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Abstract- Wireless sensor networks (WSN) have limited lifetime due to on board battery. The lifetime 

can be improved by energy harvesting solutions. In this paper the solar energy harvester requirements 

for TelosB mote has been analyzed and calculated. Photovoltaic (PV) panel and battery sizing 

requirements are calculated by assuming that the mote follows SMAC and TDMA-MAC schedule for 

image communication. The calculations are validated by comparing it with the parameters calculated 

from the real time current consumption measurement of the mote. Lifetime has been predicted with the 

physical design of energy harvester. The analysis confirms that the lifetime of the network can be 

increased to a greater extent, by proper sizing of the harvester and efficient utilization of the available 

energy.  
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I. INTRODUCTION 

 

In recent years WSN has gained importance and is used in a wide variety of applications such as 

military, environmental science, medical, space exploration, commercial applications etc. This 

improvement is mainly due to the drastic development in micro-sensor, microelectronics and 

wireless communication. They are capable of sensing, processing and communicating data to 

other devices [1]. As they are energized by battery, the lifetime of the motes are limited and is 

mainly dependent on the choice of application. It is also hard to locate the mote and replace it 

once it is dead. WSN is used for multimedia applications also [2], where the data rate for 

transmission is very high, so the life of the mote will extend only for a few days. Hence it is 

essential to use energy harvesting applications to power the mote.  

The lifetime of the mote can be increased efficiently by using solar energy harvesting techniques 

than several other sources available in the outdoor environment, as solar cells have high power 

density [3]. The mote supplied by the harvester will use solar energy for processing, charging the 

battery when it is available and uses the battery power during its absence. The lifetime of the 

mote is based on current consumption of the mote at various states of operation and the duty 

cycle at which it is operated. The solar harvester has to be designed based on the need of 

applications. The PV panel and the battery size required will also change with the varying 

requirements. Hence it is essential to have an in-depth analysis on the sizing requirements of the 

elements of solar harvester. The performance monitoring of the distributed solar panels [27-29] 

can also be initiated to have a proper evaluation. There are a large number of PV harvesting 

circuits [3]-[5] and [10]-[12] proposed recently. Wide variety of MPPT algorithms [6], [8], [18], 

[23], [24] & [32] are used to gain better tracking accuracy. A low power maximum power point 

tracker using the adaptive maximum power point tracking (MPPT) algorithm suitable for WSN 

node is developed by Cesare Alippi [10]. They used current mode control and achieved power 

conversion efficiency in the range of 50 % - 60 %. DuraCap, a solar-powered energy harvesting 

system [11] used supercapacitor and lithium-ion batteries for energy storage. It also uses pulse 

frequency modulation (PFM) based regulator switching for multiple MPPT operation. Batteryless 

solar-harvesting circuit [14] is also proposed for low power applications but it is difficult to 

power the mote in cloudy and bad weather conditions. Ambimax system [12] tracked maximum 

power point (MPP) autonomously and used supercapacitors as backup at maximum efficiency. It 
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uses 70 mAh Li-polymer battery and two 10 F super capacitors as energy storage elements. It 

also utilizes multiple energy harvesting sources such as solar, wind, thermal, and vibration. 

Prometheus [38] used a MOS switch with simple dc-dc converter for power conversion. 

Harvested energy is stored in two stage energy storage consisting of two super capacitors in 

series and rechargeable lithium battery (200 mAh). In PV charger system [13] with SEPIC 

converter, peak current mode control is used with batteries as the storage element. The elements 

of the harvesting circuit are decided based on the solar panel and the battery used. Hoonki Kim 

et.al [19] proposed an energy harvesting circuit fabricated using a 0.35 μm CMOS process where 

MPPT circuit exploited a successive approximation register and a counter to solve the tradeoff 

problem between a fast transient response and a small steady-state oscillation with low-power 

consumption.  

Based on the literature survey, all the harvesters have been designed by taking into account the 

general power consumption of WSN mote. The lifetime analysis of WSN with basic working 

principles has been discussed and they does not emphasize on the harvester sizing requirements. 

Alternatively, this paper aims at analyzing the energy consumption of the mote at different 

scenarios and to provide a methodology to device the range of the harvester elements to be used. 

In this paper, TelosB mote has been considered for analysis, the duty cycle of the individual 

motes is determined by using SMAC (sensor-Medium Access Control) and TDMA (time division 

multiple access)-based MAC protocol [36]. Though there are efficient protocols available in 

literature [7], [31], [34], [37] & [39] the above mentioned protocols are used to determine the 

duty cycle, because PV panel and battery storage requirements can be estimated with worst case 

scenario. The choices made in this scenario will also be applicable for less energy consumption 

scenarios. Motes are assumed to follow the prescribed duty cycle. The lifetime of the battery 

operated mote is simulated and is compared with the lifetime of the energy harvester mote. In this 

paper, harvester energy requirement is obtained for different duty cycles and correspondingly the 

required panel ratings are calculated. The technical requirements of a solar energy harvester have 

been analyzed, which includes the efficiency calculation of the MPPT converter. The 

experimental verification of power consumption of the mote and the efficiency of the MPP 

tracker used in the energy harvester is evaluated. This enables the validation of the proposed 

analysis in real time. 
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This article is organized as follows; the mote taken for consideration and its power requirement in 

the different states of operation, energy consumption analyses of the mote while using different 

protocols are presented in Section II. The lifetime of the mote is estimated for varying duty 

cycles, without using harvester and is presented in Section III. Section IV describes the energy 

harvester designed and MPPT physical verification. It also gives the power losses associated with 

the converter and the efficiencies of individual blocks. In Section V, design requirements for the 

energy harvester are analyzed. The analysis is mote-specific. Panel sizing and the battery 

requirement are also presented. It also provides the experimental validation of the energy 

consumption analysis and compares the real time element requirements, from the theoretically 

derived data.  Section VI discusses the lifetime analysis of the mote with energy harvester and 

Section VII provides the conclusion. 

 

II. DETAILED ANALYSIS OF LOAD CHARACTERIZATION AND ENERGY 

CONSUMPTION  

The typical WSN motes are battery operated and the processor in the mote consumes energy for 

computational tasks, the radio transceiver consumes more energy for transmitting the data 

towards the sink. The power consumption by the processor and the radio is dependent on the 

motes used. The mote used for lifetime analysis is TelosB [22] with TI MSP430 processor and 

CC2420 radio module. It has a data rate of 250 kbps.  

The possible operational states of WSN mote are sleep, idle, transmit, receive and wakeup. As 

there is less power consumption during wakeup (as wakeup time is very less), it is assumed to be 

negligible for further calculations. The component status and current consumed by the TelosB 

mote [22] for different operational states are listed in the Table 1.The energy calculations can be 

further derived based on the time duration spent by the mote in the individual states.  

 

Table 1: Mote Power Consumption 

Mote State 

Component 

Status 
Current Consumption  

Processor Radio 

module 

Data 

sheet 

Measured 

Sleep Sleep Sleep 5.1 μA 6.4 μA 

Idle Idle Idle 18.8 mA 18 mA 

Transmit (Tx) On Tx 19.5 mA 20 mA 

Receive (Rx) On Rx 21.8 mA 23 mA 
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To enable real time analysis the mote is programmed to transmit 64 bytes of data. Programming 

is done in contiki with COOJA simulator. The real time current consumption of the mote in 

different operational states is measured as depicted in figure 1 and are listed in Table 1. 

  

a) Transmit state                     b) Idle state 
 

 

b) Receive state 

Figure 1. Current measurement in different operation states 

 

a. Case I: SMAC 

SMAC protocol has a periodic wakeup-sleep pattern and adaptive listening. The major advantage 

of this protocol is less energy consumption and reduced synchronization overhead. It also avoids 

collision so that two interfering nodes will not transmit at the same time [36]. Based on the 

protocol the operational states of the mote have been considered. Many sensor network 
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applications assume that the nodes are in idle state for a long time, if no sensing of an event 

happens. This will increase the energy consumption considerably. Here, the listen time is reduced 

by allowing the mote to be in periodic sleep state, which introduces latency in the network. The 

energy consumption can be considerably reduced with the variation in the duty cycle. The states 

of operation of the mote using SMAC is shown in figure 2. Each node goes to sleep for some 

time, and then wakes up and listens to see if any other node wants to talk to it. During sleep, the 

node turns off its radio and sets a timer to awake itself later. 

 

Figure 2. Time frame of Mote using SMAC protocol 

 

The duration of time for active and sleep state can be selected according to different application 

scenarios. For simplicity these values are assumed to be same for all the nodes. The complete 

cycle of the active and sleep state is called a frame and the time period is given as, 

sleep
TactiveT

frame
T            (1) 

Duty cycle (D) in this case is given by 

frame
T

activeT
D             (2) 

where,                        
idlerxtxactive

TTTT                                   (3) 

The mote is assumed to be idle, transmit and receive consecutively in active state. In reality the 

active state slot will not have fixed states of operation, as transmission and reception is dependent 

on the availability of the data in and towards the mote. The active slot usage has been formalized 

using Eqs. (1) to (3) to have a better energy analysis. The total energy consumed by the mote is 

calculated by Eq. (4). The sleep and active state energy is calculated using Eqs. (5) and (6). 

activeE
sleep

EtotE                           (4) 



   INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL.8, NO.1, MARCH 2015 

 

297 

 

sleep
T

sleep
P

sleep
E                       (5) 

     
idle

T
idle

PrxTrxPtxTtxPactiveE        (6) 

With the time frame adopted for duty cycle operation, the lifetime of the mote is calculated using 

Eq. (7). 

(mA) load of nconsumptio Current

(mAhr)capacity Battery 
  Lifetime                        (7) 

The time to transmit is calculated by considering the packet structure used for transmission in the 

concerned platform as in Eq. (8). 

 

datarate

8P31

tx_telosb
T


                               (8) 

The MAC layer overhead for the packet transmission is considered as ‘31’ for TelosB mote. P 

denotes the payload size. A default payload of 28 bytes [30], [17] is used in this paper. The 

number of packets transmitted is calculated based on the default payload size.  

 

b. Case II: TDMA 

This scenario utilizes TDMA schedule for energy and lifetime analysis. The time slot 

arrangement used in this study is shown in figure 3. Each user has an allotted specific slot within 

which they can transmit or receive, for the remaining time the user will be in sleep mode [36]. 

Assume there is ‘n’ number of nodes. All users will be in active state for the initial timeslot 

duration Ts which is called as the setup phase. In the setup phase the time slot assignment for the 

individual users will be finalized and it is fixed to avoid collisions to a greater extent. It also 

reduces the energy consumption as the user will be active during his allotted slot, the set up phase 

slot and remains in sleep state for the remaining duration. The slot allotted to the user will be 

wasted if it not has any data to be transmitted. Here the active state slot time allotted for i
th
 user is 

denoted by Tc and the slot allotted for the set up phase is denoted by Ts and is equal to one slot 

duration allotted for the individual user. In the active slot time the mote will be in transmit, 

receive or idle state and the setup phase is allotted for synchronization among all users. 

The setup and steady state phases together are considered as a round. Single round length  
r

T and 

the number of rounds  
r

N  in one day are calculated using Eq. (9) and (10) 

  sTcTnrT 
                              (9) 
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rT

86400

rN 

                               (10) 

Time duration that a single node will be in on, 
on_r

T  and off, 
off_r

T  state during one round is given 

by Eqs. (11), (13). Single round on time is the sum of the time duration allotted for an individual 

user and the set up phase. Usually the time allotted for the setup phase will be equal to the 

individual user slot duration. 

c
TsTon_rT                                                (11) 

idle
TrxTtxTcTsT                                (12) 

on_rTrT
off_r

T                        (13) 

 

 

Figure 3.  Time frame of Mote using TDMA protocol 

 

Time duration that a single node will be on, 
on_day

T  and off, 
off_day

T  in a day is given as below in 

Eqs. (14) and (15). The energy consumed in the set up phase, in the individual slot duration and 

the energy consumed by the mote in one round and a day is calculated using Eqs. (16) to (18). 

r
Non_rT

on_day
T                      (14) 

r
N

off_r
T

off_day
T                          (15) 
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idle

T
idle

PrxTrxPtxTtxPcEsE         (16)  

 
off_r

T
sleep

PcEsE
rd

E                         (17) 

     
off_day

T
sleep

PrNcErNsE
day

E          (18) 

 

III. LIFETIME ANALYSIS WITHOUT ENERGY HARVESTER 

 

Lifetime analysis is done using the parameters in the Table 1. and with the equations for each 

case as presented in the Section 2. 

 

a. Case I: SMAC 

Lifetime of the mote has been calculated for varying sleep duration using Eqs. (4) to (7).  For the 

entire simulation the channel is assumed to be contention free. The parameters from Table 1 are 

used for the simulation. Sleep time is varied from 1s to 30 s, receive and idle time are  considered 

as 5 ms and 3 ms respectively. The transmit time is dependent on the data length. The battery 

capacity considered for simulation is 300 mAhr. The life time calculations are done using 

MATLAB (R2011a) [25] and the results are shown in figure 4. 

 

Figure 4. TelosB mote life time under varying Payload with SMAC schedule 
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With the increase in the sleep time the duty cycle decreases and the lifetime of the mote 

increases. The payload is considered as 4 and 64 bytes. It is chosen based on the assumption of an 

image application, transmitting a 2×2 and 8×8 raw image data.  The lifetime of the TelosB mote 

decreases with the increase in payload that is to be transmitted. TelosB has reduced lifetime 

characteristics in the practical case as the current consumption is slightly greater than the data 

provided in the datasheet. The lifetime can further be increased by increasing the sleep time of 

the mote. But in real time deployment, the multimedia sensor networks have large amount of data 

to be transmitted in stipulated time, this will reduce the lifetime of the mote considerably if 

battery alone is used as the energy resource. 

 

b. Case II: TDMA 

The number of nodes (n) in the scenario is varied from 5 to 30. The simulation is performed with 

the parameters used in Case I except the sleep time which is varied based on the number of users. 

Lifetime estimation is done using Eqs. (9) to (18). The results are obtained for different duty 

cycles, the lifetime of the mote is plotted as shown in figure 5. When there is no activity to 

perform, the user is assumed to be in sleep mode in the setup phase and in his individual slot 

duration.  

 

 

Figure 5. TelosB mote lifetime under varying Payload with TDMA-Mac schedule 
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With the Case II scenario, TelosB has reduced lifetime characteristics in real time case due to the 

increase in the measured current consumption. 

 

IV. SYSTEM DESCRIPTION: SOLAR ENERGY HARVESTER  

 

The solar energy harvester system used for the analysis is shown in figure 6. It consists of solar 

module, boost converter, battery, charge controller, buck converter to reduce the voltage down to 

the mote operating voltage and the WSN mote as the load [20]. 

 

Figure 6. Solar Energy Harvester 

 

The MPPT controller provides the peak operating point of the solar module whereas the boost 

converter provides the impedance matching with the battery and the solar module. The Blue Solar 

SL8585mm [9] PV panel is used. It provides a maximum power of 950 mW at standard test 

conditions. The boost converter [15] is designed with critical L = 107 mH and C = 123.29 μF,     

fs = 5 kHz as the operating frequency of the converter and a voltage ripple of 5 %. Incremental 

conductance MPPT [35] algorithm is used. 4.8 V, 300 mAh Nickel metal hydride (NiMH) 

rechargeable battery is used as the storage element [26]. Battery charge control algorithm is used 

to prevent the battery from overcharging and extreme draining conditions. Buck regulator is used 

to provide the constant mote working voltage from the rechargeable battery. The detailed design 

and analysis of the harvester working is explained in [20] and is avoided here as the paper is 
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focused on the lifetime calculation. The experimental setup for verifying the MPPT and the 

results are presented in Fig. 7. 

 

a) 

 

b) 

Figure 7.  (a) Experimental setup for MPPT circuit, (b) Gate pulse waveforms for different 

irradiance levels 

 

The capability and working of the MPPT algorithm have been experimentally verified by varying 

insolation on the panel using halogen lamp. It is observed that the algorithm varies the pulse 

width to track the maximum power.  These variations are shown in Fig. 7 (b).  

The panel requirement for varying duty cycle is formulated with the inclusion of loss calculation 

associated with the boost converter. The power conversion efficiency can be increased by 

including this loss, while calculating the power budget for the requirement. The MPPT efficiency 

is calculated both in theoretical and experimental methods. The main losses in the converter are 

switching and dynamic losses. Switching losses occur due to the transition of switches between 

on and off states. This can be reduced using low frequency and smaller FET. Dynamic losses 

occur due to the flow of current through the devices. Decreasing the frequency to reduce the 

switching losses will increase the size of the inductor and the conduction losses accordingly. 

Hence a trade off is to be made for the proper choice of the switching frequency and the 
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components. The losses and expected efficiency are calculated for the designed boost converter. 

The converter is powered by the solar panel, providing 4.5 V and 213 mA under the insolation of 

1000 W/m
2
, the switching frequency used is 5 kHz. With this consideration the duty cycle and 

the power losses are calculated assuming the converter is in continuous conduction mode [16], 

[15].  

Estimated duty cycle is: 

outV

inVoutV
D


   2.0

5.6

4.5-5.6
                   (19) 

The output current is calculated as:  D1
in

I
out

I   =213× (1-0.2) =170.4 mA            (20) 

a. Estimation of DC conduction losses  

It includes the losses incurred in the source, MOSFET, diode, inductor and the output capacitor. 

The devices used in the converter are IRF 7101, ZLLS410, PLA10AN3030R4R2 and CKR 

capacitors and the individual loss calculations are given below.  

1. Source: Loss in the source = seriesR
2
inID   = 0.2× (213×10

-3
)

2
×443×10

-3
= 4.09 mW       (21) 

2. MOSFET: Loss in MOSFET =
dson

R
2
inID  = 0.2× (213×10

-3
)

2
×0.10=907.38 µW            (22) 

3. Diode loss: 
d

R
2
outIoutI

f
V  =0.58×170.4m+ (170.4m)

2
×0.58= 115 mW                     (23) 

4. Inductor loss: 
L

R
2
inI  = 213m

2
×0.1= 4.5 mW                                     (24) 

5. Output Capacitor loss: esrR
2
outI 

 
=1.0554×10

-3
× (170.4×10

-3
)

 2
= 21.8 mW                    (25) 

6. Total conduction losses =4.09m+907.38µ+115m+4.5m+21.8m = 145.39mW                    (26) 

Eqn. (26) gives the total conduction loss, which is the sum of losses from Eqns (21) to (25). 

b. Estimation of Dynamic Losses  

These losses are highly influenced by the current flowing through the components and the 

switching frequency. 

1. MOSFET : Power loss in gate, 
s

f
2

cgVissCissP   = 320p×3
2
×5k=14.4 µW                         (27) 

2. Output Capacitor loss: Power loss in discharging, sf
2

Tr
VossC0.5ossP   = 0.5 × 250p × 

5.6
2
× 5k =19.6 µW                                                                                            (28) 

(in CCM VTr=output converter voltage)          

3. Switches: Loss in Transition process,   sfoutV
Lmin

I
f

t
Lmax

Irtk
Tsw

P  = 0.3× (10+30) 

×10
-9 

× 213×10
-3

 ×5.6×5000 =71 µW                                       (29) 
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4. Diode loss:   sfrQrrt
Lmin

IoutV
Tdiode

P  = 5.6× (213.10
-3

×3.10
-9

+210.10
-12

) × 5000 = 

23.77 µW                                            (30) 

5. Choke core loss: coreV
β

ΔB
α
sfkcoreP  = 1× (5×10

3
)

1.3
× (30×10

-3
)

2.55
×5.040×10

-6
 = 

42.43 µW                                                                                           (31) 

6. Total dynamic loss: Dynamic loss is the sum of losses from eqns (27) to (31).  

coreP
Tdiode

P
Tsw

PossPissP
dyn

P  =14.4µ+19.6µ+71µ+23.77µ+42.43µ=171.2µW      (32) 

 

The total loss in the converter circuit is the sum of the conduction losses and the 

dynamic/switching losses. For the designed converter it is equal to 145.6mW. This yields an 

efficiency of 85%. The working of the solar energy harvester is verified experimentally and the 

input and output parameter measurements are shown in figure 8. The power is directly measured 

using single phase clamp on fluke meter at both the input and output sides. The MPPT 

conversion yields an efficiency of 80% experimentally. 

 

 

Figure 8. Input and output voltage, current and power measurements 

 

 

V. DESIGN AND SIZING OF PV PANEL AND BATTERY  

 

The motes are assumed to follow the schedules in the Case I and Case II. It is assumed that in the 

active period the mote is in idle state for 0.025 % of the on time and for the remaining duration, 

half of the time in transmit mode and half of the time in receive mode. With this scenario the time 
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duration spent by the mote in sleep, idle, transmit and receive mode for different duty cycles are 

calculated. In Case II schedule the mote is assumed to be in active state for 1 %, 10 % and 40 % 

of its allotted time Tc leading to the duty cycle of 4 %, 5 % and 7 %. With these schedules the 

solar panel and the battery storage requirements are calculated. 

Specifications:  

Duration of operation=24 hrs a day 

Average time of sunlight available in a day, 8hrssunT   

Number of sunless days per week, 2days
sun_less

D   

Peak value of insolation = 900 W/m
2
  

Maximum depth of discharge of a battery=50%  

Assumptions: 

Electrical efficiency of the circuit of MPPT,       

mpptη = 85% and  80% (as calculated in section 4) 

Charge/discharge cycle efficiency of the battery, 
bat
η =90 % (new one) 

Interconnection loss = 2 % 

The single day energy profile of the TelosB mote using SMAC schedule is given in the Table 2. 

The data is given for 1 % duty cycle operation. The panel requirements for higher duty cycle 

ratios are also calculated, even though the sensor networks will have a duty cycle mostly less than 

1 %. It is to perform worst case analysis of the power requirement. The system designed for 1 % 

duty cycle is sufficient to handle the loads with duty cycle less than that too. The panel size 

requirement for the operation of the mote with the mentioned duty cycle is obtained.  

 

Table 2: Single day energy profile for 1 % duty cycle 

 Mote state Sleep Idle Transmit Receive 

Duration 
(hrs) 

23.75 0.016 0.117 0.117 

Power 
consumption 

(Watts) 
10.2µ 37.6m 39m 43.6m 

Energy (J) 242.25µ 601.6µ 4.563m 5.101m 

 

Energy requirement for one day, txE
idle

ErxE
sleep

E
day

E   = 10.51 mWhr 
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The energy required for the mote, for one week, 7
day

E
w_load

E  = 73.56 mWhr 

The energy given directly to the load (battery and mote) in a week,                                                    

 
sun_less

D7sunT
day

EwE   = 420.4 mWhr 

Additional energy available in a week, 
w_load

EwEremE  = 346.84 mWhr. 

The remaining additional energy must be stored in and supplied by the battery bank. For efficient 

storage in the battery, the battery charge and discharge efficiency has to be taken into account. 

The energy to be supplied to battery to store an energy level of remE  is calculated as below. 

bat
η

remE

req_bat
E  = 385.3 mWhr 

The energy to be supplied is calculated as 
req_batw

EEE  = 805.7 mWhr 

The total energy reaching the battery is supplied by the MPPT, hence the MPPT power converter 

efficiency (85%) must be included in the energy requirement. The energy requirement after 

including the MPPT efficiency is as follows,  

mpptη

E

mpptE  = 947.92 mWhr 

The total energy required from the solar panel is calculated with including the wiring and cable 

losses. 

 loss%mpptEmpptE
total

E  =995.31 mWhr 

The total energy required is to be generated by the module in  
sun_less

D7   days with sunT
 hours 

of sunlight on each day. So the power of the module is given as, 

  sunT
sun_less

D7

total
E

module
P





=24.88 mW 

The module used is SL8585mm, with peak power of 950mW. The panel is rated at 1000 W/m
2
 

and it will not provide peak power all the time as it mainly depends on the insolation and the 

temperature. This approximation has to be included to the power required.  

Approximation, 0.635
panel_max

PapproxP  = 603.25 mW 

The final power required from the module is given by, 
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approxP

panel_max
P

module
P

final
P  =39.18 mW 

Similarly the calculations are done for different duty cycles with the theoretical (datasheet) and 

practical (measured) values of energy consumption and the panel rating required for SMAC and 

TDMA-MAC based mote operation are shown in figure 9.  

 

a) SMAC schedule                  b) TDMA-MAC schedule 

Figure 9. Panel rating required for the a) SMAC schedule and b) TDMA-MAC schedule under 

varying duty cycles of the mote 

 

TelosB mote requires 183.7 mW range panel when modeled using theoretical values of the 

current consumption, whereas in practical case it needs 203 mW panel at 4 % duty cycle with 

TDMA MAC schedule. Similarly in SMAC schedule, TelosB mote requires 39.18 mW and 43.34 

mW in theoretical and practical scenario. It is clear that the panel rating required is larger for all 

cases in practical than the theoretical scenario. Hence the panel rating cannot be chosen based on 

the theoretical calculation alone; they must have a marginal value to accommodate this variation. 

In both schedules on an average 10.5 % increase in panel rating is obtained in practical 

calculation. Hence it is suggested to add a marginal value of 10 % than the calculated value for 

the panel rating calculations to meet the real time requirements. 

 

a. Size of the battery bank 

If the voltage of the battery bank is 4.8 V, then its charge capacity is 531.5/4.8= 110.73 mAhr, 

since batteries must retain 50 % of the charge after supplying the required energy, their charge 

holding capacity must be twice this value. 
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Total charge required = 110.73×2=221.46 mAhr 

Single cell of NiMH with 150 mAh capacity have a terminal voltage of 1.2 V each [26]. To get 

4.8 V, 4 such cells must be connected in series.  We have characterized the battery requirement 

using the 4.8 V, 150 mAh NiMH battery. To increase the capacity, batteries should be connected 

in parallel. Hence to satisfy the above charge requirement two 4.8 V, 150 mAh NiMH batteries 

has to be connected in parallel. Similarly the charge capacity required and the number of batteries 

required is calculated for different duty cycles and different motes, the results are shown in  

figure 10. 

 

a) SMAC schedule                  b) TDMA-MAC schedule 

Figure 10. Required charge capacity of the battery and number batteries required for the SMAC 

and TDMA-MAC schedules under varying duty cycles of the mote 

 

TelosB mote with SMAC schedule requires 160.54 mAh charge capacity at 1 % duty cycle 

whereas with TDMA MAC schedule requires 752.7 mAhr. The practical values obtained for the 

same scenario is 167.16 mAhr and 783.01 mAhr respectively. Though the practical calculation 

requires 4 % additional charge capacity on an average, the number of batteries remained the same 

for all cases except the 7 % duty cycle scenario of TDMA MAC schedule. Hence the battery 

choice can be made based on the theoretical calculation, as it is not much deviated from the 

practical requirement.  
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VI. LIFETIME ANALYSIS WITH ENERGY HARVESTER   

 

The lifetime of the mote depends on the cycle life, recharge rate of the battery with varying 

illumination and discharge capacity of the battery [26], [4]. The lifetime prediction is done with 

the mote transmitting 16 bytes of data during every frame in the SMAC slot assignment. The 

parameters assumed are 
idle

T = 3 ms, rxT = 5 ms, txT = 9 ms and 
sleep

T =1.5 s (D=1.1%). The linear 

prediction model for the SOC [4], [5] has been used in this paper to determine the SOC of the 

battery efficiently. The prediction is done using MATLAB SIMULINK. The average current 

delivered by the battery during one frame is calculated using Eq. 33, where q is the charge 

consumed by the load over frame duration. Charge consumed depends on the states of operation 

of the mote. Here the mote is assumed to be in transmit, receive, idle and sleep states during 

every frame duration.  This determines the rate at which the battery is discharged. 

frame
T

q

avgI                                     (33) 

The recharge rate of the battery is calculated by charging the battery from the solar harvester 

while the load is disconnected. The state of charge of the battery (SOC) during the recharge 

process is calculated from the discharge time. Starting from the cut-off state (50 % of its original 

capacity), the battery is recharged under fixed light conditions for specific time. The battery is 

then discharged at a fixed rate until the cut-off circuit disconnects the load. The number of 

transmissions performed during the discharge time Td, is used to compute the State of Charge of 

the battery. The test is repeated with different recharge time. The state of charge is plotted and is 

shown in figure 11.  

 

Figure 11. Battery state of charge 
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The rate of recharge parameter (  ) is obtained from the slope of the state of charge curve. The 

discharge capacity is assumed to be constant with the battery discharge current lesser than 110 

mA [4], [5]. The discharge and recharge process is characterized with constant parameters 

( avgI and β ) over the frame duration, the SOC is computed using a linear model [26]. The SOC of 

the battery for the next n frames is calculated using the Eq. 34. where Isd is the self discharge 

current of the battery. The lifetime of the mote following the two schedules is predicted and is 

given in the Table 3.  and Table 4. 

frame
nT

sd
I

frame
nTavgIsunTβSOC(t))

frame
nTSOC(t              (34) 

Table 3: Lifetime prediction of the mote using SMAC schedule 

Illumination 

(W/m
2
) 

  

(mA) 

frame
T =1.517s

229.76avgI  µA 

frame
T =1.517 s 

236.39avgI   µA 

Lifetime- 

theoretical values 

(days) 

Lifetime -  

Measured values 

(days) 
100 59.4 141 137 

200 91.8 188 182 

300 108 211 205 

400 129.6 242 236 

500 151.2 274 266 

600 172.8 305 297 

700 183.6 321 312 

800 194.4 336 327 

900 205.2 352 342 

1000 226.8 383 373 

 

In SMAC schedule the average current consumption of the TelosB mote using the theoretical and 

measured current consumption details is 229.76 µA and 236.39 µA respectively. The recharge 

rate of the battery with the provided illumination is calculated individually for all the ranges 

between 100 to 1000 W/m
2
 of insolation. Using the Eqn 24, the life time of the mote is predicted 

and is given below. Without harvester, TelosB mote following SMAC schedule will last for 54 

(as per datasheet) and 53 (as per measurement) days based on the current consumption. Whereas, 



   INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL.8, NO.1, MARCH 2015 

 

311 

 

if harvester is used and minimum insolation is available, the lifetime is nearly doubled. With 

maximum insolation level the lifetime increases by 6 % on an average. For this scenario the 

insolation is assumed to be available for 8 hours, calculation is done for a single recharge cycle of 

the battery. If the lifetime of the battery is considered, the lifetime of the mote will increase to a 

greater extent in both cases. 

The lifetime prediction is done with the mote transmitting 16 bytes of data during every frame in 

the TDMA-MAC slot assignment. The parameters assumed are rT =14.3 s, 
idle

T = 3 ms, rxT = 5 

ms, txT = 3 ms and 
sleep

T =14.289 s (D0.1 %). In TDMA-MAC schedule the average current 

consumption of the mote is 20.75 µA and 22.49 µA under theoretical and measured analysis 

respectively. With no harvester TelosB motes following TDMA-MAC schedule will last for 

555.8 days respectively. Whereas if the harvester is used and minimum insolation is available, 

the lifetime is nearly tripled. With maximum insolation level the lifetime increases by 6 %. For 

this scenario the insolation is assumed to be available for 8 hours. 

 

Table 4: Lifetime prediction of the mote using TDMA-MAC schedule 

Illumination 

(W/m
2
) 

  

(mA) 

round
T =14.3 s,  

Iavg = 20.75 µA  
round

T =14.3 s,  

Iavg = 22.49 µA  

Lifetime- 

theoretical 

values (days) 

Lifetime -  

Measured values 

(days) 

100 59.4 1556 1441 

200 91.8 2077 1923 

300 108 2337 2164 

400 129.6 2684 2486 

500 151.2 3031 2807 

600 172.8 3378 3128 

700 183.6 3551 3289 

800 194.4 3725 3449 

900 205.2 3898 3610 

1000 226.8 4245 3931 

 

The lifetime of TelosB mote is calculated with the required light level and is shown in Table 5. 
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Table 5: Expected Life Time of TelosB Mote 

Duty 

Cycle 

 

Required 

Light/ 

Month 

Life Time- 

Theoretical 

values 

Lifetime- 

Measured 

values 

1.1% 

8 hrs 44.35 yrs 43.11 yrs 

5 hrs 31.03 yrs 30.16 yrs 

1 hr 13.25 yrs 12.89 yrs 

 

With 1.1 % duty cycle mote can continue its operation to 43 years with 8 hours of available 

sunlight per month. The WSN applications have duty cycle less than 1.1 %, which also confirms 

the perpetual operation of the motes with the energy harvester. 

 

VII. CONCLUSION 

 

In this paper a detailed methodology to analyze the energy consumption and lifetime prediction 

for wireless sensor motes have been derived with TelosB mote as an example. The analysis has 

been presented for the mote with and without energy harvester. The simulations proved that the 

lifetime of the motes increased by nearly 1.6 % to 6 % based on the insolation available from the 

sun, for single recharge cycle of the battery. The panel sizing requirement, battery charge 

capacity required and the number of batteries required to provide the necessary charge capacity, 

have also been presented for different schedules with varying duty cycles. The harvester 

requirements have been calculated with the physical modeling of the harvester blocks.  The 

TelosB mote requires 8 hours of sunlight per month to achieve a lifetime of 44 years. The 

obtained results are validated with the values calculated using real time measurement of current 

consumption of the mote. The expected lifetime reduces by 0.02 % in real time when compared 

to the theoretical calculation. Hence the motes with energy harvester are capable of prolonging 

the lifetime of the network to greater extent. It is also suggested to choose the panel with its 

rating equal to 10.5 % more than the panel rating calculated theoretically. Moreover this paper 

helps any user to design a proper energy harvesting circuit, sizing of PV panel, battery sizing etc. 

for wireless sensor networks. Lifetime prediction of the mote can be extended with solar panels 

of different technologies, leading to sensitivity analysis of the panel parameters.  
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