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Abstract- Autonomous robots (manipulators or vehicles) may accumulate significant errors during 

their long-range motion to a desired position and orientation (pose). These errors, however, can be 

compensated for by subsequent local, short-range corrective actions to within random noise levels of 

the system. This paper presents a generic localization method for high-precision parallel kinematic 

mechanisms (PKMs) in order to allow them to accurately achieve their desired poses. The proposed 

method employs a novel non-contact spatial sensing technique combined with an iterative pose-

correction procedure. The proposed sensing technique is based on the use of multiple spatial lines-of-

sights (LOSs) emanating from a single source and ‘hitting’ a planar position sensitive detector (PSD) 

placed on the PKM’s platform. Using the positional feedback provided by the PSD, the instantaneous 

actual pose of the platform is accurately estimated. A pose-correction method is subsequently invoked 

to iteratively guide the platform to its desired location within noise levels. Extensive simulations were 

carried out to illustrate the effectiveness of the proposed localization method for a spatial PKM being 

developed in our laboratory. 

 
Index terms:  Autonomous docking, parallel kinematic mechanism, localization, line-of-sight guidance 
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I. INTRODUCTION 

An important task in the control of high-accuracy robotic manipulators, such as parallel 

kinematic mechanisms (PKMs), is task-space localization of their end-effectors. This task falls 

within the research area of autonomous docking of guided-vehicles, or robots, commonly defined 

as moving the vehicle / platform / end-effector from its current position and orientation (pose) to 

a desired pose within random-noise limits (e.g.,  [1] – [8]). Namely, the objective is to minimize 

the negative impact of systematic errors, which can accumulate during the robot’s motion, on 

platform localization. The task at hand, thus, is two-fold: (1) task-space sensing, and (2) motion 

correction. In this context, this paper proposes a line-of-sight (LOS) guided localization of 

PKMs.  The localization of PKM end-effectors is, especially, important due to their, already 

achievable, high accuracies that should not be lost due to imperfect calibration or other sources 

of systematic errors.  

 

A.  TASK-SPACE SENSING FOR LOCALIZATION 

Task-space localization in a guidance system is closely coupled to the ability of the sensing 

technology employed to measure the offset between the desired and actual poses of a robot’s 

end-effector. To-date, laser-based tracking sensors have been commonly used for 3D localization 

[9]. Interferometers are an example of laser-based sensors that can yield measurement data 

within nano-scale precision. Interferometers, however, can suffer from the 2π ambiguity 

problem, and therefore this problem must be corrected for [10]. Furthermore, measurements can 

be both time-consuming and costly as these sensors usually measure errors along only one or two 

coordinate axes with a single setup and, hence, multiple configurations may be needed.  

Position sensitive detectors (PSDs), on the other hand, provide effective lower-cost 

alternatives to interferometers for 3D localization, [11]. As an example, the camera-like PSD-

based sensing system proposed in [12] can sense the light radiated by an infrared LED beacon 

mounted on a robotic end-effector. In this system, PSD camera measurements and measurements 

from inertial sensors (also mounted on the end-effector) are fused for accurate end-effector 

velocity estimation.  

An electro-optical device for the measurement of six degree-of-freedom (dof) geometric 
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errors was presented in [13]. The device comprises a laser module, three 2D PSDs, and a cube 

beam splitter in planar configuration. The readings from the PSDs are utilized to determine the 

pose of a meso-machine tool on which the laser module is placed. The system developed in [14], 

on the other hand, uses three laser beams and three PSDs to measure the pose of an object of 

interest (OoI). Three mirrors are mounted on the OoI, one convex, one angled and one vertical, 

to increase system sensitivity. In order to estimate the target pose, a Jacobian partial derivative 

matrix is used with an assumed initial target position given the PSD readings.  

A novel method for the measurement of high-order vibration modes based on an edge-

detection algorithm was proposed in [15]. The high-speed and high-accuracy experimental 

system utilizes a laser and a PSD. The edge-detection algorithm measures variations in reflected 

laser intensity signal and, thus, it may be susceptible to common surface-reflectivity problems. 

An optical position-sensing device named VODKA (Vibrating Optical Device for the Kontrol 

of Autonomous robots) was proposed in [16]. The VODKA sensor consists of two photodiodes 

that are driven by a piezo actuator. The photodiodes are placed behind a lens. The sensor uses 

retinal micro-scanning movements and a simple algorithm to estimate the azimuthal position of a 

vertical target in the environment. 

CCD image sensors have also been utilized in robot motion control in two different 

configurations [17]. The eye-in-hand configurations include either position-based or image-based 

control systems. Position-based control systems determine the error offset in 3D Cartesian space, 

while image-based control systems determine the error offset in the 2D image space [18]. The 

triangulation probe system proposed in [19] consists of five laser beams and a CCD camera to 

measure the pose of a freeform surface. Five light spots projected onto the OoI are used to 

determine the task-space coordinates of the OoI based on the image obtained. The probe system 

is mounted on a 3-axis platform and uses a simple trigonometric principle.  

 In [20], two CCD cameras are used to acquire stereo images of the moving platform of the 

PKM. Feature points are used to calculate the rough pose of the moving platform, after which the 

rough actual length of each supported leg is calculated. The accurate pose is obtained using both 

these length measurements and the positional solution. 

 In [21], two methods are presented to determine the initial tool position and trace it for micro- 

and meso-scale machining. The first is a laser-based method comprising a laser beam and a 
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detector, and relies on the principle of obstruction of the laser beam by the tool. The second is a 

halogen lamp-based method comprising both a halogen lamp and a CCD camera. However, for 

both proposed methods, the orientation of the tool cannot be accurately determined. 

 As an example of many non-optical sensing systems, proposed in the literature for 

localization, a Hall-effect sensors-based positioning mechanism was detailed in [22]. The 

proposed system can position a 3-axis platform (x-y-) with sub-micron accuracy.  

 
B.  GUIDANCE-BASED MOTION CONTROL METHODS 

The aforementioned sensing techniques have been used for long-range localization of a target of 

interest. Therefore, no short-range guidance algorithms were proposed. However, to be able to 

achieve the desired pose of a target with high accuracies, an iterative short-range localization 

method using corrective positioning actions is needed after the initial long-range movement in 

order to ensure that the error is within the (random-noise) tolerance level of the overall system.  

 In [23], a visual relative navigation algorithm was proposed for micro/nano satellites using 

motor algebra and an Extended Kalman Filter (EKF). Namely, motor algebra is used to model 

the visual sensing system and the appropriate reference frames, and EKF is used to solve the 

system state equations. As an effective complementary algorithm to vision servoing, for robot 

end-effector localization, a multi-dimensional Kinematic Kalman Filter was proposed in [24] for 

potential use with accelerometers and gyroscopes. 

 In [25], a laser interferometry-based guidance technique was proposed for the positioning of a 

robotic end-effector. A beam-steering mechanism is used to direct a laser beam along a set 

trajectory to the retro-reflector mounted on the end-effector. The laser reflected by the retro-

reflector intersects a PSD. Error offsets measured by the PSD are reduced by a guidance error-

compensation algorithm and used to position the robotic end-effector at its desired location. 

 In [26], the end-effector of a PKM is driven by piezoelectric actuators, whose displacement is 

detected by capacitance gauges. High positioning accuracy is achieved through closed-loop 

control of the end-effector, which rejects the disturbances acting on the system and attenuates 

noise over the bandwidth of interest. 

 In [27], a dual parallel manipulator model was developed using flexure hinges for both micro 

positioning and active vibration isolation. Proportional integral derivative controller was adopted 
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for macro positioning control of the manipulator and the ܪଶ optimal controller was adopted for 

micro vibration control to reduce the disturbances acting on the moving platform. 

 In [28], an error modelling and compensation method based on particle swarm optimization 

radial basis function neural network was proposed to improve the measurement of 3D scanning 

6-DOF robots. The method used iterative closest point (ICP) algorithm to build input and output 

data pairs of a 1-hidden layer neural network. The neural network was then used to build an error 

model and compensation scheme of a 3D scanning robot system to improve measurement 

accuracy. 

 In [29], an error compensation method was proposed based on a robot’s parameters of 

kinematic structure and the joint angle. The method mapped the structural parameters’ error to 

the joint angular parameters’ error. Error compensation was achieved based on joint angle 

corrections. 

 In [30], a high-accuracy fuzzy controller was proposed to improve the positioning precision of 

servo system of CNC lathe. High accuracy was achieved using a grating-ruler as a sensor to 

measure displacement of work pieces and a lookup table to design the base of fuzzy rules of 

typical input instructions. 

 The guidance methodology first proposed in [1], and expanded in [31] and [32], is a generic 

multi-LOS based guidance system used to minimize long-range motion errors of a robotic 

platform in order for the platform to reach its desired pose within the required accuracy. It 

accomplishes this through the use of three LOSs aimed at three corresponding PSD sensors at the 

desired pose of the platform. Using positional feedback from the PSDs, short-range positioning 

is implemented to minimize the offsets. Namely, the systematic errors of the robot are iteratively 

minimized to within random noise limits through a robust guidance methodology. However, the 

method utilizes three pairs of LOS sources and PSDs, mounted on the autonomous vehicle, to 

generate the necessary positional feedback. In contrast, the method described in this paper uses 

only a single LOS source and PSD sensor, which would be quite suitable for parallel-kinematic 

mechanisms with limited workspaces. Due to the use of a single LOS source, which is cost-

effective and easier to calibrate as a system, multiple LOSs emanating from this source must be 

used. This, however, can only be achieved through a unique pose-estimation algorithm, as 

developed and verified in this paper.  
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C.  LOCALIZATION OF PKMs 

PKMs have been commonly used in machine tools, high-speed material handling robots, and 

flight simulators [33]. They have high stiffness characteristics and are suitable for high-precision 

applications due to their topology [19]. Such a desktop sized reconfigurable meso-milling 

machine tool (RmMT) featuring an architecture consisting of three chains of two prismatic, one 

revolute, and one spherical joint (3×PPRS) is being developed in our laboratory [34, 35].  

As noted above, there have been numerous attempts in the past for the accurate localization of 

PKMs (e.g., [20, 36, 37]. As an additional example to those, in [33], vision-based metrology was 

used to estimate the pose of a PKM end-effector to simplify the calibration of the kinematic 

model. A standard target platform with 16 dots was placed upon the end-effector to solve the 

camera-calibration model in order to determine end-effector pose.  

Similar localization methods to determine kinematic constraints have also been implemented 

using coordinate measuring machines (CMM) [38]. However, CMMs are slow, expensive, 

contact-based and cannot typically be implemented as sensing mechanisms. Thus, most CMM-

based localization methods have been used off-line for calibration.  

This paper, thus, will present the development of a novel methodology for on-line 

autonomous localization generic to spatial PKMs. 

 
II. PROBLEM STATEMENT 

Localization is defined herein as the process of moving an autonomous vehicle / platform / end-

effector to a desired position and orientation (pose) while correcting for the systematic motion 

errors of the system. Localization, thus, involves two stages of motion. The first is a long-range 

motion of the vehicle / platform / end-effector toward its desired pose. This long-range motion 

may accumulate significant errors which, along with noise, would prevent the vehicle / platform / 

end-effector from reaching its desired pose. In the second stage, the accumulated pose error is 

compensated by iterative local, short-range corrective motions. These corrections are aimed at 

moving the vehicle / platform / end-effector to its desired pose within the system noise limits.  

The focus of this paper is, specifically, on the second-stage localization of parallel PKMs. 

Namely, the movements of a PKM platform to a desired pose within the repeatability 

requirement of the mechanism, i.e., within random noise levels. Two interrelated localization 
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issues must be addressed in this context: (1) sensing of a PKM’s location, and (2) compensation 

for motion errors through an iterative on-line motion-planning algorithm. 

The sensory system for on-line PKM localization needs to estimate the instantaneous (current) 

pose of the platform with respect to an external (world) coordinate frame. Naturally, the sensors 

must not affect the motion of the mechanism itself, i.e., preferably be non-contact and non-

intrusive. In regards to motion planning, the PKM platform can be localized more efficiently if a 

kinematic model of the PKM is available. 

 The proposed localization method is based on the use of one platform-mounted task-space 

detector – a 2D planar PSD in our case. The PSD is ‘hit’ by multiple spatial LOSs, originating 

from a single laser source, Figure 1. Using positional feedback from the single PSD sensor, the 

pose of the platform needs to be estimated. However, if needed, in order for the single laser 

source to maintain un-obstructed ‘contact’ with the task-space sensor for all poses of the 

platform, multiple PSD sensors may need to be strategically mounted on the platform for 360º 

viewing. 

 The 3D LOS shown in Figure 1(a) can be directed toward the PSD, at the platform’s desired 

pose, by using a multi-axis galvanometer mirror. Multiple LOS ‘hits’ would be necessary for 

localization using a single PSD. These hits would yield positional feedback distinct for each 

LOS. The individual feedbacks along with the known directions of the LOSs can be used to 

estimate the pose of the platform through a pose-estimation algorithm. Once the current platform 

pose is estimated, corrective displacements can be calculated and implemented to move the PKM 

platform to its desired pose.  

 Figure 1(b) represents the kinematic scheme of the PKM of interest. The global frame,	ࢃࡲ, is 

assumed to be located at the LOS source; the PSD frame, ࡰࡲ, is located at the centre of the PSD 

sensor; the platform frame,	ࡼࡲ, is located at the centre of the platform of the PKM; and, the robot 

root frame, ࡾࡲ, is located at the root of the PKM. Joint displacements of the active joints are 

defined as ݏ௜, ݅	 ∈ 	 ሼ1, 2, 3ሽ , for tangential prismatic joints, and ݑ௜, ݅	 ∈ ሼ1, 2, 3ሽ,	 for radial 

prismatic joints. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 2, JUNE 2015 

848



 

 

(a) 
 

 

 

 (b) 

Figure 1. (a) A PKM with a PSD mounted on its platform (b) the kinematic scheme of the PKM  
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III. LOCALIZATION WITH A MECHANISM KINEMATIC MODEL 

Based on the availability of the kinematic model of a PKM, corrective motions can be evaluated 

through the difference between the desired pose and current (actual) pose of the platform. 

Localization is, thus, the process of sensing the PKM platform’s current pose and executing 

subsequent pose-correction steps through short corrective motions to compensate for systematic 

errors. However, due to the systematic errors incurred during the corrective motion itself, though 

proportionally at a much lower scale, localization is usually an iterative process and is 

considered to be successfully completed when the platform is within the random noise tolerance 

level of the desired pose.  

 

A.  PKM PLATFORM POSE DEFINITION 

The desired platform pose is defined herein by the vector, ௐ	ࡼ ௉ௗ ൌ ሾݔ௉ௗ	ݕ௉ௗ	ݖ௉ௗ	ߛ௉ௗ	ߚ௉ௗ	ߙ௉ௗሿ୘, 

where ሺݔ௉ௗ, ,௉ௗݕ  ,ࢃࡲ	,௉ௗሻ denotes the desired platform position in the world coordinate frameݖ

and ሺߛ௉ௗ, ,௉ௗߚ denotes the desired platform orientation in ܺఊ	௉ௗሻߙ ఉܻܼఈ Euler angles defined with 

respect to ࢃࡲ, respectively. Similarly, the actual pose of the platform at any instant, with respect 

to ࢃࡲ, is defined by	 ௐ	ࡼ ௉௔ ൌ ሾݔ௉௔	ݕ௉௔	ݖ௉௔	ߛ௉௔	ߚ௉௔	ߙ௉௔ሿ୘.  

 The platform short-range corrective motions would be evaluated based on the difference 

between ࡼ	ௐ ௉ௗ and ࡼ	ௐ ௉௔:  

 
௉ࡼ∆ ൌ ௐ	ࡼ ௉ௗ െ ௐ	ࡼ ௉௔ ൌ ሾ∆ݔ௉ ௉ݕ∆ ௉ݖ∆ ௉ߛ∆ ௉ߚ∆  ௉ሿ୘ , (1)ߙ∆

 
where	ሺ∆ݔ௉, ,௉ݕ∆ ,௉ߛ∆௉ሻ are the position offsets and ሺݖ∆ ,௉ߚ∆  ௉ሻ are the orientation offsets ofߙ∆

the platform, respectively.  

 

B.  POSE ESTIMATION 

The platform-pose estimation algorithm proposed in this paper requires the knowledge of the 

transformation matrix, ܂௉	
஽ , which relates the PKM’s platform frame, ࡼࡲ, to PSD frame, ࡰࡲ, 

Figure 1(b). This matrix is constant since the PSD is fixed on the platform (Figure 1 (a)) and can 

be calculated geometrically.  
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 Sensing the actual PSD pose, ࡼ	ௐ ஽௔, is essential in determining the platform pose, 

 

ௐ܂
௉௔ ൌ ௐ܂

஽௔ ௉஽܂  , (2) 
 

where ܂	ௐ ௉௔	is the transformation matrix from the actual platform frame to the world frame, and 

ௐ	܂ ஽௔  is the transformation matrix from the actual PSD frame to the world frame. ܂	ௐ ஽௔  is 

calculated using the ܺఊ ఉܻܼఈ  Euler angles from ࡼ	ௐ ஽௔ , and ࡼ	ௐ ௉௔  is calculated by converting 

ௐ	܂ ௉௔ to ܺఊ ఉܻܼఈ Euler angles. In order to calculate ࡼ	ௐ ௉௔, ࡼ	ௐ ஽௔ must be known. Thus, the rest 

of this section is dedicated to obtaining ࡼ	ௐ ஽௔, i.e., the actual pose of the PSD at any instance. 

This vector is defined by ࡼ	ௐ ஽௔ ൌ ሾݔ஽௔	ݕ஽௔	ݖ஽௔	ߛ஽௔	ߚ஽௔	ߙ஽௔ሿ୘. 

 The pose-estimation algorithm also requires knowledge of the Cartesian coordinates of four 

LOS ‘hits’ on the single PSD, which can be achieved by a single LOS source. The common 

origin of the source for the LOSs is defined herein, for simplicity, also to be the origin of the 

world coordinate frame, ࢃࡲ, Figure 1(b).  

On the planar PSD sensor, a local frame is defined as ࡰࡲ, Figure 2. The 2D (planar) positional 

PSD reading of any LOS hit is, thus, defined as ࡼ	஽ ௅௜ ൌ ሾݔ௅௜	ݖ௅௜ሿ,	where ሺݔ௅௜,  ௅௜ሻ are the knownݖ

coordinates of the intersection point between the ݅th LOS, ݅	 ∈ ሼ1, 2, 3, 4ሽ, and the PSD sensor 

with respect to	ࡰࡲ. Similarly, the unknown coordinates of this point with respect to the world 

frame are denoted by ࡼ	ௐ ௅௜.  

In order to estimate the platform’s pose, the relative distances between the four LOS hits, 

ௐ	ࡼ ௅௜, are necessary. The Euclidean distance between two LOS hits ࡼ	஽ ௅௜ and ࡼ	஽ ௅௝	is denoted 

herein by ݁௜௝: 

 

݁௜௝ ൌ ට൫ݔ௅௝ െ ௅௜൯ݔ
ଶ
൅ ൫ݖ௅௝ െ ௅௜൯ݖ

ଶ
 . 

(3) 

 

 Each LOS is a spatial (3D) ray whose direction is defined by a unit vector with respect to ࢃࡲ 

denoted by	 ࢛௅௜	
ௐ ൌ ௭௜൧ݑ	௬௜ݑ	௫௜ݑൣ

୘
, where ሺݑ௫௜, ,௬௜ݑ  ௭௜ሻ are the components of the unit vectorݑ

with respect to	ࢃࡲ. The point of intersection of the ݅th LOS with the PSD must lie on the ray 

defined by	 ࢛௅௜	
ௐ . Thus, there exists a scalar value, ݀௜, for which: 
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ௐ	ࡼ ௅௜ ൌ ݀௜ ࢛௅௜	
ௐ ൌ ൣ݀௜ݑ௫௜ ݀௜ݑ௬௜ ݀௜ݑ௭௜൧

୘
ൌ ሾݔ௪௜ ௪௜ݕ  ௪௜ሿ୘, (4)ݖ

 

where ሺݔ௪௜	ݕ௪௜	ݖ௪௜ሻ  represents the world-frame coordinates of 	 ஽	ࡼ ௅௜ . The variable ݀௜  is the 

length of the ray defined by the unit vector	 ࢛௅௜	
ௐ , from the origin of the ݅th LOS,	ࢃࡲ, to its 

intersection point on the PSD, Figure 2. Determining both the world-frame coordinates and the 

PSD-frame coordinates of this hit point would enable the evaluation of ࡼ	ௐ ஽௔. 

 

 

Figure 2. Four LOS intersections (hits): (a) to (d), respectively. 

 
 Determining the world-frame coordinates requires solving for ݀௜  of each LOS. Pose 
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estimation requires one last variable – the angles between the LOSs. The angle between two 

LOSs, ࢛	ௐ ௅௜	and	 ࢛	ௐ ௅௝, is denoted by ߠ௜௝: 

 

௜௝ߠ  ൌ
࢛ಽ೔ೈ ∙ ࢛ಽೕೈ

ฮ ࢛ಽ೔ೈ ฮฮ ࢛ಽೕೈ ฮ
, (5) 

 
where ࢛	ௐ ௅௜, and	 ࢛	ௐ ௅௝   are the unit vectors defining the directions of the ݅ th and ݆ th LOS, 

respectively. Two simple systems of multivariate non-linear equations, based on the cosine law, 

can be formulated to solve for ݀௜: 

 

݀ଵ
ଶ ൅ ݀ଶ

ଶ െ 2݀ଵ݀ଶ ݏ݋ܿ ଵଶߠ ൌ ݁ଵଶଶ , 

݀ଶ
ଶ ൅ ݀ଷ

ଶ െ 2݀ଶ݀ଷ ݏ݋ܿ ଶଷߠ ൌ ݁ଶଷଶ , 

݀ଵ
ଶ ൅ ݀ଷ

ଶ െ 2݀ଵ݀ଷ ݏ݋ܿ ଵଷߠ ൌ ݁ଵଷଶ , 

(6) 

 

݀ଵ
ଶ ൅ ݀ଷ

ଶ െ 2݀ଵ݀ଷ ݏ݋ܿ ଵଷߠ ൌ ݁ଵଷଶ , 

݀ଷ
ଶ ൅ ݀ସ

ଶ െ 2݀ଷ݀ସ ݏ݋ܿ ଷସߠ ൌ ݁ଷସଶ, and 

݀ଵ
ଶ ൅ ݀ସ

ଶ െ 2݀ଵ݀ସ ݏ݋ܿ ଵସߠ ൌ ݁ଵସଶ . 

(7) 

 
 Herein, the two systems of equations are used to avoid obtaining an ambiguous solution. A 

single system can have two sets of real solutions. However, the correct set of real solution would 

appear in both systems only once. Each system of equations represents a triangle on the PSD 

plane, Figure 2. ሾݔ௪௜	ݕ௪௜	ݖ௪௜ሿ୘ can be solved for by Eq. 4, resulting in ࡼ	ௐ ௅௜, when the ݀௜	are 

solved for in Eq. 6 and Eq. 7. 

ௐ	ࡼ  ஽௔ can be determined by using three LOS intersections, when the coordinates of the LOS 

and PSD intersections, ࡼ	ௐ ௅௜ and ࡼ	஽ ௅௜, respectively, are known. Solving for the transformation 

matrix from ࡰࡲ	to ࢃࡲ is needed to solve for the pose, ࡼ	ௐ ஽௔. The transformation matrix, ܂	ௐ ஽௔, 

takes the following form:   

ௐ	܂ ஽௔ ൌ ቎

ଵଵݎ ଵଶݎ ଵଷݎ ஽௔ݔ
ଶଵݎ ଶଶݎ ଶଷݎ ஽௔ݕ
ଷଵݎ ଷଶݎ ଷଷݎ ஽௔ݖ
0 0 0 1

቏, 

 

(8) 

where the components ݎ௜௝  form the rotation matrix ܀	ௐ ஽௔ , and ሺݔ஽௔, ,஽௔ݕ ஽௔ሻݖ  represents the 

translation vector from ࡰࡲ	to ࢃࡲ. The components of ܀	ௐ ஽௔ are not independent and obey the 
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following system of nine linear equations with nine unknowns ( ,௜ଵݎ ݅∀	௜ଷݎ ∈ ሼ1, 2, 3ሽ,  and 

,஽௔ݔ ,஽௔ݕ  :(஽௔ݖ

௅௜ݔଵଵݎ ൅ ௅௜ݖଵଷݎ ൅ ஽௔ݔ ൌ  ,௪௜ݔ
௅௜ݔଶଵݎ ൅ ௅௜ݖଶଷݎ ൅ ஽௔ݕ ൌ  ௪௜,  andݕ
௅௜ݔଷଵݎ ൅ ௅௜ݖଷଷݎ ൅ ஽௔ݖ ൌ  .௪௜ݖ

(9) 

 
Solving Eq. 9 yields the first three components of the required 

ௐ	ࡼ ஽௔ ൌ ሾݔ஽௔	ݕ஽௔	ݖ஽௔	ߛ஽௔	ߚ஽௔	ߙ஽௔ሿ୘,  namely, the position of the detector frame, 

ሺݔ஽௔, ,஽௔ݕ ௐ	܀ ஽௔ሻ, as well as the first and third columns ofݖ ஽௔.  

The second column of ܀	ௐ ஽௔	can be evaluated using the orthogonality property of rotation 

matrices: 

൥
ଵଶݎ
ଶଶݎ
ଷଶݎ
൩ ൌ ൥

ଵଷݎ
ଶଷݎ
ଷଷݎ
൩ ൈ ൥

ଵଵݎ
ଶଵݎ
ଷଵݎ
൩. (10) 

 
Using the components of the rotation matrix, ܀	ௐ ஽௔, the last three components of the required 

ௐ	ࡼ ஽௔ ൌ ሾݔ஽௔	ݕ஽௔	ݖ஽௔	ߛ஽௔	ߚ஽௔	ߙ஽௔ሿ୘	can be obtained, namely, the orientation of the platform in 

ܺఊ ఉܻܼఈ Euler angles: 

஽௔ߚ ൌ atan2 ቀെݎଷଵ,ඥݎଵଵ
ଶ ൅ ଶଵݎ

ଶ ቁ, 

஽௔ߙ ൌ atan2 ቀ ௥మభ
ୡ୭ୱሺఉವೌሻ

, ௥భభ
ୡ୭ୱሺఉವೌሻ

ቁ, and 

஽௔ߛ ൌ atan2 ቀ ௥యమ
ୡ୭ୱ	ሺఉವೌሻ

, ௥యయ
ୡ୭ୱ	ሺఉವೌሻ

ቁ. 

 

(11) 

Once ࡼ	ௐ ஽௔ ൌ ሾݔ஽௔	ݕ஽௔	ݖ஽௔	ߛ஽௔	ߚ஽௔	ߙ஽௔ሿ୘ is obtained from Eq. 9 and Eq. 11, the required 

pose of the platform with respect the world coordinate frame, ࡼ	ௐ ௉௔, can be determined using 

Eq. 2. This concludes solving for all the six components of ࡼ	ௐ ௉௔  and, thus, provides the 

estimation of the platform pose with respect to the world frame. 

 

C.  SHORT-RANGE PKM MOTION PLANNING 

The proposed short-range pose localization method is shown in Figure 3. Following the initial 

long-range motion of the platform, the four LOSs directions to hit the PSD mounted on the 
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platform at the desired platform pose are determined. The corresponding PSD coordinates of the 

individual four hit locations, along with the LOS directions are, then, used to estimate the actual 

pose of the platform, ࡼ	ௐ ௉௔. 

  
Figure 3. Pose-correction process 
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 Based on Eq. 1, once each component of ∆ࡼ௉ is determined, it is then checked against the 

known random error (i.e., noise) level of the PKM. If any ∆ࡼ௉ component is greater than the 

corresponding noise level, ε, the platform is moved according to displacements defined by the 

pose offset, ∆ࡼ௉. These are the short-range corrective motions used to relocate the platform to 

within the noise level of the desired pose, ࡼ	ௐ ௉ௗ. Depending on the systematic motion errors of 

the system, multiple corrective movements may be required.  

 

IV. SIMULATED EXPERIMENTS 

In order to evaluate the effectiveness of the proposed localization method described above, a 

generic simulation environment was developed in MATLAB®. 

 

A.  SIMULATION SET-UP 

Motion simulations were conducted using the kinematic model of the 3×PPRS PKM shown in 

Figure 1, subject to actuation limitations of (30 ൑ ௜ݏ ൑ 30 mm, 30 ൑ ௜ݑ ൑ 30 mm), equal link 

lengths of ܮ ൌ 164 mm, platform radius of ܴ௣ ൌ 34.89 mm, and base radius of ܴ௕ ൌ 150 mm, 

Figure 4. 

 For the pose-correction process shown in Figure 3, all frame locations are expressed in the 

world frame coordinate, ࢃࡲ. Namely, a desired platform location is first defined with respect to 

 However, as noted in the proposed localization method described in Section 3, the only way .ࢃࡲ

to measure platform pose is through the LOS hits on the PSD, where the desired pose of the PSD 

is related to the desired pose of the platform via the following transformation matrix: 

 

஽ௗௐ܂ ൌ ௉ௗௐ܂ ஽௉܂  , (12) 
 

where ܂஽ௗ	
ௐ  is the transformation matrix from the desired PSD frame to the world frame,  ܂௉ௗ	

ௐ  

is the transformation matrix from the desired platform frame to the world frame, and ܂஽	
௉  is the 

transformation matrix from the PSD frame to platform frame. In Eq. 12, ܂஽	
௉  is a constant 

matrix. 

 Similarly, the desired pose of the platform with respect to the PKM root frame, ܂௉ௗ	
ோ , is 

defined via the following transformation matrix: 
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	஽ௗ܂
ௐ ൌ ோௐ܂ ௉ௗோ܂ ஽௉܂  

	
⇒ 	௉ௗ܂

ோ ൌ ሺ ோௐ܂ ሻି૚ሺ ஽ௗௐ܂ ሻሺ ஽௉܂ ሻି૚ , 
(13) 

 

where ܂ோ	
ௐ  is the transformation matrix from the root frame of the robot to the world coordinate 

frame.  

 

Figure 4. 3×PPRS PKM simulation set-up 

 

 Once ܂௉ௗ	
ோ  is defined, the proposed pose-correction process is executed using the inverse and 

direct kinematic models of the PKM used in our simulations. These kinematic models are 

detailed in Appendix A. 

 In the simulations, the motion errors of the PKM were represented by two sources with 

respect to the prismatic actuators – systematic errors and random noise. The systematic errors 

were modelled as a function of the actuated-joint displacements: 

 
ୱ୷ୱ୲ୣ୫ୟ୲୧ୡሼఋ௜ሽߝ ൌ ௜ߜߟ  , (14) 
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where ߝୱ୷ୱ୲ୣ୫ୟ୲୧ୡሼఋ௜ሽ is the systematic error associated with the joint displacement, ߜ௜ ∈ ሼݏ௜,  ,௜ሽݑ

and ߟ is the mechanism specific error rate. For example, for the actuators used in our mechanism 

ߟ ൌ 2.5 µm/mm. However, in order to illustrate the effectiveness of our method with potentially 

much larger error rates in other applications, in this paper, an error rate of 20 µm/mm was used. 

It was assumed that the source of systematic errors was solely due to the movement of the 

actuators. The errors from the LOS source and the offsets measured by the PSD were assumed to 

be negligible.  

The random noise was modelled by a normal distribution. For example, repeatability for the 

actuators used in our mechanism is defined to be ±50 nm. However, in order to illustrate the 

effectiveness of our method with potentially much larger noise levels in other applications, in 

this paper, random noise was defined by ࣨሺߤ ൌ 0, ߪ ൌ 0.0333	µm). Random noise in joint 

space was transformed into task space to yield platform-pose noise limits of approximately 

±0.00012 mm for translation and ±0.000035° for rotation. 

  Three scenarios were tested: (1) no systematic errors and no random noise, (2) systematic 

errors, but no random noise, and (3) systematic errors and random noise. For the detailed 

example included herein, all scenarios were simulated with the platform starting at its home 

position, ሾݔ௉௔଴	ݕ௉௔଴	ݖ௉௔଴	ߛ௉௔଴	ߚ௉௔଴	ߙ௉௔଴ሿ் ൌ ሾ0	mm 300	mm 0	mm 0° 0° 0°ሿ୘,  

and moving to the desired pose, 

ௐ	ࡼ  ௉ௗ ൌ ሾݔ௉ௗ	ݕ௉ௗ	ݖ௉ௗ	ߛ௉ௗ	ߚ௉ௗ	ߙ௉ௗሿ் ൌ ሾ9	mm 306	mm െ10	mm െ5° 7° െ2°ሿ୘. 

 

B.  SIMULATION RESULTS 

The following are the results of the abovementioned three scenarios. 

(i) Simulation without any errors: Since there were no errors incurred during the corrective 

motions of the algorithm in this scenario, as expected, the desired platform pose was 

achieved immediately within one iteration of the method.  

(ii) Simulation with systematic errors only: Systematic errors were introduced into the 

platform motion. As expected, since there was no random noise, the platform iteratively 

(after 5 iterations) achieved the desired platform pose with zero offsets, Table 1. 
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Table 1. Simulation results with systematic errors only 

Iteration x offset [mm] y offset [mm] z offset [mm] α offset [o] β offset [o] γ offset [o] 

1 0.186786 0.123310 -0.227655 -0.116450 0.149631 -0.048170 

2 -0.003732 -0.002465 0.004540 0.002320 -0.002989 0.000959 

3 0.000075 0.000049 -0.000091 -0.000047 0.000060 -0.000019 

4 -0.000001 -0.000001 0.000002 0.000001 -0.000001 0.000000 

5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

(iii) Simulation with systematic errors and random noise: In this case, the simulations 

verified that several iterations of the proposed localization process were sufficient to 

achieve the desired platform pose within noise levels. In our example, the platform 

converged to its desired pose, within the noise tolerance level, by the third iteration and, 

most importantly, remained within it, indicating no signs of divergence, Figure 5. 

Appendix B provides the details of 20 additional localization examples with varying platform 

starting poses and final desired poses. For all examples, the platform was able to achieve its 

desired pose within the random noise limits. 

 

V. CONCLUSIONS 

The localization methodology presented in this paper, primarily, for PKMs, can be adapted to 

other autonomous high-precision mechanisms for a variety of applications, ranging from 

machining to space-vehicle docking. The passive sensing system is resource effective requiring 

only one LOS source and one PSD sensor. The method was demonstrated successfully via 

simulation in an example of a PKM incorporating both inverse and forward kinematics with 

systematic errors and noise applied to the joint-space actuators. Results show that convergence in 

task-space is usually reached within only a few iterations.  
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Figure 5. Simulations with systematic errors and noise. 
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Appendix A KINEMATIC MODEL OF 3×PPRS PKM 

In this Appendix, both the forward and inverse kinematic models of the 3×PPRS PKM shown in 

Figure A1 are presented.  

The base of the PKM has a radius, ܴ௕, where it defines the distance from the origin of FR to 

the centres of the tangential prismatic joints, ݏ௜ ൌ 0	∀	݅	 ∈ ሼ1, 2, 3ሽ. Three links of fixed length, 

ܮ , connect the radial prismatic joints to the mobile platform through passive revolute and 

spherical joints. The angular travels of the revolute joints are denoted by ߮௜ . Moreover, the 

Cartesian positions of the spherical joints are denoted as ࢖௜, ݅ ∈ ሼ1, 2, 3ሽ, and the joint-space 

generalized coordinates of the active joints are defined by vector ࢗ: 

 

௜࢖ ൌ ൥
௜௫݌
௜௬݌
௜௭݌
൩ 								and												ࢗ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݏ
ଶݏ
ଷݏ
ଵݑ
ଶݑ
ےଷݑ
ۑ
ۑ
ۑ
ۑ
ې

. (A1)

 

 

 
Figure A1: 3×PPRS PKM 
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The platform of the PKM is defined to be an equilateral triangle with edge length of ݈, and the 

length from the centroid of the platform to one of its vertices is defined to be ܴ௣:  

 

݈ ൌ 	ඨ2ܴ௣
ଶ ൬1 െ cos ൬

2
3
൰൰ߨ . (A2)

 
The pose of ࡼࡲ with respect to robot root frame, ࡾࡲ, is represented by the transformation 

matrix, ܂௉	
ோ ⊂ Թସൈସ: 

 

	௉܂
ோ ൌ ൤ ܀

ோ
௉ ۲ோ ௉

૙ 1
൨ (A3)

ோ܀ ௉ ≜ ோࡲ ∙ ௉ࡲ
் (A4)

۲ோ ௉ ≜ ோࡲ െ ௉ , (A5)ࡲ
 
where ܀௉	

ோ ⊂ Թଷൈଷ is the rotation matrix, and ۲௉	
ோ ⊂ Թଷൈଵ is the translation matrix. 

 
A.1  INVERSE KINEMATIC MODEL 

The goal of inverse kinematics is to determine the vector ࢗ, given the pose of the platform ܂௉	
ோ . 

 

 
Figure A2: Inverse Kinematics 

 
The positions of the spherical joints, ࢖௜, resolved in robot root frame, ࡾࡲ, can be obtained 

from the pose of the platform frame, ࡼࡲ: 

 
	௜࢖

ோ ൌ ோ܀ ௉ ௜௉࢖ ൅ ۲௉
ோ  . (A6)

 
From Figure A1, the components of the spherical joints, ࢖௜, resolved in frames ࡾࡲ and ࡼࡲ, are 
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obtained from geometry: 

 

	௜࢖
ோ ൌ ௓܀ ൬ߠ ൌ 	

2
3
ߨ ሺ݅ െ 1ሻ൰ ൥

ܴ௕ ൅ ௜ݑ െ ܮ cos߮௜
௜ݏ

ܮ sin߮௜
൩ (A7)

where ܀௓ሺߠሻ ൌ ൥
cos ߠ െsin ߠ 0
sin ߠ cos ߠ 0
0 0 1

൩ (A8)

௜࢖ ൌ ൦

ܴ௣ cos ቀ
ଶ

ଷ
ሺ݅ߨ െ 1ሻቁ

ܴ௣ sin ቀ
ଶ

ଷ
ሺ݅ߨ െ 1ሻቁ

0

൪	
௉  . (A9)

 
For i = {1, 2, 3}, there are nine equations and nine unknowns (ݏ௜, ,௜ݑ ߮௜) from Eq. A6. Solving 

for the system of equations, ݏ௜	and ݑ௜ are obtained and the vector ࢗ is solved for. 

 
A.2  FORWARD KINEMATIC MODEL 

The goal of forward kinematics is to determine the platform pose ܂௉	
ோ , given the vector ࢗ. 

 

 
Figure A3: Forward Kinematics 

 
Since the platform of the PKM is an equilateral triangle, the following geometrical 

relationship is exists: 

 

ฮ࢖௜ െ ௝ฮ࢖ ൌ ݈ଶ ∀݅, ݆ ߳ ሼ1, 2, 3ሽ ∶ ݅ ് ݆ . (A10)

 
Combining Eq. A7 and A10, a system of equations is derived with three nonlinear equations and 

three unknowns (߮௜	∀	݅	 ∈ ሼ1, 2, 3ሽ). Solving for ߮௜  yields the positions of the spherical joints 

with respect to robot root frame, ࡾࡲ, using Eq. A7. ۲௉	
ோ , the position of ࡼࡲ with respect to ࡾࡲ, is 

calculated from the positional average of the three spherical joints. ܀	ோ ௉, the orientation of ࡼࡲ 

with respect to ࡾࡲ, is calculated from 3-point geometrical properties: 
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۲௉ ൌ
∑ ௜ோଷ࢖
௜ୀଵ

3
ோ  (A11)

 

ଵ܀ ൌ
ଵோ࢖ െ ۲ோ ௉

݈ √3⁄
 (A12)

ଶ܀ ൌ
ଶோ࢖ െ ଷோ࢖

݈
 (A13)

ଷ܀ ൌ ଵ܀ ൈ ଶ (A14)܀

ோ	܀ ௉ ൌ ሾ܀ଵ ଶ܀ ଷሿ . (A15)܀
 
With Eq. A11 and Eq. A15, the matrix, ܂௉	

ோ , can be solved for. 
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Appendix B EXAMPLES OF LOCALIZATION 

The following table shows the results for 20 localization simulations. 

Systematic Error: 20 µm/mm 

Noise: 3σ = 0.1 µm 

Convergence criteria = (0.00012 mm, 0.00035°) 

 

Table B1. Summary of 20 simulation results 

Simulation 
Starting Pose 

௉௔଴ݕ	௉௔଴ݔ) (௉௔଴ߙ	௉௔଴ߚ	௉௔଴ߛ	௉௔଴ݖ
[mm, mm, mm, °, °, °ሿ 

Desired Pose 
௉ௗݔ) ௉ௗݕ ௉ௗݖ ௉ௗߛ ௉ௗߚ  (௉ௗߙ

[mm, mm, mm, °, °, °ሿ 

Converged 
in 

Iteration # 

Converged with 
Maximum Offset

[mm, °ሿ 

1 (1, 308, -5, 10, -38, -24) (-5, 293, -8, 6, -11, -5) 3 (0.000072, 0.000123) 

2 (20, 305, -27, -16, -6, -17) (2, 288, 4, -15, -7, -5) 4 (0.000060, 0.000119) 

3 (-1, 300, -13, 29, 31, -23) (-8, 294, -5, 2, -1, 0) 3 (0.000069, 0.000084) 

4 (-22, 300, -46, 16, 8, 14) (-8, 298, -2, -11, 8, -2) 3 (0.000108, 0.000062) 

5 (-1, 304, 9, 2, 12, -1) (5, 292, 5, -12, -9, -2) 3 (0.000082, 0.000099) 

6 (0, 322, -37, -9, -27, 21) (12, 304, -21, 7, -8, -2) 3 (0.000092, 0.000033) 

7 (-1, 312, -5, -7, 2, 4) (5, 297, -6, -5, -13, 1) 3 (0.000071, 0.000109) 

8 (10, 271,   17, -4, 0, -19) (2, 290, 11, -13, -4, -3) 3 (0.000078, 0.000146) 

9 (-28, 298, 2, -35, -5, -5) (-7, 299, 6, -2, -2, 0) 3 (0.000047, 0.000103) 

10 (-19, 304, -22, -8, 25, -9) (-4, 302, -14, -2, 7, -12) 3 (0.000095, 0.000094) 

11 (-12, 308, -8, 12, 5, -25) (-1, 308, -24, 6, -3, -1) 3 (0.000110, 0.000132) 

12 (-1, 299, -20, 20, 27, -8) (16, 299, 1, -12, -1, 3) 3 (0.000068, 0.000138) 

13 (-5, 296, -17, 1, -17, 24) (-4, 313, -23, 12, 1, 4) 3 (0.000111, 0.000082) 

14 (5, 294, -10, -7, -8, 31) (1, 284, 5, -12, -6, -3) 3 (0.000074, 0.000145) 

15 (8, 313, -21, 34, -22, 32) (8, 313, -14, 5, -2, -2) 3 (0.000077, 0.000098) 

16 (-4, 307, -22, 9, -30, -6) (5, 295, -16, 2, -20, -7) 3 (0.000081, 0.000176) 

17 (10, 287, -11, 4, 18, 9) (3, 286, -9, -11, 5, 5) 3 (0.000093, 0.000079) 

18 (3, 294, -29, 7, 5, 10) (5, 297, 6, -1, -1, 4) 3 (0.000052, 0.000153) 

19 (-8, 288, -5, 6, 5, -17) (0, 292, 11, -13, 0, 2) 3 (0.000056, 0.000091) 

20 (-12, 313, -29, 9, -6, -54) (1, 298, 5, -3, -4, -4) 3 (0.000054, 0.000075) 
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