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Abstract- In this paper accurate estimation of parameters, higher order state space prediction  methods 

and Extended Kalman filter (EKF) for modeling shadow power in wireless mobile communications are 

developed. Path-loss parameter estimation models are compared and evaluated. Shadow power 

estimation methods in wireless cellular communications are very important for use in power control of 

mobile device and base station. The methods are validated and compared to existing methods, Kalman 

Filter (KF) with Gaussian and Non-Gaussian noise environments. These methods provide better 

parameter estimation and are more accurate in most realistic situations. EKF can estimate the model 

channel parameters and predict states in state-space. 
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I. INTRODUCTION 

 

There has been a rapid growth in the last couple of decades in wireless mobile 

communications thus creating a need for research. New and cheaper wireless devices and services 

have emerged due to advantages in Digital signal processing (DSP), Radio frequency (RF) circuit 

fabrication and large scale deployment of communication networks.  

Performance is critical in wireless cellular communications and can be to a large degree 

affected by fading [1]. Wireless communication fading is defined as the fluctuation in attenuation 

of a signal over a specific transmission medium. Fading can vary depending on geographical 

location and frequency in time. Fading can be a result of multipath propagation or shadowing. 

Shadowing is described as the effect of the power fluctuation of the received power due to objects 

obstructing the propagation path between the transmitter and receiver [1-3].     

High performance shadow/fading power estimation methods are very important for use in power 

control of mobile device and base station handoff coordination.  There are two main causes of 

fading between a mobile station (MS) and a base station (BS) [1-3]. One is multipath propagation 

loss, where the received signal strength fluctuates due to multiple paths, and shadowing (Local 

Mean), where the transmitted signal is lost through physical phenomena, such as absorption, 

refraction (Figure 1), scattering and diffraction. Shadowing is caused by obstacles, such as 

buildings or trees along the path of a signal from the base station (BS) to the mobile station [1-3]. 

The amplitude and phase of the transmitted signal will change as the carrier frequency of a signal 

is being varied [3]. 

For mobile users, frequently occurring fading dips will cause unnecessary and capacity 

degrading, retransmissions. To achieve a high throughput over fading channels, adaptive methods 

for adjustment of (e.g. the modulation alphabet, and the coding     

complexity) can be used[10-12]. All these techniques require accurate shadow power estimation 

and prediction to combat time-variability. 

Weighted sample average estimators of local mean power, are currently used by many wireless 

communication system providers [10]. 
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Window based estimators work best under the assumptions that the shadow power process is 

constant over the duration of the averaging window[1]. In reality shadow power varies with time 

due to fading, which causes deterioration of these estimates as the window size increases beyond 

a certain value. The Kalman Filter (KF) algorithm has been used for discrete linear systems. KF is 

an optimal recursive estimator. Estimate errors are minimized by the Mean Squared Error (MSE). 

Wiener-Kolmogorov filter was the predecessor that Kalman filter[2]. While KF can be applied to 

linear systems is not a good solution for systems with nonlinearities. EKF Techniques have been 

proposed to modify KF to be applied to nonlinear systems. For example, EKF has been proposed 

by linearizing estimated state variables through Jacobian matrices [2]. However, EKF may not be 

a good choice in system with high  nonlinearity, or systems that are very difficult to calculate 

their Jacobian matrices. 

State space models provide systematic quality channel approximation.  Low-order, high-quality 

models are of interest because they hold the prospect of requiring fewer parameters for their 

descriptions and consequently an improved adaptation rate. This paper has been organized as 

follows. Section I is an introduction. Section II is explaining the Kalman filter theory used. 

Section III is the method of Extended Kalman Filter (EKF) used. Section IV  Multipath and Non-

Linear  Kalman Filter 2nd order. Section V Measurements, simulations and results are given. 

Section VI Path-loss parameter estimation . Section VII Conclusion and future work.    

  Further, statistical methods for parameter estimation of linear models in dynamic mobile 

communication systems have been developed; the estimation of both states and parameters of 

nonlinear dynamic systems remains also challenging and is being addressed in this paper. 

  

 

Figure 1: MS/BS  Fading/shadowing effect. 
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Figure 2: Doppler shift effect (Left) , mobile wireless antenna (Right) 
 

 

II. Kalman Filter Theory 

 

The method of Kalman filtering also known as linear quadratic estimator has been used for 

shadow power estimation in wireless communication [1-3]. The algorithm was originally 

developed for systems with the assumption of system model linearity. 

Kalman filter works in a two-step process. In the prediction step, produces estimates of the 

current state variable, along with their uncertainties. The result of the next measurement 

corrupted with certain amount of error which includes random noise is observed and these 

estimates are updated via a weighted average. The weighted average has more weight toward the 

applied estimates with higher certainty. Due to the recursive nature of the algorithm, it can be 

performed in real time using only the present input measurements and the previously calculated 

state and its uncertainty matrix. 

 

Figure 3. Kalman Predict/Correction steps.

http://en.wikipedia.org/wiki/Weighted_mean
http://en.wikipedia.org/wiki/Real-time_Control_System
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Kalman filtering is a repeated process of time updating projecting the current state estimate ahead 

in time and measurement updating that adjusts the projected estimate by an actual measurement 

at that time. The equations below show the two updates: 

 

1x̂  ˆ=A x +B u +wk k k k k k   (1) 

 

where:   

xk is the state vector containing the terms of interest for the system 

Ak is the state transition matrix model that is applied to the previous state xk-1 

Bk is the control input matrix model that is applied to the control vector uk on the state vector. 

wk is the vector that contains the process noise that is assumed to be drawn from a zero mean 

normal distribution with covariance Q. 

 

p(w) N(0,Q)    (2) 

 

(2) Project the error covariance ahead: 

 1

T

k k k kP A P A Q

                  (3) 

The second step is the Update: 

(1) Compute the KF gain: 

1(HP H R)T T

k k kK P H               (4) 

where H is the measurement vector of the measurement zk of the true state space: 

    k k k kz H x v      (5) 

Vk is the vector measurement noise that is assumed to have a zero mean Gaussian white noise 

with covariance R.
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(2) Update estimate with measurement zk : 

ˆ ˆ ˆ( )k k k k kx x K z Hx      (6) 

 

(3) Update the error covariance: 

(1 )k k kP K H P     (7) 

The following assumptions are used when applying Kalman filter to shadow power in mobile 

communications: 

1) The Shadow process S(n) is constant of the average window. 

2) The multipath process H(nTs) is independent and identically distributed, and independed 

of shadow process S(nTs) 

3) The shadow process S(n) represents the 1
st
 order Autoregressive model. 

 

First order autoregressive model model for shadow process is shown below: 

2 | |
( ) exps s

c

v
c t

X




 
  

 
, where 0

ln( )
c

D

D
X


     (8) 

s is the shadow variance 

Xc is the effective correlation distance 

εD is the correlation coefficient of the shadow process 

D is the distance 

V is the magnitude of the mobile velocity 

 

The specific 1
st
 order kalman filtering application is descripted below:  
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Prediction Steps: 

The state ahead in equation (9). 

1
ˆ ˆ( | 1) ( 1| 1)S n n a S n n           (9)  

The error covariance ahead in equation (10). 

2ˆ( | 1) ( ( ) (n | n 1))M n n E S n S    
                  (10)   

=
2 2

1 M( | 1)a n n    

Kalman Gain: 

2

( | n 1)
( )

( | 1)H

M n
K n

M n n




 
      (11)    

where 2

H is noise due to multipath 

Update Steps: 

Updates the estimate using P(n) the measured value 

ˆ ˆ ˆ(n | n) S(n | n 1) K(n)(P(n) S(n | n 1))S          (12) 

2ˆ( | ) ( ( ) ( | ))M n n E S n S n n  
   

(1 ( )) ( | n 1)K n M n        (13)  

The error covariance updates is shown in equation (13). 

 

III. Extended Kalman Filter Theory 
 

The Extended Kalman Filter (EKF) is the nonlinear extension of Kalman Filter (KF). EKF is 

therefore suitable due to take into account the non-linearity’s of the shadow power system model 

[23 -25]. EKF is a well-known method and standard that has been considered in the theory of 
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nonlinear state estimation [28]. KF and EKF are known to be recursive data processing 

algorithms that estimate current mean and covariance.  EKF is reprocessing data at every time 

step without the need of storing previous measurements.  The state distribution along with the 

mean and the covariance are being propagated analytically using a first order linearization. The 

predicted state estimation 
kx


 for a linearized nonlinear process is expressed as follows: 

                   1 1x̂  ˆ=J x +J uk x k u k



                           (14) 

The following expression is representing the error covariance kP
 of the predicted state 

estimation: 

                            1 1x̂  ˆ=J x +J uk x k u k



                              (15) 

where 
1kQ 
 is the process noise, and 

1( )f kJ x


, 

1( )T

f kJ x


 are the Jacobian matrix and its transpose 

respectively. As it can been seen below 
fJ  is the Jacobian matrix with partial derivative of all the 

state estimates: 

 

 

 

                             (16) 

 

    

 

 

                        (17) 

                                     

Jacobian       ,      and   matrices are shown in  16, 17 where measurement matrix 
kH is the 

Jacobian, of (x )kh .   

EKF was applied to our system implemented in matlab as illustrated in the block diagram in 

Figure 6.
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V. Multipath 2nd order Kalman Filter  
 

 

A non-Linear EKF 2
nd

 order model is based on:  
 

Prediction step: 

 

 

                (18)  
 
 

 

                                                           (19) 

                     

Kalman Gain: 
                     

            (20) 

 

 

UPDATE STEPS: 
 

 

                                                                  (21) 

 
 

 

 

 

 

Shown below is a piecewise linear representation used for in the state jacobian linearization.  
 

S1,2

f1,2(S1,2)

 
 

Figure 4. linear as coefficient constant.
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Figure 5. Nonlinear as coefficient piecewise constant. 

 

Parameters  
changed

RUN code

Initialize Parameters
N -Number of sample
Ts-Sampling Period
Xc- Correlation distance
σs – Shadow variance

Current State = 
Number of Samples

END

EKF Estimates 
The Received  Signal 

(States)

Measured 

Prediction States

Observation Step

EKF Updates 
State = Last Estimate 

No

 

Figure 6. Block diagram of EKF simulation code.
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VI. Path-loss parameter estimation 

 

Path loss in wireless communications is defined as the difference between the transmitter power 

and the receiver power. The units are in decibels (dB). 

Received power is being represented as signal level attenuation that is a result of free space 

propagation and various physical phenomena’s for example, reflection, diffraction and scattering 

as in figure 7 [23]. 

 

S(t) of power Pt is transmitted through a given channel, then the received signal r(t) of power Pr is 

averaged over any random variations due to shadowing [23]. 

 

Linear path loss of a channel is defined as the ratio of the transmitted power to the received 

power as it can be seen in the equation below: 

 

 

  (22) 

 

 

(23) 

 

 

 

Figure 7. Path loss as a result of physical phenomena. 

 

Several simulation scenarios’ were used in our system to illustrate the effects of path loss.

t
L

r

P
P

P


1010log t
L

r
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P dB dB

P
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There are two main scenarios that were looked at. One is the Urban (figure 8, 9) setting where 

there are tall buildings, not many trees or vegetation, major streets, vehicles. The other setting is 

where residential homes are a relative spread out from each other, major streets exist, tall trees 

and vegetation is present (figure 10, 11). 

These two environment settings play a big role in path-loss.  

 

 

Figure 8. Urban environment, tall buildings, visible streets, little vegetation 

   

Figure 9. Urban environment, tall buildings, visible streets, little vegetation, base station 

(wireless transmitting tower)
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Figure 10. Suburban environment, tall trees, visible streets, vegetation, base station (wireless 

transmitting tower) 

 

Figure 11. Suburban environment, tall trees, visible streets, cars, vegetation, base station 

(wireless transmitting tower) 
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4. Simulation and Results 

 
      Several simulations were executed. After examining simulations results shown in figures 

12,13.14,15,16,17,18,19,20. Clearly the EKF is performing as expected. Simulation of various path-

loss scenarios were also ran as demonstrated in figures 21,22,23,24.  

It can be shown also that EKF performs satisfactory within the range of -8dB to 8dB. Non-Gaussian 

noise distributions were included as well as zero-mean Gaussian distributions.  

Even though the computational complexity of EKF is higher than the KF results are 

satisfactory. The assumption made when using KF is that the shadow process is driven by non-

Gaussian white noise. 

 

 

 

Figure 12. EKF of Shadow Power estimation 20km/h, Xc 100m.
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Figure 13. Simulink estimation results 8db average. 
 

 

 
 

Figure 14. Compare 1
st
 order KF with actual Shadow Power.
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Figure 15. EKF of Shadow Power at low speeds range 20km/h, Xc[200]m. 

 

 

 

Figure 16. EKF of Shadow Power at low speeds range 20km/h, Xc[500]m.
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Figure 17. EKF of Shadow Power at low speeds range 10km/h, Xc[10]m. 

 

 

 

 
Figure 18. EKF of Shadow Power at high speeds distance 20km/h, Xc[50]m.
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Figure 19. EKF of Shadow Power at low speeds Time sample [.05 .5]sec 

 

 

 

 
Figure 20. EKF of Shadow Power Velocity [15] Km/h.
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Path-Loss model simulation comparisons 

 

The figures 21,22,23,24 respectively show the attenuation of channel propagation. Simulating urban 

environment the path loss is affected by distance between transmitter and receiver. There is a change in 

behavior when moving from an urban (Figure 9) and suburban terrain (Figure 10). Simulations were also 

performed in a suburban environment (Figure 25, 26, 27, 28).  

 

Figure 21. Path-loss at distance between Transmitter and Receiver, 5km. 

  

Figure 22. Path-loss at a distance of 10 Km
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Figure 23. Path-loss at a distance of 15 Km 

 

 

Figure 24. Path-loss at a distance of 20 Km
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Figure 25. Path-loss (suburban)at a distance of 5 Km 

 

Figure 26. Path-loss (suburban)at a distance of 10 Km



George Pappas, Mohamed A. Zohdy, EXTENDED KALMAN FILTERING AND PATHLOSS MODELING FOR 

SHADOW POWER PARAMETER ESTIMATION IN MOBILE WIRELESS COMMUNICATIONS 

 

 919 

 

 

Figure 27. Path-loss (suburban)at a distance of 15 Km 

 

Figure 28. Path-loss (suburban)at a distance of 20 Km
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VII. Conclusion and Future work 

 

In this paper, EKF method has been proposed to optimize the shadow power state estimation [1]. 

Simulation results show that the incoming signal is tracked in a satisfactory manner. Increasing the 

shadow power variance has direct affect in increasing the noise level as seen in the estimate. In a 

suburban scenario, the shadow model coefficient, can be regarded as constants for a wide range 

of velocities due to the fairly large . The results also show that this method is more efficient when 

implemented in both multipath affected signals. EKF performs significantly better than KF while 

preserving their structures. Channel parameters have been changed throughout to simulate conditions 

of typical urban areas as well as rural ones. Path loss simulations were also performed to compare and 

illustrate the results of phenomena’s have on wireless communication signals. Data used for simulation 

was obtained from cell phone android app (Figure 29,30,31). 

 

 

Figure 29. Data was obtain for simulation purposes (cell phone Android app )
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Figure 30. Data was obtain for simulation purposes (cell phone Android app ) 

 

Figure 31. Data was obtain for simulation purposes (cell phone Android app )
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