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Abstract- Capacitive differential pressure sensor (CPS), which converts an input differential 

pressure to an output current, is extremely used in different industries. Since the accuracy of CPS is 

limited due to ambient temperature variations and nonlinear dependency of input and output, 

compensation is necessary in industries that are sensitive to pressure measurement. This paper 

proposes a framework for designing of CPS compensation system based on Multi Layer Perceptron 

(MLP) neural network. Firstly, a test bench for a sample popular CPS is designed and implemented 

for data acquisition in a real environment. Then, the gathered data are used to train different MLPs 

as CPS compensation system which inputs are the output current of CPS and temperature value, 

and the output is compensated current or computed pressure. The experimental results for an 

ATP3100 smart capacitive pressure transmitter show the trained three layers MLP with Levenberg-

Marquardt learning algorithm could effectively compensate the output against variation of 

temperature as well as nonlinear effects, and reduce the pressure measurement error to about 0.1% 

FS (Full Scale) , over the temperature range of  5 ~ 60 ° C. 

 

Index terms: Capacitive pressure sensors, Levenberg-Marquardt training algorithm, Multi-Layer Perceptron, 

Temperature compensation. 
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I.  INTRODUCTION 

 

Pressure measuring plays an important role in many industries and applications such as 

biomedical pressure measurement, automobiles industries, and process control system [1]. 

The capacitive pressure sensor (CPS), in which the capacitance of a chamber changes based 

on the input pressure, finds extensive applications because of its low power consumption and 

high sensitivity. However, CPS highly nonlinear response characteristic results in some 

challenges, including on-chip interface, direct digital readout, and calibration. To overcome 

these challenges and compensate these nonlinearity effects, several techniques have been 

suggested. A switched-capacitor charge balancing technique, a ROM-based look-up table 

method and a nonlinear encoding scheme have been proposed. The problem of nonlinear 

response characteristics of a CPS further aggravates the situation when there is change in 

environmental condition. As the output of a CPS is dependent on applied pressure as well as 

temperature, when the ambient temperature changes frequently, the situation becomes very 

complicated and temperature compensation is necessary [2-3]. 

Among different compensating techniques, Artificial Neural Network (ANN) is widely 

applied to compensate the mentioned challenges and producing compensated read-out [4-11]. 

ANN has so strong ability for function approximation that it is used as sensor model and to 

compensate for the various nonlinear effects [12]. However, ANN also suffers from some 

drawbacks such as low convergence rate, being easy to fall into local minimum in training 

phase and weak generality in overtraining conditions [13]. 

Patra et al. [4] developed an approach for CPS modeling based on a functional link artificial 

neural network (FL-ANN) which achieves accuracy better than 1% FS (Full Scale), over the 

temperature range of −20 ~ 70 °C. Pramanik et al. [5] described an intelligent scheme using a 

Multi Layer Perceptron (MLP) neural network trained by back propagation (BP) that obtained 

an error reduction of approximately 98% for a CPS in the pressure range of 0 ~ 1 bar, over the 

temperature range of 25 ~ 80 °C. Dibi et al. [6] also used a MLP neural network to model and 

compensate CPS hysteresis output in order to extend the temperature range to -20 ~ 100 °C. 

Hashemi et al. [7] modeled and compensated a CPS by a Radial Basis Function (RBF) neural 

network to achieve 1.4% and 2.9% RMSE (Root-Mean-Square Error) in modeling and 

compensation, respectively.  
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Futane et al. presented two CMOS analog ASIC designs of MLP neural networks for 

temperature-drift compensation of a piezoresistive micro-machined high resolution pressure 

sensor [8] and a piezoresistive micro-machined porous silicon pressure sensor [9], in which 

the errors for compensated sensors were reduced to better than 1% FS and 3.5% FS (based on 

conventional neuron model), over the temperature range of 0 ~ 70 °C, and 25 ~ 80 °C, 

respectively. 

Hashemi et al. [10] also modeled and compensated the CPS using Support Vector Machine 

for Regression (SVR) method optimized by a Particle Swarm Optimization (PSO) to achieve 

1.0% and 2.4% RMSE in modeling and compensation, respectively. Zhou et al. [11] 

developed a single hidden layer feed forward neural network (SLFN) trained by extreme 

learning machine (ELM) as the calibration algorithm for the pressure drift. They achieved to 

0.13% FS accuracy for a silicon piezoresistive pressure sensor over the temperature range of 

−40 to 85 °C. 

This paper presents a framework for temperature as well as nonlinear effects compensating of 

CPS based on MLP neural networks. Based on the proposed framework, after selecting a 

pressure sensor, it is necessary to design and implement a test bench to gather a 

comprehensive data in different pressures and temperatures. Then the proposed compensating 

system which is based on MLP neural networks should be trained and validated using the 

gathered database. And finally, the best trained MLPs should be tested in real conditions to 

ensure a properly functioning of the compensated system. 

This paper organized as follows: The next section presents a brief review on CPS model and 

operation. The third section introduces the proposed MLP-based compensating framework for 

CPS. The fourth section presents the proposed compensator for a sample CPS in details and 

compares the results with some other compensators, and the paper closes with a conclusion. 

 

  

II. CAPACITIVE PRESSURE SENSOR MODEL 

 

CPSs have lower power dissipation and higher sensitivity than other types of pressure sensors. 

A CPS senses input differential pressure due to the elastic deflection of its diaphragm. In the 

case of a simple structure, which is shown in Figure 1, this deflection is proportional to the 

applied differential pressure Δp, and the sensor capacitance C(Δp) varies hyperbolically. 

Neglecting higher-order terms, C(Δp) may be approximated as: 
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  C(Δp) = C0 + ΔC(Δp)  = C0 (1+ γ )        (1) 

 

Figure 1. Schematic overall structure of a CPS 

 

where C0 is the sensor capacitance when Δp=0, ΔC(Δp) is the change in capacitance due to 

applied differential pressure, γ = ΔpN(1 –α ) ∕ (1 –ΔpN ), α is the sensitivity parameter which 

depends upon the geometrical structure of the sensor. ΔpN is the normalized applied 

differential pressure given by ΔpN = Δp ∕ Δpmax and Δpmax is the maximum permissible input 

differential pressure.  

The problem that is discussed in this paper is the dependency of CPS on temperature. The 

sensor capacitance is a function of the applied differential pressure and the ambient 

temperature T. Assuming that the change in capacitance due to change in temperature is linear 

and dependent of the applied differential pressure, the CPS model may be expressed as: 

 C(Δp ,T)=C0 f1(T) + ΔC(Δp ,T0) f2(T),      (2) 

where ΔC(Δp,T0) represents the change in capacitance due to applied differential pressure at 

the reference temperature T0 as given in equation (1). The function f1(T) and f2(T) which are 

non-linear function of T, could be linearized by first order estimation as: 

  f1(T) = 1 + β1(T-T0)                                      

                      (3)   f2(T) = 1 + β2(T-T0), 

where the coefficients β1 and β2 may have different values depending on the CPS chosen. The 

normalized capacitance of the CPS, CN is obtained by dividing (2) by C0 and may be 

expressed as: 

 CN =C(Δp ,T)/(C0 ) = f1(T) + γf2(T).       (4) 

Equations (2) show that the output of a CPS is a non-linear function of temperature. It means 

that to measure pressure accurately by CPS, temperature compensation is also necessary [10]. 
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In the other word, CPS equips with an internal circuits that produce current in output. After 

CPS calibration, which is performed based on lower and upper pressure limits, it is expected 

that the output current, Imeasured, to be a linear function of the input differential pressure, Δp, 

as: 

 Imeasured  =  αΔp + β,         (5) 

where α and β are two parameters that should be tuned in order to achieve the minimum error 

in pressure measurement [10]. In many applications, Imeasured is measured by a current 

measurement system and then, it is converted to the input differential pressure, Δp, as:  

 Δp = (Imeasured  - β) / α,         (6) 

In converting the CPS output current to the input pressure using Equation (6), unfortunately, 

there is always an error that is based on linear approximation, which is presented in Equation 

(5), for nonlinear dependencies. 

 

  

III. PROPOSED MLP-BASED COMPENSATION FRAMEWORK 

 

Two main principles for MLP-based CPS compensation are characteristics of neural networks 

including: self-adaptive capacity, which is necessary for complicated nonlinear mapping, and 

training ability, which is suitable for adapting based on real data. As discussed in Section 2, 

the current output of a CPS is dependent on both pressure and temperature. The pressure 

dependency is normal for a CPS, but in the situation that CPS temperature changes, the CPS 

output does not indicate the exact pressure. By using the MLP neural network, the adverse 

effects of temperature as well as nonlinear dependencies on the CPS output is reduced and 

compensated. For a CPS that is equipped to MLP-based compensator, it is expected that the 

linear Equation (5) to be fully establish, independent of temperature variations and CPS 

nonlinear dependencies. 

Figure 2 shows the first proposed setup for a CPS equipped with a MLP-based compensation 

that simulates the compensated output current, Icompensated. In this figure, the PT100 is a 

common calibrated temperature sensor which generates ambient temperature value, Tmeasured, 

in order to be one of the MLP input. After MLP training, it is expected that MLP output value, 

Icompensated, is not only temperature-invariant, but also fully linear respect to the input 

differential pressure, Δp, which is presented in Equation (5). 
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Figure 2. The first proposed setup for a CPS equipped with a MLP-based compensation which 

simulates the compensated output current 

 

In the proposed framework, the MLP training plays a major role in validity of the 

compensator performance. Figure 4 demonstrates the proposed training setup for the MLP 

used in the first proposed framework which is shown in Figure 2. In this setup, it is necessary 

to generate the error value, which is a difference between the real output of MLP, Icompensated, 

and the ideal value of CPS current output, Iideal, based on the Equation (5). In order to 

compute Iideal based on the Equation (5), it is necessary to use an accurate input differential 

pressure, Δpmeasured, which is measured by another calibrated and accurate pressure sensor, 

accurate PS, in the proposed setup which is shown in Figure 3. 

         

Figure 3. The proposed setup for training of MLP-based CPS compensation which simulates 

the compensated output current 
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The previous setup generates the compensated output current, while in some applications, it is 

necessary to generate pressure value, instead of current, in the measurement system output. So 

the second framework is also proposed, which is shown in Figure 4, in which the MLP output 

simulates Δpmeasured. 

  

Figure 4. The second proposed setup for a CPS equipped with a MLP-based compensation 

which simulates the compensated pressure value 

 

The only difference between two proposed frameworks is the MLP used in the second 

framework is trained to generate the compensated pressure value while in the first one the 

MLP is trained to generate the compensated corresponding current. Figure 5 also 

demonstrates the proposed training setup for the MLP used in the second proposed framework 

which is shown in Figure 4. In this setup, the generated error for MLP training is based on 

error between the generated pressure by MLP and the accurate PS which is shown in Figure 5.  

 

Figure 5. The proposed setup for training of MLP-based CPS compensation which simulates 

the compensated output current 
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IV. USING COMPENSATION FRAMEWORK FOR A SAMPLE CPS 

 

This section presents realization of proposed compensation framework for eliminating the 

negative effects of ambient temperature as well as non-linear dependencies for the sample 

CPS, AUTROL® APT3100 smart pressure transmitter, which is shown in Figure 6 [14]. This 

sensor can be used for pressure measuring of corrosive or non-corrosive gases, water vapor 

and liquids. Its measurement range is between 0 mmh2o to 3874 mmh2o. The APT3100, 

which is a two wire loop power transmitter, equips with a standard 4/20mA output scaled for 

desired output pressure range. It is claimed that the value of the output current is the linear 

dependent on the input pressure sensor. This output signal can be indicated, recorded, or used 

in a control system. 

 

Figure 6. AUTROL® APT3100 which is a CPS-based smart pressure transmitter  

 

However, this smart sensor uses a capacitive pickup optimized with a patented temperature 

compensation algorithm, but our experimentations improve that this smart sensor still suffers 

from dependency to temperature. Therefore, we used our proposed framework for 

compensating. At the first step, it is necessary to perform some experiments on the APT3100 

in different operations, in order to collect a comprehensive dataset which is needed for MLP 

training. 

 

a. Collecting Data 

In order to collect a comprehensive dataset, the laboratory system which is 

schematically shown in Figure 7, is designed to emulate real conditions in which the 

sensor is practically used. 
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Figure 7. The schematic diagram of the proposed test system which is designed to study the 

effect of temperature on APT3100 output 

 

Figure 8 also shows the built system in real environment which includes the 

temperature controller system, the thermal isolated container with an APT3100 and 

a heater inside, the other calibrated pressure sensor for accurate measuring the 

pressure, the handy air pump for producing different pressure, the manometer and 

some other parts. 

 

 

 

 

 

 

 

Figure 8. The real test bench used to achieve experimental data  

 

To evaluate the effect of temperature on the behavior of ATP3100 output, the temperature 

inside the compartment from +5 C to +60 C with incremental step of 5 C is applied. 

Moreover, at any particular temperature, differential pressure acts on the diaphragm of CPS 

from 0 mmh2o to 500 mmh2o with incremental step of 50 mmh2o is applied.  

 
Handy Air 

Pump 

Pressure 
Sensors for 

measuring 

(calibrated) 

 

Thermal 

Isolated 

Container 

Temperature 

Controller 
Manometer 

Ampere 
meter 

Trance 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 3, SEPTEMBER 2015 

1451



 

 

 

 

 

 

 

Totally, 12 datasets that each of these sets contains 11 pairs of (I,Δp) are obtained, where Δp 

is differential input pressure which is measured by the calibrated pressure sensor (in mmh2o 

unit) and I is the sensor output current which is measured by the ampere meter (in mA unit). 

In each dataset, the ambient temperature is fixed which means that the output current or 

differential pressure is independent of temperature. For example, at the first (last) dataset, the 

temperature is fixed on 5 (60) C.  

Before starting experiments for each dataset which is considered in a fixed temperature, it is 

necessary to calibrate the APT3100 for the ambient temperature. In ambient temperature, a 

HART device [14] or computer calibration action is used for pressures 0, +125, +250, +375, 

+500 mmh2o as the sensor input, to produce 4, 8, 12, 16, 20 mA as the sensor output, 

respectively.  

On the other hand, since a heater is used for adjusting temperature value inside the thermal 

isolated container, the APT3100 should be placed at that temperature for about 1.5 hours to 

guaranty the temperature inside the chamber capacitive diaphragm of CPS reaches to the 

desired temperature and the temperature impact has been completed on APT3100 output. 

 

b. Datasets 

Each dataset shows the effect of environment temperature as well as other nonlinear effects 

on the behavior of the sensor output. For example, Figure 9 presents a sample dataset that is 

the output current for every real input differential pressure, at 60 C. The blue continuous line 

is ideal output while the red dashed line in the real output. Since the sensor was calibrated to 

produce the linear output current based on the input differential pressure (Equation 5), there is 

a slight deviation between the ideal and real output, which is shown in Figure 10, for the 

sample dataset of Figure 9.   
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Figure 9. The sample dataset: The output current of the APT3100 versus the real input 

differential pressure at the tested temperature of 60 C 

 

 

 

Figure 10. The sample difference between the ideal and real output current of the ATP3100 

versus different real input differential pressure, at 60 C 

 

On the other hand, the output current can be used to compute the input differential pressure 

(by Equation 6) that results in a slight deviation between the real and the measured input 

differential pressure which is shown in Figure 11, for the sample dataset of Figure 9. 
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Figure 11. The sample for difference between the real and the measured input differential 

pressure of the ATP3100 versus different real input differential pressure, at 60 C 

 

Figures 9 through 11 present the nonlinear effects which results in a slight difference between 

real and desired values. For example, Figure 11 shows there are 3.3 to 6 mmh2o differences 

between the real and measured input differential pressures. Again, the datasets can be used to 

present the dependency of the output values to the APT3100 real temperatures. For example, 

Figure 12 shows the APT3100 output current for fixed input differential pressure 500 mmh2o 

which should be 20 mA, in different temperatures. 

 

Figure 12. The samples for difference between the ideal and real output current of the 

ATP3100 for the fixed input differential pressure of 500 mmh2o versus different environment 

temperatures 
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Figure 13 also shows the computed input differential pressure of the APT3100 based on the 

corresponding output current for fixed input differential pressure 500 mmh2o in different 

temperatures. There are some noticeable differences between the real and measured input 

differential pressure. Figures 10 and 13 demonstrate the nonlinear effects as well as 

temperature impacts on the measured input differential pressure. It means that it is necessary 

to consider the other compensating system to reduce these effects in order to produce perfect 

output.  

 

 

Figure 13. The sample for difference between the real and the measured input differential 

pressure of 500 mmh2o based on the output current of the ATP3100 versus different 

environment temperatures 

 

c. Applying Compensating Framework 

One of the main parts of the compensating framework is MLP neural networks that should be 

train accurately for perfect working. Therefore to consider the proposed compensating 

framework in the testing system, a training set based on the collected datasets should be used 

for MLP training. The training set should be divided into two sets: training and testing. 

During the training phase, the training dataset is used for MLP training by different learning 

algorithms [13,15-17], until achieving to a predefined error, between desired and real outputs. 

In the testing phase, the testing dataset is applied to the trained MLP to compute error for 

testing dataset. If there are different MLP architectures and different learning algorithms, the 

best MLP achieves to the lowest testing error.  

The datasets consist of a collection of triple data (I,T,Δp), where I is the measured output 

current. The temperature (T) includes 12 different values from 5 to 60 C with incremental 
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temperature step of 5 C. The input differential pressure (Δp) includes 11 different values 

from 0 to 500 mmh2o with incremental pressure step of 50 mmh2o. Therefore the total dataset 

consists of 132 (12×11) triple data (I,T,Δp) which is divided into two sets, 2/3 of data is 

selected for training, and 1/3 of the remained data is selected for testing. The total data for 

temperatures values of 5, 10, 20, 25, 35, 40, 50, and 55 C are assigned for training, and the 

other data for temperatures values of 15, 30, 45, and 60 C are assigned for testing. 

The evaluated MLPs are two and three layers with different number of neurons in the hidden 

layers. These MLPs have two inputs and one output which are shown in Figures 2 and 4. For 

two layers MLP, the number of neurons in the hidden layer is selected between 1 to 20 

neurons, while for the three layer MLP, the number of neurons in the second hidden layer is 

selected between 1 to 10 neurons. Different excitation functions including linear, sigmoid, 

hyperbolic tangent and logarithmic functions are tested. Moreover, different learning 

algorithms are used for MLP training including Batch Backpropagation, Batch 

Backpropagation plus Momentum, Resilient Propagation, Quasi-Newton and Levenberg-

Marquardt algorithms. The training and testing procedures are repeated 10 times from 

different initial MLP weights, and the average output values are computed and considered. 

 

d. Simulation Results 

Our simulations show that the best neural network is the three layers MLP with 6 and 4 

neurons in the first and the second hidden layer, respectively. The excitation function in the 

output layer is linear while in the other layers, hyperbolic tangent is used. Moreover, the 

Levenberg-Marquardt (LM) learning algorithm presents the lowest testing error. Figure 14 

compares the results of applying the trained MLP-based compensating system for dataset 

shown in Figure 9.  
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Figure 14. The output current of the APT3100 versus the real input differential pressure at the 

tested temperature of 60 C, for three cases: ideal output, with and without applying MLP-

based compensator. 

 

In order to highlight the difference between the APT3100 current output before and after 

applying the trained MLP-based compensating system, Figure 15 shows the difference 

between the ideal output current with these two cases. It is clear that the deviation is 

effectively reduced using the proposed MLP-based compensating system.    

 

Figure 15. The sample difference between the ideal and real output current of the ATP3100 

versus different real input differential pressure, at 60 C, for two cases: with and without 

using MLP-based compensator system.  
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the input differential pressure in two cases, with and without using the MLP-based 

compensating system, at the fixed temperature 60 C, where the error effectively reduces 

when the proposed compensator is used. 

 

 

Figure 16. The sample for difference between the real and the measured input differential 

pressure of the ATP3100 versus different real input differential pressure, at 60 C, in two 

cases: with and without applying the trained MLP-based compensating system. 

 

In order to present effectiveness of the trained MLP-based compensating system in different 

environment temperature, Figure 18 and 19 show the output current and the computed input 

differential pressure, respectively, in different temperature, at pressure of 500 mmh2o. The 
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current. Moreover, the computed pressure by the compensated system is very close to 500 
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Figure 17. Comaprison between the ideal, real and compensated output current of the 

ATP3100 for the fixed input differential pressure of 500 mmh2o versus different environment 

temperatures   

 

 

Figure 18. Comaprison between computed input differential pressure of the uncompensated 

and compensated ATP3100 for the fixed input differential pressure of 500 mmh2o versus 

different environment temperatures 

 

These last two figures present that the compensated outputs are nearly temperature invariant 

and linear. Table 1 also compares the results, without and with the proposed MLP-based 

compensator in different temperature and input differential pressure, where the impact of the 

proposed compensated is clearly evident.   
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Table 1. The ideal, measured, and real input and output values for ATP3100 pressure sensor, 

without and with the proposed trained MLP-based compensator, in different temperatures and 

pressures. 

Compensated 

Computed 

Pressure 

Compensated 

Output 

Current 

Real 

Computed 

Pressure 

Measured 

Output 

Current  

Ideal 

Input 

Pressure  

Ideal 

Output 

Current 

Temp. 

150.0029 8.8001 149.6875 8.7900 150 8.8 5 

350.0817 15.2026 349.6875 15.1900 350 15.2 5 

149.9137 8.7972 147.8125 8.7300 150 8.8 10 

349.5669 15.1861 347.5000 15.1200 350 15.2 10 

149.8054 8.7938 147.5000 8.7200 150 8.8 15 

350.0288 15.2009 347.8125 15.1300 350 15.2 15 

150.3079 8.8099 148.7500 8.7600 150 8.8 20 

350.4708 15.2151 349.0625 15.1700 350 15.2 20 

149.5903 8.7869 148.4375 8.7500 150 8.8 25 

349.9608 15.1987 349.0625 15.1700 350 15.2 25 

150.0839 8.8027 148.4375 8.7500 150 8.8 30 

349.6460 15.1887 348.4375 15.1500 350 15.2 30 

150.1230 8.8039 147.5000 8.7200 150 8.8 35 

350.0550 15.2018 348.1250 15.1400 350 15.2 35 

150.0504 8.8016 146.5625 8.6900 150 8.8 40 

350.0291 15.2009 347.5000 15.1200 350 15.2 40 

150.5380 8.8172 146.5625 8.6900 150 8.8 45 

349.9976 15.1999 347.1875 15.1100 350 15.2 45 

150.1204 8.8039 145.9375 8.6700 150 8.8 50 

349.8011 15.1936 346.8750 15.1000 350 15.2 50 

150.0885 8.8028 145.6250 8.6600 150 8.8 55 

350.1001 15.2032 346.8750 15.1000 350 15.2 55 

149.6913 8.7901 144.3750 8.6200 150 8.8 60 

349.7756 15.1928 345.6250 15.0600 350 15.2 60 

 

d. Comparing the Results with Other Methods 

Table 2 briefly compares the results of the proposed MLP-based compensator with some other 

similar ANN-based compensators, for different pressure sensors. The pressure measurement 

error of Patra et al. [4] for CPS is better than 1% FS in a wide temperature range of −20 ~ 70 
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°C. Futane et al. [8] could achieve the pressure measurement error for Silicon Piezoresistive 

micro-machined pressure sensor about 1% FS in a less temperature range of 0 ~ 70 °C. Then, 

Zhou et al. [8] could improve temperature range to −40 ~ 85 °C, with the pressure 

measurement error to better 0.13% FS. Our proposed method achieves the pressure 

measurement error to about 0.1% FS for a CPS, which is the best one in the compared 

methods, while the reported temperature range is 5 ~ 60 °C which is limited by experimental 

setup.  

 

Table 2. Comparison of different ANN-based compensators for pressure sensors (PS) 

Temperatur

e Range 

Pressure 

Measurement 

Error 

Pressure Sensor Compensated Methods 

−20 ~ 70 °C 1% FS Capacitive PS Patra et al. (2000) [4]  

0 ~ 70 °C 1% FS 

Silicon 

Piezoresistive micro-

machined PS 

Futane et al. (2010) [8] 

(conventional neuron 

model) 

-40 ~ 85 °C 0.13 % FS 
Silicon 

Piezoresistive PS 
Zhou et al. (2014) [10] 

5 ~ 60 °C 0.1% FS Capacitive PS The proposed method 

 

 

V CONCLUSION 

 

Accurate pressure measuring is very important in some critical applications and industries. On 

the other hand, the CPS, in which the capacitance of a chamber changes based on the input 

pressure, the output unfortunately suffers from temperature variation as well as nonlinear 

effects. This paper introduces a simple but effective compensative framework for the CPS 

using the MLP neural network. The proposed MLP-based compensator tries to overcome 

temperature dependencies as well as nonlinear operations of CPS. In order to evaluate the 

effectiveness of this compensator, the proposed framework is applied for ATP3100 smart 

capacitive pressure transmitter which uses a patented compensating algorithm. At first step, 

the necessary datasets by carrying out some experiments on the APT3100 should be collected 

in order to train and test the MLP. After evaluating different MLPs, the proposed MLP which 
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is a three layer, two inputs, 6 neurons in the first hidden layer, 4 neurons in the second hidden 

layer, and one output is selected as the best ones. Our simulations in different conditions show 

that the trained MLP-based compensator by LM algorithm could effectively compensate the 

output against variation of temperature as well as nonlinear effects. It also improves the 

pressure measurement error to better than 0.1% FS for the reported temperature range of 5 ~ 

60 °C which is not a wide range and it is limited by experimental setup limitations. In future, 

the proposed compensator should be evaluated in larger temperature ranges.  
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