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Abstract- This paper details about the noninvasive estimation of Urea concentration in blood using 

near infrared spectroscopy (NIRS) and Artificial neural network based prediction model. The 

absorption spectrum of the urea has been studied experimentally in order to choose the wavelengths of 

peak absorption. For this purpose, IR absorption spectrum of 0.1M aqueous urea solution has been 

collected and analyzed in second overtone region of the near-infra red spectra using the Bruker tensor 

27 FTIR spectrometer. Based on the theoretical analysis the optimal wavelength of sensor is found to 

be 995nm for obtaining proper Photo plethysmograph (PPG). The regression analysis has been carried 

out on PPG signal with the artificial neural networks for obtaining a prediction model for estimating 

the blood urea concentration. The mean square error of prediction is found to be ± 2.23mg/dL. 

 

Index terms: Noninvasive, blood urea, photo plethysmograph, artificial neural network. 
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I. INTRODUCTION 

 

Estimating the concentration of urea in blood is generally used for diagnosis of renal failure. The 

level of urea in blood increases as kidney function worsens, which leads to other heart diseases 

[1]. Currently the traditional lab methods used for monitoring blood urea are invasive in nature 

and take more processing time to predict the concentration. But more frequent monitoring of 

blood urea is needed for identifying acute renal failure. 

In order to overcome the disadvantages of the invasive methods some noninvasive methods like 

Raman spectroscopy, vibrational spectroscopy and polarimetric method. However they have the 

disadvantages like heavy, delicate and expensive instruments [2, 3]. Photoplethysmography is the 

one of the noninvasive technique being used for estimating the concentration of blood analytes 

[4]. The spectroscopic analysis is normally carried out at mid infra-red and first overtone regions 

of the spectrum, where the absorbance of the urea is high. The disadvantage of these regions is 

that the component cost is very high and the absorption due to other components like water and 

scattering in fatty tissue. Several attempts have been made for non-invasive estimation of urea 

concentration like non-invasive estimation based on Reverse iontophoresis [5] and estimating 

during hemodialysis by employ the optical sensing in the visible range [6-8]. A model has been 

developed for blood urea monitoring system for the closed loop control of dialysis [9]. 

Determining the blood urea nitrogen in small specimens by Automatic colorimetric analysis has 

been described by Helmut J. Richter in [10]. Several other methods have been proposed for 

estimating blood urea [11, 12] 

The current research aims at the estimation of the proper wavelength for urea using near infrared 

spectroscopy (NIRS).  The NIR region falls in the range from 780-2500nm mainly consisting of 

weak transitions that correspond to combinations and overtones of the vibrational modes 

observed in mid infrared region. NIRS is a spectroscopic method based on molecular overtones 

and the combination vibrations of C-H, O-H, and N-H bonds. These combination bands arise 

from combining C-H, O-H and N-H stretches with other fundamental vibrations. The wavelength 

of the peak absorption for urea is first theoretically calculated based on the molecular 

composition. Urea has strong absorbance at the N-H deformation overtone which falls at 

2070nm, but the disadvantage with this wavelength of absorption is that the cost of the optode 

pair is very high. So the attempt has been made to consider the higher overtones based on the 
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relative absorbance. We have carried out an experiment on aqueous urea using FTIR 

spectrometer for finalizing the wavelengths for sensor. After which an LED and a photodiode 

comprising of optode pair is used to justify whether the wavelength of monitoring identified 

correlates with the theoretical analysis. The PPG obtained from the analog front end circuit is 

given to artificial neural network for regression analysis and a predictive 

 

II. THEORITICAL ANALYSIS 

 

a. Visualize bonds between atoms as springs 

The classical physics considers the atoms as particles with a given mass in the IR 

absorption process, and the vibrations of diatomic molecule as shown in figure 1.  

 

 

Figure 1.  Visualizing bonds as springs 

 

 

When a photon is incident on a molecule, there will be bond deformations or bond vibrations at 

different energy levels related to different bonds, depending on the energy of incident photon 

[13]. So, only the photon with energy that corresponds to the difference between two of its 

energy levels can be absorbed. The frequency of the vibration is given by the 

  

v= 1/2π (√k/m) 

 

Where ‘k’ is the bond strength and ‘m’ is the reduced mass. 

 For a urea molecule, the molecular structure is as shown in Fig2.  
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Table 1 shows the frequencies corresponding to different bond vibrations in urea molecule [14]. 

 

 
Figure 2.  Molecular structure of urea molecule. 

 

Table 1.  Fundamental and overtones of urea 

Wavelength(nm) Bond 

1160 C=O fourth overtone 

1460 Symmetric N-H stretch 

first overtone 

1520 N-H stretch first overtone 

1990 N-H stretch/N-H bend 

combination 

2030 C==O stretch second 

overtone 

2070 N-H deformation overtone 

 

At a deeper level absorption of light can be seen as dependent on the probability of absorbance of 

a photon by the molecule. For nth overtone final energy is (n+1)*E, where E is the fundamental 

energy. As n increases, probability of absorbance decrease rapidly and hence intensities of 

absorbance decrease as overtones increase. The absorption at fundamental frequency is calculated 

and from that the absorption at second overtone is calculated relatively [15].  

 

b. Wavelength selection based on peak absorption 

The absorption spectrum of the urea has been studied in order to choose the wavelengths for 

LEDs. For this purpose an IR absorption spectrum of 0.1M aqueous urea solution has been 

collected and analyzed in second overtone region of the near-infra red spectra using the Bruker 

tensor 27 FTIR spectrometer. Fig.3 shows the absorption spectrum of the urea over the second 

overtone region. From the spectra obtained the optimal wavelength where the absorption is 

considered suitable for urea extraction. We can observe that the absorption peaks in this region 

are very narrow typically of the order of the 2nm to 5nm but the LED emits the light over a range 
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of wavelengths. The wavelengths are chosen such that the weighted average of the absorption 

over the spectral bandwidth of the LED is high. While calculating this weighted average the 

intensity of light emitted by the LED acts as weight for the absorption at that particular 

wavelength.  

 

Figure 3.  Absorption spectrum of urea over NIR region 

 

In order to verify whether the theoretical results obtained based on the molecular composition of 

urea are matching with the experimental results. We have conducted the experiments with FTIR 

spectrometer to get the IR spectrum of the aqueous urea and analyzed the spectrum to get the 

wavelength in the range of 750 to 1100nm and it is found that 995nm is an appropriate 

wavelength for studying the characteristics of urea. 

In order to justify the results obtained an experiment is carried out with optical components like 

LED and photodiode comprising an optode pair which is discussed in the below section. 

 

III. PPG SENSING CIRCUIT 

a. Photoplethysmography (PPG) using optode pair 

Photoplethysmography is an optical technique widely used to measure the pulse rate, arterial 

blood oxygen saturation and blood volume changes. It uses a clip which contains a light source 

and a detector on the opposite sides to detect the cardio vascular pulse wave that propagates 
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through the body. The PPG waves can be described as containing a DC component due to venous 

blood and an AC component due to blood volume changes in the arteries.  

According to Beer-lambert’s law the absorbance of light by a liquid is related to the concentration 

of the material by 

A= €Cl 

 

Where the molar absorptivity of solute at a particular wavelength, C is the concentration of the 

solute and  is the path length.  

From this we can say that if the intensity (Peak to peak value) of the PPG is high then the 

absorbance of the chromophore is high in that region, which is in turn directly proportional to the 

concentration of the chromophore. Figure 4 shows the basic PPG waveform with different 

components. 

 

Figure 4.  Photo plethysmograph with various components 

A. Testing using optode pair 

 

As discussed in the previous section, the wavelength of peak absorption for urea has been chosen 

to 995nm.The block diagram of the experimental set up for getting PPG is shown in the Figure 5. 
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Figure 5.  PPG sensing circuit 

 

 

It consists of the finger clip with LED acting as a light sensor and the photodiode as the detector 

to detect the small changes in the incident light as it passes through the finger. This light is 

converted in to an equivalent current by the detector and is high pass filtered with a cut off 

frequency of 0.8Hz. Then it is given to the trans-impedance amplifier for amplification of the 

signal. After this the signal is low-pass filtered to get the required PPG which is mainly because 

of the urea. The cut off frequency for low pass filter is 10Hz.  

B. Trans-impedance Amplifier 

The trans-impedance amplifier is used to convert the current from the photodetector into voltage 

i.e.  I to V converter which is built using an operational amplifier. The trans-impedance amplifier 

also provides gain to the PPG signal. 

 

 

 

 

 

 

 

 

Figure 6.  Trans-impedance Amplifier 

 

The first part of the photodiode receiver is a trans-impedance amplifier. The purpose of this is to 

take the small current (µA) supplied by the photodiode and amplify the impedance of this signal. 

This gives the signal a voltage that is useful for further processing and decoding. It is simply an 
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operational amplifier with a feedback resistance and a feedback capacitance. The operational 

amplifier used was the Texas Instruments wide-band FET input operational amplifier. A FET 

input op amp was necessary because it can operate with a low input current bias, usually in the 

nA range. A BJT input op amp requires an input current in the mA range. 

Trans-impedance amplifiers are generally operated at a very high gain. This produces a strong 

tendency for the amplifier to go into oscillation at high frequencies above the gain bandwidth 

product. This problem can be eliminated by adding a capacitor in the feedback loop, which 

lowers the gain at very high frequencies. 

 

C. High Pass Filter 

The high pass filter in the circuit diagram is used to remove the DC component in the PPG 

obtained. Because of the DC component, the PPG is at a value higher than the ground. Our signal 

of interest is only the AC component which is obtained by passing through high pass filter. In this 

case, we have assumed that the cutoff frequency should be 0.8 Hz. We used a passive high pass 

filter which is constructed by using resistor and capacitor and the output is given to the input of 

4th order active low pass filter which is constructed using operational amplifier (LM741). 

 

 

Figure 7.  High Pass Filter 

 

D. Low Pass Filter 

 

The low pass filter is constructed using two operational amplifier and resistors and capacitors. 

The 4th order low pass filter is constructed by cascading two 2nd order low pass filters. Since we 
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are constructing real time filters, the filter would be having a pass band and a stop band. The stop 

band would be steeper if the order of the filter is high. The Q factor also decides the smoothness 

of the filter. We used this low pass filter to basically remove the power line signal (50Hz) which 

would otherwise interfere with the PPG and would give us wrong results. We decided that the 

cutoff frequency for this low pass filter would be 10. The circuit of the low pass filter is as shown 

in figure. 8. 

 

 

Figure 8.  Low Pass Filter 

 

The formula for cutoff frequency is: 

fc = 1/2πRC 

After calculations by plugging in fc=10Hz and π=3.14, I chose C=100nF and obtained R=165k.  

The Q factor was chosen to be 1 since the response was straighter. 

Q=1/ (3-A) 

By plugging in Q=1, we obtain A=2 where A is the gain of the amplifier. 

The gain of a non-inverting amplifier is: 

A=1+ (R2/R3) 

Since A=2, we obtain R2/R3=1, therefore I chose R2=R3=1k. 

The output of the low pass filter is given to an oscilloscope to view a PPG signal which is shown 

in Figure. 9 

4th order low pass 

filter 

Input from Trans 

impedance amplifier 

PPG output 
R1 R2 

R3 

R4 

C1 

R6 R5 

R7 

R8 

C2 C3 
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Figure 9.  PPG waveform 

 

From the above figure we can infer that the PPG signal with good intensity signifies that the 

wavelength identified for estimation of urea in blood is appropriate. 

 

 

IV. CALIBRATION OF OPTICAL MEASUREMENTS USING ARTIFICIAL NEURAL 

NETWORKS 

In order to estimate the urea concentration from the Photo plethysmograph (PPG) readings, 

Calibration has to be carried out on a measured set of optical readings (PPG) and corresponding 

urea concentrations to develop a model which will allow prediction of urea concentration in 

future. 

Many attempts have been made based on univariate regression analysis for single wavelength 

prediction of blood analytes (16, 17). The biological data is more complex due to the presence of 

several components whose spectral features overlap. 

PLS and PCR are the most widely used chemo-metric techniques for quantitative analysis of 

complex multicomponent mixtures. These methods are not optimal when the relationship 

between the IR absorbance’s and the constituent concentration deviates from linearity. The theory 

and the application of Artificial Neural networks (ANN) in modeling chemical data have been 

widely presented in the literature [18, 19].  
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a. Artificial neural networks 

 Neural networks are typically organized in layers, each layer consists of interconnected nodes 

with neurons. The basic feed forward structure is made up of input layer, one or more hidden 

layer and the output layer. Patterns are presented to the network via the input layer, which 

communicates to one or more hidden layers where the actual processing is done via a system of 

weighted connections from the neurons in the hidden layer. 

Learning rule is used to modify the weights of all the interconnected neurons in each layer based 

on the input patterns that it is presented with. Although there are many different kind of learning 

rules used by the neural networks. Delta rule is one of such kind which is generally used by 

common class of artificial neural networks called backpropagation neural network. 

With the delta rule, as with other types of backpropagation, learning is supervised process that 

occurs with each cycle or epoch through a forward activation flow of outputs and backwards 

error propagation of weight adjustments. 

 

 

Figure 10.  Structure of single neuron 

 

Initially the neural network randomly guesses the output based on the given input pattern and 

then it compares how far the output is from the actual value and makes an appropriate adjustment 

to its connection weights. Within each hidden layer there is a sigmoidal activation function which 

polarizes network activity and helps it to stabilize. 
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a. Structure of the feed forward network 

There are different types of neural network models based on the type of architecture, learning 

algorithm, and activation function. Here we have used a network comprising of two layers viz., 

hidden layer and the output layer as shown in Fig.11. The hidden layer has 10 hidden neurons 

and the output has only one neuron. In the hidden layer the weighted sum of inputs with the 

sigmoid activation function (fs) are processed. The output layer has single neuron with linear 

activation function of where the weighted sum of outputs of the hidden layer with linear 

activation function are processed to give the final output of the network.  

 

Figure 11.  Structure feed forward neural network 

The optical densities for various subjects has been calculated based on the equation (5) from the 

PPG output of front end analog circuit. These optical densities are given as inputs to the network 

and the invasive urea values as targets to train the network and predict the near future values of 

urea. During first stage which is the initialization of weights, some small random values are 

assigned. During feed forward stage each input unit receives an input signal and transmits this 

signal with a weightage to each of the hidden neurons. Each hidden unit summarizes the inputs 

and its bias (b), then calculates the activation function (fs) and sends its signal to each output 

unit. The output unit calculates the activation function (fl) with bias to form the response of the 

net for the given input pattern. [20] 
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V. REGRESSION RESULTS 

In this current work, ANN has been used for function fitting to develop a model based on the 

PPG data and invasive urea measurements. The optical densities are given as input to train the 

feed forward neural network for estimating the concentration of urea. 

The performance of the regression analysis was evaluated in terms of root mean square error of 

prediction for the training data and is given by Eq. (9) 

 

 

 

MATLAB is used to design a neural network for predicting the output. Below figure shows the 

network designed in MATLAB using neural network tool. 

 

 

 

Figure 12.  Matlab based neural network model 

 

Clinical trials have been carried out on 30 subjects, based on the invasive and the measured urea 

values. Results of regression analysis on the input data set are shown in Fig.13 where the 

parameter R signifies the correlation between estimated urea and the actual urea levels, we can 

observe that R is nearly equal to 1 for training, validation and test. For this a root mean square 

error of 2.23mg/dL is obtained. Fig.14 signifies the performance of the neural network, it details 

about the mean square error (MSE) versus the number of epochs. It tells us about the variation in 

the MSE for training, test and validation data while training for certain number of epochs. 

Similarly the Fig.15 and16 indicate about the training states and the error histogram respectively. 
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Figure 13.  Training, testing and validation results showing the regression factor 

 

Figure 14. Performance graph for Training, testing and validation data 
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Figure 15. Training state of the neural network 

 

Figure 16. Error Histogram 
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Clinical trials has been carried out on 50 patients conforming to the declaration of Helsinki using 

the proposed blood urea monitoring system and the results are compared with the invasive lab 

test results. 

 

Let p be the number of patients who has their blood urea levels above normal range, q be the 

number of patients with blood urea levels are under normal range but the test shows the results 

above the normal range, r be the number of patients where the test shows the results below the 

normal range, but they have the levels above normal range, s be the number of patients where the 

test shows the results below the normal range, and they are below the normal range. In our case, 

for the population of patients being sampled, p=37, q=2, r=5, s=6. 

The prevalence of disease is given by 

 

 

Sensitivity of diagnosis,  

 

Specificity of diagnosis, 

 

False positive, 

 

False negative, 

 

Accuracy of diagnosis is given by, 
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Table. 5 Comparative study showing the accuracy of the diagnosis by varying the neurons in 

hidden layer 

 

No. of 

hidden 

neurons 

p q r s Se Sp Accuracy 

10 37 2 5 6 0.904 0.75 0.86 

11 37 3 4 6 0.904 0.75 0.86 

12 39 2 3 6 0.928 0.75 0.90 

13 39 2 3 6 0.928 0.75 0.90 

14 40 1 2 7 0.952 0.87 0.94 

15 40 1 2 7 0.952 0.87 0.94 

 

In order to investigate, whether the number of neurons in the hidden layer have an impact on the 

accuracy of monitoring, the number of neurons in the hidden layer in the neural network has been 

varied and the testing accuracy is ascertained. A test carried out using the proposed system is 

considered to be accurate, as the results obtained are with the proposed system agrees with the 

conventional pathological lab test results within an error window of.  

Table 5 shows the effect of varying the number of neurons in the hidden layer on the accuracy 

and other statistics. This analysis indicates that as the number of hidden neurons are increased, 

the accuracy of the diagnosis is increased which is due to increased computational accuracy in 

neural network. We can see that the maximum achievable accuracy using 15 neurons is 94%. 

 

 

VI. CONCLUSION 

In the current work, we have designed a noninvasive, low cost, and sensitive and user friendly 

device for blood urea measurement based on a near infra-red spectroscopy and the artificial 

neural networks. The LED and the Photodetector are chosen according to the wavelength 

obtained from the theoretical analysis and the experiment is carried out to find that the output 

obtained is of high intensity which shows high correlation between theoretical and experimental 

results. 
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Artificial neural network has been employed for regression analysis on PPG data and obtain a 

prediction model. The neural network based prediction model is used to estimate the future 

values of blood urea based on the PPG output obtained from selected near infra-red sensors. 

Accuracy of the prediction model is found to be 2.23mg/dL. The sensitivity, specificity and the 

accuracy of the model has been derived and the accuracy is found to be 86%. The effect of 

number of hidden neurons in the hidden layer on the sensitivity specificity and accuracy of the 

prediction model has been analyzed. The Accuracy of the system can also be improved by 

increasing the input data set to the neural network model. 
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