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ABSTRACT 

In multidimensional scaling (MDS) carried out on the basis of a metric data 

matrix (interval, ratio), the main decision problems relate to the selection of the 

method of normalization of the values of the variables, the selection of distance 

measure and the selection of MDS model. The article proposes a solution that 

allows choosing the optimal multidimensional scaling procedure according to the 

normalization methods, distance measures and MDS model applied. The study 

includes 18 normalization methods, 5 distance measures and 3 types of MDS 

models (ratio, interval and spline). It uses two criteria for selecting the optimal 

multidimensional scaling procedure: Kruskal’s Stress-1 fit measure and 

Hirschman-Herfindahl HHI index calculated based on Stress per point values. 

The results are illustrated by an empirical example. 

Key words: multidimensional scaling, normalization of variables, distance 

measures, HHI index, R program. 

1. Introduction

Multidimensional scaling is a method that represents (dis)similarity data as 

distances in a low-dimensional space (typically 2 or 3 dimensional) in order to 

make these data accessible to visual inspection and exploration (Borg, Groenen, 

2005, p. 3). The dimensions are not directly observable. They have the nature of 

latent variables. MDS allows the similarities and differences between the 

analyzed objects to be explained. 

Multidimensional scaling is a widely used technique in many areas, including 

psychology (Takane, 2007), sociology (Pinkley, Gelfand, Duan, 2005), linguistics 
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(Embleton, Uritescu, Wheeler, 2013), marketing research (Cooper, 1983), tourism 

(Marcussen, 2014) and geography (Golledge, Ruhton, 1972). 

The starting point of multidimensional scaling is a distance matrix 

(dissimilarities) between objects in m-dimensional space  ikδ , where 

nki ,...,1,   is the number of the object. Methods of determining the distance 

matrix  ikδ  can be divided into direct (typically result from similarity ratings 

on object pairs, from rankings, or from card-sorting tasks) and indirect (they can 

be derived from other data) methods (see, e.g. Borg, Groenen, 2005, pp. 111-133).  

The article uses an indirect method in which the starting point is a metric data 

matrix ][ ijxX  ( ijx  – the value of the j-th variable for the i-th object, mj ,...,1  

– the number of metric variable), for which observations are obtained from 

secondary data sources. It is a typical situation in socio-economic research.  

The normalization of variables is carried out when the variables describing the 

analyzed objects are measured on metric scales (interval or ratio). The 

characteristics of measurement scales were discussed, e.g. in the study by 

(Stevens, 1946). The purpose of normalization is to achieve the comparability of 

variables. 

Metric data that requires normalization of variables complicates the problem 

of choosing a multidimensional scaling procedure. The article proposes a solution 

that allows the choice of the optimal multidimensional scaling procedure, carried 

out on the basis of metric data (interval, ratio), according to the normalization 

methods, distance measures and MDS model applied. The study included 18 

normalization methods, 5 distance measures and MDS models (ratio, interval and 

spline – e.g. polynomial function of second or third degree). For instance, ten 

normalization methods, five distance measures and four MDS models give 200 

multidimensional scaling procedures. 

The authors of the monograph (Borg, Groenen, Mair, 2013, chapter 7) pointed 

out the typical mistakes made by users of multidimensional scaling. A frequent 

mistake on the part of users of MDS results is to evaluate Stress mechanically 

(rejecting an MDS solution because its Stress seems “too high”). In their opinion 

(Borg, Groenen, Mair, 2013, p. 68) “An MDS solution can be robust and 

replicable, even if its Stress value is high” and “Stress, moreover, is a summative 

index for all proximities. It does not inform the user how well a particular 

proximity value is represented in the given MDS space”. In addition, we should 

take into account Stress per point measure (the average of the squared error terms 

for each point) and acceptability of MDS results (based on “Shepard diagram”). 

To solve the problem of choosing the optimal multidimensional scaling 

procedure, two criteria were applied: Kruskal’s Stress-1 (Stress – Standardized 

residual sum of squares) fit measure and the Hirschman-Herfindahl HHI index, 

calculated based on Stress per point values (spp). The article proposes an 
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algorithm that allows the selection of the optimal multidimensional scaling 

procedure with implementation in mdsOpt package of R program (Walesiak, 

Dudek, 2017b). 

The results are illustrated by an empirical example. 

2. Multidimensional scaling based on metric data 

A general scheme of multidimensional scaling performed on metric data is as 

follows: 

 ISXAP  VdδZX , (1) 

where:  

P  – choice of research problem, 

A  – selection of objects, 

X  – selection of variables, 

X  – collecting data and construction of data matrix nxmijx ][X  for 

nki ,...,1,   and mj ,...,1  ( ijx  – the value of the j-th variable for the i-th 

object), 

Z  – choice of variable normalization method and construction of normalized 

data matrix nxmijz ][Z  for nki ,...,1,   and mj ,...,1  ( ijz  – the 

normalized value of the j-th variable for the i-th object), 

δ  – selection of distance measure (see Table 3) and construction of distance 

matrix in m-dimensional space  
nxnik )(Zδ   for nki ,...,1,  , 

S  – perform multidimensional scaling (MDS): )()(: VZ ikik df   for all 

pairs ( ki, ) – mapping distances in m-dimensional space )(Zik  into 

corresponding distances )(Vikd  in q-dimensional space ( mq  ) by a 

representation function f. The distances )(Vikd  are always unknown, i.e. 

MDS must find a configuration V  of predetermined dimensions q on 

which the distances are computed, 

d  – Euclidean distance matrix in q-dimensional space ( mq  , typically q 

equals 2 or 3)  
nxnikd )(Vd   for nki ,...,1,  , 

V  – configuration of objects in q-dimensional space nxqijv ][V , 

I  – interpretation of multidimensional scaling results in q-dimensional space. 
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In SMACOF (Scaling by Majorizing a Complicated Function) algorithm we 

minimize Stress (2) over the configuration matrix V  by an iterative procedure 

(see Borg, Groenen, 2005, pp. 204-205): 

  1. Set 
]0[

VV  , where 
]0[

V  is some nonrandom or random start configuration. 

Starting solution is usually Torgerson-Gower classical scaling (Torgerson, 

1952; Gower, 1966). Set iteration counter 0k . Set ε to a small positive 

constant (convergence criterion), i.e. 000001.0 . 

  2. Find optimal disparities ikd̂  for fixed distances )( ]0[
Vikd . 

  3. Standardize (to avoid degenerated solution) ikd̂  so that .2/)1(2
ˆ  nn
d

   

  4. Compute Stress function ),ˆ( ]0[]0[
Vdrr   : 

 



ki

ikikikr ddw 2)ˆ)((),ˆ( VVd  

 



ki

ikikik

ki

ikik

ki

ikik ddwdwdw )(ˆ2)(ˆ 22
VV  

 ),ˆ(2)(22
ˆ VdV  
d

. (2) 

where: ikd̂  – d-hats, disparities, target distances or pseudo distances (see Borg, 

Groenen 2005, p. 199). )(ˆ
ikik fd   by defining f in different ways: 

kiik bd ˆ  – ratio MDS; kiik bad ˆ  – interval MDS, 

2ˆ
ikkiik cbad    – spline MDS (polynomial function of second 

degree); 

1ikw  – for object pair ki,  a dissimilarity has been observed, 0ikw  –

otherwise. 

Set ]0[]1[

rr   . 

  5. While 0k  or (   ][]1[ k

r

k

r  and k  maximum iterations) do 

  6. Increase iteration number k by one ( 1:  kk ). 

  7. Compute Guttman transform 
][k

V  (see Borg, Groenen, 2005, p. 191; De 

Leeuw, Mair, 2009, p. 5). 

  8. Find optimal disparities ikd̂  for fixed distances )( ][k

ikd V . 

  9.  Standardize ikd̂  so that 2/)1(2
ˆ  nn
d

 . 

10.  Compute ),ˆ( ][][ k

r

k

r Vd  . 

11.  Set 
][k

VV  , 

12.  End while. 
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A flowchart of the SMACOF algorithm is given in Figure 1. 

Compute optimal 

for distances of V[k]

Start: set initial V[0]

k: = 0

Standardize         so that

sd ik
ˆ

sd ik
ˆ

Compute          

2/)1(
2

ˆ  nn
d



][k

r

Update V[k] by

Guttman transform

k: = k+1

k    0 ?

or k = maxiter?

 
 ][]1[ k

r

k

r

no

no

End

yes

Figure 1. The flowchart of the majorization algorithm (SMACOF) 

Source: Borg, Groenen, 2005, p. 205. 

In other multidimensional scaling algorithms, different fit measures are 

applied (see, e.g. Borg, Groenen, 2005, pp. 250-254): Kruskal’s Stress-1, Kruskal 

and Carroll Stress-2, the Guttman-Lingoes coefficient of alienation, S-Stress of 

Takane, Young and De Leeuw. 

3. Criteria for the selection of the optimal multidimensional scaling 

 procedure 

The article proposes a solution that allows the optimal multidimensional 

scaling procedure to be chosen. The study uses the function smacofSym of 
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smacof package od R program (R Development Core Team, 2017). In the 

function smacofSym of smacof package (Mair et al., 2017) basic decision 

problems involve the following selection: 

– normalization method (the analysis included 18 normalization methods), 

– distance measure (the analysis included 5 distance measures),  

– MDS model (the analysis included: ratio MDS, interval MDS, spline MDS). 

Table 1 presents normalization methods, given by linear formula (3), which 

were used in the selection of the optimal MDS procedure (see Jajuga, Walesiak, 

2000, pp. 106-107; Zeliaś, 2002, p. 792): 

 
j

j

ij

jj

jij

jijjij
B

A
x

BB

Ax
axbz 




1
 )0( jb , (3) 

where: 
ijx  – the value of j-th variable for the i-th object, 

ijz  – the normalized value of j-th variable for the i-th object, 

jA  – shift parameter to arbitrary zero for the j-th variable, 

jB  – scale parameter for the j-th variable, 

jjj BAa  , 
jj Bb 1  – parameters for the j-th variable presented in 

Table 1. 

Table 1. Normalization methods 

Type Method 
Parameter 

Scale of 

variables 

jb  
ja  BN AN 

n1 Standardization js1  
jj sx  ratio or 

interval 
interval 

n2 
Positional 

standardization jmad1  
jj madmed  ratio or 

interval 
interval 

n3 Unitization jr1  
jj rx  ratio or 

interval 
interval 

n3a Positional unitization jr1  
jj rmed  ratio or 

interval 
interval 

n4 
Unitization with zero 

minimum jr1  jij
i

rx }{min  ratio or 

interval 
interval 

n5 
Normalization in range 

[–1; 1] jij
i

xx max

1
 

jij
i

j

xx

x





max
 ratio or 

interval 
interval 

n5a 
Positional normalization 

in range [–1; 1] jij
i

medx max

1
 

jij
i

j

medx

med





max
 ratio or 

interval 
interval 
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Table 1. Normalization methods  (cont.) 

Type Method 
Parameter 

Scale of 

variables 

jb  
ja  BN AN 

n6 

Quotient 

transformations 

js1  0 ratio ratio 

n6a jmad1  0 ratio ratio 

n7 jr1  0 ratio ratio 

n8 }{max1 ij
i
x  0 ratio ratio 

n9 jx1  0 ratio ratio 

n9a jmed1  0 ratio ratio 

n10  

n

i ijx1
1  0 ratio ratio 

n11  

n

i ijx1

21  0 ratio ratio 

n12 Normalization 
 


n

i jij xx
1

2)(

1
 

 




n

i jij

j

xx

x

1

2)(

 ratio or 

interval 
interval 

n12a Positional normalization 
 


n

i jij medx
1

2)(

1
 

 




n

i jij

j

medx

med

1

2)(

 ratio or 

interval 
interval 

n13 
Normalization with zero 

being the central point 2/

1

jr
 

2/j

j

r

m
  

ratio or 

interval 
interval 

BN – before normalization, AN – after normalization, 
jx  – mean for the j-th variable, 

js  

– standard deviation for the j-th variable, 
jr  – range for the j-th variable, 

2

}{min}{max ij
i

ij
i

j

xx
m


  – mid-range for the j-th variable, )( ij

i
j xmedmed   – median 

for the j-th variable, )( ij
i

j xmadmad   – median absolute deviation for the j-th 

variable. 

Source: Based on (Jajuga, Walesiak, 2000; Walesiak, Dudek, 2017a). 

 

Column 1 in Table 1 presents the type of normalization method adopted as the 

function data.Normalization of clusterSim package (Walesiak, Dudek, 

2017a). Similar procedure for data normalization is available as the function 

scale of base package. In this function the researcher defines the parameters 

jA  and 
jB .  

Due to the fact that the groups of A, B, C and D (see Table 2) normalization 

methods give identical multidimensional scaling results, further analysis covers 
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the first methods of the identified groups (n1, n2, n3, n9), as well as the other 

methods (n5, n5a, n8, n9a, n11, n12a). 

 

Table 2. The groups of normalization methods resulting in identical distance matrices 

Groups of 

normalization 

methods 

Normalization methods 

GDM1 distance 
Minkowski distances, squared 

Euclidean distance* 

A n1, n6, n12 n1, n6, n12 

B n2, n6a n2, n6a 

C n3, n3a, n4, n7, n13 n3, n3a, n4, n7, n13 

D n9, n10 n9, n10 

* after dividing distances in each distance matrix by the maximum value. 

Source: Own presentation. 

Table 3 presents selected distance measures for metric data that have been 

used in the selection of the optimal multidimensional scaling procedure. 

Distance GDM1 is available as a function of dist.GDM of clusterSim 

package (Walesiak, Dudek, 2017) and the remaining distances in Table 3 are 

available in the function dist of stats package (R Development Core Team, 

2017). 

The initial point of the application of smacofSym function is to determine 

the following values of arguments: 

– convergence criterion (eps=1e-06), 

– maximum number of iterations (itmax=1000). 

These parameters can be changed by the user. 

The selection of the optimal procedure for multidimensional scaling takes 

place in several stages: 

1. Set the number of dimensions in MDS to two (ndim=2). 

2. Taking into account in the analysis 10 normalization methods, 5 distance 

measures and 2 MDS models, there are 100 multidimensional scaling 

procedures. Multidimensional scaling is performed for each procedure 

separately. It then orders the procedures by increasing Stress-1 fit measure (see 

e.g. Borg, Groenen, Mair, 2013, p. 23): 

 



ki

ik

ki

ikikp dddStress )(]ˆ)([ 22
VV1- , (4) 

where: 100,...,1p  – multidimensional scaling procedure number. 
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Table 3. Distance measures for metric (interval, ratio) data 

Name Distance ik  Range 
Allowed 

normalization 

Minkowski )1( p  p m

j

p

kjij zz 


1
 );0[   n1-n13 

– Manhattan )1( p   


m

j kjij zz
1

 );0[   n1-n13 

– Euclidean )2( p    


m

j kjij zz
1

2
 );0[   n1-n13 

– Chebyshev 

(maximum) (p

)  
kjij

j
zz max  );0[   n1-n13 

Squared Euclidean   


m

j kjij zz
1

2
 );0[   n1-n13 

GDM1 
2

1

1 1

2

1 1

2

1 1

,

1

)()(2

))(())((

2

1




















 

  

 





m

j

n

l

ljkj

m

j

n

l

ljij

m

j

m

j

n

kil

l
ljkjljijijkjkjij

zzzz

zzzzzzzz

 ]1;0[  n1-n13 

nlki ,,1,,   – object number, m – the number of objects, mj ,,1  – variable 

number, m – the number of variables, ),( ljkjij zzz  – the normalized value of the j-th 

variable for the i-th (k-th, l-th) object. 

Source: Based on (Everitt et al., 2011, pp. 49-50; Jajuga, Walesiak, Bąk, 2003). 

3. Based on Stress per point (spp) values (Stress contribution in percentages), the 

Hirschman-Herfindahl index is calculated (Herfindahl, 1950; Hirschman, 

1964): 

 



n

i

pip sppHHI
1

2
, (5) 

where: ni ,...,1  – object number. 

The pHHI  index takes values in the interval 








000,10;

000,10

n
. The value 

n

000,10
 

means that the distribution of errors for individual objects is uniform (
n

sppi
i

100
 ). 

The maximal value appears when summary fit measure (Stress-1) is the result of 

loss assigned only to one object. For other objects, loss function will be equal to 

zero. The optimal situation for a multidimensional scaling procedure is the 

minimal value of the pHHI  index. 

4. The chart with pStress 1-  fit measure value on x-axis and pHHI  index on y-

axis for p procedures of multidimensional scaling is drawn. 
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5. The maximal acceptable value of 1-Stress  is assumed as s. For all 

multidimensional scaling procedures for which sStress p 1- , we chose the 

one for which }{min p
p
HHI  occurs. 

6. Multidimensional scaling for the selected procedure is performed along with 

checkout that in the sense of interpretation results are acceptable. Based on the 

Shepard diagram, the correctness of the model scaling will be evaluated. If the 

results are acceptable the procedure ends, otherwise it returns to step 1 and 

multidimensional scaling for three dimensions is performed (ndim=3). 

4. Empirical results 

The empirical study uses the statistical data presented in the article (Gryszel, 

Walesiak, 2014) and referring to the attractiveness level of 29 Lower Silesian 

counties. The evaluation of tourist attractiveness of Lower Silesian counties was 

performed using 16 metric variables (measured on a ratio scale): 

x1 – beds in hotels per 1 km2 of a county area, 

x2 – number of nights spent daily by resident tourists (Poles) per 1,000 

inhabitants of a county, 

x3 – number of nights spent daily by foreign tourists per 1,000 inhabitants of a 

county, 

x4 – gas pollution emission in tons per 1 km2 of a county area, 

x5 – number of criminal offences and crimes against life and health per 1,000 

inhabitants of a county, 

x6 – number of property crimes per 1,000 inhabitants of a county, 

x7 – number of historical buildings per 100 km2 of a county area, 

x8 – % of a county forest cover, 

x9 – % share of legally protected areas within a county area, 

x10 – number of events as well as cultural and tourist ventures in a county, 

x11 – number of natural monuments calculated per 1 km2 of a county area, 

x12 – number of tourist economy entities per 1,000 inhabitants of a county 

(natural and legal persons), 

x13 – expenditure of municipalities and counties on tourism, culture and 

national heritage protection as well as physical culture per 1 inhabitant of 

a county in Polish zlotys (PLN), 

x14 – cinema attendance per 1,000 inhabitants of a county, 

x15 – museum visitors per 1,000 inhabitants of a county, 

x16 – number of construction permits (hotels and accommodation buildings, 

commercial and service buildings, transport and communication 

buildings, civil and water engineering constructions) issued in a county in 

the years 2011-2012, per 1 km2 of a county area. 
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The statistical data were collected in 2012 and come from the Local Data 
Bank of the Central Statistical Office of Poland; the data for x7 variable only were 
obtained from the regional conservation officer. 

Variables (x4, x5 and x6) take the form of destimulants, x9 is a nominant 
(50% level was adopted as the optimal one). The other variables represent 
stimulants, whereas x9 nominant was transformed into a stimulant. The 
definitions of stimulants, destimulants and nominants are available in the study, 
e.g. (Walesiak, 2016).  

A pattern object and an anti-pattern object were added to the set of 29 
counties (see Walesiak, 2016). Therefore, the data matrix covers 31 objects 
described by 16 variables. The coordinates of a pattern object cover the most 
preferred preference variable (stimulants, destimulants and nominants) values. 
The coordinates of an anti-pattern object cover the least preferred preference 
variable values. 

The article uses its own script of package mdsOpt of R program (Walesiak, 
Dudek, 2017b) to choose the optimal procedure for multidimensional scaling due 
to normalization methods, selected distance measures and MDS models 
(developed in accordance with the methodology described in section 3). 

The measurement of variables on a ratio scale accepts all normalization 
methods (hence the study covered 18 methods). Due to the fact that the groups of 
A, B, C and D normalization methods give identical multidimensional scaling 
results (see Table 2), further analysis covers the first methods of the identified 
groups (n1, n2, n3, n9), as well as the other methods (n5, n5a, n8, n9a, n11, n12a). 

Ordering results of 100 multidimensional scaling procedures (10 
normalization methods x 5 distance measures x 2 MDS models) according to 
formula (4) are presented in Table 4. In addition, Table 4 shows values of pHHI  
index for each MDS procedure. 

Table 4. Ordering results of 100 multidimensional scaling procedures 

p nm 
MDS 

model 

Distance 

measure 
Stress-1 HHI p nm 

MDS 

model 

Distance 

measure 
Stress-1 HHI 

1 2 3 4 5 6 7 8 9 10 11 12 

1 n9a interval euclidean 0.0311 844 51 n2 ratio seuclidean 0.1391 1328 

2 n2 interval euclidean 0.0369 685 52 n11 ratio GDM1 0.1391 495 

3 n9a ratio euclidean 0.0404 715 53 n5a interval seuclidean 0.1400 663 

4 n9a interval maximum 0.0408 1276 54 n5 ratio seuclidean 0.1402 797 

5 n9a ratio maximum 0.0441 1230 55 n5a interval euclidean 0.1405 508 

6 n2 interval maximum 0.0505 908 56 n11 ratio manhattan 0.1414 453 

7 n2 ratio euclidean 0.0546 520 57 n5a ratio seuclidean 0.1436 791 

8 n2 ratio maximum 0.0576 794 58 n9 ratio euclidean 0.1473 464 

9 n9a interval manhattan 0.0627 867 59 n9a ratio seuclidean 0.1478 1289 

10 n9a ratio manhattan 0.0687 645 60 n8 ratio manhattan 0.1483 428 

11 n2 interval manhattan 0.0704 755 61 n3 ratio manhattan 0.1502 419 

12 n2 interval GDM1 0.0770 605 62 n1 ratio manhattan 0.1530 410 

13 n9a interval GDM1 0.0793 593 63 n5 ratio manhattan 0.1531 421 
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Table 4. Ordering results of 100 multidimensional scaling procedures  (cont.) 

p nm 
MDS 

model 

Distance 

measure 
Stress-1 HHI p nm 

MDS 

model 

Distance 

measure 
Stress-1 HHI 

1 2 3 4 5 6 7 8 9 10 11 12 

14 n2 ratio manhattan 0.0839 521 64 n12a ratio manhattan 0.1543 409 

15 n2 ratio GDM1 0.0894 887 65 n5a ratio manhattan 0.1548 422 

16 n9a ratio GDM1 0.0969 924 66 n8 interval GDM1 0.1598 486 

17 n9 interval manhattan 0.0985 577 67 n8 ratio GDM1 0.1608 489 

18 n9 interval euclidean 0.1056 580 68 n9 interval maximum 0.1610 554 

19 n9 interval seuclidean 0.1087 813 69 n3 interval GDM1 0.1640 473 

20 n11 interval manhattan 0.1092 500 70 n3 ratio GDM1 0.1653 476 

21 n8 interval manhattan 0.1149 476 71 n1 interval GDM1 0.1677 431 

22 n11 interval seuclidean 0.1149 739 72 n1 ratio GDM1 0.1691 435 

23 n3 interval manhattan 0.1155 469 73 n11 ratio euclidean 0.1698 427 

24 n2 interval seuclidean 0.1161 865 74 n12a interval GDM1 0.1718 430 

25 n9 ratio seuclidean 0.1164 1102 75 n12a ratio GDM1 0.1732 434 

26 n9 interval GDM1 0.1166 545 76 n5 interval GDM1 0.1737 494 

27 n9 ratio GDM1 0.1166 545 77 n5 ratio GDM1 0.1738 494 

28 n11 interval euclidean 0.1168 497 78 n5a interval GDM1 0.1774 493 

29 n11 ratio seuclidean 0.1179 922 79 n5a ratio GDM1 0.1774 493 

30 n1 interval manhattan 0.1186 457 80 n11 interval maximum 0.1874 494 

31 n12a interval manhattan 0.1199 455 81 n9 ratio maximum 0.1878 489 

32 n9a interval seuclidean 0.1204 791 82 n8 ratio euclidean 0.1883 419 

33 n5 interval manhattan 0.1207 479 83 n1 ratio euclidean 0.1908 399 

34 n5a interval manhattan 0.1225 479 84 n5 ratio euclidean 0.1914 420 

35 n8 interval seuclidean 0.1255 688 85 n3 ratio euclidean 0.1921 411 

36 n9 ratio manhattan 0.1257 486 86 n12a ratio euclidean 0.1923 398 

37 n3 interval seuclidean 0.1263 694 87 n5a ratio euclidean 0.1925 418 

38 n8 ratio seuclidean 0.1274 803 88 n1 interval maximum 0.2229 437 

39 n3 ratio seuclidean 0.1279 802 89 n12a interval maximum 0.2242 441 

40 n1 interval seuclidean 0.1280 719 90 n11 ratio maximum 0.2260 442 

41 n8 interval euclidean 0.1292 474 91 n8 interval maximum 0.2307 460 

42 n1 ratio seuclidean 0.1297 845 92 n5a interval maximum 0.2368 424 

43 n12a interval seuclidean 0.1300 718 93 n3 interval maximum 0.2398 463 

44 n1 interval euclidean 0.1303 421 94 n5 interval maximum 0.2442 443 

45 n3 interval euclidean 0.1307 461 95 n1 ratio maximum 0.2547 396 

46 n12a ratio seuclidean 0.1318 845 96 n12a ratio maximum 0.2557 395 

47 n12a interval euclidean 0.1322 421 97 n5a ratio maximum 0.2606 394 

48 n5 interval seuclidean 0.1369 666 98 n8 ratio maximum 0.2618 414 

49 n11 interval GDM1 0.1381 493 99 n3 ratio maximum 0.2652 418 

50 n5 interval euclidean 0.1382 500 100 n5 ratio maximum 0.2667 405 

nm – normalization method; seuclidean – squared Euclidean distance. 

Source: Authors’ compilation using mdsOpt package and R program. 
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In the conducted study the maximal acceptable value of pStress 1-  fit measure 

has been set to 0.15. Figure 2 presents the chart with pStress 1-  fit measure value 

on x-axis and pHHI  index on y-axis for p procedures of multidimensional 

scaling. 

Among acceptable multidimensional scaling procedures, for which 

15.01 pStress - , we chose the one for each occurs }{min p
p
HHI  has been 

chosen. It is the procedure 47: n12a normalization method (positional 

normalization), interval MDS model, Euclidean distance. 

 

 

Figure 2. The values of 
pStress 1-  fit measure and pHHI  index 

for p multidimensional scaling procedures 

Source: Authors’ compilation using mdsOpt package of R program. 

 

The results of multidimensional scaling (procedure 47) of 31 objects (29 

Lover Silesian counties, pattern and anti-pattern object) according to the level of 

tourist attractiveness are presented on Figure 3. 
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a) b) 

  

c) 

 

Figure 3. The results of multidimensional scaling (procedure 47) of 31 objects 

(29 Lover Silesian counties, pattern and anti-pattern) according to the 

level of tourist attractiveness ( ikd  – Configuration Distances, ik  – 

Dissimilarities) 

Source: Authors’ compilation using R program. 
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Figure 3c (Configuration plot with bubble) presents additional quota of each 
object in total error is shown by the size of radius of the circle around each object. 
Shepard diagram (Figure 3a) confirms the correctness of the chosen scaling model 
(Pearson correlation coefficient 0.9794r ). Figure 3c (Configuration plot with 
bubble) shows the axis of the set, which is the shortest connection between the 
pattern and anti-pattern of development. It indicates the level of development of 
the tourist attractiveness of counties. Objects that are closer to the pattern of 
development have higher levels of tourist attractiveness. The isoquants3 of 
development (curves of similar development) have been established from the 
point indicating pattern object. Figure 3c shows six isoquants. The same level of 
development may be achieved by objects from different locations on the same 
isoquant of development (due to different configuration of values of variables). 

As opposed to the best MDS procedure (47) we show the results for one of the 
worst procedures (4): n9a normalization method, interval MDS model, 
maximum (Chebyshev) distance. Overall Stress for procedure 4 (0.0408) is 
significantly better than for procedure 47 (0.1322). The results of 
multidimensional scaling for procedure 4 according to the level of tourist 
attractiveness are presented in Figure 4. 

Figure 4b (Stress Plot) indicates that objects Jeleniogórski, Anti-pattern and 
Zgorzelecki contribute most to the overall Stress (55.6%). It also shows (see 
Shepard diagram – in the lower left-hand corner) that two points (distance 
between Jeleniogórski county and Anti-pattern object; Jeleniogórski county and 
Zgorzelecki county) are outliers. These outliers contribute over-proportionally to 
the total Stress. MDS configuration (Figure 4c) does not represent all proximities 
equally well. Jeleniogórski county is one of the best of Lover Silesian counties in 
terms of the level of tourist attractiveness. In Figure 4c (Configuration plot with 
bubble) this county lies near Anti-pattern object (the worst object). The greater 
the value of the pHHI  index, the worse is the effect of multidimensional scaling 
in terms of representing real relationships between objects. 

5. Summary and limitations of presented proposal 

The article proposes a methodology that allows the selection of the optimum 
procedure due to the used methods of normalization, distance measures and 
scaling model of multidimensional scaling carried out on the basis of the metric 
data matrix. The study includes 18 methods of normalization, 5 distance measures 
and 3 models of scaling (ratio, interval and spline scaling). 

Own package mdsOpt of R program to choose the optimal procedure for 
multidimensional scaling due to the normalization methods of variable values, 
distance measures and scaling models has been developed. On the basis of the 
proposed methodology research results are illustrated by an empirical example 
with the use of the function smacofSym of smacof package in order to find the 

                                                           
3 Isoquants were illustrated using draw.circle function of plotrix package (Lemon et al., 

2017). 
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optimal procedure for multidimensional scaling of set of objects representing 29 
counties in Lower Silesia according to the level of tourist attractiveness. 

a) 

 

b) 

 
c) 

 

Figure 4. The results of multidimensional scaling (procedure 4) of 31 objects (29 

Lover Silesian counties, pattern and anti-pattern) according to the level 

of tourist attractiveness 

Source: Authors’ compilation using R program. 
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The proposed methodology uses two criteria for selecting the optimal 

procedure for multidimensional scaling: Stress-1 loss function and the value of 

the Hirschman-Herfindahl HHI index calculated on the basis of the decomposition 

Stress-1 error by objects. 

In step 5 the maximal acceptable value of fit measure sStress 1-  has been 

arbitrary assumed. The extent to which error distribution for each object may 

deviate from the uniform distribution is not determined. Among the procedures of 

multidimensional scaling for which sStress p 1- , the one for which 

}{min p
p
HHI  occurs is selected. This constraint does not essentially limit the 

presented proposal as the additional criteria for acceptability of the results of 

multidimensional scaling plots, such as “Shepard diagram” and “Residual plot”, 

make it possible to evaluate the fit quality of the chosen scaling model, and to 

identify outliers (De Leeuw, Mair, 2015). 
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