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Abstract. Controlled drug delivery based on cellular components can be achieved by exploiting disease-

specific properties, but these require a rapid, sensitive, and selective method of detection in a biomolecular 

system. We propose a parallel decision-making system for disease detection and classification based on 

the fact that DNA computing along with biomolecular systems can be subjected to massively parallel 

processing. We designed and programmed a DNA strand displacement reaction to implement rule-based 

classifiers from a binary tree classification as a decision-making system. In our framework for molecular 

robot development, the system components of molecular robots and simple classifier rules were used to 

alleviate the computational burden. The design consists of a basic model that generates rule-based 

classifier gates in several binary tree and cancer classifications based on micro (mi)RNA expression. 

Simulation results showed that detection and classification were rapid using this system. Moreover, 

experiments using the synthetic miRNA hsa-miR-21 demonstrated that our model could be a feasible 

decision-making system for drug delivery. 

Index terms: Molecular robotics, DNA strand displacement, Rule-based classifiers, Binary tree classification.
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I. INTRODUCTION 

 

The development of intelligent drug devices for disease diagnosis and therapy has gained 

increasing attention in recent years. A drug delivery system must sense the biological 

environment (biosensing) and restrict the release of a drug to specific areas of disease [1]. Micro 

(mi)RNAs are potential bio-sensing targets given that they have been implicated in many 

diseases, including cancer [2]; recent studies have also described the miRNA profiles of various 

allergic inflammatory diseases, including asthma, eosinophilic esophagitis, allergic rhinitis, and 

atopic dermatitis [3]. In addition, specific miRNAs have been identified as regulators of 

pathogenic mechanisms in allergic inflammation [2, 3], such as the polarization of adaptive 

immune responses and T cell activation [4], while another study found distinct patterns of 

miRNA expression in lung cancer, colorectal cancer, and diabetes, providing evidence that 

miRNA fingerprints are present in many diseases [5]. 

Nano-scale robots (nanorobots [6]) that can interact with a biomolecular system may be 

useful for miRNA detection. Nanorobots must have at least some of the following functions: 

actuation, sensing, signaling, classification, decision-making, and swarm behavior at the nano 

scale [7]. DNA is the perfect biomolecule for creating nanorobots given its size and capacity for 

hydrogen bonding between complementary bases that allows complex shapes and structures as 

well as DNA-RNA hybrids to be generated at the nano scale [8]. In addition, DNA is considered 

as an autonomous molecule that does not require human control [9]. Based on these advantages, 

DNA is the main candidate material for molecular robotics [10]. However, molecular robots used 

for programmed and controlled drug delivery require a decision-making mechanism that interacts 

with disease-specific biomolecules. 

DNA computing and molecular programming are the main tools used to develop decision-

making systems based on chemical features of DNA [11], RNA [12], gel [13], and enzymes [14]. 

Previous studies have proposed computing processes that exploit DNA strand displacement 

(DSD) [15], such as logic gates [16], amplification [17], and logic circuits or applied neural 

network computation [18] from seesaw gates [19]. However, systems that are capable of 

classifying biomolecules require complex molecular computation processes that are not possible 

for molecular robots. 
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To address the issue of computational complexity for biomolecule classification, we 

propose the massively parallel processing of simple classification algorithms in a synthetic DSD 

reaction. The massively parallel processing capabilities of DNA computers [11] can provide 

simultaneous decision-making and can potentially accelerate processes in a large system. To 

obtain a simple classification algorithm in the DSD reaction, rule-based classifiers from a binary 

tree classification were used; these generated descriptive models that were easy to interpret but 

have comparable performance to decision tree classifiers [20]. The ability to explain the reason(s) 

for a decision is crucial, and binary tree-based classification of diseases such as cancer has been 

proposed by other investigators [21, 22]. Most studies suggest that miRNA expression is a feature 

of cancer classification, diagnosis, and disease progression. Using a disease-based classification 

tree, we designed a DSD reaction of rules and classifier algorithms. A decision-making system 

can therefore be integrated into a molecular robot designed to function as a drug delivery system. 

The framework for molecular robot development is presented in Section II. In Section III, we 

describe the proposed model; in Sections IV and V, results of the simulation and experiment, 

respectively, are presented. Conclusions and future directions are discussed in Section VI. 

 

II. FRAMEWORK 

 

The framework for molecular robot development was inspired by previous studies in nucleic acid 

nanotechnology, which can be broadly divided into structural, dynamic, and interface DNA 

nanotechnology. Structural DNA nanotechnology concerns the self-assembly of nucleic acid 

structures with well-defined shapes, sizes, and/or patterns. Dynamic DNA nanotechnology 

pertains to non-equilibrium systems in which DNA molecules undergo a series of conformational 

changes that physically or chemically modify the environment. Interface DNA nanotechnology 

uses nucleic acids as a tool for controlling other nanoscale materials such as carbon nanotubes 

and gold nanoparticles [23]. The framework for developing a molecular robot that functions as a 

drug delivery system is illustrated in Figure 1. 
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a. Framework 

 

b. Main body of robot 

 

 

 

c. Integrating between the main body and components 

Figure 1. Framework for molecular robot development. 

 

Molecular robots are structured from DNA, RNA, gels, and enzymes and include five 

components: the main body, and sensing, processing, actuating, and drug release components 

(Fig. 1a). Constructing the main body of the robot depends on structural DNA nanotechnology 

required to synthesize and assemble nucleic acid complexes and materials with a static, 

equilibrated endpoint. Various structures have been developed using the DNA origami method 

[24]—including two- [25] and three-dimensional [26] as well as discrete structures [27]—in 

which a long, single-stranded DNA scaffold is deformed into the desired body shape using glue 

strands or staples. In the present study, the main body of the capsule/tube was designed with 

caDNAno software [28], while CanDo software [29] was used to model the stability of the DNA 

origami structure (Fig. 1b). 

The sensing component is responsible for target recognition and signal transduction. The 

target can be any chemical or biological material such as small organic molecules, peptides, 

proteins, nucleic acids, carbohydrates, or even whole cells [30]. Signal transduction converts 

molecular recognition into physically detectable signals such as single-stranded DNA, 

fluorescence, color, electrochemical signals, or magnetic resonance changes [30]. 

The processing component can be viewed as a computational device that processes 

physical or chemical inputs to generate an output based on a set of logical operators [31]. This 
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component obtains information obtained from the molecular environment, which is interpreted by 

DNA computing or molecular programming to determine the necessary response [32]. The 

actuating and drug release components function as the muscles of the robot by converting stored 

energy into movement. The possibility of using DNA as an actuator was first suggested with 

autonomous DNA walkers [33]. 

Each component is connected to the body by its own interface. This step employs the self-

assembly model, sticky-end cohesion [34], and the strand displacement model to integrate each 

component with the body. The integration of the main body and components was simulated with 

CanDo software (Fig. 1c). Before delivery to the target by the robot, the system will be tested by 

evaluating each function and measuring effectiveness and durability. 

 

III. PARALLEL DECISION-MAKING SYSTEM 

 

This section focuses on sensing and processing as steps towards decision making. We first 

present rule-based classifiers in a binary tree classification, followed by the basic principles of 

DSD. We then describe the implementation of the parallel decision-making system based on rule-

based classifiers in DSD. 

 

A. Rule-based classifiers in a binary tree classification 

Classification is an important problem in decision making that requires a systematic approach to 

building classification models from an input dataset. Examples include decision tree, rule-based, 

and naïve Bayes classifiers, neural networks, and support vector machines. Each technique 

employs a learning algorithm to identify a model that best fits the relationship between the 

attribute set (input) and class label (output) of the input data. The model generated by the learning 

algorithm should closely fit the input data as well as correctly predict the class labels of novel 

records [20]. We used rule-based classifiers in binary trees where leaves and branches represent 

classifications and feature-based splits leading to classifications, respectively [35]. 

Rule-based classifiers depend on a set of IF-THEN rules [20]; those of the model were 

represented in a disjunctive normal form, R = (r1 ˅ r2 ˅… rk), where R is the rule set and each ri 

is a classification rule or disjunct. Thus, each classification rule was expressed in the following 

form: 
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ri: IF (conditioni) THEN yi       (1a) 

 

where IF (or left side of the rule) was the rule antecedent or precondition containing a 

conjunction of attribute tests, and 

 

  Conditioni = (A1 op µ1) ˄ (A2 op µ2) ˄ … (Ak op µk),   (1b) 

 

where (Aj op µj) was the attribute-value pair and op was a logical operator chosen from the set {=, 

≠, <, >, ≤, ≥}. Each attribute test (Aj op µj) was known as a conjunct. THEN (or the right-hand 

side) was the rule consequent or conclusion containing the predicted class yi [20]. 

A rule r covered record x if the precondition of r matched the attributes of x; r was also 

said to be fired or triggered when it covered a given record. That is, if the condition of the rule 

was satisfied, the conclusion was inferred or deduced. The rules were used for classification if 

their consequents were a predefined class and their antecedents/preconditions contained 

conditions of various features and their corresponding values [36]. 

 

X2

X1 X3

Class y0 Class y1 Class y2 Class y3

= No
= Yes

 

 

Figure 2. Fully weighted binary tree of three input fields and four classes 

 

A binary tree comprised three sets L, S, and R, where L and R were binary trees (or are empty), 

and S was an individual set. The single element of S was the root, while L and R were the left and 

right subtrees of the root, respectively [37]. A sample binary tree is shown in Figure 2, in which 

the root is X2, and the left right subtrees are X1 and X3, respectively. The basic concerns in 

designing a binary tree classification are the separation of two groups of classes among training 

samples at each non-terminal node (X1 and X3), where decision-making is necessary, and the 
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choice of the subset of features which is most effective in separating these two groups of classes 

[38]. 

We assumed that this binary tree was already optimized based on the above criteria. In 

our proposed method, the tree was formed as a fully weighted binary tree. We assumed that the 

left and right leaves were negative and positive criteria, respectively. The discovery of decision 

rules for forming branches or segments beneath the root node was based on a method that 

extracts the relationship between the object of analysis—which serves as the target field in the 

data—and one or more fields that serve as input fields for creating branches or segments. The 

values in the input field were used to estimate the likely value in the target field, also referred to 

as an outcome, response, or class [37]. To extract rules from the decision tree, one rule was 

created for each path from the root to a leaf node. Each splitting criterion along a given path was 

logically AND from the rule antecedent (IF). The leaf node held the class prediction, forming the 

rule consequent (THEN) [38]. The rules (r0 …r3) extracted from Figure 2 were as follows: 

 

r0: IF (X1 = No) ˄ (X2 = No) ˄ (X3 = No) THEN class y0   (1c) 

r1: IF (X1 = Yes) ˄ (X2 = No) ˄ (X3 = No) THEN class y1   (1d) 

r2: IF (X1 = No) ˄ (X2 = Yes) ˄ (X3 = No) THEN class y2   (1e) 

r3: IF (X1 = No) ˄ (X2 = Yes) ˄ (X3 = Yes) THEN class y3   (1f) 

 

B. DSD 

Strand displacement is the process by which two strands with partial or full complementarity 

hybridize to each other, displacing one (referred to as the displacement domain, which is around 

20 nucleotides [nt]) or more pre-hybridized strands in the process. Strand displacement can be 

initiated at complementary single-stranded domains—referred to as toeholds—of 4–9 nt and 

progresses through a branch migration process resembling a random walk [15, 39]. Figure 3 

illustrates the strand displacement reaction, which shows displacement L as a long domain 

holding from the left side of toehold domain s (s^ and s^* are complementary, as are L and L*). 

The resultant reaction was the displacement of single strand L. In the system design, we used 

only the domain name without including details of nucleotide sequence. 
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 Figure 3. Strand displacement reaction. 

 

C. Implementation of a parallel decision-making system based on rule-based classifiers in strand 

displacement 

We assumed that the optimal design of binary tree classification that achieved the highest 

possible accuracy could be determined computationally. Thus, the smallest DSD reaction was 

used in order to reduce computational complexity. Decision-making rules were selected at each 

non-terminal node of the binary tree classification. To build a rule-based classifier, a set of rules 

identifying key relationships between the attributes of the dataset (input fields) and the class label 

was needed. The optimal IF-THEN rules were extracted directly from the binary tree 

classification. The list of rules for classification was implemented in DNA strand reactions and 

parallel processes occurring in the classification reaction. The many classification rules in rule set 

R provided exhaustive coverage, including the rules shown in equations (1e) and (1f), both of 

which were triggered by the same record and had the same combination of attribute values. 

Further, the same combination of attribute values require a complex logic gates or circuits to get 

decision-making system. To address strand displacement and simplify reactions, our proposed 

model did not include complex logic gates or circuits. This approach allowed a test record to 

trigger multiple classification rules in parallel. There were two kinds of parallel systems in our 

proposed model; that is, sensing and encoding systems of IF-THEN rules. 

The parallel sensing system as the rule antecedent/precondition addressed input signals 

from the outside by receiving input criteria from environmental conditions. Numerous input 

signals were detected simultaneously without dependence on other types of input. Figure 4 shows 

the parallel sensing reactions of three input fields as the rule antecedent/precondition based on the 

binary tree shown in Figure 2. We demonstrated that the parallel sensing gates contained a 

domain of binary tree classification input fields (X1, X2, and X3) that were partially split into two 
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domains, i.e., toehold (colored; x1^, x2^, x3^) and displacement (x1, x2, and x3). The input field 

signal strands (<x1^ x1>, <x2^ x2>, and <x3^ x3>) beside the gates hybridized to bound 

complementary domains on the gates via uncovered toeholds (x1^*, x2^*, and x3^*), resulting in 

branch migration through recognition domains. The previously bound strands were predicted to 

fall off given that they were attached to gate base strands by a short toehold (y1^, y2^, and y3^). 

The now-bound signal would have an uncovered toehold on the other side; therefore, the now-

free signals (<x1 y1^ 1>, <x2 y2^ 2>, and <x3 y1^ 1>) were able to reverse the process 

symmetrically. To obtain a decision class from each input, the now-free signals containing an 

encoded number as the domain output (20, 21, 22 …) for each input were used as the sensing 

output and decided the class position based on IF-THEN rules. The class numbering was only 

applicable to binary tree schema. Moreover, it was supposed that the IF-THEN rule detected a 

positive result if it was overexpressed during the sensing process. 

Input Input Input

Output OutputOutput

Gate Gate Gate

 

Figure 4. Parallel sensing reactions of three input fields as the rule antecedent or precondition. 

 

The parallel sensing system was designed to sense DNA as well as miRNA input. We 

therefore selected miRNA and DNA sequences that can undergo strand displacement. For 

example, miRNA hsa-miR-21 has a 22-base pair sequence 

UAGCUUAUCAGACUGAUGUUGA that is split into two domains: a toehold or miR21t 

domain from nucleotides 1–6 (UAGCUU) and a displacement or miR21d domain from 
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nucleotides 7–22 (AUCAGACUGAUGUUGA). The strand displacement process of hsa-miR-21 

is shown in Figure 5. 

Output Output

Input Input

4x2
The Rule-

based 
Encoder

Data Input
r0

r1

r2

r3

D0

D1

20

21

Output

 

Figure 5. Strand displacement of miRNA hsa-miR-21. 

 

The second reaction was the parallel encoding system as the rule consequent, which was 

used to show decision results in simulations or experiments and break reverse the process of the 

sensing system. We created a binary encoding of classes to simplify recognition. Classification 

rules and class numbers encoded as two-digit binary numbers based on the binary tree in Figure 2 

are shown in Table 1. These values were used to generate transducer-encoding signals and obtain 

a decision result from the parallel sensing system, as shown in Figure 6, which illustrates 

rule/class encoding and the reaction process of the encoding signal. The now-free signals from 

sensing gates bound to encoding gates via a short toehold and produced only inert waste 

molecules without toeholds. In experiments, the displacement domain in the encoding system 

was marked by a fluorescent signal; as such, classification results were detectable by 

fluorescence spectrometry, and the fluorescent class signal could be observed without DNA/RNA 

purification. 

 

Table 1. Classification rules and encoding of the four-class binary tree classification 

  Input Output Class 

R
u
le

s 

 X1 X2 X3 D1 D0 

r0 0 0 0 0 0 y0 

r1 1 0 0 0 1 y1 

r2 0 1 0 1 0 y2 

r3 0 1 1 0 0 y3 
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Figure 6. DNA reaction in the parallel encoding system. 

 

In the proposed model, the sensing and encoding systems were combined in the same 

gates, which was akin to the tethering of DNA molecules [40], to increase their local 

concentration as well as reaction rates [40] and thereby increase the speed of the parallel reaction 

between both systems in experiments. We demonstrated how the implementation of an interface 

at this gate, termed the chromosome, could be integrated with the body of the molecular robot 

(Fig. 7). Additionally, a full weight binary tree classification of eight classes revealed the design 

pattern of the chromosome (Fig. 8). The classification rules of the eight classes and class 

numbers encoded as binary numbers in the tree are shown in Table 2. 

SensingEncoding Interface  

Figure 7. System and interface chromosomes. 
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X2 X6

X1 X3 X5 X7

X4

Class y0 Class y1 Class y2 Class y3 Class y4 Class y5 Class y6 Class y7

= 0
= 1

SensingEncoding Interface

8x3
The Rule-

based 
Encoder

Data Input
r0
r1
r2
r3
r4
r5
r6
r7

D0

D1

D2

20

21

22

Output

 

Figure 8. Full weight binary tree classification of eight classes and the chromosome. 

 

Table 2. Classification rules and encoding of the eight-class binary tree classification 

 

 

Input Output Class 

X1 X2 X3 X4 X5 X6 X7 D2 D1 D0 

R
u
le

s 

r0 0 0 0 0 0 0 0 0 0 0 y0 

r1 1 0 0 0 0 0 0 0 0 1 y1 

r2 0 1 0 0 0 0 0 0 1 0 y2 

r3 0 1 1 0 0 0 0 0 1 1 y3 

r4 0 0 0 1 0 0 0 1 0 0 y4 

r5 0 0 0 1 1 0 0 1 0 1 y5 

r6 0 0 0 1 0 1 0 1 1 0 y6 

r7 0 0 0 1 0 1 1 1 1 1 y7 

 

VI. SIMULATION 

 

We used visual DSD [41] to simulate the displacement process and implemented parallel sensing 

and encoding systems for decision-making. The chemical reaction network of the decision-

making system in one chromosome (C) is shown in the following equation. 

 

Input + C   ↔ C ’ →  C’’  + Output       (2) 

 

Figure 9 shows an example of the parallel process reaction cascade of DSD in a chromosome of 

eight classes based on equation (2). This process was simulated by class y7, which had the criteria 
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X4, X6, and X7 as an input condition. The output of this reaction consisted of signals 1, 2, and 4 

(shown in different colors). The parallel process showed that the sensing and transducing systems 

could operate simultaneously using one gate. Figure 10 shows the simulation results of a 

signaling class using three different color signals to represent the output of a decision or 

classification result. These results demonstrate that the gate can assign input to a specific class, as 

shown in Table 2. 

⇋
→

⇋

 

Figure 9. Examples of states and cascade reactions of chromosomes. 

 

   
(a) Class y1 with code 001 (b) Class y2 with code 010 (c) Class y3 with code 011 

 

    
(d) Class y4 with code 100 (e) Class y

5 with code 101 (f) Class y
6 with code 110 (g) Class y7 with code 111 

 

Figure 10. Simulation of signaling classes. 
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The proposed decision-making system was designed to be integrated into the molecular robot for 

drug delivery; as such, it had to incorporate miRNA detection and classification. Since visual 

DSD can only simulate DNA displacement, we assumed that a miRNA signal was used as an 

input in the simulation. The classification of cancer was thus simulated based on the reports [21]. 

Figure 11 illustrates the binary tree classification of cancer. The rules in the classification 

diagram of the original report—which used the left branch as positive criteria—were reversed; 

that is, in the present study the left branch was used as negative criteria. Numbered miRNAs used 

as nodes in the decision tree classifier are shown in Table 2 of the original report [21]. Classes of 

cancer were represented by the letters y1 to y15. The set of rules for the binary tree classification 

of cancer were as follows. 

 

r1: IF miRNA group 7, THEN class y1: Meninges 

r2: IF miRNA group 6, THEN class y2: Brain 

r4: IF miRNA group 4, THEN class y4: Melanocytes 

r6: IF miRNA group 4 ˄ 5 THEN class y6: Lymph node 

r10: IF miRNA group 3 ˄ 16 THEN class y10: Prostate 

r11: IF miRNA group 3 ˄ group 16 ˄ group 17 THEN class y11: Breast 

r12: IF miRNA group 3 ˄ group 12 THEN class y12: Lung (carcinoid) 

r15: IF miRNA group 3 ˄ group 12 ˄ group 13 ˄ group 14 THEN class y15: Colon 

 

Class number was encoded as a four-digit binary number (Table 3). Based on the tree and 

encoding table, a chromosome gate for cancer classification was designed (Fig. 12). 

6 5

7

8

4

16 13

18

151923

17 14

12

3

y1

y2 y4 y6

y10 y11

y12

y15

= 0
= 1

 

Figure 11. Illustration of the classifier structure for the cancer decision-making tree [21] (levels 3 

to 8 only). 
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Table 3. Encoding of cancer classes 

Class Cancer Binary Encoding 

y1 Meninges 0001 

y2 Brain 0010 

y4 Melanocytes 0100 

y6 Lymph node 0110 

y10 Prostate 1010 

y11 Breast 1011 

y12 Lung (carcinoid) 1100 

y15 Colon 1111 

 

 

Figure 12. Chromosome gate for cancer classification. 

 

For simulation conditions, the miRNA input surrounding the gates was set according to specific 

criteria. For example, if the input was miRNA groups 3, 16, and 17, then the proposed gates 

would provide a clear output signal for the breast cancer class (Fig. 13a). For miRNA input from 

groups 3, 12, 13, and 14, the gates would produce output signals for colon cancer (Fig. 13b). 

However, some miRNA input signals are present in every cancer cell (see Supplemental Table 2 

in ref. [21]), which can lead to an abnormal output signal; for instance, in the example shown in 

Figure 13c, the level of signal 4 is lower than that of other signals. Thus, a threshold system was 

applied to each encoding signal. Assuming that signal 4 had not reached the minimum limit of 

the threshold, the signals in Figure 13c were assigned to the breast cancer class but with noise. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015 

958



 

 

(a) Class C11 or breast cancer (code 1011) 
 

(b) Class C15 or colon cancer (code 1111) 

 
(c) Class C11 or breast cancer (with noise) 

 

Figure 13. Simulation of signaling cancer class 

 

V. EXPERIMENT 

 

The miRNA hsa-miR-21, which is overexpressed in many cancer types [42], was selected as an 

input for testing the sensing and encoding system. Gates were developed for hsa-miR-21. The 

cascade reaction of the experiment is shown in Figure 14. Displacement of a quencher and 

fluorophore duplex led to a fluorescent output at room temperature, which was used in domain 1. 
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Figure 14. Strand displacement for miRNA hsa-miR-21. 

 

The MISSION miRNA hsa-miR-21 mimic was purchased from Sigma-Aldrich (St. Louis, MO, 

USA) and diluted in sterile water. All DNA oligonucleotides used in this experiment were from 

Operon (Tokyo, Japan). To avoid mismatches and secondary structure formation, DNA 

sequences were optimized using Nupack nucleic acid software [43]. The DNA was purified by 

high-performance liquid chromatography and coding strands were modified with the ROX 

fluorophore and Black Hole Quencher 2. The DNA was resuspended as a 50 µM stock solution in 

distilled water and stored at −20 °C until use. DNA and miRNA sequences used in this study are 

shown in Table 4. 

 

Table 4. DNA and miRNA sequences 

Strand Sequence* 

MiRNA hsa-miR-21 UAGCUUAUCAGACUGAUGUUGA 

Sensing – upper ATCAGACTGATGTTGATACCAACCAATTTCTAACCTAAACAA 

Sensing – lower TTGGTATCAACATCAGTCTGATAAGCTA 

Encoding – upper CCAATTTCTAACCTAAACAA[BHQ2a-Q] 

Encoding – lower [AminoC6+ROX]TTGTTTAGGTTAGAAATTGGTTGGTA 

*Toehold domains are underlined. 

BHQ2a-Q, Black Hole Quencher 2. 
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Sensing and encoding gates were prepared from DNA stock solutions by mixing the two 

strands (2~4 µM each) in 1× TAE/Mg2+ buffer composed of 40 mM Tris (pH 8.0), 1 mM EDTA, 

and 12.5 mM magnesium acetate. The mixture was denatured by heating to 95°C and annealed 

by cooling to 4°C in a thermal cycler (BioRad, Hercules, CA, USA). The fluorescence signal 

output of the encoding gate required the quencher strand to completely quench the fluorescent 

strand. The DNA sensing gate was visualized by 4% agarose gel electrophoresis in Tris-borate 

EDTA buffer for 40 min at 100 V and room temperature. The gel was visualized with a 

fluorescence scanner (E-Graph; ATTA, USA) (Fig. 15). Bands of the correct size (48 bp) of 

sensing gate were excised from the gel and purified using the Wizard DNA Clean-up System 

(Promega, Madison, WI, USA) according to the manufacturer’s instructions. 

 
Figure 15. DNA analysis by gel electrophoresis. 

 

Figure 16. Hsa-miR-21 fluorophore signal intensity with respect to simulation results. 

 

The output signal was detected using a Photonic Multichannel Analyzer 

spectrophotometer (PMA-12 C10027-02; Hamamatsu, Hamamatsu City, Japan) integrated with 

an Olympus IX71 microscope with a mercury UV lamp (Tokyo, Japan). Excitation and emission 

wavelengths of 580 and 608 nm, respectively, were used to detect ROX, and signals were 

captured over 1500 s. Hsa-miR-21 in the gates was detected as an increase in fluorescence signal 

intensity relative to the simulation results (Fig. 16). The signal output reflected rapid detection 
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and classification of the input. Moreover, when an input other than hsa-miR-21 was tested with 

the sensing and encoding system, the reactions produced no output signal. 

 

VI. CONCLUSION 

 

A parallel decision-making system for a molecular robot was proposed, which showed that 

simple DNA strands could be used for decision-making from rule-based classifiers that classify a 

large input from binary tree classification by translating rule sets to DNA gates. The DNA strands 

are similar to chromosomes that increase the local concentration of DNA molecules, and can 

therefore be integrated into the molecular robot. The simulation results validated a set of rule-

based classifiers for DNA computing. Simple experiments using hsa-miR-21 as input showed 

that the proposed system was effective in sensing and in signal output for a cancer class. 

Moreover, the parallel sensing and classification were rapid, sensitive, and selective for the input 

strand. In the future, the proposed system will be integrated into the molecular robot and used for 

decision making, and will also be tested in experiments using various miRNAs as input and as in 

vivo reactions in cancer cells. 
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