XLOS ,        if  LOS

P0 − 10ηlog10 (
d

d0
) + XNLOS ,       if  NLOS

                                   (1)                                

 

Where: 

 P0 is the received power at a reference distance d0 (typically one meter) from the transmitter, η is 

the path loss exponent, which depends on the surrounding and buildings type, and d is the 

distance between the transmitter and the receiver, in meters. Random variations in the RSS are 

modeled by a Gaussian random variable that has zero mean and variance 𝜎𝐿𝑜𝑠
2  

: XLOS~N (0, 𝜎𝐿𝑜𝑠
2 ) 

in the LOS case and non-zero mean and variance 𝜎𝑁𝐿𝑂𝑆
2  

: XNLOS~𝑁 (b, 𝜎𝑁𝐿𝑜𝑠
2 ) in NLOS case, 

with 𝜎𝑁𝐿𝑜𝑠
2  > 𝜎𝐿𝑜𝑠

2 . 

 

 

II.2 THE NONLINEAR KALMAN FILTERING  

 

Since the relationship between the RSS measurements and the mobile state vector, composed for 

example of its position and its velocity, is non-linear, linear Kalman filtering cannot be applied 

directly. It first, requires the use of a static localization algorithm, such as the Least Square 

algorithm [11], to obtain estimates of the mobile position. These estimates are then fed into the 

linear Kalman as measurements, to obtain refined position estimates. The drawback of this 

approach is its limited performance. As an alternative, one can use nonlinear Kalman filtering. In 

this paper we have opted for the UKF and the DDKF, due to their good performance, as stated 

earlier. This type of filtering is an iterative estimation based on a recurrence relation, which 

means that only the position previously estimated and actual measurements (RSS measurements) 

are needed to calculate the estimate of the current position. 
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II.2.1 THE UNSCENTED KALMAN FILTER (UKF) 

 

Proposed by  Julier and Uhlmann in 1997, the UKF   uses the unscented transformation 

which allows calculating the mean and covariance of a transformed variable from a set of sample 

points, called sigma points that are propagated using the non-linear transformation [13].  

A single cycle of the UKF consists of two steps, a prediction step and a correction step.    

Prediction step: Since the state equation is linear, the standard equations of a linear Kalman 

filter may be used in this step. The estimated state at time k-1 is propagated to obtain the a priori 

(predicted) state estimate at time k, as follows:    

Xk|k−1
 = F 

 Xk−1|k−1
                                                          (2) 

The state vector Xk = [x, y, vx, vy]
Tconsists of the positions x and y and the velocities vx and vy  

at time k. 

Assuming a constant velocity movement model, the state transition matrix which relates the state 

at time k to the state at time k-1 is given by:  

 

F = [

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

] ,                                                               (3)  

 

where T is the sampling interval. 

The covariance matrix of the predicted errors, Pk|k−1
 , may be expressed as a function of the 

estimated covariance matrix,  Pk−1|k−1
 , and the process noise covariance matrix Q as follows: 

 

Pk|k−1 = FPk−1|k−1F
T + Q                                                        (4) 

If the fluctuations of the acceleration around zero are assumed to be constant during each update 

time interval and if they are modeled by a white noise with variance σ𝑄
2 , then Q is given by [14]: 
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Q =  

[
 
 
 
 
 
 
T4

4
0

T3

2
0

0
T4

4
0

T3

2

T3

2
0 T2 0

0
T3

2
0 T2

]
 
 
 
 
 
 

σ𝑄
2                                                   (5) 

 

The practical choice of the process noise variance σ𝑄
2   is discussed in [14].  

Update step: First, given the predicted state vector, the sigma points are calculated using 

equations (6)-(9) and stored in the columns of a matrix χk of size L × (2L +1), where L is the 

dimension of the state vector.  

      (χk)0 = Xk
−

                                                                                               (6) 

(χk) i = Xk
−+ (√(L + λ) Pk

−)i , i= 1………L                                 (7) 

(χk) i = Xk
− − (√(L + λ) Pk

−)i , i= L+1………2L                        (8) 

 

where (χk)i  denotes the i
th

 column of matrix χk and  λ is defined by: 

λ= α
2 

(L+κ) −  L                                                      (9) 

 

In (9), α
 
and κ control the spread of the sigma points. α is usually set to 0 ≤α ≤1 and κ is a 

secondary scaling parameter which is usually set to zero.  

Then, the sigma points (χk)i are transformed by the measurement function,  

(Zk) i = h((χk-1 )i ), i=0……..2L                                          (10) 

The function  h(x,y) is defined as: 

h (x, y)  =

[
 
 
 
 
 P0 − 10 ηlog10 (

d1

d0
)

P0 − 10 ηlog10 (
d2

d0
)

⋮

P0 − 10 ηlog10 (
dn

d0
)]
 
 
 
 
 

                                                         (11) 

 

with dn denoting the Euclidean distance function, defined by: 

di = √(x − xi)2 + (y − yi)2                                              (12) 
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In the above equation (xi, yi), i = 1,… , n represent the coordinates of the  i-th anchor node. 

The weighted mean is computed as:  

Ẑk= ∑  2L
i=0 wi

(m)
 (Zk)i  ,                                                                          (13) 

 

where wi
(m)

 is the weight associated with the sigma point i, defined by: 

w0
(m)

=λ/ (L+λ)                                                        (14) 

wi
(m)

= 1/ {2(L+λ)}, i=1…..2L                                           (15) 

 

The vector Ẑk, plays the role of the predicted measurement vector that may be used to calculate 

the a posteriori state estimate: 

Xk
   =Xk

−+ Kk (Zk – Ẑk) ,                                                      (16) 

where Zk is the vector of  measurements and Kk is the Kalman gain, given by:  

 

Kk = Pxz Pzz
−1,                                                                                        (17) 

with:  

Pzz   = ∑  2L
i=0 wi

(c)
[(Zk)i -Ẑk ] [(Zk)i -Ẑk ]

T 
+ R                              (18) 

 

Pxz  = ∑  2L
i=0 wi

(c)
[(χk)i -Xk

− ] [(Zk)i -Ẑk ]
T 

                               (19) 

In (18), R represents the covariance matrix of the measurement noise and can be expressed as 

follows:  

R =  

[
 
 
 
𝜎1

2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝑛

2]
 
 
 
  ,                                               (20) 

 

where n is the number of anchor nodes and 

𝜎𝑖
2 = {

𝜎𝐿𝑂𝑆
2 , 𝑖𝑓  𝐿𝑂𝑆

𝜎𝑁𝐿𝑂𝑆
2 , 𝑖𝑓  𝑁𝐿𝑂𝑆

                                                  (21) 

 The weight wi
(c)

is defined by:  

w0
(c)

= 
λ

(L+λ)
 + (1- α

2 
+ β)                                               (22) 
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wi
(c)

= 
1

2 (L+λ)
  , i=1…..2L                                              (23) 

 

β is a parameter used to incorporate any prior knowledge about the error distribution  (for 

Gaussian distribution, β = 2 is optimal). 

Finally the estimated covariance matrix is updated as follows: 

Pk
 =  Pk

− − Kk
   Pzz  Kk

T                                                 (24) 

                 

 

II.2.2 THE DIVIDED DIFFERENCE KALMAN FILTER (DDKF) 

 

        Based on Stirling's interpolation, the DDKF was proposed to solve the nonlinearity problem 

by approximating the mean and the covariance of stochastic variables generated by nonlinear 

transformation of stochastic variables with known mean and covariance [15].  

First, the Kalman Filter state prediction is applied (equations (2) and (4)) due to the assumed 

linear process dynamics. 

Update step: The DDKF computes the mean and covariance of a nonlinearly transformed 

random variable by using the second order polynomial approximation. 

Let Lk denote the Cholesky decomposition of the predicted covariance matrix Pk|k−1
 : 

Lk = Chol (Pk|k−1)                                                                 (25) 

The predicted measurement, Ẑk, is calculated by: 

Ẑk =
ξ2 − L

ξ2
h(J(Xk|k−1

 )) +
1

2ξ2
∑h (J(Xk|k−1

 + ξ (Lk) i))

L

i=1

+ h (J(Xk|k−1
 − ξ( Lk) i)),   (26) 

where L is the dimension of the state vector, (Lk)i denotes the i
th

 column of matrix Lk. 

ξ is the interval step-size for the approximation, with √3 being the optimal value for a Gaussian 

distribution [15]. 

The matrix J in equation (26) allows the retrieval of the position vector from the state vector. It is 

given by:  

J = [
1 0
0 1

   
0 0
0 0

]                                                      (27) 
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The Kalman gain can be calculated by: 

Kk = Pxz Pzz
−1                                                                (28) 

 

Where Pzz is the measurement prediction covariance defined as: 

 

Pzz = H(Xk|k−1
 , Lk, ξ)H

T(Xk|k−1
 , Lk, ξ) + H(2)(Xk|k−1

 , Lk, ξ)H
(2)T(Xk|k−1

 , Lk, ξ) + P_bk|k−1
 + R    (29) 

 

and  Pxz is the covariance between the variable to be estimated and the observation given by: 

Pxz = LkH
T(Xk|k−1

 , Lk, ξ)                                                     (30)  

 

In the two previous equations the (i, j) element of matrices H and H
(2)

 are defined as: 

 

Hi,j(Xk|k−1
 , Lk, ξ) = (hi(J(Xk|k−1

 + ξ(Lk)j)) − hi(J(Xk|k−1
 − ξ(Lk)j))) /2ξ         (31) 

Hi,j
(2)

(Xk|k−1
 , Lk, ξ) =

√ξ2−1

2ξ2 (hi(J(Xk|k−1
 + ξ(Lk)j)) + hi(J(Xk|k−1

 − ξ(Lk)j)) − 2hi(J(Xk|k−1
 ))) (32) 

 

Where hi(•) denotes the i
th

 element of h(•), defined in equation (11). 

P_bk|k−1
  in equation (29) is the covariance matrix of the predicted bias (bias estimation will be 

detailed in the next sub-section). 

The a posteriori state vector Xk|k
  and the associated covariance matrix  Pk|k

   are updated 

according to: 

Xk|k
 = Xk|k−1

 + KKVk                                                           (33) 

Pk|k = Pk|k−1 − KKPzzKk
T                                                      (34) 

 

Vk in equation (33) is the innovation or measurement residual calculated as follows: 

Vk = Zk − Ẑk − bk|k−1
  ,                                                   (35) 

Where Zk is the n-dimensional vector of RSS measurements at time instant k and bk|k−1
  is the 

vector of predicted biases. 
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II.3 BIAS ESTIMATION 

 

Since the measurements collected under NLOS conditions are biased, it is essential to estimate 

the bias to reduce the NLOS effect. This is achieved by a linear Kalman filter that is linked to the 

UKF or the DDKF; its formulation is summarized in the following [16]: 

 

bk|k−1
 =  bk−1|k−1

                                                          (36) 

 P_bk|k−1
 =  P_bk−1|k−1

 + Qb                                              (37) 

  K_bk
 =  P_bk|k−1

 Pzz
−1                                                             (38) 

bk|k
 = bk|k−1

 + K_bk
 Vk                                                  (39) 

 P_bk|k
 = [I−K_bk

 ] P_bk|k−1
                                              (40) 

 

Where bk|k
   represents an estimate of the bias vector, and Qb is the covariance matrix that models 

the uncertainty about the bias evolution model. The initial value of the bias vector is set to zero. 

 

 

II.4 LOS/NLOS DISCRIMINATION 

 

To decide whether the mobile sensor node is in LOS or NLOS situation with respect to each 

anchor node, a hypothesis test is applied. The null (H0) and alternative (H1) hypothesis are 

defined as: 

 H0: bias = 0     LOS

    H1: bias ≠ 0      NLOS
                                                         (41) 

Assuming that b1, b2,…,bM , is a sequence of M measurements of estimated biases, the test 

statistic is defined as: 

S =
∑ bj

M
j=1

√Mσ0
2

  ,                                                                (42) 

 

where σ0
2 is the variance of the bias estimator. 
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This statistic has a unit variance Gaussian distribution with a mean equal to zero under H0 and 

√𝑀

𝜎0
𝑏 under H1. If |S| < λ, the hypothesis H1 is rejected , where λ is a specified threshold that must 

be chosen so that the error probability is minimized. 

 

 

III. SIMULATION RESULTS 

 

A number of Monte Carlo simulations were carried out to assess the performances, in terms of 

localization accuracy, of the proposed tracking methods, referred to as the HT-UKF and the HT-

DDKF. These performances are compared to the performances of each filter under LOS situation 

and NLOS situation. In these simulations, a mobile node moves at a constant speed of 1 m/s in a 

20m x 20m rectangular area, containing several obstacles. We have deliberately considered a non 

maneuvring movement, in order to distinguish between the errors due to the visibility between 

the mobile and the anchors and those due to the maneuvers of the mobile. Four anchors nodes 

located at the four corners of this area are used, as shown in figure 2. The evolution of the mobile 

situation with respect to the anchors nodes is depicted in Figure 3. 

The other parameters used in the simulations are as follows:  The signal strength P0 at the 

reference distance, d0 = 1m, is set to - 60 dBm. Since we assume that the mobile node moves in 

an obstructed environment, the value assigned to the path loss exponent η is set to 4. The RSS 

measurements standard deviations under LOS and NLOS are set, respectively, to 0.5 and 4 dB, 

and the RSS measurements mean, b, in the NLOS situation is -5 dB. 

To initialize the state vector of the nonlinear filters (UKF and DDKF ), the initial positions are 

calculated using a multilateration approach, which provides  estimates of the x and y positions, 

from distances obtained using the propagation model [17]. The velocities vx and vy  are initialized 

to zero assuming no prior knowledge about the movement speed of the mobile node.  
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Figure 2. Illustration of the simulation scenario 

 

 

 

Figure 3. Evolution of the mobile situation with respect to the anchors nodes 

 

The localization accuracy is an important criterion for assessing localization algorithms; it is 

evaluated using the Root Mean Square Error (RMSE) in position and the cumulative distribution 

function (CDF) of the estimation errors. The RMSE is calculated as follows: 

 

RMSE(k) = √
1

R
∑  M

i=1 (x0 (k) − x̂i(k))2 + (y0 (k) − ŷi(k))2  ,                   (43) 
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where M is the total number of runs, (x̂i(k) , ŷi(k)) is the estimated position at run i and time k, 

and (x0(k) , y0(k)) is the true position  of the mobile node, at time k. 

The results obtained by averageing over 500 runs are presented in figures 4 to 11. 

Figures 4 and 7 show a comparison between the performance of the proposed method based on 

two variants of the nonlinear Kalman filter, which are the UKF and the DDKF,  and the 

performances of these  two filters matched to  LOS and NLOS conditions, respectively. It can be 

observed that the combination of a hypothesis test and the UKF or the DDKF performs better 

than the single filter approach and provides a good position accuracy in mixed LOS/NLOS 

conditions. 

In Figures 5 and 8 the cumulative distribution function is plotted. As can be seen, the LOS/NLOS 

identification  associated with the UKF or the DDKF, for state estimation, is the most effective 

approach with a localization error less than 2.5 meters in 100% of cases. 

Figures 6 and 9  show the time evolution  of the estimated RSS bias. It can be observed that this 

evolution is consistent with the LOS/NLOS situations, which means that the estimated RSS bias 

can be used to detect these situations.  

In Figures 10 and 11 a comparison between the  method based on the UKF and the one based on 

the DDKF  is presented. It can be observed that the HT-DDKF performs better than the HT-UKF. 

 

Figure 4.  RMSE in position obtained with the HT-UKF and the UKF under LOS and NLOS 

conditions 
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Figure 5. Cumulative distribution function of the location errors of the HT-UKF and the UKF 

under LOS and NLOS conditions. 

 

Figure 6. RSS bias estimation in the HT-UKF. 
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Figure 7.  RMSE in position obtained with the HT-DDKF and the DDKF under LOS and NLOS 

conditions 

 

 

Figure 8. Cumulative distribution function of the location errors of the HT-DDKF and the DDKF 

under LOS and NLOS conditions. 
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Figure 9. RSS bias estimation in the HT-DDKF. 

 

 

Figure 10.  RMSE in position obtained with the HT-DDKF and the HT-UKF. 
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Figure 11. Cumulative distribution function of the location errors of the HT-DDKF and the HT-

UKF. 

  

 

IV. CONCLUSIONS 

 

The problem addressed in this paper concerns mobile localization in mixed LOS/NLOS 

environments. To solve this problem, we propose as a solution the joint use of a nonlinear 

Kalman filter  and a sub linear Kalman filter; the former is dedicated to the estimation of the state 

vector (position and velocity) of the mobile, whereas the latter is used to estimate the bias, due to 

NLOS propagation. To mitigate the effect of this bias a hypothesis test is performed, based on the 

estimated biases. Two nonlinear variants of the Kalman filter were tested, the Unscented Kalman 

Filter and the Divided Difference Kalman Filter. The presented results show the efficiency of  

both filters,  with an advantage in terms of precision in favor of the latter one. 
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