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Abstract- This paper proposes a knowledge-based model applied to an experimental scale evaporative 

cane sugar crystallization process, which combines the methods of offline and online knowledge 

acquisition. Firstly, a data mining method based on rough set theory is utilized to extract information 

from the large quantity of relevant data obtained in experiment. This method products an offline 

predictive knowledge. Thereafter, a method for online knowledge learning and self-improvement is put 

forward, based on support vector machine with particle swarm optimization, to improve the predictive 

accuracy and generalization capacity. Furthermore, the intelligent system is tested using a self-

regulating intelligent comprehensive monitoring and controlling platform that represents the cane 

sugar process. Results demonstrate the feasibility of the system for predicting the crystallization state in 

a real cane sugar process. 

 

Index terms: Cane sugar crystallization state, intelligent system, knowledge acquisition, rough set, support 

vector machine 
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I. INTRODUCTION 

 

Crystallization process is a key component in cane sugar industries, which is currently non-

automated in China. Some key process parameters that influence the cane sugar crystallization 

are not stable and reliable for online measurement, and the dynamic crystallization state is also 

not able to be judged, which lead to the incorrect conduction of corresponding operations. 

Therefore, the operators in most cane sugar industries still mainly conduct the next action based 

on the size of the crystals and the concentration of mother liquor by extracting the sucrose from a 

sample rod manually [1-3]. 

The cane sugar crystallization process involves a transformation of heat and mass, which is a 

complex process that involves many interacting factors. So it’s difficult to create a precise 

mathematic model for the cane sugar crystallization process.  

However, the concerned experts and operators accumulate rich experience about process research 

from lab and large-scale industrial production practice. In some way, it is the precious experience 

that maintains the progress of Chinese cane sugar industry. Under this condition, we proposed a 

knowledge-based method to determine the cane sugar crystallization state. Firstly, an offline 

knowledge-obtained method for the system was developed based on rough set. And a combined 

support vector machine (SVM) and particle swarm optimization (PSO) was used to complete 

online learning and dynamic updating of the knowledge, which made the database of the system 

accessible to be self-improved in actual application [4]. Finally, the prediction of the cane sugar 

crystallization state could be completed. The realization of the prediction could make 

contribution to the automated technology in cane sugar industry. 

 

II. KNOWLEDGE-BASED CONTROL 

 

The main difficulty associated with the crystallization process control is that there is no direct 

method for measuring the supersaturation of solution. Usually the supersaturation is measured 

under a way of indirection.  

One way is to develop new sensor instruments that could formulate the supersaturation according 

to physical quantities they could measure directly. For instance,  P.F. Bordui [5] measured the 

electrical conductivity from an aqueous solution to obtain the supersaturation of potassium 
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dihydrogen phosphate based on conductivity-temperature-concentration data base; ATR-FTIR, 

FBRM and PVM were applied by Dilum, Abhay Markande, P. Barrett and so on [6-8] to the 

crystallization process respectively, which could calculate out the supersaturation in 

crystallization process online. These kinds of instruments enable the control of modern 

crystallization process, but the ways of measuring the supersaturation are far from precise since 

the measured physical quantities are strongly influenced by the amount of impurity in the 

solution. 

Another way is to adopt the model-based predictive approaches to the crystallization process, 

which has been a major advance in the field of soft sensor process measurement. The model-

based approach had limitations in terms of optimization objectives and constraints, optimization 

variables, and methods of dealing with uncertainties. These limitations have been removed in 

recent more than a decade in which the Artificial Neural Networks (ANNs) have been frequently 

used in modeling and control of nonlinear processes. And there has been some research work 

published using ANNs as a crystallization model [9-11], which seems suitable for modeling 

purposes since they can express past and current input-output information and thus approximate 

nonlinear behavior of dynamic processes [12]. 

In this paper, an innovative knowledge-based model combined with rough set and support vector 

machine is proposed to predict the cane sugar crystallization state, compared with a back 

propagation neural network (BPNN) and a traditional SVM without optimization [13-14]. Finally, 

the knowledge-based model is integrated into the eForceCon software to form an intelligent 

system, which makes it feasible to dynamically update the knowledge base of the system. The 

modeling of the knowledge-based model for the crystallization process consists of two steps, 

namely, the method for obtaining offline knowledge (in section 3) and the online updating 

method based on SVM (in section 4). 

 

III. METHOD FOR OBTAINING OFFLINE KNOWLEDGE 

 

a. Evaluation of cane sugar crystallization 

Those factors that influence the cane sugar crystallization state mainly include the brix and 

temperature of the syrup, pressure and temperature of the steam, vacuum pressure and feed 
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flowrate. So these parameters should be controlled well to make the crystals grow up faster and 

reduce the reacting probability of the phenomenon of second nucleation and agglomeration. 

The fraction of crystals that reach to the standard size and their uniformity at the certain moment 

of a batch crystallization mark the growing conditions of the cane sugar crystallization. The 

uniformity of the crystals is represented as the crystal size distribution (CSD). It samples the 

massecuite in sugar pan for calculating correlative parameters such as the number, size and mean 

size of the crystals. Then the growth rate of the crystals is statistically obtained and used to 

evaluate the current crystallization state. The crystallization state generally is divided into six 

classes, i.e., 5, 4, 3, 2, 1, 0, where 5 represents the best and 0 represents the worst. 

 

b. Data mining based on rough set 

The key of the intelligent system which could correctly judge the current crystallization state, is 

the knowledge obtained and its capability of self-improvement. With the large number of 

industrial data and experience knowledge accumulated, we adopt the data mining method based 

on rough set to obtain the offline knowledge. 

b.i  Basic procedure 

Rough set theory is a mathematic tool to solve fuzzy and uncertain knowledge. Its main idea is 

that the uncorrelated or unimportant knowledge in the knowledge base could be deleted through 

knowledge reduction with the constant classifying ability [15-16]. The flow chart of obtaining 

knowledge based on rough set is showed as figure 1. 

obtain sample 

data and create 

the original rule 

table

discretize 

attribute

rule table after 

discretization

reduce rule 

table
extract rule rule set

FCM clustering 

discretization

attribute 

reduction

value 

reduction
 

Figure 1.  Basic procedure of obtaining offline knowledge 

 

For the simplification purpose, we selected 8 samples to describe the process of offline 

knowledge acquisition of the cane sugar crystallization state. Actually, it came from a great 

number of samples. 
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b.ii  Rough set theory 

Distinguish matrix and function: The information system  , , ,S U A V f , 
1 2{ , ,..., } nU x x x  

is a domain of discourse, and the A C D  and C D  are the attribute set of an object 

where { , 1,2,..., } iC a i m  means the subset of condition attributes, { , 1,2,..., } jD d j l  means 

the subset of conclusion attribute. The ( )k ja x  means the value of a sample jx  with the 

condition attributes ka . ( ) [ ]  ij n nM S m  is defined as a n n  distinguish matrix of an 

information system.
ijm  is the element of the i-th row and j-th column in the distinguish matrix, 

which is described as 

, ( ) ( ) ( ) ( )

( ) ( ) , 1,2,...,

k k i k j i i

ij

i j

a C a x a x D x D x
m

D x D x i j n

   
 

   ，
 

(1) 

where 
ijm  represents the attribute set of the whole distinguish objects 

ix  and jx  under 

different rule conclusions. If the rule conclusions of 
ix  and 

jx  are the same, the value of ijm  

is   in the distinguish matrix. According to the definition of 
ijm , ( ) [ ]  ij n nM S m  is a 

symmetric matrix, whose elements on the main diagonal are an empty set. So we just need to 

consider the upper or the lower triangular part of the matrix while calculating it. 

The distinguish function could be deduced out from the distinguish matrix ( )M S , which is 

described as Eq. (2). 

   1 2, ,..., { 1 }m ij ijM s
f a a a m j i n m      ， ，

 (2) 

The function is a boolean function formula that includes m variables, i.e., the 

 1 2, ,..., , , 1,2,..., m ia a a a C i m . It actually is the conjunction of the whole   ijm , and 

every   ijm  is the disjunction of ijm  [17-18]. 

Fuzzy c-means algorithm (FCM): The basis of rough set theory is the set theory, which 

demands every attribute value in a rule table to be expressed with discrete value. While analyzing 

continuous attribute values using rough set, they have to be discretized in order to obtain more 

effective information. FCM classifies data with continuous attributes by building fuzzy clustering 

matrix-dividing method and turns all of the continuous attribute values into a matrix to deal with. 

That process comes down to a nonlinear programming with a constraint, which could obtain the 

fuzzy dividing matrix and clustering center [19-22]. 
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FCM is a clustering method based on objective function [23-26], which is described as 
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  where U  represents membership matrix, 2 ( ) ( )   T
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The clustering center is as follows: 
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The optimal membership matrix and clustering center could be obtained using Eqs. (4) and (5) 

with iteration [27-28]. 

b.iii  Attribute analysis with FCM discretization method 

According to the FCM discretization method, we classified the original data (knowledge the 

experts, operators judge out) of cane sugar crystallization state as six classes i.e., 5, 4, 3, 2, 1, 0, 

where 5 represents the best and 0 represents the worst. Then an original rule table was built up 

via the brix, syrup temperature, vacuum, liquor feed flow, steam temperature and steam pressure 

as condition attributes, and the crystallization state as the conclusion attributes, which is 

described as table 1. 

Combining the knowledge that the experts judge the state of condition attribute values in cane 

sugar process, we discretized every condition attribute value using FCM, The clustering number 
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of all the condition attribute values is set as 7, i.e., 6, 5, 4, 3, 2, 1, 0, where 6 represents the 

highest level and 0 the lowest level. The conclusion is described as table 2. 

 

Table 1: Original data 

sample 

U 

Brix 

/oBx 

Syrup 

temperature 

/℃ 

Vacuum 

/kPa 

Liquor 

feed flow 

/m3·h-1 

Steam 

temperature 

/℃ 

Steam 

pressure 

/MPa 

Crystallization 

state class 

1x  82.56 62.91 82.75 0.23 107.4 0.028 3 

2x  81.56 62.36 81.18 0.27 107.2 0.045 2 

3x  83.36 62.85 81.69 0.17 107.5 0.026 3 

4x  83.32 64.81 80.91 0.26 108.2 0.03 4 

5x  82.4 61.06 82.97 0.22 106.5 0.042 3 

6x  81.4 62.67 8139 0.19 106.5 0.027 2 

7x  82.48 60.78 80.62 0.18 105.9 0.038 2 

8x  83.16 64.6 81.59 0.19 107.4 0.046 3 

 

Table 2. Results of Fuzzy C-means Discretization 

Sample 

U 

 

Brix 

Syrup 

temperature 

 

Vacuum 

Liquor 

feed flow 

Steam 

temperature 

Steam 

pressure 

Crystallization 

state class 

1x  3 3 4 3 3 2 3 

2x  2 3 3 4 3 4 2 

3x  4 3 3 2 3 2 3 

4x  4 4 2 4 4 3 4 

5x  3 2 4 3 2 4 3 

6x  2 3 3 2 3 2 2 

7x  3 2 2 2 2 3 2 

8x  4 4 3 2 3 4 4 

b.iv  Rule table reduction 

The condition attributes in the rule table discretization need to be done with deleting the repeated 

sample data in the rule table to obtain reduced rule table and reduction set. In rough set theory, 
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the knowledge reduction includes condition attribute reduction and condition attribute value 

reduction. 

Attribute reduction: The sample set of the cane sugar crystallization state is set as 

1 8{ ,..., }U x x . We made the a represent Brix, b the syrup temperature, c the vacuum, d the 

feed syrup low, e the steam temperature and f the steam pressure as condition attributes, g the 

crystallization state classes as the conclusion attributes, and reduced the attributes based on the 

basic principle of distinguish matrix reduction method. The calculating steps of the method are 

described as follows: 

(1) Extract the kernel attributes from the distinguish matrix according to the solution of Eq. (1). 

The kernel attributes are described as { | ( ) 1, , 1,2,3, , }   ij ijCore c Card c i j n , 

where 
ijc  represents an element of the distinguish matrix and ( ) 1ijCard c  represents 

the number of the condition attributes is 1; 

(2) Find the kernel attribute group Q  that excludes the kernel attributes in (1) and 0ijc  from 

the distinguish matrix, namely, { | , 0, , 1,2,3, , }且    ij ij ijQ c c Core c i j n ; 

(3) Express Q  using conjunction normal form, namely, ( ),   ij ijP c c Q ; 

(4) Turn P  into disjunction normal form and simplify the disjunction normal form; 

(5) If multiple equivalent results appear in the simplifying results from (4), the simplifying results 

need to have attribute-combining selection under an actual demand. 

The distinguish matrix is as follows: 
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0000000
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00000

0000

0000
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)(

abcef

abf

abcdecdfabcdef

abdeabcdefabcdef

bfabcefabcdef
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abcdfbcdefacdabcdefacdf
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The distinguish function obtained from the steps as mentioned above and Eq. (2) is described as 

follows: 
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(6) 

 

Therefore, it obtains three reduction results abc , abd  and af  from the table 2 using 

distinguish function. We selected abc  as the attribute reduction set according to actual 

experience knowledge, i.e., the brix, syrup temperature and vacuum. The rule table after 

reduction is described as table 3. 

 

Table 3: Rule table after reduction 

U a  b  c  g
 

1x  3 3 4 3 

2x  2 3 3 2 

3x  4 3 3 3 

4x  4 4 2 4 

5x  3 2 4 3 

6x  2 3 3 2 

7x  3 2 2 2 

8x  4 4 3 4 

Attribute values reduction: The attribute reduction deletes redundant information of the 

attributes in the rule table, but not among the samples. So the attribute values reduction is 

introduced to reduce the rules in the rule table 3 [29-31]. It could be started with value kernel 

using given information system. The rule table using heuristic attribute values reduction to table 

3 is described as table 4: 

Predicting rules extraction: The predicting knowledge of the crystallization state could be 

extracted from the table 4 that has been done with attribute and attribute value reduction, which is 

described as follows: 

(1) IF (a=2) AND (b=3) AND (c=3) THEN (g=2)； 
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(2) IF (a=4) AND (b=3) THEN (g=3)； 

(3) IF (a=3) AND (b=2) AND (c=4) THEN (g=3)； 

(4) IF (a=3) AND (b=2) AND (c=2) THEN (g=2)； 

(5) IF (a=4) AND (b=4) AND (c=3) THEN (g=4). 

 

Table 4: Rule table after value reduction 

U a  b  c  g
 

1x  2 3 3 2 

2x  4 3 * 3 

3x  3 2 4 3 

4x  3 2 2 2 

5x  4 4 3 4 

The rules mentioned above could be saved into the rule base of the system. In addition, we only 

selected 8 samples to describe the process of the rule acquisition, but the predicting knowledge of 

actual cane sugar crystallization state is extracted out from large quantity of test data. 

b.v  Test of predictive results 

To test the accuracy between the rules extracted and the original samples of crystallization state, 

we used the data in table 5 as the samples. The predicting results could be obtained through rule 

match and compare with the conclusion attributes in table 5. 

From the test results in table 5 with 200 samples, the predicting accuracy of the crystallization 

state was 99.0%. Therefore, we demonstrated that using brix, syrup temperature, vacuum, liquor 

feed flow and steam pressure have the same predicting accuracy with the original 6 factors as 

condition attributes and the rules extracted could be the predicting knowledge of crystallization 

state. Finally, the offline knowledge acquisition of the intelligent analysis system was realized 

after saving the rules extracted into the knowledge base of the system about crystallization state. 

 

IV. ONLINE UPDATING METHOD BASED ON SVM 

 

a. Online updating framework 

The basic knowledge obtaining from data mining method based on rough set constitutes the 

initial knowledge base of the intelligent analysis system of cane sugar crystallization state, and 
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the improvement and updating of the knowledge base have to be done through an online learning 

module. The essence of the dynamic updating of the knowledge base is a process of excavating 

the predicting rules of crystallization state, which is derived from the sample data about the 

crystallization state and the creating of a classifier model using classifying method. The classifier 

model is used to build a classifying model or function, which could map the sample data to a 

given classes, being applied to create predict the good or bad crystallization state [32-33]. There 

exist many methods to model a classifier and the classifier based on SVM classifies uncertain 

samples more accurate than others [34]. So we used this method to model the online learning and 

knowledge acquisition for the intelligent analysis system of cane sugar crystallization state. The 

online updating of the knowledge base of the system based on SVM is described as figure 2. 

 

Table 5: Test results of the rules 

Sample 

number 
A b c d d f g 

Predicting 

results 

Rules 

used 

1 3 1 3 3 5 6 3 3 1 

2 6 4 1 2 5 6 1 1 2 

3 2 0 3 0 3 2 3 3 3 

4 3 1 1 4 4 1 2 2 4 

5 1 0 5 3 4 5 5 5 5 

6 4 1 4 4 1 2 4 4 6 

7 4 0 3 6 2 2 3 3 22 

8 4 1 4 2 3 3 4 4 7 

9 3 1 1 0 3 1 2 2 4 

10 3 2 2 5 3 1 3 3 14 

… … … … … … … … … … 

200 2 1 5 5 3 3 4 4 148 

Test results analysis 

Accurate 

identifying 

number 

Inaccurate 

identifying 

number 

Non-identifying 

number 

Sample number with 

conflict 

accuracy 

198 2 0 0 99% 
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The components of the SVM knowledge acquisition are made up of SVM network module, data 

discretization module and rule extraction module and so on, where the SVM network module is 

the key. The learning samples through knowledge acquisition are the knowledge of the rule base 

of the intelligent system, namely, the actual set of experts’ experience, which is used to build the 

network module using SVM. The dynamic updating of the cane sugar crystallization state is 

realized by using SVM, which is a nonlinear process from the attribute information to analyzing 

results that influence the crystallization state according to the experience of cane sugar experts. 

The knowledge acquisition process includes: submit the condition attributes and conclusion 

attribute values in the rule base of the intelligent system to a SVM learning network, model SVM, 

and save the trained model into the predicting module. When the inference engine of the 

intelligent system matches the online predicting rules failed, the real time condition attribute 

values with discretization will be made as the SVM inputs, the SVM module outputs the 

predicting results, the rule extraction module extracts the judging rules of the crystallization state 

and puts the rules into the knowledge base of the intelligent system. Finally, the dynamic 

updating of the crystallization state of the intelligent system is completed. 

knowledge base

training samples test samples

real-time data

data discretization

predicting data

model SVM select kernel function optimizing parameters

SVM network model

predicting results

conclusion
 

Figure 2. Online updating of the knowledge base 

 

b. Modeling online knowledge 

The training samples of the SVM module are the knowledge of the rule base of the intelligent 

system. Therefore, the SVM knowledge acquisition is modeled via the condition attributes of the 
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rule base as inputs, and the conclusion attributes of the rule base as the outputs, i.e., the brix, 

syrup temperature, vacuum, liquor feed flow and steam pressure with FCM discretization as 

inputs, and the crystallization state classes as the outputs. 

The sample set of the knowledge acquisition model of the predicting crystallization state of the 

intelligent system is 
1( , )  m

i iS X Y{ } , where m is the sample number, iX  is an auxiliary 

variable vector with 5 dimensions, Y  is the crystallization state class(it includes six classes, 

namely, {0,1,2,3,4,5}Y ,where the value is higher the crystallization state under current 

condition is the better). And 1 2 3 4 5[ , , , , ]i i i i i iX x x x x x , 1[ , , , , ]
M

T

iY y y y ,   

where 1ix , 2ix , 3ix , 4ix  and 5ix  represent the discretized value of the Brix, syrup temperature, 

vacuum, feed syrup, flow steam pressure of the i-th sample, namely, the condition attribute 

values, iy  represents the crystallization state class corresponding to the i-th auxiliary variable 

vector. 

The predicting of the crystallization state belongs to a classical multi-value classification problem, 

demanding to create 6×(6-1)/2=15 SVM binary classifiers for the predicting of the crystallization 

state using SVM multiple classification algorithm based on the directed acyclic graph. And those 

classifiers are assembled on the basis of DDAG topological structure to constitute a classifier that 

could classify six classes of the crystallization state. The classification model for the predicting of 

the crystallization state based on SVM principle is described as figure 3. 

 

c. Optimizing parameters of the SVM based on PSO 

The kernel function of the SVM model obtaining from the intelligent system is the Gaussian 

radial basis kernel function, which demands to determine the SVM kernel function parameter   

and the penalty factor parameter C  when modeling. The purpose of optimizing parameters   

and C  is to search appropriate   and C , making the model optimally express the relationship 

between the auxiliary variables and the crystallization state. To improve its predicting 

classification accuracy, a combined PSO and k-fold cross-validation method is used to optimize 

the parameters of the model. In the k-fold cross-validation, the training samples are divided 

randomly into k subsets with equivalent number, and every subset is trained and tested as training 

and test set each other, to obtain the optimal kernel function and penalty factor parameters [35-

36]. Otherwise, the essence of the optimization is to find the optimal parameter combination in 
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the solution space [37]. The basic procedure of the optimization includes: express   and C  as a 

particle in PSO, calculate the fitness of particles using the results of the k-fold cross-validation 

and conduct the iteration of the algorithm, get the global optimal particle, obtain the optimal   

and C . 

parameters optimization of the predicting 

classification model for the crystallization state

start

obtain the optimal parameters of the kernel 

function and penalty factor 

model multiple classification using the training 

sample sets

produce predicting multiple classification of the 

crystallization state

save predicting multiple classification of the 

crystallization state

end
 

Figure 3. Classification modeling for predicting the crystallization state 

 

In the parameter optimizing process based on PSO, the optimizing value of the objective function 

is the classifying accuracy of cross-validation under SVM with selected parameters. Every 

potential solution of   and C  makes up of a particle in the searching space, which includes a 

fitness determined by the classifying accuracy of cross-validation under SVM and a speed that 

determines the flying direction and distance. All of the particles in the solution space update their 

own location according to the optimal particle in the current swarm. In the every optimizing 

iteration of the swarm, every particle updates its own location through two extreme values [38-

40]. The first is the optimal solution the swarm finds currently, which is a global extreme value,  
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determine the searching extent of the parameters 

of kernel function and penalty factor

start

determine the max iteration number of PSO and 

the size of the swarm

initiate the swarm and every particle randomly

 k-fold cross-validation using the initial swarm

calculate the fitness of the particles and get the 

global optimal particle

equal the 

maximum iteration number or less than 

the minimum error? 

update the speed and location of every particle

calculate the fitness of every particle with k-fold 

cross-validation

obtain the global optimal particle 

save the global optimal particle and its fitness

output the global optimal particle

obtain the optimal parameters

end

Yes

No

 

Figure 4. PSO-based parameters optimizing algorithm 

 

described as  1 2, ,...,i i i inNbest Nbest Nbest Nbest . The second is the optimal solution the 

particle itself finds, which is named as individual extreme value, described as  

 1 2, ,...,i i i inPb Pb Pb Pb . Therefore, in the optimizing process, every particle follows the global 
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extreme value while following the individual extreme value. The speed and location that every 

particle updates are described as 

   1

1 2() ()     k k k k k

in in in in inV V c rand Pbest X c rand Nbest X  (7) 

1 1  k k k

in in inX X V  (8) 

where 
iX  and 

iV  respectively represent the location and speed of the i-th particle in n  

dimensions solution space, k  is the iteration number, 
1c  and 

2c  are accelerating constants, 

()rand  is a function produces the random values between 0 and 1. The steps of the   and 

C parameters optimizing algorithm based on PSO and the k-fold cross-validation are described 

as figure 4. 

 

V. MODEL TEST AND EXPERIMENTAL IDENTIFICATION 

 

a. Model test 

 

Table 6: Parameters setting and optimizing results of the predicting model 

parameters setting 

number of training samples 138 

number of test samples 20 

optimizing extent of kernel function parameter 0.01-16 

optimizing extent of penalty factor parameter 0.1-20 

fold number of cross-validation 5 

swarm size of PSO 20 

the maximum evolution algebra of PSO 200 

accuracy of parameters optimizing 10-4 

optimizing parameters 

obtained 

kernel function parameter obtained 0.1 

penalty factor parameter obtained 12.4 

This paper randomly selects 20 original samples as the test set, and the rest of the original 

samples as the training set. The parameters setting and optimizing results of the knowledge-based 

model are described as table 6. The predictive values of the crystallization state of the model with 

actual values are compared with those of the BPNN and traditional SVM without optimization in 
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figure 5. Furthermore, their consuming time from modeling to outputting predictive 

crystallization state is represented in figure 6. 

From the view of figure 5, the accurately predictive number of the model is more than that of the 

BPNN and the traditional SVM. Even though it consumes longer time than the BPNN, the 

difference of time between them is not obvious as described in figure 6. 
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Figure 5. Test comparison of the crystallization state 

 

 

 

b. Experimental identification 

In order to test the intelligent system of cane sugar crystallization state, we made an experimental 

identification using a self-regulating intelligent comprehensive monitoring and controlling 

platform that represented the cane sugar process (Figure 7), and installed a variety of sensors on 
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the cane sugar tank to monitor the process parameters in real time. Figure 7a shows the 

experimental field with hardwares to complete the cane sugar crystallization process, and figure 

7b is a software interface simulating the experimental field to monitor and control the 

crystallization process. 

 

Figure 6. Time comparison 

 

The process parameters obtained mainly include brix, syrup temperature, vacuum, steam pressure, 

steam temperature and liquor feed flow. Every sensor's output signal is a 4-20mA analog, and is 

converted to digital signal and stored in the registers of analog acquisition modules. Then the 

analog acquisition modules is connected to the principal computer (PC) via RS485 bus based on 

Modbus protocol. PC receives the collected data, processes it, and outputs the control parameters 

to the control modules. Eventually, the control modules output control signal to complete the 

action of the valves in cane sugar process. 

The software of the platform includes the PC monitoring software of cane sugar process and 

intelligent analysis system of crystallization state, where the PC monitoring software developed 

by the eForceCon software is used as an OPC server, the intelligent analysis system as an OPC 

client. The system obtains parameters of the cane sugar crystallization process from the 

monitoring software database in real time via the OPC interface, and sends them to the dynamic 

database after pretreating them. The inference engine module gets the data in the dynamic 
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database and outputs the current predicting result of the crystallization state. Finally, the online 

predicting process of the cane sugar crystallization state is completed when the predicting results 

are sent back to the monitoring software through the OPC interface. 

  

Figure 7a. Experimental field Figure 7b. Software interface 

Figure 7. Comprehensive monitoring and controlling platform 

 

The massecuite extracted from the sugar pan artificially at regular intervals during the experiment 

was tested and compared with the predicting results of the system. The knowledge that existed in 

the knowledge base of the system under the current cane sugar crystallization state was used as 

the predicting knowledge to test the accuracy of the system with its updating and improvement. 

During experiment, 150 samples were collected in one batch crystallization process and carried 

out through comparative analysis.  

The results of the running system are described as figure 8 and figure 9. Figure 8 describes the 

predicting accuracy trend of the cane sugar crystallization state under the current knowledge base 

of the system. Figure 9 describes the increasing trends of the correct predicting number of the 

crystallization state and the number of rules with the increasing number of batch crystallization 

process. 

From Figure 8, it could be concluded that predictive accuracy of the cane sugar crystallization 

state has been continuously improved from initial 61.33% to 96.0%, thanks to the online 

knowledge acquisition and the continuous updating and improvement of the knowledge base of 

the system. Figure. 9 demonstrates that the number of predicting accuracy of the system is 

increasing with the updating of the knowledge base rules, contrasting with the 150 samples 

collected in every test. These results indicates that the knowledge from the online knowledge 
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acquisition modules of the system is reliable. With the online updating and improvement of the 

knowledge base, the system's predicting accuracy will be improved in the future. Thus, the 

predicting knowledge and results obtained from the online learning module of the system during 

the cane sugar crystallization process are consistent with the actual cane sugar crystallization 

state. The system has a well adaptive capacity, which could correctly reflect an actual 

crystallization state in cane sugar process. 
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Figure 8. Predictive accuracy trend Figure 9. Increasing number trends 

 

VI. CONCLUSIONS 

 

In this paper, an innovative knowledge-based modelling process for predicting the cane sugar 

crystallization state combined with rough set and support vector machine has been presented. 

And the combined method is compared with a back propagation neural network (BPNN) and a 

traditional SVM without optimization, which indicates the better predictive results than the other 

two methods. In addition, the knowledge-based model is integrated into the eForceCon software 

to form an intelligent system, which makes it feasible to dynamically update the knowledge base 

of the system. 

Furthermore, the intelligent system is tested using a self-regulating intelligent comprehensive 

monitoring and controlling platform that represents the cane sugar process in experiment. Then 

the real-time data is firstly obtained from the platform through the OPC interface and input into 

the inference module of the system after pretreatment. Then the system analyzes and evaluate the 

inferring results, and finally output the predicting results. The experimental results as showed 
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above demonstrate that the predicting accuracy of the crystallization state of the intelligent 

system increases obviously with the online knowledge acquisition of the system and the 

continuous update and self-improvement of the knowledge base. 
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