
TRANSPORT PROBLEMS                                                                                2017 Volume 12 Issue 3 
PROBLEMY TRANSPORTU                                                                 DOI: 10.20858/tp.2017.12.3.12 

 
 

Keywords: model; locomotive; train flow; optimization; transportation problem 
 

Petr KOZLOV* 

Research and Production Holding STRATEG 
Nizhegorodskaya 32, building 15, 109029, Moscow, Russia 
Sergey VAKULENKO 
Moscow State University of Railway Transport 
Obrazcova 9, building 9, 127055, Moscow, Russia 
Nikolay TUSHIN, Elena TIMUKHINA 
Ural State University of Railway Transport 
Kolmogorova 66, 620034, Ekaterinburg, Russia 
*Corresponding author. E-mail: laureat_k@mail.ru 

 
 
 

MODEL TO CALCULATE THE OPTIMAL MODE OF TRAIN 
LOCOMOTIVES TURNOVER 

 
Summary. A model to calculate the optimal work modes of train locomotives while 

serving train flows is proposed. The model is a further development of the dynamic 
transportation problem. Parameters of train movement and locomotive utilization are 
published. Both locomotive turnover and train schedules are produced. Useful utilization 
of locomotives increases from 70% to 90–95%. This allows the reduction of several 
thousands of train locomotives. 

 
 

1. INTRODUCTION 
 

The problem of rational utilization of locomotives is quite relevant at the present time. It is 
necessary to find the best trade off. When there is an excess of locomotives, we have less train delays, 
but high expenditures, connected with locomotive servicing. When there is a lack of locomotives, the 
converse is true. 

Considering only operational planning covering several hours, it is impossible to produce from 
separate time intervals the effective work mode as a whole. Therefore, in practice, locomotive 
turnover schedules are developed for 7–10 days considering the service area structure and the volume 
of train flow. Usually, such calculations are accompanied by hand-made locomotive turnover 
schedules. Considering a service area with several hundred locomotives and a period of several days, 
however, there will be a great number of variants of train locomotive turnover schedules. This is the 
reason the optimization model is required. 

 
 

2. LITERATURE REVIEW 
 
Since the 1980s an extensive number of articles have been dedicated to the problem of managing 

train locomotives. In [1] Booler tries to solve a scheduling model using linear programming but he 
tests the method only on small instances (10–50 trains). Wright in [2] underlines that the approach in 
[1] is not suitable for more realistic situations (100–500 trains). In 1999 Canadian scientists assigned 
multiple types of locomotives to a fixed timetable [3]. They developed the branch-first, cut-second 
method to solve the integer programming model. Cordeau et al. in [4] describe a Benders’ 
decomposition method for the assignment of locomotives and cars. An alternative approach to solve 
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the problem of locomotive assigning was proposed by a group of scientists from Princeton University. 
Their idea is based on the formulation of the original problem as a dynamic programming problem [5-
10]. In 2012 Powell et al., in [11], describe an application called Princeton Locomotive And Shop 
Management system (PLASMA), which claimed to solve the problem of assigning locomotives to 
trains over a planning horizon capturing a high level of detail. Important improvements in building 
realistic locomotive assigning models are described by authors in [12-14]. Ahuja et al. in [12] describe 
a heuristic based on very large-scale neighborhoods to find near-optimal schedules for locomotives, 
which considers breakups and the desire for weekly patterns in the flows of locomotives. In [13, 14] 
authors provide models to solve a locomotive routing problem capturing a number of constraints with 
an adaptation of their large neighborhood search strategy. 

Currently, in Russia, it is rather difficult to use foreign train locomotive optimization models and 
systems because of the following problems: 

1. the interface of foreign models and systems is not adopted to Russian users. 
2. the high cost of optimization systems (e.g. PLASMA). 
3. the necessity to adopt a model for the Russian railway features of infrastructure, technological 

process, and the information environment, which, in real life, can create a large number of 
problems to be solved for the full reconstruction of a model. 

To overcome these difficulties in Russia a domestic optimization system is developed , which is 
adapted to the features and volume of work in the Russian railways. 

 
 

3. DESCRIPTION OF THE MODEL USED IN THE OPTIMIZATION SYSTEM 
 
This article describes the system of train locomotive turnover optimization «Labyrinth». The 

optimization model in this system is based on the dynamic transportation problem. The solution of the 
dynamic transportation problem is reduced to a static one with reproduction in time [15]. The problem 
has been already discussed by the authors in the scientific press [16]. This article presents a further 
development of the proposed approach. The model described in [16] turned into a system of the 
locomotive turnover optimization that can become an optimizing unit in the corresponding automatic 
control systems. 

The railway station layout represented in the model consists of three parts – the input sector (index 
i), the output sector (index j), and the makeup origin point (index q). 

Trains (makeups with locomotives) or reserve locomotives arrive at the input sector and depart 
from the output sector. At the origin point makeups appear according to the scheduled train departures. 
The connection of locomotives and makeups also takes place at this point. Fig. 1 shows the process of 
locomotive and makeup connection. In this case the reserve locomotive arriving from the previous 
station is denoted as (variable )( abab ty t− ). Next, the locomotive moves to the point q. If there is a 
makeup (variable )(txqq  ≠ 0), it connects with the locomotive, forming a new train. The train moves 

to the output sector (variables )( qjqj ty t−  and )( qjqj tx t− ) and can subsequently depart to the 

following station C (variables )(tybc  and )(txbc ). 
If the locomotive is not required, it waits in the input sector (variable )(tyii ). 
A new concept «pool of free locomotives» (index z) is introduced in the model. Locomotives can 

appear in it at the beginning of the calculation period or depending on necessity. Therefore, 
experiments to determine the number of locomotives required in the conditions of given train flow 
movement parameters can be carried out. Locomotives from the pool can arrive at all parts of the 
station (variables )(tyzi , )(tyzq  and )(tyzq ). 

The running time between points is denoted by τ. 
For example,  )( abab ty t−  means the number of locomotives arriving at station B at moment t, but 

departing from station A at running time abτ  earlier. 
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The transit passing of a station is displayed as a joint movement of the locomotive and the makeup 
(Fig. 2). 

 
 

 
 

Fig. 1. Locomotive and makeup connection scheme: i – input sector, j – output sector, q – makeup origin point 
 

 
 

Fig. 2. Scheme showing a non-stop passing of a station 
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Fig.2 shows the joint arrival of a locomotive (variable )( bcbc ty t− ) and a makeup (variable 

)( bcbc tх t− ). They move from the input sector into the output sector (variables )( ijij tх t−  and 

)( ijij ty t− ). Delays (variables )(tх jj  and )(ty jj ) appear because of the impossibility to dispatch a 

train. Train departure is displayed by variables )(tхcd  and )(tycd . 

Time of arrival without delays is assigned for each train. The arrival is fixed by variable )( *tdi

(Fig. 3). 
 

 
 

Fig. 3. Scheme of a train arrival at the terminal station: )(tхi∆  – delay 
 
If the train arrives later, a delay variable )(xi t∆  is formed. In this case the locomotive either runs 

empty (variables )(tyij  and )(tyde ) or waits in the input or output sector (variables )(tyii  or )(ty jj , 
see Fig. 1). 

In the dynamic transportation problem the source and the drain should be given. For the flows that 
have not reached the drains up to time T, artificial drains are introduced (variables )(S T ). 

 
3.1. Basic equations 

 
The dynamics of the makeups in the input sector are as follows: 

)T(S)t(d)t(x)t(x)t(x iiiijabab ++∆+=t− , Tt ≤≤0               (1) 
The dynamics of the makeups in the output sector are as follows: 

)T(S)t(х)t(x)t(х)t(x)t(x jbcijijqjqjjjjj −−t−+t−+−= 1       (2) 
The display of the train delays is as follows: 

(t)d(t)x-)-(tx(t)x iijababi -t=∆               (3) 

(t)d(t)x1)(tx iii −∆=−∆                     (4) 
where )(xi t∆  is the number of trains being late at the moment t . 
The representation of waiting for the locomotive is as follows: 

)T(S-(t)x-(t)d1)-(tx(t)x qqjqqqqq +=                                    (5) 
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The balance of the locomotives in the input sector is as follows: 
)t(y)t(y)t(y)t(y)t(y)t(у ababiqijziiiii t−+−−+−= 1                      (6) 

The new locomotive either arrives from the previous station or is taken from the pool.  
Dynamics of the locomotives in the output sector are as follows: 

)t(y)t(y)t(y)t(y)t(y)t(у bcqjqjzjijijjjjj −t−++t−+−= 1                        (7) 
Locomotive balance in the makeup origin point is as follows: 

)t(y)t(y)t(y jqzqqi =+                         (8) 
 

3.2. Additional restrictions 
 
The impossibility for the makeup to move into the output sector without a locomotive is as 

follows: 
)t(y)t(x jqqj =                                (9) 

The makeup in the output sector can only be with a locomotive, as follows: 
)t(y)t(x jjjj ≤                              (10) 

The impossibility to dispatch a makeup without a locomotive is as follows: 
)t(y)t(x abab ≤                              (11) 

 
3.3. Functional 
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where η  is service area number, k  is railway station number, cc  is hour cost of the makeup idle time, 
оc  is hour cost of the train idle time, сcβ  is hour cost of locomotive utilization. The costs cc , оc , and 
сcβ  are set for one simulation time-step; ηc  is cost of one locomotive–kilometer, multiplied by the 

length of the service area η . 
 

3.4. The meaning of the terms of the functional 
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ηηη − ))t(x)t(y(c  is cost of the locomotive when it is empty running. In this equation, costs, 

connected with the makeup movement, are subtracted from the whole train costs. 
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4. RESULTS OBTAINED USING THE OPTIMIZATION SYSTEM 

 

Testing of the optimization system was carried out on the Gorkovskaya Railway Druzhinino-
Vekovka service area (Fig. 4). 

 

 
 

Fig. 4. Locomotive service area scheme 
 
A set of calculations was performed and some results from one of the sets are shown below. The 

calculation period was 9 days. The first day and the last two days were discarded as transitional 
because of the necessity to consider only stable periods. 

First of all, locomotive utilization parameters are provided (Fig. 5) 
 

 
Fig. 5. Locomotive utilization 

 
Fig. 5 shows that empty running is minimized. It is impossible to achieve such results using manual 

control because there are billions of variants of locomotive movements during several days. Idle time 
of the train includes time for technical operations and the idle time connected with overtakings. 

It is possible to see the work parameters of each locomotive (Tab. 1). 
The contents of the table can be sorted by any column. It is also possible to open the locomotive 

turnover schedule from each line (Fig. 6). 
Moreover, a considerable number of locomotives do not have empty runs at all (Fig. 7). 
Useful employment does not include idle time of the train because of overtakings. 
Similar information about train movement is also provided (Fig. 8). 
As can be seen, waiting for a locomotive is also minimized. The optimization system provides 

information about train movement in each direction (Fig. 9). 
The system also produces the train schedule and provides the parameters for each train (Fig. 10). 
 
 

5. CONCLUSION 
 
The optimization system allows carrying out different experiments including the calculation of the 

optimal number of locomotives in conditions of given cost parameters, determination of the best 
locomotive location at the beginning of the calculation period with the given train flow structure, the 
evaluation of the influence on train movement depending on the number of locomotives, and so on. 

If there is a need, it is possible to connect the optimization system to the corresponding automatic 
control systems to use in operative planning. 
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Table 1 
Locomotives work parameters 

 

 
 

 
 

Fig. 6. Locomotive turnover schedule (the black line shows the idle time and empty running) 
 

 
 

Fig. 7. Locomotive turnover schedule without empty running 
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Fig. 8. Train flow movement parameters 
 

 
 
Fig. 9. Train delays applying to the separated train flow streams 

 

 
 
Fig. 10. Train schedule 
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