Polish Journal of Microbiology 2017, Vol. 66, No 2, 281-285

SHORT COMMUNICATION

Morphological and Molecular Characterization of *Phoma complanata*, a New Causal Agent of *Archangelica officinalis* Hoffm. in Poland

BEATA ZIMOWSKA^{1*}, EWA DOROTA ZALEWSKA¹, EWA DOROTA KRÓL^{1, 2} and AGNIESZKA FURMAŃCZYK²

Department of Plant Pathology and Mycology, University of Life sciences, Lublin, Poland

Submitted 2 November 2014, revised and accepted 10 April 2017

Abstract

The paper concerns the fungus *Phoma complanata*, isolated for the first time in Poland, from the roots and umbels of angelica (*Archangelica officinalis*) in 2009. The morphology of fungal isolates was tested on standard culture media. Moreover, the sequence analysis of ITS regions was conducted. Morphological similarity of *P. complanata* Polish isolates to the reference isolate obtained from CBS culture collection was determined and together with the molecular analysis confirmed the affiliation of the fungus to the species.

Key words: Phoma complanata, fungus Phoma sensu lato from angelica, ITS rDNA sequences, SEM identification

Phoma sensu lato is a highly polyphyletic genus with its unclear species boundaries (Aveskamp *et al.*, 2008; 2010; Rai *et al.*, 2014; Chen *et al.*, 2015). The conventional system of identification based on morphological features in *in vitro* conditions is still valid but insufficient. Increasingly, in order to achieve the correct identification of *Phoma sensu lato*, secondary metabolites, the protein profile and nucleotide sequences using modern molecular techniques have been examined (Aveskamp *et al.*, 2008; 2010; Frisvad *et al.*, 2008; Rai *et al.*, 2014).

P. complanata according to the current rules of taxonomy, belongs to the family *Didymellaceae*, which according to the old system included species of the section *Phoma*, *Peyronella*, *Heterospora* oraz *ParaPhoma* (Aveskamp *et al.*, 2010).

Farr *et al.* (1995) reported occurrence of *P. complanata* isolates on angelica stem in the USA. On the other hand, according to Boerema *et al.* (2004) the species *P. complanata* is commonly transferred by the seeds of parsnip (*Pastinaca sativa*), parsley (*Petroselinm crispum*) and carrots (*Daucus carota*), and damaged petioles, leaves and roots of these plants.

P. complanata was isolated for the first time in Poland from the roots and umbels of angelica (*Archangelica officinalis*) in 2009 (Zalewska *et al.*, 2013). The isolation of *P. complanata* was repeated in recent years.

The accessible literature provides information on disease symptoms caused by *P. complanata* (Farr *et al.*, 1995; Zalewska *et al.*, 2013), pathogenicity and the

mode of penetration of angelica leave and stem tissue (oral communication). The present research undertakes identification with morphological features Polish isolates of *P. complanata*. Moreover, the sequence analysis of the ITS regions was carried out – in order to confirm the accuracy of identification.

In the studies there were used single-cultures of *P. complanata* (Tode) Desm. from the collection of the Department of Phytopathology and Mycology of the University of Life Sciences in Lublin. These cultures were obtained from angelica leaves (Zalewska *et al.*, 2013) and identified on standard media basing on a study Boerema *et al.* (2004), taking into account the up to date rules of taxonomy of *Phoma* genus, while reference isolate CBS 100311 was from the stems of hogweed (*Heracleum spondyllium* L.) in the Netherlands obtained from Centraalbureau voor Schimmel-cultures (CBS), Utrecht, Netherlands.

Three randomly selected isolates of *P. complanata*: A 103, A 233 and A 235 and reference isolate CBS 100311 were the subject of morphological and genetic characteristics.

The 3 mm discs of sporulating mycelium of the above mentioned isolates were placed on three solidified standard media, *i.e.* MA – maltose agar medium, OA – oat agar medium and CA – cherry agar medium (Boerema *et al.*, 2004). The mode of the culture incubation and description is provided in Boerema *et al.* (2004). The measurements of 300 conidia (3 isolates \times 100 conidia)

^{*} Corresponding author: B. Zimowska, Department of Plant Pathology and Mycology, University of Life sciences, Lublin, Poland; e-mail: beata.zimowska@up.lublin.pl

Fig. 1. P. complanata morphology.

(a) 7-day-old colonies on standard media. (b) 14 –day-old colonies on standard media. (c) pycnidia (arrow) in the aerial mycelium.
(d) aggregate of pycnidia (×125). (e, f) drops of conidial exudate on OA (arrows). (g) Scanning electron micrograph of pycnidium with ostiole (arrow) (scale bar = 20.00 μm). (h) Scanning electron micrograph of conidia (scale bar = 8.00 μm).

MA

а

and 150 pycnidia (3 isolates \times 50 pycnidia) were performed after 2 weeks of culture on the oat agar medium (OA). The presence of chlamydospores was also detected. Documentation was made using the light and scanning electron microscopy (SEM).

Genetic identification was based on the differences in the nucleotide sequences of the PCR-amplified fragments of ITS regions of rDNA (ITS1, 5.8S r DNA gene, ITS2). ITS fragments were amplified with two sets of primers ITS1 and ITS4 (White *et al.*, 1990).

Sequencing of the PCR products was made by the company Genomed S.A. Poland. The obtained nucleotide sequences were analysed with clustal W2 (http:// www.ebi.ac.uk/Tools/msa/clustalw2) software and compared with sequences collected in NCBI Gene Bank databases with Blast software (http://www.ncbi.nlm.nih. gov.BLAST/). The phylogenetic analysis were performed using the Phylogeny. fr program (http://www.phylogeny. fr/simple_phylogeny.cgi). The original DNA sequences obtained in this study have been deposited in GenBank.

Morphological studies showed that the growth of P. complanata isolates on MA was zoned. The colonies were cream-olive to grey floccose, aerial mycelium with a regular edge and a clear margin (Fig. 1a). The reverse of the colony was olive (Table I). After 14 days the mycelium formed a compact floccose to woolly structure more than after 7 days (Fig. 1b) . The diameter of the colony after 7 and 14 days was, 35-37 and 73-86 mm respectively (Table I). Colonies on OA after 7 and 14 days were white-gray with a bright-olive reverse and floccose to woolly aerial mycelium. The edge of the colonies was regular (Fig. 1a, b). The diameter of the colony after 7 and 14 days on OA was, 36 and 82-84 mm respectively (Table I). Colonies on CA after 7 days were gray-olive, dark in the oldest part of the colony, with a bright 1 cm margin. The reverse was dark-olive. The aerial mycelium was at the beginning floccose, but after 14 days it gradually became more compact and woolly (Fig. 1b). The diameter of the colony after 7 and 14 days on CA was, 34-36 and 76 mm respectively. The edge was regular (Table I). Application of a droplet of NaOH after 14 days did not have any effect. The crystals didn't form. The pycnidia were formed on all media after 7 days in the oldest part of the colonies, singly or in small aggregates (Fig. 1c, d) and secreted beige to rose exudate of conidia (Fig. 1e, f). The pycnidial walls were multilayer, thick, with one ostiole (Fig. 1g). The size of the pycnidia ranged from 86 to 288 µm (Table II). The conidia were differentiated in shape and size, usually oval, cylindrical, ellipsoidal, mostly aseptate, and 2.86 - 7.64 × 1.91 - 3.82 µm in dimension (Table II, Fig. 1h). Occasionally, 1-septate conidia with the dimension of 9.55-13.37 × 2.86-3.83 µm were observed in 14-old-days cultures. Similarly, in the case of isolate CBS 100311 1-septate conidia with the dimension of $14.21-18.23\times4.33-6.11\,\mu m\,$ constituted about 2% on 14-day-old cultures grown on OA medium (Table II).

Electrophoresis of PCR amplification products revealed a distinct band of approximately 550 bp. Nucleotide sequences of the ITS region from A 103, A 233 and A 235 of P. complanata isolates were identical. However, ITS sequences from these isolates slightly differed from the reference isolate by some substitutions and alignment gaps within ITS region. The amplified fragment showed 96% identity on the length of 434 bp for isolate A 103, 432 bp for isolate A 233 and 433 bp for isolate A 235 with nucleotide sequence of P. complanata collected in the CBS. A phylogenetic tree, based on the ITS sequence of three isolates of P. complanata and reference strain generated using the Phylogeny. fr analysis, indicated the segregation of all isolates into two main clusters. The first cluster grouped reference strain and our three native isolates of *P. complanata*: A 103, A 233 and A 235. The second cluster included P. neerlandica CBS 134.96, the isolate which has been used the tree to be rooted (Fig. 2). Sequences of above isolates have been deposited in GenBank, respectively with the reference numbers MF062524, MF062525 and MF062524. Sequence-based identification was correlated with the identification by classical methods.

Genus *Phoma* discussed by Boerema *et al.* in 2004 and described in the 10th Edition, Dictionary of the Fungi "(Kirk *et al.*, 2008), now should be considered as *sensu lato* because it involves a group of about 10 different genera, four already known and some new (Aveskamp *et al.*, 2010; De Gruyter, 2012). The current taxonomical system based on phylogenetic analysis abolished the previous division into sections and made it necessary to reclassify *Phoma* (Aveskamp *et al.*, 2010; De Gruyter, 2012). Research conducted by Dutch scientists led to a division of genus of *Phoma sensu lato* into clades and groups that include species with a similar degree of relationship. Some of them are now raised to the level of genus.

P. complanata was classified as *Didymellaceae* family, which included the species of *Phoma* that previously belonged to the sections *Phoma*, *Phyllostictioides*, *Peyronellaea*, *Sclerophomella*, *Macrospora* and some phytopathologically similar species from the sections Hetero*spora* and *ParaPhoma* are found in *Didymellaceae*

Fig. 2. Phylogenetic tree of native isolates of *P. complanata* and reference strain generated from Phylogeny. fr analysis of the ITS.

According to Boerema <i>et al.</i> (2004)	CA	49-79	colourless/saffron greenish olivaceous	or olivaceous	saffron/fulvous to	olivaceous		regular or slighty	irregular	woolly to floccose			
	OA	60 – 82 mm	colourless or buff to greenish olivaceous	0	primrose to salmon	or citrine green to	olivaceous in centre	regular		floccose to woolly,	sometimes compact	negative	
	MA	59-79 mm	colourless to primrose with citrine green	to olivaceous tingers	colourless to primrose	with citrine green to	olivaceous tingers	regular		velvety to floccose	woolly, compact	negative	
Medium (CA)	After 14 days	76 mm	grey olivaceous		dark	olivaceous		regular		floccose to	wolly compact		
Cherry Agar	After 7 days	34-36 mm	grey- -olivaceous		olivaceous			regular		floccose			
medium (OA)	After 14 days	82–84 mm	white-grey		pale-	olivaceous		regular		floccose to	woolly	negative	
Oatmeal Agar	After 7 days	36 mm	white-grey		pale-	olivaceous		regular		floccose			
Medium (MA)	After 14 days	73–86 mm	cream- olivaceous		pale-	olivaceous		regular		floccose to	woolly compact	negative	
Malt Agar N	After 7 days	35-37 mm	cream- olivaceous		olivaceous			regular		floccose			
Medium	The studied features	Diameter of colonies	Colour of averse		Colour of reverse			Character of the growth	of colonies margin	Structure of aerial	mycelium	Colour of cultures after	reaction with 1N NaOH

 Table I

 Features of P. complanata cultures on standard medium (mean for 3 isolates)

 Table II

 Features of pycnidia and conidia of *P complanata* on oat medium (mean for 3 isolates)

Phoma complanata	Conidia	CJ	subglobose, cylindrical, ellipsoidal, mostly aseptate 2.86–7.64×1.91–3.82 μm and 1-septate conidia 9.55–13.37×2.86–3.82 μm with small guttules	subglobos, ellipsoidal, cylindrical to fusiform, mostly aseptate 3.85–10.53×2.28–4.33 µm, 1-septate conidia 14.21–18.23×4.33 – 6.11 µm with small guttules	variable in shape and size, subglobose, ellipsoidal, cylindrical to fusiform, mostly aseptate $3-11 \times 1.5-4$ µm, usually $5-10 \times 2-3$ µm, sometimes in fresh culture 1-septate up to 16×4 µm, in oloder cultures large $22-34 \times 6-10$ µm, usually with several small guttules
	Pycnidia	Ą	on the agar, partly submerged in the aerial hyphae of mycelium, olivaceous black with buff exudate of conidia	glabrous, olivaceous-black with buff to salmon exudate of conidia, on the agar or partly submerged in the agar, solitary or sometimes aggregated	glabrous, finally olivaceous black, solitary or confluent with buff to rosy exudate of conidia, walls made up of 2–6 layers of cells, outer layers pigmental
		a	globose to irregular without visible ostiole 86–288 µm	globose to irregular, without visible ostiole, mostly 85–252 µm	globose to irregular, mostly 80–240 μm, with 1 non-papillate pore
	Author		Own data	References strain CBS 100311	Boerema <i>et al.</i> 2004

a – shape and dimension in μm b – arrangement and structure of wall surface

Zimowska B. et al.

based on constant macro-and microscopic features, physiological and biochemical characteristics observed in vitro in cultures developing in standard conditions is still valid (Aveskamp et al., 2010; De Gruyter, 2012). The study on the morphology and growth of Polish isolates of P. complanata was consistent with the description given by Boerema et al. (2004) and allowed to identify the species as *P. complanata*. In addition, the morphological and genetic similarity to the reference isolate from CBS has been proven. The Polish isolates of P. complanata on OA formed mainly aseptate conidia. In the case of isolate CBS 1-septate conidia were observed. Their share was about 2%. It is known from the literature that in the genus Phoma sensu lato the conidial septa formed secondarily, regardless of the conidiogenesis process, so a small percentage of spores may have secondary septa (Boerema and Bollen, 1975). It means that the morphological characteristics of conidia of these fungi are significant in secondary diagnostics. Literature reports the possibility of the occurrence of variation in morphological and physiological features between isolates obtained from different host plants, which may explain the absence or occasional presence of 1-septate conidia of native isolates of P. complanata (Koike et al., 2006).

Demonstrated in the present study close similarity in ITS sequence within our isolates demonstrated in this study confirms that they represent the same species of fungus. Moreover morphological characteristics and analysis of ITS1, ITS2 nucleotide sequence leads to the conclusion that isolates belong to P. complanata species. It seems that small differences between the three studied isolates and the reference isolate of P. complanata are possible, as in the case of species belonging to other taxa (Uddin et al., 1998). However, according to some authors ITS sequence did not provide unambiguous identification and additional sequencing of other gene fragments is required (Balmas et al., 2005; Woudenberg et al., 2009; Błaszczak et al., 2011). And so, the current results suggested that further research is needed to differentiation within of *P. complanata* isolates.

Literature

Aveskamp M.M., J. De Gruyter and P.W. Crous. 2008. Biology and recent developments in the systematics of *Phoma*, a complex genus of major quarantine significance. *Fungal Diversity* 31: 1–18. Aveskamp M.M, J. De Gruyter, J.H.C Woudenberg, G.J.M. Verkley and P.W. Crous. 2010. Highlights of *Didymellaceae*: A polyphasic approach to characterise *Phoma* and related pleosporalean genera. *Studies in Mycology* 65: 1–60.

Balmas V., B. Scherm, S. Ghignone, A.O.M. Salem, S.O. Cacciol and Q. Migheli 2005. Characterization of *Phoma tracheiphila* by RAPD-PCR, microsatellite-primed PCR *Eur. J. Plant Pathol.* and ITS rDNA sequencing and development of specific primers for in planta PCR detection. *Eur. J. Plant Pathol.* 111: 235–247.

Boerema G.H. and G.J. Bollen. 1975. Conidiogenesis and conidial septation as differentiating criteria between *Phoma* and *Ascochyta. Persoonia* 8: 111–144.

Boerema G.H., J. De Gruyter, M.E. Noordeloos and M.E.C. Hamers. 2004. *Phoma* identification manual differentiation on specific and intra-specific taxa in culture, p. 470. CAB Publishing.

Błaszczyk L., P. Popiel, J. Chełkowski, G. Koczyk, G.J. Samuels, K. Sobieralski and M. Siwulski. 2011. Species diversity of *Trichoderma* in Poland. *J. App. Genetics* 52: 233–243.

Chen Q., J.R. Jiang, G.Z. Zhang, L. Cai, and P.W. Crous. 2015. Resolving the *Phoma* enigma. *Studies in Mycology* 82: 137–217.

De Gruyter J. 2012. PhD Thesis. Revised taxonomy of *Phoma* and allied genera, p. 181. Wageningen University, Wageningen, NL.

Farr D.F., G.F. Bills, G.P. Chamuris and A.Y. Rossman. 1995. Fungi on plants products in the United States. American Phytopath. Society.

Frisvad J.C., B. Anderson and U. Thrane. 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous. *Mycol. Res.* 112: 231–240.

Kirk P.M., P.F. Cannon, D.W. Minter and J.A. Stalpers. 2008. Ainsworth and Bisby's dictionary of the Fungi, p. 508. 10th edition. CABI Europe-UK, CAB International, Wallingford.

Koike S.T., K.V. Subbarao, G.J.M. Verkley, D. Fogle and T.M. O'Neill. 2006. *Phoma* basal rot of romaine lettuce in California caused by *Phoma exigua*: Occurrence, characterization and control. *Plant Disease* 90: 1268–1275.

Rai M.K., V.V. Tivari, L. Irinyi and G.J. Köviecs. 2014. Advances in taxonomy of genus *Phoma*: polyphyletic nature and role of phenotypic traits and molecular systematics. *Indian J. Microbiol.* 54(2): 123–128.

Tiwari V.V., A.K. Gade and M. Rai. 2013. A study of phylogenetic variations among Indian Phoma tropica species by RAPD-PCR and ITS-rDNA sequencing. *Ind. J. Biotechnol.* 12: 187–194.

Uddin W., K.L. Stevenson, R.A. Pardo-Schultheiss and S.A. Rehner. 1998. Pathogenic and molecular characterization of three Phomopsis isolates from peach, plum and Asian pear. *Plant Disease* 82(7): 732–737.

White T.J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: PCR protocols; a quide to methods and amplifications Innis M.A., D.H. Geefand, S.S. Sninsky and T.J. White (eds). Academic Press, San Diego.

Woudemberg J.H.C., M.M. Aveskamp, J. de Gruyter, A.G. Spiers and P.W. Crous. 2009. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22: 56–62.

Zalewska E., Z. Machowicz-Stefaniak and E. Król. 2013. Occurrence of fungi on the plants of angelica (*Archangelica officinalis* Hoffm.). *Acta Sci. Pol. Hortorum Cultus* 12(2): 107–121.