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Abstract-People attach much importance to greenhouse gas emissions, and there is an increasing 
concern on cost and emissions on account of speed reduction for international shipping. Low steaming 
encountered these challenges of time constraint and technical requirements, while the cost and 
emissions of railway transportation distinctly differentiate from international shipping and it is a good 
substitute for international shipping to some extent. Intelligent transportation system (ITS) has proven 
to be a useful tool in providing efficient, environmentally friendly and safe transportation systems 
within inland and shipping. The paper focus on the selection and cooperative process between the 
shipping and railway, and discusses the cost and emissions by speed optimization for international 
shipping and railway transport aiming to select effective and environmental transportation mode based 
on ITS infrastructure. Firstly this paper reviews ITS and investigates the relationship of cost and speed 
along with the relationship of energy consumption and speed respectively for shipping and railway 
transportation, and then presents the speed optimization both shipping and railway transportation 
based on ITS so as to minimize cost and emissions. Subsequently it compared and analyzed the cost and 
emissions for mode selections, and it found that it is more effective and environmental to employ 
railway transport to some route leg. Finally A numerical case is presented and the results showed that it 
is necessary to shift model from sea to land on some section.  
 
Index terms: cost effectiveness, CO2 emission, intelligent transportation, railway transportation, international 

shipping, green logistics. 
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I. INTRODUCTION 

 

Due to stringent regulations and environmental concerns as well as high energy prices, the 

problem of cost and emissions in transportation has attracted more considerations. There is an 

ever increasing concern regarding to the effectiveness and cost of speed reduction on emissions 

from international shipping[1,2,3]. 

According to the report of International Maritime Organization [4], the CO2 emissions from 

international shipping accounts for 2.7% of global total emissions, whilst speed, as a crucial 

factor, has direct and remarkable effect on emissions and cost in maritime shipping. Thereby a 

majority of papers focused on effect of sailing speed optimization on emissions and cost, or to be 

more exact, the impact of speed reduction on emissions and/or cost. And the sailing speed 

reduction represents one key operational change for potentially reducing CO2 emissions and cost 

from international fast shipping as well as some technology-based approaches [5]. However, 

limitations of speed reduction have led to new discussions about how and how long the “slow 

steaming” can hold considering cost and emissions. Partial researchers have intent of transport 

mode shift and/or split modal aiming to the limitations of speed reduction. [3] indicated that the 

slower ships may be induced to prefer land-based transport alternatives, but it proposed the road 

alternative which may increase overall GHG emissions and make worse environment than 

maritime in terms of GHG emissions per tonne-km. Furthermore[6] had discussed that sea 

shipping may be a shifting to more environmentally intrusive land-based modes considering the 

emission reduction, and indicated that electric railway may emit less CO2. 

With the rapid development of express railway, railway/sea-railway transportation instead of ship 

individual may be a good choice and it will take less time and contribute to emissions reduction. 

The objective of this paper is to study emissions and cost consequences regarding railway/sea-

railway and maritime shipping on speed optimization. It extends the scope of speed reduction on 

emissions in maritime shipping to combined optimization of sailing speed and railway speed in 

sea-railway transport. It attempts to provide new transport mode selection so as to minimize 

emissions and cost in some special areas. This kind of optimization depends on related technical 

support, and intelligent transportation system is an effective method in improving transportation 

systems, and sustained transportation optimization in cost and energy. Therefore it is significant 

to study cost and emission reduction in transportation based on ITS. 
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This paper is organized as follows. Section 2 introduces intelligent transportation, and reviews 

the effect of sailing speed reduction on emissions and cost along with train speed on emission and 

cost. Section 3 redesigned and presented the relationship of emission and speed in maritime and 

railway transport besides the relationship of cost and speed, and demonstrated the foundation of 

sea-railway intelligent transportation system. And then this paper proposes emissions and cost 

model for railway and shipping transport, which determines the speed-optimization combination 

aiming to minimize emission and cost. Meanwhile this paper compares and analyzes the impact 

of speed optimization on costs and emission in respect to maritime and railway transport. The last 

section designs and applies the model to trans-Eurasia transportation and attains the optimal 

results of total costs and emission. It concludes that it may be cost-effectiveness and 

environmental to transfer mode from sea to train freight on some condition depending on ITS.  

 

II. LITERATURE REVIEW 

 

2.1 INTELLLIGENT TRANSPORTATION 

Intelligent Transportation System (ITS) is a method of combining information technology and 

other advanced methods to address transportation problems involving a complex interplay 

between technology; cognition and behavior; and social, economic, and political systems. ITS 

uses different types of sensors to convert physical world quantities outside the vehicle (such as 

line markings, signs, other vehicles, road conditions, etc.) and inside the vehicle (such as 

capacity, break, other mechanical failures, etc.) to electronic signals which are then used for 

decision making. Intelligent Transportation System (ITS) infrastructure is fundamental conditions 

and makes a contribution to cost savings[7]. With environmental and economic requirements of 

transportation, various issues in ITS range from real time traffic information system to cost and 

emission optimization. Some articles focus on the impact of ITS on vehicle emissions and 

energy, a modal emissions model integrated with several traffic simulation models was presented 

to quantitatively determine the effects of ITS technology on vehicle emissions [8]. KIM J 

provided transportation system (ITS) strategic planning and implementation to meet the need for 

a sustainable energy future [9]. The use of intelligent transportation system and intelligent vehicle 

system technologies to reduce vehicle fuel consumption and emission levels is possible [10]. In 

the development of ITS, integration of the different modes of transportation is very necessary. 
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Hence, the work should be done in this field [11]. Intelligent scheduling and optimization will be 

more crucial to integrate different modes of transportation aiming to cost saving and emission 

reduction. 

2.2 THE INFLUENCE OF SAILING PEED REDUCTION ON EMISSION AND COST 

Greenhouse emission from shipping, rail, aviation and road accounts for 2.7%, 0.5%, 1.9% 

21.3% respectively[4]. Owing to stringent regulations and requirements along with 

environmental strength for shipping, more and more researchers pay attention to the emissions 

for shipping from a perspective of speed reduction. The emergency of emissions speed model is 

in recent years, and [3] had generalized speed models that consider emissions. The emissions 

speed model contain two taxonomies depending on whether cost is considered, one is single 

emissions speed model which only considers emissions minimization, the other is double 

emissions speed model which not only consider emissions but also cost.  

Single emissions speed model derive from the relationship of energy consumption and speed. 

Emissions produced, mainly CO2, is proportional to fuel burned (usually energy consumption 

multiply by emissions coefficients could get emissions), whilst the energy consumption is 

appropriate cubic power of speed, thereby the emissions speed model could be explained energy 

consumption-speed model to some extent without considering the difference of fuel type  and 

concrete emissions .  

[14] indicated that speeds have been reduced and realized emission reduction in the past years 

and proposed the utility of oversupply of ships to reduce emission. Meanwhile it explained how 

to reduce the emissions under slow steaming, that is possible speed reduction should be 

determined in the first instance considering the related factors such as the supply of ships, the 

maximum capacity utilization of vessels, the demand of transport, the character and type of 

engine, and then determined the emission under previous speed reduction. It turned out that it is 

feasible to reduce emission under slow steaming by utilizing oversupply ships.[13] formulated a 

non-linear continuous model of speed optimization in order to minimize fuel consumption and 

emissions on shipping routes, and the model was transformed into a shortest path problem on a 

directed acyclic graph by discretizing the arrival times in further. It certified that the proposed 

method is more applicable and much faster than non-linear programming solver. [14] examined 

whether slow steaming, which have been implemented widely, can be a sustainable means of 
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CO2 emission. It shed light on the sustainability of slow steaming on the conditions of high 

bunker price and/or tax levy as well as cap-and trade systems in a long run.  

[15] stated the effect of speed reduction on reducing emissions, and proposed decreasing time in 

port so as to offset the increasing time on sea due to slow steaming. A berth policy was presented 

to reduce waiting time in port and its implication on emissions was analyzed. And they also 

addressed that speed reduction can be beneficial for shipper when bunker prices are high and 

market rates are depressed even if this is no waiting time. [3] summarize the importance of speed 

on CO2 emissions. Although this paper highlighted that ship speed reduction would reduce 

emissions, perhaps drastically, reducing speed may have other adverse ramifications such as 

entailed cost. At the same time they claimed that reducing speed may help a depressed market. It 

can be seen that speed reduction may helpful for reducing emissions in some circumstances such 

as high fuel price, tax levy depressed shipping market, oversupply shipping capacity[12,14,15,3].  

More papers examined double emissions speed model, and the cost has different contents. The 

cost may relate to fuel tax [1], cost to avert one tonne of CO2 [5], inventory cost, fuel cost[16], 

cost of capital, etc. [16] presented speed reduction model and scenarios and investigated the 

effect of speed reduction on emissions and cost for fast ship, mainly container vessels and ferries. 

Meanwhile they indicated that the effect of speed reduction depended on other related factors, 

such as the decreasing in port time, and addressed the importance of port in intermodal supply 

chain. [1] examine the impacts of a fuel tax and a speed reduction mandate on CO2 emissions 

considering two scenarios, scenarioⅠ is lower speed without additional vessels (and thus less 

frequent arrival) and scenarioⅡ assumed speed reductions accompanied by additional vessels (to 

maintain arrival frequency). To study the impacts of a fuel tax and a speed reduction, they 

explored a profit-maximizing function, and finally indicated that lower speed could provide CO2 

reduction on most routes whatever scenarios. 

 [5] observed the tradeoffs between reduction of speed, change of number of ships in the fleet and 

emissions (mainly CO2 and SO2). It extend the scope of emissions to SO2 relating to SECA 

(Sulphur Emission Control Areas) shipping. It concluded that speed reduction will result in a 

lower fuel bill and lower emissions; the cost to avert one tonne of CO2 by speed reduction relies 

on several factors; speed reduction to reduce sulphur emissions at SECAs will result in a net 

increase of total emissions (including sulphur) along a ship’s route to maintain the same transit 

time. This paper pointed out cleaner fuel requirement at SECAs may lead to cargo shift from sea 
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to land which (mainly road) has the potential to produce more emissions on land than those saved 

at sea, nevertheless, it presented an attempt for coping with some emissions regulation. [17] 

investigated the effect of speed reductions on the direct emissions and cost in maritime shipping, 

and developed model to calculate emission and cost for individual ship classed as a function of 

speed. During which different types of ship including roro vessels, container vessels, bulk vessels 

were selected to experiment on the impact, and these experiments was represented the world 

fleet. The results show that it is a potential operational measure for reducing emissions by speed 

reduction optimization.  

[2] developed a general profit maximization model for a shipping company to probe into the 

effectiveness of speed limit versus bunker-levy to total profit and amount of CO2 emitted from 

container shipping. And this paper argued that the measures of the speed limit from European 

Commission could not automatically reduce the amount of CO2 emitted on a global scale. [18] 

determined the optimal operational speeds (laden and ballast) of a tanker as a function of fuel 

price, freight rate and other parameters, and estimated the emissions based on the output of 

optimal speed. The study of this paper focused on, but did not limit, Very Large Crude Carriers 

(VLCCs). 

[19] investigate the difference in speed with SECA and outside SECA subject to sulphur 

emission limitation set by Annex VI of Marpol, and proposes a cost model for a shipping 

company operating a liner service that includes a SECA. This model determines the combination 

of cost-minimizing speeds and the corresponding quantity of CO2 emitted, among which the cost 

includes fuel consumption (main engine and auxiliary engine) and vessel fixed operational costs. 

This objective function of model addressed cost primarily, and seeks for the optimal combination 

of speed so as to minimize total cost. Meanwhile the corresponding to CO2 emission got 

depending on energy consumption multiplying by emission coefficients. 

It is to be considered that [6] studied the implications of various maritime emissions reductions 

policies for maritime logistics in depth. In addition to speed reduction on cost and emissions, it 

explored the effect on modal split and proposed that shipping may be a shifting to more 

environmentally intrusive land-based modes in some certain region. 

2.3 THE INFLUENCE OF TRAIN SPEED ON EMISSIONS AND COST 

[20] discussed whether high-speed trains could reduce energy consumption. The author stated 

that the increasing speed while a train can run on downward slopes lead to a reduction in travel 
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time whilst reducing energy consumed mainly due to reduced use of the brake, that is the 

steepness of the rail line on both upward and downward slopes is a parameter which influenced 

the speed and therefore affected on energy consumption. From above statement, we can conclude 

that railway running line condition influence train speed, and have further effect on energy 

consumption. 

[22] observed the relationship and balance of energy consumption reduction and duration time of 

travel. And an approach dealing with a bi-criteria optimization problem is presented and 

improved in order to provide patterns of speed control. By this approach, a set of solutions can be 

searched in a continuous space and the Pareto approach is used to assess and rank them. And 

fundamental function of this approach is to reduce energy consumption by speed tuning of 

railway. It is necessary to indicated that they divided four steps on a section from speed profile, 

including acceleration, cruising, coasting and braking, and the phase of energy-consumption 

refers to acceleration and cruising, namely dragging. In addition, according to newton's second 

law we learned that the most energy-consumption occurred when dragging. 

[22] focused on the diesel locomotive and studied the relation between bunker consumption and 

rotating speed. In fact, the rotating speed effect the dragging and influence the train speed in 

further, the relationship of bunker consumption and rotating speed represents the relationship of 

bunker consumption and train speed to some extent. And then it can be understood that train 

speed impact emission and cost. [23] analyzed and estimated the savings of energy consumption 

as well as others related emissions of greenhouse gases for modal shift from truck to railway in 

Trans-European freight transport corridors. While the freight train consumed electricity instead of 

diesel fuel depending mainly on its weight (locomotive + wagons + payload), movement 

resistance, and route length. 

By comparison, [22] emphasized the influence of speed on consumption for diesel locomotive, 

and [23] mainly pay attention to the influence of payload on energy consumption and related 

emissions for electrical locomotive. Besides, it deserved to discuss whether high-speed trains 

could reduce energy consumption as [20] studied or low average train speed consume less energy 

as indicated [22], and all of these freight train would emit less CO2 emission and cost less 

compared to sailing speed reduction for shipping? 

It is clear that many researchers gave more attention on the impact of sailing speed reduction on 

cost and related emission, where minor people concentrated on the relationship of train speed and 
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emission as well as cost. This paper will give a comparative analysis on CO2 emission and cost 

for freight train and shipping considering speed. 

 

III. EMISSIONS AND COST MODEL BASED ON ITS 

 

3.1 DATA FUSION AND ITS 

With the advent of modern communication and computational devices and inexpensive sensors it 

is possible to collect and process data from a number of sources. Data collection is convenient 

and economic. Data fusion (DF) is collection of techniques by which information from multiple 

sources are combined in order to reach a better inference [24], and DF is an inevitable and 

effective tool for decision making in ITS.  

Sea-railway transportation system combines shipping and railway transport, which focuses on 

transport optimization. DF techniques can be used to combine network control, traffic forecast, 

accurate positon and energy consumption estimation in railway and shipping transportation. 

Thereby the decision making model can be established based on data fusion in sea-railway 

transportation system. In this paper, mode selection of transportation network regarding to cost 

and emission saving is discussed based on ITS. 

Figure 1 shows the configure of shipping and railway intelligent transportation, it is evident that 

phase 1 and phase 2 focus on data collection and analysis, phase 3 provides analytical model and 

phase 4 determine the optimal programming, and it is possible to exchange data across all modes 

of transportation. In next section, we assumed that phase 1 and phase 2 have been done, and 

phase 3 and phase 4 will be discussed. And then the comparison of cost and emission between 

different modes of transportation will be analyzed. 

Phase 1: Data 
Collection

Phase 2: Data 
Fusion

Shipping Intelligent Transportation System
Phase 3: Data 
Model

Phase 4: Model 
Optimization

Railway Intelligent Transportation System
Phase 1: Data 
Collection

Phase 2: Data 
Fusion

Phase 3: Data 
Model

Ship type
Loading capacity
Ship speed
Ship location
Fuel consumption
Fuel cost
Operation Cost
Emission factor
Fuel type
Fuel Price and 
fluctuation
...

Phase 4: Model 
Optimization

Determinate the 
correlation:
1:Speed and fuel 
consumption
2:Speed and cost
3:Speed and emission
4: parameters 
estimation
...

1:Banker consumption 
Model based on ship 
speed
2: emission model 
based on banker 
consumption
3:the impact model of 
fuel type on emission

Objective function\
Time constraints\
Cost constraints\
Capacity constraints\
Origination\
Destination\
...

engine type
Loading capacity
rotating speed
Power
Fuel consumption 
rate
Fuel cost
Operation Cost
Emission factor

...

Determinate the 
correlation:
1:rotating speed and 
fuel consumption
2:rotating Speed and 
emission
3:balancing speed and 
emission

...

1:Fuel consumption 
Model based on 
balancing speed
2: emission model 
based on Energy  
consumption
3:Electricity 
consumption Model 
based on balancing 
speed
4 the impact model of 
engine type on 
emission

Objective function\
Time constraints\
Cost constraints\
Capacity constraints\
Origination\
Destination\
...

ExcOMnge of dMPM Mcross Mll 
modes of PrMnsporPMPion

 
Figure 1 The configure of intelligent transportation system within shipping and railway 
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3.2 EXPANDING THE TRADITIONAL MODEL OF SHIPPING 

The emissions and cost is mainly subjected to energy consumption, and energy consumption is 

close related to sailing speed, and therefore it is necessary to indicate the relationship of sailing 

speed and energy consumption. We assumed the power relationship between bunker consumption 

and sailing speed according to [25]. 

 F vβα= ×  (1) 

F represents the daily bunker consumption (tons/day), v is a sailing speed(knots); α and β are 

parameters which can get regression depending on real data. Although the value of often is 

assumed to third power in most extant researches, it vary with different ships, loading condition 

and weather condition etc. We will attain the formula depending on regression analysis for time 

charter. And the data collection is acquired by shipping intelligent system. 

As in [1], we assume that the CO2 emission factor of marine fuel is equal to 3.17, thereby the 

average daily quantity of CO2 emission is equal to 3.17 F . Assuming the price of bunker fuel 

unit price P , the average bunker daily cost is F P×  . Given days of travel time, and total CO2 

emission and total bunker consumption cost is respectively equal to: 

 2 3.17eTCO F T= ×  (2) 

 bTC F P T= × ×  (3) 

As for (1), we can transform it into following form by taking the logarithm: 

 ln ln lnF vα β= + ×  (4) 

Therefore, we can consider  ln v  as the independent variable and ln F   as the response variable, 

and use the conventional linear regression method to attain parameters lnα  and ln β . 

This paper will discuss bulk cargo transport, and the data of sailing speed and bunker 

consumption on bulk cargo ships are given in Table 1, thereby we can attain bunker 

consumption-sailing speed relation function: 

 3.3580.0043F v= ×  (5) 

Assuming the sailing distance is nautical mile sails , and the travel time of T  (day) is equal to: 

 
24

sailsT
v

=  (6) 

For time charter, the travel time of round trip is limited. And we set the average speed of forward 

direction and backward direction fv  and dv . lT  is the maximum allowable sailing time for 
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forward direction allowing for the latest delivery date. fT  is real sailing time for forward; dT  is 

sailing time for return trip, and cT  is charter period time. 

 
( )

24 24 24

sail sail sail
f d

f c c
f d f d

v vs s sT T T
v v v v

+
+ = + = × ≤

×
 (7) 

 f lT T≤  (8) 

Although the charter bear bunker fuel cost, loading and unloading expense, port charges, this 

paper considered bunker cost and charter hire. Assumed charter rate is ($/day), and the rent is. 

 r cTC R T= ×  (9) 

And total CO2 emission and total cost of round trip is equal to 

 3.358 3.358
2 3.17 (0.0043 0.0043 )e f f d dTCO v T v T= × × × + × ×  (10) 

 3.358 3.358(0.0043 0.0043 )r cb f f d dTC TC TC P v T v T R T= + = × × × + × × + ×  (11) 

The model of emission and cost can be formulated as following.  
Minimize: 
 

3.358 3.358 3.358 3.358{3.17 (0.0043 0.0043 ); (0.0043 0.0043 ) }f f d d f f d d cv T v T P v T v T R T× × × + × × × × × + × × + ×
 (12) 

Subject to 
 

 
( )

24

sail
f d

c
f d

v vs T
v v
+

× ≤
×

 (13) 

 f lT T≤  (14) 

 24 /sail
f fT s v× =  (15) 

 24 /sail
d dT s v× =  (16) 

 ,l f d uv v v v≤ ≤  (17) 

Wherein (13) and (14) are time constraints for sailing. eq (15) and (16) are the relationship 

function of time, distance and speed for sailing; (17) are speed constraints for fv and dv , and  

,l uv v represent the maximum and minimum sailing speed respectively depending on technical and 

weather conditions. 

Table 1 sailing speed and bunker consumption 
Average speed(knots) Bunker(ton/day) Average speed(knots) Bunker(ton/day) 
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14.3 33 14.0 32 
14.4 36 14.0 30 
11.2 12 11.9 14 
11.0 11 13.8 30 
14.2 32 10.0 14 
13.7 28 13.8 27 
13.0 25 13.5 27 
12.8 22 12.3 20 
12.1 18 12.9 26 
12.5 23 12.0 17 

3.3 EMISSIONS AND COST MODEL OF FREIGHT TRAIN 

Freight train covers two modes of traction, namely diesel locomotive and electrical locomotive. 

They have different forms in emission and cost. Freight train of diesel locomotive is closed 

related with speed when dragging, while electrical locomotive is strongly coupled with loading 

weight. 

3.3.1 EXPANDING EMISSIONS AND COST OF DIESEL LOCOMOTIVE 

As for diesel locomotive, [22] presented the energy consumption on some balancing speed during 

the progress of dragging. 

 /1000 ( )eE N t kgρ= × ×  (18) 

E is the energy consumption, ρ represents fuel consumption rate, eN represents power, and t  

represents travel time(hour). 

 / it s v=  (19) 

Wherein s is travel distance, iv  represents the speed on the condition of ith  rotating speed. Table 

2 showed the balancing speed, fuel consumption rate and power in different rotating speed for the 

type of trains DF7G. 

Table 2 Rotating speed, balancing speed and fuel consumption rate, power 
Rotating speed(r/min) 600 700 800 900 1000 
Balancing speed(km/h) 35.04 47.88 61.33 72.91 87.61 
Fuel consumption rate 
g(kW.h) 

247.489 240.999 236.09 232.475 229.917 

Power (kW) 500 760 1050 1450 1840 
Source[22] 

In terms of speed discretization, we introduce the set ( ( ), 1,...5, 1,2,3)j iv i jjΦ = = = , and function 

( )( 1,2,3)j iv jj =   stands for the respective value of , ,eN tρ  corresponding to some balancing speed 

iv . Eq(18) and eq (19) indicated that train speed influence energy consumption by means of 

travel time, power and energy consumption rate also influence energy consumption, and all of 

which show that function ( )j ivj  act on carbon emission and cost. 
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We discretized eq(18) corresponding to five speed scenarios on the different rotating speeds and 

transform it as following: 

 
3

1
( ) /1000 1,..5j i

j
v ij

=
=∏  (20) 

The CO2 emission factor of diesel fuel is 22.23 lb CO2/gal [26], and is equivalent to 2.73kg/litre, 

namely approximate 3.25kg CO2 emitted for combustion of per kilogram diesel fuel.  

The quantity of CO2 emission is equal to: 

 
3

2
1

3.25 ( ) /1000 3.25 1,...5d
c j ie

j
TCO E e E v ij

=
= × = = × =∏  (21) 

The unit price of diesel is dp , and the total cost of diesel is equal to: 

 
3

1
* ( ) /1000 1,...5j id d d

j
TC E p v p ij

=
= = × =∏  (22) 

Objective function 

 
3 3

1 1
min{ ( ) /1000 ; ( ) /1000 , 1...5}cj i j i d

j j
v e v p ij j

= =
× × =∏ ∏  (23) 

3.3.2 EMISSIONS AND COST OF ELECTRICAL LOCOMOTIVE 

Freight trains for electrical locomotive, [27] presented the amount of energy consumption. 

 
32.725 2.724 10jm jm

mjm
jm

M R
EC d

η

−+ ×
=  (24) 

Where  jmM is a train of weight operating along the segment md ; jmR  is the train’s resistance 

along md ; jmη is efficiency of the electric locomotive. For simplicity, [23] employed the 

transformation formula (25) instead of (24) according to the estimation of energy consumption of 

a freight train of a gross weight of  jmM  along md  [28]. 

 0.60.315* * ( )mjm jmEC M d kWh=  (25) 

The corresponding emissions of greenhouse gases in terms of CO2 can be estimated as 

2
e

jm jmeTCO EC e= × . Where jme is the emission rate (kgCO2/kW.h), and the value jme of is 0.46kg 

CO2/kW h of electricity produced [29].Therefore the emission is equal to: 

 
2

0.6

0.6

*
0.315* * ( )*0.46
0.145* * ( )

e
jm jme

mjm

mjm

TCO EC e
M d kWh
M d kWh

=

=

=

 (26) 
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The cost of electric power is electricity price  ep  multiplied by energy consumption. That is 

formulated as: 

 *e ejmTC EC p=  (27) 

For electrical locomotive we could attain the value of carbon emission and cost depending on eq 

(26) and eq (27). And the objective function is 

 0.6 0.6min{0.145* * ( );0.315* * ( ) }m m ejm jmM d kWh M d kWh p×  (28) 

We will consider both diesel locomotive and electrical locomotive for freight train and compare 

the emission and cost with shipping. 

 

IV. NUMERICAL EXPERIMENTS 

 

4.1 LINES AND RELATED DATA 

We assumed that the origin and destination are Shenzhen and Rotterdam, and there are two 

transportation modes of railway and shipping.  

For shipping, the shortest sailing distance is approximate 10021 nautical miles by way of Suez 

canal, GIBRALTAR and English Channel in Figure 2 [30]. The average charter rate of Panamax 

bulk carriers of dwt 60000 is assumed 10250$/day according to period rate [31].For sailing 

speed, the ordinary fv  and dv  range from 10 to 20 knots and another low steaming ranges from 5 

to 20 knotts; the value of lT  is less and equal to 28 days and cT  is no more than 60 days. The 

cubic power relationship of fuel consumption and speed is based on main engine, and marine 

diesel oil(MDO) supply main engine with energy, thereby we assume the average fuel price of  is 

900 USD/TON [32]. 

As for railway line, it is described in Figure 3, and the total length of travel line is approximate 

15,000 kilometers. 

 Scenario Ⅰfor diesel locomotive Average haulage weight is 5000 tons, and it needs 12 trains 

to transport 60000 cargoes. The average value of diesel fuel is 1.28USD/liter , dp equivalent 

to  1.52USD/kg [33]. 
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 Scenario Ⅱfor electrical locomotive Average haulage weight is 5000 tons, and it needs 12 

trains. The value of  ep  is assumed 0.15USD/kWh considering the price variance of different 

regions and different time. 

 
Figure 2 Shortest Shipping Route 

 

 
Figure 3 Eurasia Land Bridge 

(Complied according to the third Eurasia land bridge) 
 

4.2 RESULTS ANALYSIS 

4.2.1 RESULTS OF SAILING 

To assess the effects of sea- rail substitution, using the given data of shipping and freight rail 

service, the impact of shipping on emissions and cost are given. The outcome for the mode 

includes: Carbon dioxide 5.7605e+003 tons; Sailing Speed of forward and return 

14.9, 13f dv v= = ; Total cost of round trip is 2.2505e+006 USD. If  extended to 30, or reduced to 

25, 22 days respectively and other parameter kept constant, the results will be. 

(1)  22lT =  Carbon dioxide: 7.5011e+003 tons, 18.9, 10.9f dv v= = , total cost 2.7446e+006 USD 

(2)  25lT = Carbon dioxide: 6.3176e+003 tons, 16.7, 11.9f dv v= =  , total cost 2.4086e+006USD 
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(3) 30lT = Carbon dioxide: 5.6600e+003 tons, 13.9f dv v= = , total cost  2.2219e+006 USD 

Once there is no constraint of lT , and the shipping only satisfied the time constraint cT  for 

charter. The outcome for shipping is the same as 30lT = , and that means the ship sail at average 

speed of 13.9 knots/ h for round trip. 

The optimal results of emission and total cost subjecting to various  lT  can be expressed in Table 

3, and we know that there is a reciprocal relationship within the speed of forward and return until 

approaching to equal speed. 

Further trends of CO2 emission and total cost according to fv  are showed in Figure 4 and Figure 

5. It could be seen that CO2 emission and total cost have downward trend with decreasing speed 

of fv , and the reduction of sailing speed can lead to less CO2 emission and total cost to some 

extent. The conclusion is the same as others extant researches. 

Figure 6 and Figure 7 demonstrated that CO2 emission and total cost have a sharp decrease when 

fv  declined from a high value, and then both of CO2 emission and total cost decline slowly for 

relative low value of fv . We could conclude that dropping from a high sailing speed has a more 

significant impact on CO2 emission and total cost. 

Table 3 Optimal Results of Emission and Total Cost 
lT (Day) Emission(tons) fv (knot) dv (knot) Total cost(USD) 

22 7.5011e+003 18.9 10.9 2.7446e+006 
25 6.3176e+003 16.7 11.9 2.4086e+006 
28 5.7605e+003 14.9 13.0 2.2505e+006 
30 5.6600e+003 13.9 13.9 2.2219e+006 
Non* 5.6600e+003* 13.9* 13.9* 2.2219e+006* 

 

      
Figure 4 CO2 emission and fv                   Figure 5 Total Cost and fv  
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Figure 6 ECO2 Reduction Varying with fv    Figure 7 Total Cost Reduction Varying with fv  

 
We extended cT  to 90 days further, and relaxed the constraints of lT without speed limitation. We 
could attain a set of new solutions in Table 4. 

Table 4 Emission and Total Cost after Relaxing Time Constraints of lT and cT  
lT (Day) Emission(tons) Total cost(USD) fv (knot) dv (knot) 

 90cT =  60cT =  90cT =  60cT =  90cT =  
22 6.2913e+003 7.5011e+003 2.4012e+006 2.7446e+006 18.9792 6.1403 
25 4.8071e+003 6.3176e+003 1.9798e+006 2.4086e+006 16.7017 6.4237 
28 3.8409e+003 5.7605e+003 1.7055e+006 2.2505e+006 14.9122 6.7345 
30 3.3820e+003 5.6600e+003 1.5752e+006 2.2219e+006 13.9181 6.9590 
35 2.6453e+003 / 1.3660e+006 / 11.9298 7.5917 
40 2.2846e+003 / 1.2636e+006 / 10.4385 8.3508 
45 2.1757e+003 / 1.2327e+006 / 9.2787 9.2787 

 
By comparison, we knew that there is a sharp decline in CO2 emission and total cost due to 

relaxations and extension of time. It seems valuable that the relaxation of time constraints 

presented the possibility of reduction in sailing speed, but it is unrealistic for an unusually low 

sailing speed on account of technical requirements and delivery date. 

As for the practicality, we determined one feasible solution of 5.6600e+003 tons CO2 emission 

and 2.2219e+006 total cost at average sailing speed of 13.9konts when 60cT =  and lT  ; another 

feasible solution of 2.1757e+003 tons CO2 emission and total cost of 1.2327e+006 dollars at 

sailing speed of 9.3 knots when 90cT =  and 45lT =  . 

4.2.2 RESULTS OF FREIGHT TRAIN 

Freight train include Scenario Ⅰ(diesel locomotive haulage) and Scenario Ⅱ(electrical 

locomotive haulage). The emission and cost of Scenario Ⅰis related to discrete speed as well as 

fuel consumption rate and power on the condition of different rotating speed. Therefore we 

calculated the five results corresponding to ( )( 1...5)j iv ij = and attained the final results in Table 

5. 
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The running time reduced to aproximate7 days from 18days on account of increasing speed, 

while total CO2 emission and total cost increased continuously. The increase of total CO2 and 

total cost is not consistent with [18], and the main reason is that they assumed a train running on 

downward slopes which offer the possibility of reducing the power of trains and that of reducing 

energy consumption. However, it requires much more power to sustain high speed and need more 

energy consumption in ordinary railway condition. More energy consumption leads to high CO2 

emission and cost, and it can be seen from a train of emission and cost. Therefore total emission 

and total cost will increase accordingly. 

There is one limitation that it cannot conclude the relationship among running speed, power, 

haulage weight for diesel locomotive. We only assume the relationship of speed and power 

without considering the haulage weight. Once we reduced to 4000 tons for haulage weight, and it 

need 15 trains without changing other conditions. 

We could compare the results of CO2 emissions and total cost within Table 5 and Table 6, and 

draw Figure 10 and Figure 11. Both blue lines represent total emission and total cost after 

haulage weight reduction, and both red lines demonstrate total emission and total with 12 trains 

for 5000 tons haulage weight of a train. It can be seen that total CO2 emission and total cost grow 

accordingly due to increasing times of train services from 12 to 15. 

Table 5 Emission and Total Cost for Diesel Locomotive Corresponding to Five Discrete Speeds 
Speed iv (km/h) 35.04 47.88 61.33 72.91 87.61 
Time (days) 1.7837E+01 1.3053E+01 1.0191E+01 8.5722E+00 7.1339E+01 
Total Emission(tons) 2.0659E+03 2.2378E+03 2.3646E+03 2.7047E+03 2.8248E+03 
Total cost(USD) 9.6622E+05 1.0466E+06 1.1059E+06 1.2649E+06 1.3211E+06 
A train of 
emission(tons) 1.7216E+02 1.8649E+02 1.9705E+02 2.2539E+02 2.3540E+02 
A train of cost(USD) 8.0519E+04 8.7219E+04 9.2157E+04 1.0541E+05 1.1010E+05 

 
 

Table 6 Emission and Total Cost for Diesel Locomotive after Reduction of haulage weight 
Speed iv (km/h) 35.04 47.88 61.33 72.91 87.61 
Time (days) 17.83675799 13.053467 10.19077124 8.572212317 7.133888825 
Emission(tons) 2.5824E+03 2.7973E+03 2.9557E+03 3.3808E+03 3.5310E+03 
Total cost(USD) 1.2078E+06 1.3083E+06 1.3824E+06 1.5812E+06 1.6514E+06 
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      Figure 8 Running Time and v(i)                    Figure 9  CO2 Emission and Total Cost for v(i) 

 

   
Figure 10 CO2 Emission Change                          Figure 11 Total Cost Change 

For scenarioⅡof electrical locomotive, total CO2 emission and total cost is 4.3254E+03 tons and 

1.4095E+06 dollars respectively. If we reduced gross weight of a train, namely reduction of 

haulage weight, emission and total cost will climb on account of the increase of train services 

listed in Table 7, the same as diesel locomotive. While a train of emission and cost will decrease 

when dropping in haulage weight, it can be deduced according to eq(28). 

By comparison of Table 5 , Table 6 and Table 7, we know that total emission for electrical 

locomotive is greater than diesel locomotive under the same haulage weight of a train. Total CO2 

emission with 12 trains (5000 tons haulage of a train) for electrical locomotive is 

4.3254E+03tons, while utmost total emission for diesel locomotive is 2.8248E+03 tons; total 

emission with 15 trains (4000 haulage weight of a train) for electrical locomotive is 4.7292E+03 

tons, 3.5310E+03 tons for diesel locomotive. Total cost for electrical locomotive is greater than 

diesel locomotive in most cases; however, the total cost with 15 trains (4000 haulage weight of a 

train) for electrical locomotive is less than diesel locomotive when less than 70km/h of speed. 

It is clear that diesel locomotive is more environmental and economic than electrical locomotive 

when high haulage weight of a train, conversely, electrical locomotive is better than diesel 

locomotive. A train of emission and cost for diesel locomotive is no more than 2.3540E+02 tons, 
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1.101.E+05 dollars when 5000 tons of haulage weight, but 3.6045E+02 tons and 1.1746E+05 

dollars for electrical locomotive. For heavy-haul train, electrical locomotive need more power, 

therefore it is not an advised decision in long distance transport to some extent. 

Table 7 CO2 Emission and Total Cost Depending on Gross Weight 
Haulage weight 
(tons) 

Train service 
(times) 

Emissions 
(tons) 

Total Cost 
(USD) 

 A train of Emission 
(tons) 

A train of Cost 
(USD) 

5000 12 4.3254E+03 1.4095E+06 3.6045E+02 1.1746E+05 
4000 15 4.7292E+03 1.5411E+06 3.1528E+02 1.0274E+05 
3000 20 5.3059E+03 1.7290E+06 2.6530E+02 8.6450E+04 
2000 30 6.2402E+03 2.0334E+06 2.0801E+02 6.7781E+04 
1500 40 7.0012E+03 2.2814E+06 1.7503E+02 5.7036E+04 
1200 50 7.6549E+03 2.4944E+06 1.5310E+02 4.9889E+04 

 

4.2.3 COMPARISON AND ANALYSIS 

We have determined two solutions for shipping: solutionⅠ CO2 emissions 5.6600e+003 tons, 

total cost 2.2219e+006 USD, average sailing speed of 13.9konts, 60cT =  , 30lT = ; solutionⅡ 

CO2 emissions 2.1757e+003 tons, total cost 1.2327e+006 USD, average sailing speed of 9.3 

knots, 90cT =  , 45lT = . 

We know that average sailing speed declined 33 percent, however, total CO2 emissions declined 

approximate 62 percent, and total cost declined 44.5 percent. The reduction of sailing speed led 

to significant decrease of total CO2 emissions and total cost at the expense of time relaxation, 

and delivery date extend 15 days. 

For diesel locomotive, total CO2 emission of 12 trains (5000 haulage weight of a train) range 

from 2.0659E+03tons to 2.8248E+03 tons; total cost range from 9.6622E+05 USD to 

1.3211E+06; running time range 18 days to 8 days at different speed. Compared with shipping, 

total emissions and cost is far less than solutionⅠof shipping, and it has a decided advantage 

over solutionⅡ. Running time shortened greatly, and the longest time is no more than 18 days. 

If haulage weight of a train reduced to 4000 tons, it requires more train service, 15 trains. Total 

emission of 15 trains range from 2.5824E+03 to 3.5310E+03 tons; total cost range from 

1.2078E+06 to 1.6514E+06. Compared with shipping, total emission and total cost is less than 

solutionⅠof shipping evidently; total CO2 emission and total cost has no advantage over 

solutionⅡof shipping except for less cost at speed of 35.04km/h. 

It shows that heavy-haul train of diesel locomotive will be an appropriate substitution for 

shipping in most situations considering environment and economy on some leg. 
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For electrical locomotive, total CO2 emission of 12 trains (5000 haulage weight of a train) 

4.3254E+03 tons, and total cost is 1.4095E+06 USD. The results of total emissions and total cost 

are much lower than 5.6600e+003 tons and 2.2219e+006 USD of solutionⅠfor shipping, but 

higher than solutionⅡ. Once decreasing haulage weight of a train from 5000 tons to 4000 tons, 

total emission and total cost will increase because of additional 3 train services. Total emission 

added to 4.7292E+03, and total cost 1.5411E+06 USD. Electrical locomotive still stayed ahead of 

solutionⅠof shipping in total emission and total cost, but it is worse than solutionⅡof shipping. 

These results could be shown in Figure 11. The horizontal axis represents different conditions, 

including shipping (solutionⅠand solution Ⅱ) and railway (diesel locomotive and electrical 

locomotive (abbreviation EL)). And diesel locomotive consists of 10 modes according to five 

discrete speed multiplied two modes for haulage weight (5000tons/4000tons) of a train; electrical 

locomotive covers two modes of different haulage weight (EL/5000, EL/4000). The left vertical 

axis represents total CO2 emission, and the right vertical axis shows total cost. And bar charts 

demonstrates total CO2 emission, polyline shows total cost.  

Wherein, both dark gray bars represent total CO2 emission of solutionⅠand solution Ⅱfor 

shipping, and two red points of polyline above both dark gray bars demonstrate corresponding 

total cost of solutionⅠand solution Ⅱrespectively. Other gray bars represent total CO2 emission 

of freight train, and the points of polyline above each light gray bar shows corresponding total 

cost.  

Two dotted blue horizontal lines demonstrated the CO2 emission baseline of solution Ⅰand 

solution Ⅱfor shipping. It is evident that all of freight train emitted less CO2 and consume less 

cost comparing to solutionⅠof shipping, but only diesel locomotive run at lower speed with 

heavy-haul 5000 tons of a train is better than solution Ⅱ. 
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Figure 12 Results of Comparison between railway and shipping 

Overall, whether diesel locomotive or electrical locomotive total CO2 emissions and total cost 

are far less than solutionⅠof shipping, and heavy-haul train of diesel locomotive has an 

environmental and economic advantage over solutionⅡof shipping when less than 50km/h. 

However, solutionⅡof shipping demand more sailing time, and it is not applicable under strict 

time constraint.  

V. CONCLUSIONS 

 

This paper offers an attempt on comparative analysis of freight train and shipping in CO2 

emission and cost base on ITS, during which we find that freight train, especially heavy-haul 

train, is more economic and environmental than shipping to some leg. Freight train will be a good 

substitute of time charter in most cases unless the delivery date is free enough. Because the 

extended delivery date provides the possibility of reduction in sailing speed, and speed reduction 

cause less consumption, less CO2 emission and less cost. 

Meanwhile this paper shows that diesel locomotive has considerable advantage over electrical 

locomotive in heavy-haul transport on long distance, for electrical locomotive need much power 

to haul the train, and emitted more CO2 emission and more cost than diesel locomotive. 

Although electrical locomotive is not better than diesel locomotive in CO2 emission and cost, 

freight train means reduction of CO2 emission and cost compared to shipping. It may be realistic 

to shift shipping to railway on some leg, such as trans Eurasia transport.  

In addition, intelligent transportation across all modes of transport will be providing more 

effective and environmental decision support in future. 
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