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Abstract- In this paper, three chaos synchronization approaches using Linear Matrix Inequality (LMI) 

tools are evaluated and compared. The comparative analysis is supported by four examples of Piecewise 

affine (PWA) chaotic systems: The Chua’s original circuit, the Chua’s modified system, the Lur’e like 

circuit and the five-scroll attractor system. To evaluate the performances of each synchronization 

approach, we examine first, the practical implementation of the LMIs. We analyze then, by simulation 

results, the feasibility of each approach for each PWA chaotic system. The elapsed time for solving the 

predefined LMIs and the influence of their tuning parameters’ domain belonging on the feasibility and 

the performances of each approach are finally the considered comparative criteria.   
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I. INTRODUCTION 

 

Synchronization is a universal concept in nonlinear theory [1, 2] extensively investigated in many 

engineering applications. Chaos synchronization is, particularly, considered as the most 

important research field in this area. Synchronization of chaos is a phenomenon that may occur 

when two, or more, chaotic oscillators are coupled, or when a chaotic oscillator drives another 

chaotic oscillator. Pecora and Carroll [3] are first to introduce a control method to synchronize 

two identical chaotic systems with different initial conditions. Many approaches have been then 

developed for the synchronization of chaotic systems. They include active control [4], adaptive 

control [5, 6], back-stepping control [7], impulsive control [8, 9], sliding mode control [10], 

active sliding mode control [11] back-stepping sliding mode control [12], predictive control [13], 

linear state feedback control [14] and linear robust state feedback control [15]. 

Recently, chaos synchronization approaches based on linear state feedback control laws are the 

most applied techniques due to their simple implementation. Generally, a set of algebraic 

synchronization conditions are derived using Lyapunov approach and solved using suitable 

Linear Matrix Inequalities [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. Most of these 

approaches investigated in a time delay approach which imposes some numerical constraints on 

the delay domain beyond which the LMIs to be solved are not feasible [22], [23], [24], [25]. 

On the other hand, in the engineering field, various processes, which dynamics exhibit switching 

between linear dynamics and whose behavior need to be synchronized, can be described by a 

Piecewise affine (PWA) models. For such systems, the transitions between the linear dynamics 

are either governed by the laws resulting from approximation of nonlinear dynamics [26], [27] or 

from the intrinsic characteristics of certain components [28], [29], [30]. Very few works are 

reported on chaos synchronization of PWA systems [21], [31], [32], [33], [34], [35]. The lack of 

results can be justified by the complexities introduced by the switching nature of the vector-field 

of piecewise linear systems [36], [37], [38]. 

In this paper, three chaos synchronization approaches based on linear state feedback control laws 

and LMI tools are compared using four examples of PWA chaotic systems. The comparative 

analysis is based on the practical implementation of the LMIs, the feasibility of each approach for 

each PWA chaotic system, the elapsed time for solving the predefined LMIs, the number of 
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tuning parameters and the influence of their domain's belonging on the feasibility and the 

performances. 

This paper is organized as following:  First, synchronization schemes of the different approaches 

via LMIs will be presented in section 2. The PWA master slave systems on which the 

comparative study is based are exposed in section 3.  Chaos synchronization synthesis and 

comparative analysis are finally presented on section 4 and section 5, respectively. 

 

II.  SYNCHRONIZATION VIA LMIS 

 

1. Jiang and Zheng approach [16] 

Consider the chaotic master-slave system described by: 

( ) ( )
( )

( )







−=
+++=

++=

zxKu

ButhzgAzz

thxgAxx

)(&

&

                                                                                                   (1) 

where nnA ×ℜ∈  is a constant matrix, ( ) nth ℜ∈ is an external input signal and ( )xg  and ( )zg  are 

continuous  nonlinear function satisfying:  

zxρzgxg −≤− )()(
                                                                                                                 (2)                  

where ρ is a Lipchitz constant. 

The error dynamics for the master slave system (1) are then given by: 

)()()( zgxgeBKAzxe −+−=−= &&&                                                                                                (3)                                                                                           

Theorem: 

If a suitable matrix 
mnB ×ℜ∈ is chosen such that the pair (A, B) is controllable, if there exist 

matrices
nnQ ×ℜ∈ and 

mnY ×ℜ∈  such that the following LMI are satisfied: 

0>= TQQ                                                                               (4) 

( )
0

ρ

ρρδ2
<









−+
+−−−++
IQI

QIBYYBQQAAQ TTT

                                                                       (5)                                                         

then the coupled system (1) is globally exponentially synchronized using the linear state feedback 

matrix gain: 

1−= QYK T

                                                                                                                                      (6) 



Hanéne Mkaouar and Olfa Boubaker, CHAOS SYNCHRONIZATION VIA LINEAR MATRIX INEQUALITIES: A COMPARATIVE ANALYSIS 

556 

 

2. Zhang, He and Wu approach [25] 

Consider the chaotic master-slave system described by: 
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                                                                                                            (7) 

where nnA ×ℜ∈ , hnnH ×ℜ∈ , nnhD ×ℜ∈  and nC ×ℜ∈ l  are constant matrices. lℜ∈qp,  are the 

output vectors of the master system and the slave system, respectively. hh nn ℜ→ℜ:(.)σ  with 

(.)iσ , hni ,...,2,1= , are nonlinear functions belonging to sectors ],0[ iω and satisfying the sector 

condition:  

ξξωξσξσ ∀≤− 0))()(( iii                                                                                                           (8)  

)( ktp  and )( ktq  are discrete measurements of )(tp  and )(tq  at simplest instant kt , respectively, 

such that kt  satisfies: 

0∆ 1 ≥∀≤−= + khttk kk                                                                                                              (9)  

For the system (7), the error dynamics can be described by: 

)(),( ktKCezDeHηAezxe −+=−= &&&                                                                                          (10) 

where: 

)(σ)(σ),(η zDzDeDzeD −+=                                                                                             (11) 

Theorem : 

Given constant scalars h > 0, ε and γ and a constant matrix ( )
hn1 ωωdiagW L=  satisfying the 

conditions (8) and (9), then the master-slave system (7) is globally asymptotically synchronized if 

there exist any appropriately dimensioned matrices G, V, [ ]TTTTTTTT MMMMMMMM 7654321= , 

[ ]TTTTTTTT NNNNNNNN 7654321= , any positive diagonal matrices: 

0),...,,( 21 ≥=Λ
hndiag λλλ                (12) 

0),...,,( 21 ≥=
hntttdiagT                (13) 
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0),...,,( 21 ≥=
hnfffdiagF                (14) 

and any semi positive-definite matrices:  

0
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*
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131211

≥
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P

                                                                                                               (15) 

where: 

011 >P                                                                                                                                           (16)  

and 

0
* 22

1211 ≥







=
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                                                                                                                      (17) 

0
* 22
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                                                                                                                      (18) 
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such that the following LMIs hold: 
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where: 

11111111131311 hXGAGANNhZRPP TTTT +−−+++++=Φ εε  

12212121112 hXGAGNhZRP TTT ++++++=Φ ε  

13313 hXWTDN TT ++=Φ  

14414 hXWFDGHN TT ++−=Φ ε  

151512315 hXGAVCMNNP TTTT +−+++−=Φ γε  

16161316 hXMNP T +−+−=Φ  

17717 hXN T +=Φ  

22222222 hXGGhZR T ++++=Φ  

2323 hXD T +Λ=Φ  

2424 hXGH +−=Φ  

25221225 hXGVCMNP T ++++−=Φ γ  

26226 hXM +−=Φ  

2727 hX=Φ  

3333 2 hXT +−=Φ  

3434 hX=Φ  

353335 hXMN ++−=Φ  

36336 hXM +−=Φ  

3737 hX=Φ  

4444 2 hXF +−=Φ  

454445 hXGHMN TT +−+−=Φ γ  

46446 hXM +−=Φ  

4747 hX=Φ  

55555555 hXVCVCMMNN TTTT +++++−−=Φ γγ  

565662356 hXMMNP TT +−+−−=Φ  

577757 hXMN TT ++−=Φ  
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66661166 hXMMR T ++−−=Φ  

6771267 hXMR T +−−=Φ  

772277 hXR +−=Φ  
T

TTTTTTT

T

NNNNNNN

PPP
N 







 −−
=

7654321

331333 0000

 
T

TTTTTTT

T

MMMMMMM

PPP
M 







 −−
=

7654321

331333 0000

 

The linear state feedback matrix gain is given by: 

 VGK 1−=                                                                                                                                     (23) 

 

3. Boubaker and Mkaouar approach [21] 

Consider the master slave system described by: 

{ }
{ }

( )







−=
∈∈++=

∈∈+=

xzKu

NizBubzAz

NjxbxAx

iii

jjj

,,1,Λ,

,,1,Λ,

K&

K&

,                                                                      (24) 

where 
nn

iA ×ℜ∈ , 
nn

jA ×ℜ∈
, 

n
ib ℜ∈  

n
jb ℜ∈

 are two constant matrices and two constant vectors, 

respectively. 
mnB ×ℜ∈ is the control matrix.  

jΛ
 and iΛ are partition of the state-space into polyhedral cells defined respectively by the 

following polytopic description: 

{ }0Λ <+= j
T
jj hxHx

                                                                                                                (25) 

{ }0<+=Λ i
T
ii hxHz

                                                                                                                 (26)                                                                                                          

where jrn

jH
×ℜ∈  , 1×ℜ∈ jr

jh , irn
iH ×ℜ∈  and 1×ℜ∈ ir

jh . 

The error dynamics derived from (24) can be written as: 

ijiji bxAeBKAe +++= )(&
                                                                                                           (27)  

where ,jiij AAA −=  jiij bbb −=      
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Theorem : 

If a suitable matrix mnB ×ℜ∈  is chosen such that the pairs ( )BAi ,  are controllable, for a given 

decay 01 >α  and for all { }Nji ,,1, K∈ , if there exist constant matrices nnS ×ℜ∈ , 
nmR ×ℜ∈ , 

ii rr
ijE ×ℜ∈

 and 
jj rr

ijF ×ℜ∈
 and constants ij

β
 and ijξ , such that the following LMIs are satisfied: 

0>= TSS                  (28) 

0),...,,( 21 <=
irij eeediagE                (29) 

0),...,,( 21 <=
jrij fffdiagF

               (30) 

( ) 0<ijij ξ,βdiag
                           (31) 
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T
ijijij

TTT
iii bbSBRBRSASA ξα −++++=∆ 1  

then the master slave system (24) under the condition (25) and (26) is globally asymptotically 

synchronized and the linear state matrix gain is given by:  

1−= RSK                                                                                                                                (34) 
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III.  PIECEWISE CHAOTIC SYSTEMS 

 

In this section, we have collected, from the literature, four piecewise affine chaotic systems. We 

recall their mathematical models and simulate their chaotic behavior in order to derive, in the 

following section, the comparative analysis.  

 

1. The Original Chua circuit  

The original Chua’s oscillator can be described by the following dynamical model [39, 40]: 
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x

xg
C

x
CR

x
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x
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                                                                                         (35) 

with the nonlinear characteristic of the Chua’s diode: 

( )ExExGGxGxg bab −−+−+= 1111 )(5.0)(                 (36)   

For the following parameters [41]: FC 9
1 1075.5 −=  FC 9

2 1032.21 −= , HL 31012 −= , Ω= 86.300R , 

Ω= kR 45.11 , 310879.0 −−=aG , 3104124.0 −−=bG , 1=E  and the initial condition 

[ ]Tx 05.05.0)0( = , a double scroll attractor is obtained as shown by Fig.1. 

 

2. The modified Chua circuit 

The modified Chua’s circuit is described by [40, 42]: 

( )









−=
+−=

−=

23

3212

221 )(

xx

xxxx

xgxx

β

α

&

&

&

                 (37) 

with the nonlinear characteristic of Chua’s diode 

( )cxcxbabxxg −−+−+= 1112 )(5.0)(                         (38) 

For the following parameters [42]:
7

2
,

7

1
,

7

100
,9 =−=== baβα  and 1=c  and the initial 

condition [ ]Tx 1.01.01.0)0( = , a double scroll attractor is obtained as shown by Fig.2. 
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3. The lure like circuit 

The Lur’e like system is described by [43]: 









+−−−=
=
=

)(129.38.6 33213

32

21

xgxxxx

xx

xx

&

&

&

                         (39) 

with the nonlinear characteristic:  

 




 <=

otherwisexsign

xifxxg
)(

1
)(

1

11
3 κ

κ                                                (40) 

For 5.1=κ  and the initial condition [ ]Tx 05.05.0)0( = , a chaotic behavior is obtained as 

shown by Fig.3. 

 

4. The five scroll circuit 

A more complete family of n-scroll has been obtained from a generalized Chua’s circuit proposed 

in [42]. The n-scroll circuit is given by: 
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with the piecewise linear characteristic: 

∑
−

=
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1
1111124 ))((
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q

i
iiiiq cxcxmmxmxg                        (42) 

For the following parameters:
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100
,9 3210 −=+=−=+=== mmmmβα  

 ,
7

4.2
,

7

4
54 −=+= mm 2.6,6.3,15.2,1 4321 ==== cccc  and 95 =c  and the initial condition 

[ ]Tx 111)0( −−−= , a 5-scroll attractors are obtained as shown by Fig.4. 
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Figure 1. Chaotic behavior of the original Chua’s circuit 
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Figure 2. Chaotic behavior of the modified Chua’s circuit 
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Figure 3. Chaotic behavior of the Lur’e like circuit 
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Figure 4. Chaotic behavior of the Five-scroll circuit 

 

 

IV.  CHAOS SYNCHRONIZATION SYNTHESIS 

 

The objective of this section is to establish a comparative analysis between the three chaos 

synchronization approaches based on the four PWA systems via some defined criteria.  

 

1. Original Chua’s Circuits case study 

Assume for the original Chua’s circuit (35) that: 111 1 CR=µ , 12 1C=µ 213 1 CR=µ , 24 1C=µ  and 

L15 =µ . 

 

Jiang and Zheng approach: 

The matrices related to the master slave system (1) for the original Chua’s circuit described by 

(35)-(36) are given then by: 
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12 zg
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The Lipchitz parameter imposed by the condition (2) is computed as [44]: 

22
ba GG −

−= µρ  

 The tuning parameters δ  is fixed at 5.0  where the computed parameter is 4104.0574=ρ . After 

16 iterations, the LMIs constraints (4)-(5) were found infeasible.  
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Zhang, He and Wu approach: 

The matrices related to the master slave system (7) for the original Chua’s circuit described by 

(35)-(36) are given by: 
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( )EzEzzD −−+= 115.0)(σ
 

The tuning parameters ε  and γ  are fixed at 10 and 2, respectively. Under the conditions (8) and 

(9) we have 
610−=h  and 001.0=W . After 52 iterations and for the initial conditions 

[ ]Tx 05.05.0)0( =  and [ ]Tz 05.05.0)0( −−= , the LMIs constraints (12)-(22) were found 

feasible. The state matrix gain (23) is computed as [ ]TK 0011.04552.01119.2106= . 

Simulation results given by Fig.5 prove that chaos synchronization is well achieved with realistic 

control laws. 

 

Boubaker and Mkaouar approach:  

The matrices related to the master slave system (24) for the original Chua’s circuit described by 

(35)-(36) are given by: 
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and the associate polytopic description (25)-(26) of the polyhedral cells are given by:  
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Where d  and d−  are respectively an upper and lower bounds of 1x  ( 5=d  in this case). The 

LMIs (28)-(33) are solved using the LMI toolbox of MatLab software for the control matrix 

[ ]TB 00105 5= and the tuning parameter 4
1 10−=α . After 41 iterations and for the initial 

conditions [ ]Tx 05.05.0)0( =  and [ ]Tz 05.05.0)0( −−= , the LMI constraints were found 

feasible. The matrix gain (34) is computed as ]5948.02453.00821.0[ −−=K . Simulation 

results given by Fig.6 and Fig.7 prove that chaos synchronization is well achieved. 

 

2. Modified Chua’s circuits case study 

 

Jiang and Zheng approach : 

The matrices related to the master slave system (1) for the modified Chua’s circuit described by 

(37)-(38) are given then by: 
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The Lipchitz parameter given by the condition (2) is given by: 

2
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The tuning parameters δ  is fixed at 5.0  where the computed parameter is 9286.1=ρ . After 22 

iterations, the LMIs constraints (4)-(5) were found infeasible.  

 

Zhang, He and Wu approach: 

The matrices related to the master slave system (7) for the modified Chua’s circuit described by 

(37)-(38) are given by: 
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( )001== DC  

( )cxcxDx −−+= 115.0)(σ
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( )czczDz −−+= 115.0)(σ
 

The tuning parameters ε  and γ  are fixed at 10 and 20, respectively. Under the conditions (8) and 

(9) we have 32.0=h  and 2593.0=W . After 16 iterations and for the initial conditions 

[ ]Tx 1.01.01.0)0( =  and [ ]Tz 111)0( −−−= , the LMIs constraints (10)-(20) were found 

feasible. The state matrix gain (23) is computed as [ ]TK 6126.38692.11656.7 −= . Simulation 

results given by Fig. 8 prove that chaos synchronization is well achieved with realistic control 

laws. 

 

Boubaker and Mkaouar approach:  

The matrices related to the master slave system (24) for the modified Chua’s circuit described by 

(37)-(38) are given by: 
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=
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α

3

cba
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and the associate polytopic description (23)-(24) of the polyhedral cells are given by:  

T

HHH 








−
===

001

001
321 







−
=

c

d
h1

 









−
−

=
c

c
h2

 









−
=

d

c
h3

 

Where d  and d−  are respectively an upper and lower bounds of 1x  ( 5=d  in this case). 

The LMIs (28)-(33) are solved for the control matrix [ ]TB 00105 3= and the tuning parameter 

410−=1α . After 5 iterations and for the initial conditions [ ]Tx 1.01.01.0)0( =  and 

[ ]Tz 111)0( −−−= , the LMI constraints were found feasible. The matrix gain (34) is 

computed as ]0411.02343.26048.0[103 −−−=K . Simulation results given by Fig.9 and 

Fig.10 prove that chaos synchronization is well achieved. 
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3. Lur’e like circuits case study 

 

Jiang and Zheng approach : 

The matrices related to the master slave system (1) for Lur’e like circuit described by (39)-(40) 

are given then by: 
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A

   
















=
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0

0
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3 xg

xG

   
















=
)(12

0

0

)(

3 zg

zG

  

The Lipchitz parameter given by the condition (2) is computed 12ρ = . The tuning parameters δ  

is fixed at 5.0 . After 11 iterations, the LMIs constraints (4)-(5) were found infeasible.  

 

Zhang, He and Wu approach: 

The matrices related to the master slave system (7) for Lur’e like circuit described by (39)-(40) 

are given then by: 

















−−−
=

19.38.6

100

010

A

, 
















=
12

0

0

H

 

( )001== DC  

( )xgDx 3)(σ =  

( )zgDz 3)(σ =  

The tuning parameters ε  and γ  are fixed at 1 and 2, respectively. Under the conditions (8) and 

(9) we have 1.0=h  and 2=W . After 7 iterations and for the initial conditions 

[ ]Tx 05.05.0)0( =  and [ ]Tz 05.05.0)0( −−= , the LMIs constraints (12)-(22) were found 

feasible. The state matrix gain (23) is computed as [ ]TK 6266.65088.32801.3= . Simulation 

results given by Fig.11 prove that chaos synchronization is well achieved with realistic control 

laws. 
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Boubaker and Mkaouar approach:  

The matrices related to the master slave system (24) for the Lur’e like circuit described by (39)-

(40) is given then by: 

















−−−
==

19.38.6

100

010

31 AA

   
















−−+−
=

19.3κ128.6

100

010

2A

  

 
















−
=

12

0

0

1b

     
















=
0

0

0

2b

    
















=
12

0

0

3b

       

and the associate polytopic description (23)-(24) of the polyhedral cells are given by:  

T

HHH 






−
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−
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d
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κ1

κ1
2h

 









−
=

d
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3

 

The LMIs (28)-(33) are solved for the control matrix [ ]TB 001= and the tuning 

parameter
4

1 10−=α . After 7 iterations and for the initial conditions [ ]Tx 05.05.0)0( =  and 

[ ]Tz 05.05.0)0( −−= , the LMI constraints were found feasible. The matrix gain (34) is 

computed as ]0304.09880.02525.8[ −−−=K . Simulation results given by Fig.12 and Fig.13 

prove that chaos synchronization is well achieved. 

 

4. Five scroll circuits case study 

 

Jiang and Zheng approach : 

The matrices related to the master slave system (1) for Lur’e like circuit described by (41)-(42) 

are given then by: 
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The Lipchitz parameter given by the condition (2) is given by: 

2
αmaxρ 1 ii mm −−= −
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 The tuning parameters δ  is fixed at 510  where the computed parameter is 3071.4=ρ . After 16 

iterations and for the initial conditions ( ) [ ]Tx 1110 −−−=  and ( ) [ ]Tz 5.02.02.00 −−= , the 

LMIs constraints (4)-(5) were found feasible. The state matrix gain (6) is computed as 

[ ]00174.08613.1105 −=K . Simulation results given by Fig.14 prove that chaos 

synchronization is well achieved with realistic control laws. 

 

Zhang, He and Wu approach: 

The matrices related to the master slave system (7) for Lur’e like circuit described by (41)-(42) 

are given then by: 
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The tuning parameters ε  and γ  are fixed at 0 and 0.02, respectively. Under the conditions (8) 

and (9) we have 2.0=h  and 2593.0=W . After 18 iterations and for the initial conditions  

( ) [ ]Tx 1110 −−−=  and ( ) [ ]Tz 5.02.02.00 −−= , the LMIs constraints (10)-(20) were 

found feasible. The state matrix gain (21) is computed as [ ]TK 3458.89380,08034.15 −= . 

Simulation results given by Fig.15 prove that chaos synchronization is well achieved with 

realistic control laws. 

 

Boubaker and Mkaouar approach:  

 

The matrices related to the master slave system (24) for the Lur’e like circuit described by (41)-

(42) are given by: 
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where { }11,,2,1, L∈∀ ji : 

5111 αρρ m−== ,  

4102 αρρ m−==
,  

393 αρρ m−== ,  

284 αρρ m−==
, 

175 αρρ m−==
 

06 αρ m−=
 

))()()()()(( 554443332221110111 cmmcmmcmmcmmcmm −+−+−+−+−−=−= αυυ
 

))()()()(( 443332221110102 cmmcmmcmmcmm −+−+−+−−=−= αυυ , 

))()()((αυυ 33222111093 cmmcmmcmm −+−+−−=−= ,

))()((αυυ 22111084 cmmcmm −+−−=−=
 

))((αυυ 11075 cmm −−=−=
 

06 =υ   

and the associate polytopic description (25)-(26) of the polyhedral cells are given by:  
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Where d  and d−  are respectively an upper and lower bounds of 1x  ( 15=d  in this case). 
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The LMIs (28)-(33) are solved for the control matrix [ ]TB 001= and the tuning parameter 

101 =α . After 49 iterations, the LMI constraints were found feasible. The matrix gain (33) is 

computed as ]0016.03906.92574.34[ −−−=K . Each one from the master and slave five 

scroll circuit switches between 11 polytopic cells. For the initial conditions  

( ) [ ]Tx 1110 −−−=  and ( ) [ ]Tz 5.02.02.00 −−= , we have observed that the master system 

switch only between the 7th to the 10th cells and the slave system switch only between the 6th to 

the 10th cells. The figure 17 shows the commutations of the master and slave systems between 

the involved polytopic cells. For other cells, values are remaining at zero. 
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Figure 5. Synchronization of the original Chua’s circuits: Zhang and He approach 
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Figure 6. Synchronization of the original Chua’s circuits:  Mkaouar and Boubaker approach 
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(a)                                                                                   (b) 

Figure 7. Switching dynamics between polytopic domains of  the original Chua’s circuits using 

Mkaouar and Boubaker approach: (a) master dynamics- (b) slave dynamics 
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Figure 8.  Synchronization of the modified Chua’s circuits: Zhang and He approach 
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Figure 9. Synchronization of the modified Chua’s circuits: Mkaouar and Boubaker approach 
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(a)                                                                                   (b) 

Figure 10. Switching dynamics between polytopic domains of the modified Chua’s circuits using 

Mkaouar and Boubaker approach: (a) master dynamics - (b) slave dynamics 
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Figure 11. Synchronization of the Lur’e like circuits: Zhang and He approach 
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Figure 12. Synchronization of the Lur’e like circuits: Mkaouar and Boubaker approach 
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(a)                                                                                   (b) 

Figure 13. Switching dynamics between polytopic domains of the Lur’e like circuits using 

Mkaouar and Boubaker approach: (a) master dynamics - (b) slave dynamics 

0 5 10 15 20 25 30
-2

0

2

Time (s)

e1

0 5 10 15 20 25 30
-1

0

1

Time (s)

e2

0 5 10 15 20 25 30
-5

0

5

Time (s)

e3

 
0 5 10 15 20 25 30

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

5

Time (s)

u

 

Figure 14. Synchronization of the Five-scroll circuits: Jiang and Zheng approach 
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Figure 15. Synchronization of the Five-scroll circuits: Zhang and He approach 
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Figure 16. Synchronization of the Five-scroll circuits: Mkaouar and Boubaker approach 
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(a)                                                                                   (b) 

Figure 17. Switching dynamics between polytopic domains of the Five-scroll circuits using 

Mkaouar and Boubaker approach: (a) master dynamics - (b) slave dynamics 
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V. COMPARATIVE ANALYSIS 

 

To analyze the degree of the practical implementation of each synchronization approach we 

define first, as comparative criteria, the number of LMIs to be solved, the number of parameter 

solutions to be returned, the number of parameters to be computed before solving the LMIs and 

finally the number of tuning parameters of the control algorithm. As can be shown by Table 1, 

Jiang and Zheng approach [16] seems to be the simplest one; it has the lowest number of LMIs to 

be solved and the least number of tuning parameters. However, it always requires the pre-

computation of the parameter ρ which can introduce some inherent calculation for some chaotic 

PWA systems.  

 

Table 1. Comparative analysis of the of the LMI’s implementation and their solving 

                 Synchronization   
 
Approach criterion 

Jiang and 
Zheng [16] 

Zhang, He 
and Wu [25] 

Mkaouar and 
Boubaker [21] 

 
LMIs to be solved 

 
(4)-(5) 

 
(12)-(22) 

 
(28)-(33) 

 
Tuning parameters  

 
,B δ  

 
h, ε , γ , W 

 

B 1α,  
 
Computed parameters  

 
ρ  

 
- 

 
- 

 
LMI’s solutions  
 

Q , Y G, V , M, N, 
Λ , T, F, P, R, 

Z,X 

S , R , ijE , ijF , ijβ ijξ ,

{ }Nji ,,1, K∈  

 

On the other hand, the simplicity of implementation of Mkaouar and Boubaker approach [21] 

mainly depends on the number of polytopic cells.  For lower or equal to 3 cells, Mkaouar and 

Boubaker approach will be always simpler than Zhang and He approach [25]. Since all 

synchronization approaches presented in this paper give sufficient conditions for global 

synchronization, the analysis of the LMI’s feasibility on different master slave chaotic systems is 

required. Table 2 illustrates such comparative analysis. As can be shown, the simplest approach 

is the most conservative one. 
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Table 2. LMIs feasibility of each synchronization approach for every PWA system 

        PWA systems 

 

Approach 

Original Chua’s 

circuits 

Modified Chua’s 

circuits 

Lur’e like 

circuits 

Five scroll 

circuits 

Jiang and Zheng 

[16] 
Infeasible Infeasible Infeasible Feasible 

Zhang, He and Wu 

[25] 
Feasible Feasible Feasible Feasible 

Mkaouar and 

Boubaker [21] 
Feasible Feasible Feasible Feasible 

 

For feasible solutions, the elapsed CPU time for solving the predefined LMIs for best tuning 

parameter’s values can be considered as an important comparative criterion. As shown by Table 

3, Mkaouar and Boubaker approach is the best one for the Chua’s circuit, the modified Chua’s 

circuit and lur’e like circuit but not for the five-scroll circuit. This is due to the important number 

of polytopic cells: 11 cells in this case. 

 

Table 3. Elapsed CPU time in seconds for the best values of the tuning parameters for each 

synchronization approach for every PWA system 

           PWA Systems 

 

Approach 

Original Chua’s 

circuits 

Modified Chua’s 

circuits 

Lur’e like 

circuits 

Five scroll 

circuits 

Jiang and Zheng [16] - - - 0.0168 

Zhang, He and Wu 

[25] 
7.4420 2.5026 1.1736 2.5262 

Mkaouar and 

Boubaker [21] 
0.5200 0.3160 0.3247 10.7407 
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The influence of the choice of the tuning parameters on the LMIs feasibility, on the global 

stability of the master slave system and on the synchronization time can be considered as the 

most important comparative criterion for this comparative analysis. The evaluation of such 

influence is established by practicing an intensive simulation and changing the values of tuning 

parameters in areas of sufficient size. We assume furthermore that the best values of the tuning 

parameter are obtained for the lowest synchronization time. Table 4 shows the result of this 

analysis study. As can be deduced Mkaouar and Boubaker approach is the less sensitive 

approach to the variation of the tuning parameters. 

 

Table 4. Influence of the domain's belonging of the tuning parameters on the performances of 

each synchronization approach 

                                  Approach 

Performances 

Jiang and Zheng 

[16] 

Zhang, He and 

Wu [25] 

Mkaouar and 

Boubaker [21] 

LMI’s Feasibility Yes Yes No 

Stability of the error dynamics Yes Yes No 

Synchronization time Yes Yes Yes 

 

 

 

IV. CONCLUSION 

 

In this paper three synchronization methods based on LMI tools for piecewise linear chaotic 

systems have been developed. The analysis study shows that Zheng and He [25], and Mkaouar 

and Boubaker [21] synchronization approaches are less conservative than Jiang and Zhang [16] 

one. However, Mkaouar and Boubaker approach achieve the best compromise between the 

practical implementation of LMIs and the influence of tuning parameters on the feasibility and 

the performances of the synchronization approach. 
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