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Abstract- Honeycomb sandwich structures are extensively used in aerospace, aeronautic, marine and 

automotive industries due to their high strength-to-weight ratios, high energy absorption capability and 

effective acoustic insulation. Unfortunately, either presence of disbond along the skin-core interface or 

emergence of disbond due to repeated loading, aging or an intensive load can jeopardize the integrity 

and safety of the whole structure The current work presents a new array based technique for health 

monitoring of these structures using support vector machine (SVM). The proposed technique is first 

used on simulated mode shape data of the structure and then the technique is validated using 

experimental mode shape data. The experimental set up has been developed in laboratory and Laser 

Doppler Vibrometer (LDV) is used to extract the experimental mode shapes.  The results have been 

obtained using both support vector classification and regression analysis and it is found that that the 

former is better at prediction of debond location. 

 

Index terms: Support vector machine, Structural health monitoring, Laser Doppler Vibrometer, Mode Shape 

Data, Honeycomb core sandwich panel. 
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I. INTRODUCTION 

 

Honeycomb sandwich panels are made by adhering two high rigidity thin sheets with low density 

honeycomb core as shown in Figure 1. These panels exhibit very high specific strength and 

specific stiffness and are widely used in the aerospace industry. The depth of honeycomb core is 

much higher than the thickness of face sheets. In such a scenario, the transverse shear stiffness is 

almost completely contributed by the honeycomb core as reported in [1]. The honeycomb core is 

generally assumed to be a homogeneous material and its equivalent properties are used for the 

purpose of analysis. 

 

Figure 1.Construction of honeycomb core sandwich panel structure 

 

Bonding of the face sheets to the honeycomb core is a difficult process and the quality of this 

bonding usually decides the strength of the structure. The most common damage in such 

structures is debonding between skin and core which occurs either due to manufacturing defects 

or service loads. Debonded region in a sandwich structure is equivalent to a delamination of 

composite laminates [2]. Debonding reduces the bending stiffness and resonant frequencies of 

sandwich structures, and, as the length of debonding increases, the natural frequency decreases 

and the damping ratio increases. The results indicate that damping can be used as a damage 

identification feature for honeycomb structures. Figure 2 shows a typical debonding defect in 

honeycomb structure. 

Adhesive 

Honeycomb core 

Facing skin 
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Figure 2.Typical defect in honeycomb structure [3] 

 

A mechanical impedance based method for damage detection in honeycomb core sandwich 

structure is used by [3] and concluded that for detecting debonding, the test frequency should be 

lower than the natural frequency of the structure. Delamination is the phenomenon of separation 

between two composite laminates due to lack of reinforcement in the thickness direction. 

Delamination occurs under flexural and transverse shear stresses due to quasi-static or dynamic 

loading. The growth of delamination cracks under subsequent loading leads to a rapid reduction 

in the mechanical properties and may cause catastrophic failure of the composite structure [4]. 

The development of the inter-laminar stresses is the primary cause of delamination in laminated 

fiber composites. Due to the complex nature of laminated composite materials, the onset of 

damage does not usually lead to ultimate failure, and it is necessary to account for the loss in 

performance caused by any damage in order to accurately predict the composite material’s 

performance. A technique based on the mode shapes and the variation of the modal damping 

factors between the undamaged and damaged states of the structure is proposed in [5]. When 

delamination occurs in a composite structure, energy loss occurs due to friction between the two 

debonded surfaces. A plane shape function (PSF) is defined for mode r at a node with coordinates 

(i, j) as given by equation 1. 
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where x and y are two arbitrary mode dependent physical quantities in directions x and y 

respectively. Strain or displacements can be used for x and y. It is assumed that delamination only 

leads to increase in damping factor . 
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where  = Damping factor  

and superscript D stands for damage. Damping Damage Indicator (DaDI) is given by equation 3. 
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The damage detection techniques can be classified into two categories, model-driven and data-

driven techniques. The first technique requires constructing a physical model of a structure 

(perhaps using FEA) and then comparing the response of damaged and un-damaged structure 

leading to a decision about its status. In a data-driven technique, the status of the structure is 

monitored using statistical parameters. Recently, two modeling methods traditionally used in the 

field of machine learning have been used for SHM. They are Artificial Neural Network (ANN) 

and Support Vector Machine (SVM). They are different from traditional modeling methods in 

that the models created using these techniques do not lend themselves to any physical 

interpretation of the process. They act somewhat like a black box. However, their ability to 

capture the intricacies of a complex structure is usually superior to the traditional modeling 

methods. SVM has some advantages over ANN such as: 

 

1. SVM ensures unique and global solution unlike ANN, which may suffer from multiple 

local minima. 

2. SVM can handle high dimensional input data. 

3. ANNs are highly prone to over-fitting. 

A multi-class pattern classification algorithm of C-support vector machine and the regression 

algorithm of ε-support vector machine to identify the damage location and damage extent, in a 

continuous girder bridge used in a railway [6]. Banerjee et.al [7] demonstrated the health 

monitoring of isotropic thin plate structure without base-line signal using a wavelet-based sensing 

technique. With the help of PZT wafer array of small footprint consisting of a single transmitter 

and multi-receiver is used. The signals are recorded first for undamaged plate and compared with 

theoretical model in order to tune an appropriate guided wave. The types of defect attempted to 

indentify are cracks and loose rivet holes with damage index algorithm and depending on the 
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value of damage index the damages have been quantified.  Generating and monitoring lamb 

waves using PZT transducers and fiber optic sensors to monitor health of aerospace structure is 

demonstrated in [8]. This proposed hybrid approach together with an in-house developed 

algorithm is explored to detect and localize through thickness damage and surface damage 

located on backside of the plate. Cross-correlation of forward and backward propagating 

wavefields in composite structures using flexural wave signals is studied in [9]. The proposed 

approach is verified by conducting experiments using laser Doppler vibrometer to receive the 

scattered wave signals along a linear array. SHM of aerospace structures based on dynamic strain 

measurements using SVM classification has been studied in [10]. The feature space has been 

reduced using Independent Component Analysis (ICA). The results show that SVMs using 

nonlinear kernel is a reliable and consistent pattern recognition scheme for damage diagnosis. 

The use of SVM for prediction of fault in power systems has been demonstrated [11]. They used 

support vector classification to predict the damage location. The inputs used for SVM model are 

power and voltage values. A demonstration of damage detection process in civil structures using 

SVM classifiers and wavelet is given in [12]. They found that the SVM was a robust classifier in 

presence of noise whereas wavelet-based compression gracefully degrades its classification 

accuracy. A SVM classifier for fault diagnosis of the broken rotor bars of a squirrel-cage 

induction motor is explored in [13]. They used the spectral information of the motor current, 

voltage and shaft field as selected features from the input vector applied to the support vector 

machine. Recently, SVM (regression) based approach to locate the damage in an aluminium 

beam using mode shape data corresponding to first natural frequency has been proposed in [14]. 

The technique has been validated using experimental mode shape data of the beam. Thus, 

literature shows promising results in SHM using both support vector classification and 

regression, the latter being more common. However, a comparative study of these two techniques 

in a complex structure like a honeycomb core sandwich panel has not been attempted. This paper 

attempts to do this using only the first mode shape displacement data. The motivation for using 

the first mode shape displacement data is that this would lead to less pre-processing of the data 

compared to other techniques. A cantilever boundary condition has been chosen for ease of 

conducting the experiment. Initially, FEA analysis of honeycomb panel is done using Abaqus®  

and mode shape data is extracted at the first natural frequency. Thereafter, experimental mode 



Saurabh Gupta, Satish B Satpal, Sauvik Banerjee and Anirban Guha, VIBRATION BASED HEALTH MONITORING 
OF HONEYCOMB CORE SANDWICH PANELS USING SUPPORT VECTOR MACHINE 

220 

 

shape data has been obtained using Laser Doppler Vibrometer (LDV) and has been used for 

validation of the proposed technique. 

 

II. FINITE ELEMENT MODELING AND ANALYSIS 

 

The honeycomb core is modeled in Abaqus
®
 6.10. The properties used for modeling honeycomb 

panel are listed in table 1. Two regions, intact and debond, were defined in the plate’s FE model 

as shown Figure 3. The surfaces have been created on each face sheet and core, then tie constraint 

is applied except for the debond region in order to create debond of the required area.  

 

Table 1.Honeycomb panel parameters 

 

Parameters Value 

Length of panel 250mm 

Width of panel 250mm 

Element size 5mm 

Element type S4R shell 

Face Sheet-Aluminum (AA 2024 T3) 

Thickness 0.25mm 

Young’s Modulus 70GPa 

Poisson’s Ratio 0.33 

Density 2800Kg/mm
3 

Shear Modulus 27GPa 

Honeycomb Core-Aluminum ( Low density) Core 3/16-5056-0.0007) 

Thickness 25mm 

Density 32Kg/m
3 

Young’s Modulus 1KPa, 1Kpa (Ex , Ey) 

Shear Modulus 1KPa,0.185GPa,0.89Gpa (Gxy, Gyz, Gzx) 
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Figure 3.Debond modeling approach used in Abaqus
®
 6.10 

 

The displacement values of the plate at first natural frequency have been measured at various 

points which are marked in red color along X and Y direction as shown in Figure 4. 

 

 

 

Figure 4. Data measurement points shown in red color 

 

III. OVERVIEW OF SUPPORT VECTOR MACHINE (SVM) 

 

SVM is an algorithm drawn from pattern recognition background. Initially it was developed for 

classification problem and eventually it has been applied for regression analysis. In this section a 

brief overview of SVM is given. 
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a. SVM for classification 

Consider the problem of binary classification. Training data are given as 

        
1 21 2
, , , ,   , ,  x ,  y  1,  -1

n

l l
y y yx x x     (1)                 

For simplicity consider a 2-dimensional input space i.e.,
2

x  which is linearly separable in +1 

and -1 classes with a hyperplane say H 

   0
T

x bw    (2) 

where, x is input space, w is weight vector and b is bias term. 

In Figure 5 the separating hyperplane H, is shown in dashed line and the planes shown in thick 

line are called margins. Let them be called H1 and H2 in class 1 and 2 respectively and the 

distance between them is called as margin, M. 

 

Figure 5. Two out of many separating lines: right, a good one with a large margin, and left, a less 

acceptable one with a small margin 

 

They pass through the closest points in both classes. The closest points are called the support 

vectors. There can be infinite hyper planes which separate the given data, but the best classifier is 

one that maximizes the margin which is given by 
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Maximizing margin given by equation (3) means minimizing the norm of the weight vector w 

and minimization of norm 
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Subject to 1,
T

i
x b      i=1, ly w  

 
  

  

where l denotes the number of training data points. 

This is a classic quadratic optimization problem with inequality constraints. Such an optimization 

problem is solved by Lagrangian method. 
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where,  are the Langrangian multipliers.  

This problem can be solved in primal space (space of w and b) or in dual space (space of 

Lagrange multipliers
i  ). The later approach is implemented here. To do so, Karush-Kuhn 

Tucker (KKT) conditions are used such that the derivatives of Lagrangian
pL with respect to 

primal variables should vanish which leads to, 
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Substituting equations (6, 7) in equation (5) we get the Langrangian formulation in dual variable 

as given below 

  
1 , 1
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d i i j i ji j
i i j

y y x xL   
 

     (9) 

In order to find the solution, equation (9) need to be maximized with respect to non-negative 

and with the constraints 

 0
i

              i=1,  l    (10a) 

      
1

0
l

i i
i

y
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             (10b) 

In matrix notation the above standard optimization problem can be expressed and formulated as 

given below 

Maximize      0.5
TT

d
H fL                (11a) 

Subject to  0
T

y               (11b) 

   0
i

        i=1, l              (11c) 
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where,   ,1 2

T
T

i ji j
 H = l ,    y y x x    and f is an (l, 1) unit vector. After obtaining 

solution  from the above optimization problem, the weight vector w and bias b are calculated as 

       
1

l

i ii
i

w  y x
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              (12a) 
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Where, 
svN denotes the number of support vectors. Training input data having non-zero Lagrange 

multipliers are called support vectors. Having calculated the value of weight vector and bias term, 

final expression for separating hyperplane is written as 

  
1

l T

i i ii i
f x  = by x x

   (13) 

In case the two classes are not completely separable, positive slack parameters  are introduced 

into the equations of the margins. This is referred as soft margins. The modified equations of 

margins are   

 1
T

ii
x b  ,   i=1,  ly w    

 
  (14) 

    
i

C                              (15) 

                                                                          

The primal form of the Lagrangian for the non-separable case is: 

  
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1 1

1
1

2

l l
T
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 C x bw y wL    
 

       
     (16)             

where 
i

  are Lagrangian parameters to force 0
i

  .  

In reality, most classes are overlapped and the genuine separation lines are nonlinear 

hypersurfaces. SVM can create a nonlinear decision hypersurface which will be able to classify 

nonlinearly separable data. The idea is to map the input vector x to a higher dimension vector z 

using a mapping vector function vector Φ. The dot product  i jx x will change to  
i j

  . But 

the computation can be very costly depending on the dimension of vector z. The best way to 

address the problem is to introduce a function K such that       

    i j i j
K x x     (17)  

The function K is called kernel function. The same approach with some modifications is 

implemented to formulate SVM to perform regression analysis [15]. 
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IV. PREDICTION OF DEBOND LOCATION USING SIMULATION DATA 

 

a. Procedure 

A total of 17 samples having single damage (debond) of 30x30 mm
2
 area at particular locations 

have been modeled and the corresponding first mode shape data is obtained. The feature vector 

for SVM is prepared using mode shape displacement data. Out of 17, mode shape data of 13 

damaged honeycomb panels have been used as training set and 4 damaged sample’s mode shape 

data is used as test set. The locations of damages used for the training set are shown in Figure 5 

and those for the test set as shown in Figure 6. The training set should be prepared in such a way 

that it includes information from all regions of the structure, therefore the mode shape data 

associated with the debond locations from all the region of honeycomb panel is included in the 

training set. Prediction of debond location is carried out in two ways, SV classification and SV 

regression. In case of classification the debond locations have been assigned class numbers. For 

example, panel having damage no 1 (S1) lies in horizontal zone C4 and C5 and in vertical zones 

V4 and V5. Therefore, the training output for the feature vector associated with these zones are 

assigned as class 1 and rest as class -1. Table 2 demonstrates the output of the training set for all 

the debond locations considered in the study. In case of SV regression analysis, the outputs of the 

training set have been assigned X and Y co-ordinates of the debond location. Therefore, SV 

regression analysis involves two steps (prediction of X and Y co-ordinate independently) in order 

to locate debond. A Matlab
®
 toolbox developed by Gunn [16] is used to carry out the SV 

analysis. 

 

Figure 5.Debond locations associated with training set 
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Figure 6.Debond locations associated with test set 

 

Table 2. Training output vectors for seven horizontal and eight vertical zones 

 

 

          Damage No. 

Class 
1 2 3 4 5 6 7 8 9 10 11 12 13 

C1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 

C2 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

C3 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 

C4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

C5 1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 

C6 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 

C7 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 

V1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 

V2 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 

V3 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 

V4 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

V5 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

V6 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 

V7 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 

V8 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 
 

 

b. Results 

The results obtained after prediction of the debond location by SV classification have been 

presented in tabular form as shown in table 3. The debond location numbers 2 and 3 have been 

predicted accurately but there is a considerable error in prediction of X any Y co-ordinates of 
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debond locations 1 and 4. The last two columns represent percentage error in prediction of X and 

Y co-ordinate respectively which are normalized with the length of the panel. The predictions are 

reasonably accurate except for X co-ordinate of debond region T1 and Y co-ordinate of debond 

region T4. 

 

Table 3. Results for Honeycomb panel using SV classification 

 

 
Predicted Actual Absolute 

Error X 

(mm) 

Absolute 

Error Y 

(mm) 

Percentage 

Error in X 

normalized  

Percentage 

Error in Y 

normalized  

Test zone zone zone zone 
Damage C V C V 

T1 5 2 4 2 30 0 12 0 

T2 5 4 5 4 0 0 0 0 

T3 1 7 1 7 0 0 0 0 

T4 4 1 4 5 0 120 0 48 

 

With help of same data set (first mode shape displacements), the debond locations have next been 

predicted using SV regression analysis.The results have been reported in table 4. The last two 

columns show the percentage error which have been normalized with length of the panel. In this 

case, prediction of X co-ordinate is better as compared to Y co-ordinate. 

 

Table 4. Results for Honeycomb panel using SV regression based on simulation data 

 

 

 

V. VALIDATION OF THE PROPOSED TECHNIQUE 

 

In this section, the proposed technique has been validated using experimental mode shape data. 

Four specimens of honeycomb core sandwich panels were fabricated at ISRO Satellite Centre, 

 
Predicted Actual Absolute 

Error in 

X (mm) 

Absolute 

Error in 

Y (mm) 

Percentage 

Error in X 

normalized 

Percentage 

Error in Y 

normalized 

Test X Y X Y 
Damage 

T1 85.13 121.55 40 120 45.13 1.55 18.052 0.62 

T2 125.78 143.6 130 160 4.22 16.4 1.688 6.56 

T3 174.37 114.49 180 70 5.63 44.49 2.252 17.796 

T4 140.71 152.14 150 120 9.29 32.14 3.716 12.856 
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Bangalore. The material and properties for the panel are mentioned in table 1. The debond in all 

the four specimens was created during fabrication at known locations. All the four panels were 

made out of a single panel and later they were cut to four pieces. Three holes were provided in 

each panel to hold them as cantilever during vibration test.  

 

Table 5. Technical Specifications of PSV-400-3D Vibrometer 

 

Parameter Detail 

Model PSV-400-3D 

Frequency Range Up to 25000 Hz 

Angular Resolution Less than 0.002º 

Scanning Range ±20º about X,Y 

Scan Speed 30 points/s(typical) (can be varied) 

Working distance 0.35 m to 5 m 

 

 

 

Figure 7. Experimental Setup 

 

A fixture for holding honeycomb panels and aluminum plates is designed. The fabrication is done 

at ISRO Satellite Centre. The specimens were given a square wave excitation using a vibration 

shaker. The displacements for the first mode shape are measured using Polytec PSV-400-3D 

scanning vibrometer. The specifications of vibrometer are listed in table 5.  

The complete setup is shown in Figure 7. Vibration test is performed at National Aerospace 

Laboratory (NAL), Bangalore. Square wave excitation is used for the vibration test. The 
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displacements are measured at predefined locations. A sweep of frequency in the range of the 

natural frequency of the structure is made. The first mode shape is identified from the first peak 

in the displacements over the frequency range scanned.  

The experimental mode shape displacement data of the honeycomb core panel is used to predict 

the debond location. The procedure for preparation of the feature vector is same as that for the 

simulated data. Table 6 demonstrates the prediction results obtained using SV classification. It is 

seen that the experimental mode shape data gives higher error in predicting Y co-ordinates as 

compared to the X co-ordinates of the debond regions.  

A similar exercise was conducted using the experimental mode shape data with SV regression 

analysis and the results have been summarized in table 7. The predictions of X and Y co-

ordinates of the debond region are poor while using SV regression analysis as compared to SV 

classification analysis. The overall location prediction is worse than what was possible from 

simulated data. This was expected since the boundary conditions of the experiment, though setup 

with care cannot be expected to mimic the exact conditions of the simulation. 

 

Table 6. Results for Honeycomb panel using SV classification based on experimental data 

 

  Predicted Actual  Absolute 

Error in X 

(mm) 

 Absolute 

Error in Y 

(mm) 

 Percentage 

Error in X 

normalized 

 Percentage 

Error in Y 

normalized 

Test zone zone zone zone 

Damage C V C V 

T1 5 3 4 2 30 30 12 12 

T2 4 4 4 4 0 0 0 0 

T3 2 2 2 6 0 120 0 48 

T4 2 1 3 5 30 120 12 48 

 

 

Table 7. Results for Honeycomb panel using SV regression based on experimental data 

 

  Predicted Actual  Absolute 

Error in X 

(mm) 

 Absolute 

Error in Y 

(mm) 

 Percentage 

Error in X 

normalized 

Percentage 

Error in Y 

normalized 

Test 
X Y X Y 

Damage 

T1 28 21.9 40 120 12 98.1 4.8 39.24 
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T2 24.21 19.51 130 160 105.79 140.49 42.316 56.196 

T3 27.63 21.83 180 70 152.37 48.17 60.948 19.268 

T4 27.24 81.63 150 120 122.76 38.37 49.104 15.348 

 

The error predicted for the X and Y co-ordinates have been represented graphically in figures (8 

and 9) using SV classification and regression respectively as shown below.   

 

Figure 8. Error prediction using SV 

Classification 

 

Figure 9. Error prediction using SV regression 
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