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Abstract- In this paper, a new multiplier-less algorithm is proposed for the design of perfect- 

reconstruction linear-phase (PR LP) filter banks by using multiplier-less lattice structures. The 

coefficients in the multiplication operations have been replaced with limited number of additions 

and the computational complexity is reduced significantly.  The property of perfection 

reconstruction, however, is preserved regardless the multiplier-less approximation of lattice 

structures in the factorization of polyphase matrix.  The coefficients in the 2x2 rotation matrices of 

the lattice structures are expressed as sum-of-powers-of-two (SOPOT) coefficients in the 

parameterization processes. By using the multiplier-less rotation matrices, the unitary matrices are 

constructed for the lattice factorization of perfect-reconstruction linear-phase filter banks. Design 
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examples of 5-channel and 8-channel multiplier-less linear-phase filter banks are included to 

validate the algorithm and implementation.            

 

Index terms: Non-multiplier realization, perfect reconstruction, linear phase, filter bank, lattice realization, 

SOPOT coefficient, lattice structure. 

 

 

I. INTRODUCTION 

 

The design and implementation of linear-phase filter banks have received increasing attentions 

recently [1-21]. With wired and wireless sensor networks, multirate filter banks can be extended 

to a wide range of applications. Near perfect reconstruction filter banks were investigated in 

harmonic analysis of electrical waveforms in power systems [1][2]. Compared with the 

conventional filters, the filter banks have better selectivity properties which make them suitable 

for harmonic analysis. In [3], filter banks with data prefiltering were developed to forecast the 

loads in a moving window manner. Numerical testing demonstrated accurate predictions with 

small standard deviations for very short-term load forecasting (VSTLF).  Filter banks were 

applied to determine vehicle velocity, the distance between axles, and the axle load in [4]. In data 

compression and signal enhancement in intelligent sensor networks, filter banks were also 

employed [5]-[11]. Filter banks have also been used in the areas of speech and image processing. 

In speech processing applications, computationally efficient digital FIR filter bank with 

adjustable subband distribution was proposed for hearing-aid applications in [12]-[14] and an 

oversampled filter bank with critical-band division and low delay was applied to a two-state 

modeling speech enhancement system in [15]. In image processing applications, a novel 

continuously-valued MRF model with separable filter banks and its discriminative training 

method were proposed for image denoising and image demosaicing in [16]. Lattice structures of 

biorthogonal filter banks were optimized using the SPIHT algorithm in [17] and utilized for 

image compressing in [17]-[18].  In [19], filter banks were proposed to diagnose broken bars and 

mixed eccentricity faults of an induction motor (IM) by detecting the electrical current during a 

startup transient. In [20], multi-stream sampling and reconstructing band-limited signals from 

their non-uniform recurrent samples were adopted to implement the modulation technique for 

three phase, voltage source, six-pulse, and ac–dc converters. 
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In the past years, the multiplier-less implementation has been an active research area in signal 

processing and circuit systems. A design of maximally flat cascaded integrator comb 

compensation filters was introduced in [22]. Second- and fourth-order linear phase filters were 

considered for narrow-band and wideband compensation. Closed-form equations for the 

computation of the filter coefficients were given and the multiplierless implementation was 

shown. In [23], a new algorithm to design FIR filters with as low adder cost as possible was 

presented. In contrast to the previous algorithms for either coefficient generation or multiplier-

block synthesis, the proposed algorithm combined the two steps in an interleaved manner to 

consider the effects of the multiplier-block synthesis in optimizing the next coefficient. In [24], 

an implementation of a mix-radix SDF pipeline FFT processor was presented. The new 

multiplier-less butterfly structure was proposed using simple shift and addition/subtraction 

operations. In order to improve the performance, the complex multipliers were replaced by 

simpler and faster units which use only shift and addition/subtraction operations. In [25], a 

multiple real constant multiplication (MRCM) problem was formulated and investigated. In [26], 

a new approach was introduced to design low complexity multiplierless digital filters. Unlike 

traditional methods with fixed filter structures, the structures were simultaneously designed and 

optimized in a dynamic fashion.  A class of 2-channel quadrature mirror filters was investigated 

in [27] and the design of filter banks with sharp transition band was reported in [28][29]. In [30], 

the design of multiplier-less decimation filters based on an extended search of cyclotomic 

polynomials (CP) was proposed. The z-transfer functions of CPs with indexes can be from 61 to 

104 and from 105 to 200.  

In this paper, a new multiplier-less realization of the perfect reconstruction linear-phase filter 

banks (PR LP FB) is presented by extending the multiplier-less approach to the lattice realization 

of the PR LP FBs.  The organization of the paper is as follows. The properties of multirate filter 

banks are studied in Section II. The polyphase matrix and lattice factorization are discussed in 

Section III. Multiplier-less and SOPOT representation are discussed in Section IV. In Section V, 

design examples and discussions are presented. Finally, a conclusion is drawn in Section VI. 
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Fig. 1  Analysis and synthesis subsystems in a filter bank 
 

 

II. MUULTIRATE FILTER BANKS 

a．Aliasing-free filter banks 

Fig. 1 shows analysis/synthesis systems in a filter bank, where analysis and synthesis filters are 

denoted as ( )kH z , 0 1k M  and ( )kF z , 0 1k M , respectively. As shown in Fig. 1, a 

decimator is preceded by a band-limiting filter ( )kH z , 0 1i M  whose purpose is to avoid 

the aliasing in Fig. 2.  An interpolator, on the other hand, is followed by a band-limiting 

filter ( )kF z , 0 1k M  with the purpose of reducing the imaging in Fig. 3. In practice, for a 

given set of analysis filters ( )kH z , the synthesis filte       rs ( )kF z  are chosen so that the effects of 

imaging in the interpolators reduce or cancel the effects of aliasing caused by the decimators. The 

expression for the reconstructed signal ˆ ( )X z  is of the form  

 

1 1

0 0

1ˆ ( ) ( ) ( ) ( ),
M M

i i

i

X z X zW H zW F z
M

                                              (1.) 

where 2 /j MW e .  The aliasing items are represented by 
1

0

( )
M

i

X zW  ( )iH zW  ( )iF z , 

0 . Aliasing is canceled if and only if the following set of relations hold: 
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Fig. 2  The aliasing effects in a decimator 
 

 

 
 

 

 

 

Fig. 3  The imaging effects in an interpolator 
 

 

The above M M  matrix on the left hand side has been referred to as the alias component matrix 

(AC matrix). Aliasing-free filter banks were first shown in the two-channel case in the quadrature 

mirror filters (QMF) and have found a number of applications in speech and image processing 

[14]. In M -channel case, approximate cancellation of aliasing was shown and was accomplished 

with relatively complicated synthesis bank filters. 
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Once the aliasing has been canceled, the structure of Fig. 1 is time-invariant, and ˆ ( )X z  is related 

to ( )X z  by a transfer function ( )T z : 

1

0

ˆ ( ) 1
( ) ( ) ( ).

( )

MX z
T z F z H z

X z M
                                                  (3.) 

The non-ideal amplitude and phase characteristic of ( )T z  in (3) are the amplitude and phase 

distortions. 

 

b. Perfect reconstruction filter banks 

1) Definition 

As shown above, there are several kinds of distortion sources in maximally decimated filter banks: 

aliasing/imaging, amplitude and phase distortions.  In the past decades, much effort has been 

devoted to this area to achieve a perfect-reconstruction property. In a perfect-reconstruction filter 

bank, the overall transfer function in (3) is a pure delay, 

( ) ,rT z kz                                                                           (4.) 

where k  is a constant and r  is an integer. The initial solutions allowing perfect reconstruction 

were addressed for the two-channel case. In the general case of an arbitrary number (M ) of 

channels, a useful analysis tool is the polyphase representation. 

 

2) Polyphase representation 

Let the filters ( ) ( ) n

i i

n

H z h n z , 0 1i M  be written as  

1

,

0

( ) ( ),
M

l M

i i l

l

H z z E z                                                              (5.) 

where , ( )i lE z  are the z -transforms of the M -fold decimated filters , ( )i le n  defined by 

, ( ) ( )i l ie n h nM l , 0 1l M .  Equation (5) is referred to as Type 1 polyphase 

representation and ,( ) ( ( ))i lE z E z  the polyphase matrix. The filters ( ) ( ) n

i i

n

H z h n z , 

0 1i M  can also be expressed as 
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1

( 1 )

,

0

( ) ( ),
M

M l M

i i l

l

H z z G z                                               (6.) 

where , , 1( ) ( )i l i M lG z E z .  Equation (6) represents a variation of (5) by reversing the order of the 

polyphase components , ( )i lE z and is defined as Type2 polyphase representation. 

 

3) Implementation 

With the polyphase representations in (5) and (6), the filter bank of Fig. 1 can be redrawn as in 

Fig. 4, where ( )E z  and ( )R z  are Type 1  and Type 2  polyphase matrices for the analysis 

filters ( )iH z , 0 1i M  and synthesis filters ( )iF z , 0 1i M , respectively.  Using the 

standard identities, the subband filter bank in Fig. 4 can be further rearranged as in Fig. 5.  A 

perfect reconstruction is obtained if the analysis and synthesis filters are chosen to satisfy the 

following property 

 
1( ) ( )R z E z ,           for all z .                                                 (7.) 

 

 

 

 

Fig. 4  Polyphase realization of maximally decimated filter banks 

 
 

 

Fig. 5  An equivalent polyphase structure 
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III. LATTICE FACTORIZATION 

 

The unitary matrices in the lattice structures are implemented using a set of rotation matrices, 

which are then represented as sum-of-powers-of-two (SOPOT) coefficients using the approach.   

Let the analysis and synthesis filters be ( )kH z , 0 1k M  and ( )kF z , 0 1k M , 

respectively. The linear-phase property of the FB implies that the polyphase matrix ( )zE  

satisfy,  

1( ) ( )N

Mz z zE DE J ,                                                       (8.) 

where M  is the number of channels, N  is a non-negative integer, D  is a diagonal matrix with 

1jjd , and MJ  is the exchange matrix given by 

0 1

1 0

J .                                                         (9.) 

The filters ( )kH z , 0 1k M , of the FBs are of length ( 1)N M .  For perfect reconstruction, 

the polyphase matrix ( )N zE  can further be written as the following lattice structure 

1 0( ) ( ) ( ) ( )N Nz z z zE SPT PΛ PT PΛ P Λ PT P                                       (10.) 

where  

    
/2

/2

M

M

I 0
P

0 J
,    

/2 /2

/2 /2

(1 / 2)
M M

M M

I J
S

I J
,   

/2

1

/2

0
( )

0

M

M

z
z

I
Λ

I
,         (11.) 

and   

 
/2 /2 /2 /2

/2 /2 /2 /2

i i M M i M M

i

i i M M i M M

A C I I W 0 I I
T

C A I I 0 U I I
,                           (12.) 

where iW  and iU  are unitary matrices, and /2MI  is the (M/2)x(M/2) identity matrix.  

 

IV. MULTILPLIER-LESS AND SOPOT IMPLEMENTATION 

 

The unitary matrices iW  and iU  in (12) can be factorized into a set of (2x2) rotation matrices in 

the following form 

 

Li Chen, Xiyan Wang, Ronghua Peng and Fu Yang, DESIGN OF LINEAR-PHASE 
 FILTER BANKS WITH MULTIPLIER-LESS LATTICE STRUCTURES 

2241



 

 

cos sin

sin cos
R .                                                     (13.) 

An example factorization of an ( n n ) orthogonal matrix is shown in Fig. 6, where 0 2i n , 

1i j n . To achieve multiplier-less realization, this matrix R  is first factored as follows   

1 01 1

10 1 0 1
R ,                                        (14.) 

where sin  and tan( / 2) .  and  are then approximated by the following 

SOPOT coefficients 

 

1

2 k

t
b

k

k

a ,  { 1,1}ka ,  1 2{ ,..., 1,0,1,... }kb r r ,                           (15.) 

1

2 k

t
d

k

k

c ,  { 1,1}kc ,  1 2{ ,..., 1,0,1,... }kd r r ,                           (16.) 

where 1r  and 2r  are the smallest and largest SOPOT coefficients, respectively.  The number of 

terms being used in each coefficient is denoted as t , which is limited to a small number so that 

multiplication can be implemented with limited shifts and additions to achieve multiplier-less 

realization.  The inverse of the rotation matrix is 

 

1
1 01 1

10 1 0 1
R ,                                        (17.) 

which involves the same set of SOPOT coefficients.  Therefore, the synthesis filter bank can also 

be built using a similar lattice structure with the same set of SOPOT coefficients  and .        
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Fig. 6  Lattice factorization of an ( )n n  orthogonal matrix. 

 

V. EXPERIMENTS AND DISCUSSIONS 

 

a. Algorithms and experiments 

In the experiments, the linear phase filter banks are designed with an iterative algorithm  with 

five steps:  (1) Initialization; (2) Lattice factorization; (3) Accumulation of pass-band and stop-

band errors; (4) Conjugate gradient algorithm; (5) SOPOT multiplier-less approximation; The 

algorithm is summarized as follows.  

1) Initialization: Select initial values for the frequency ranges of the analysis filters ( )kH z , 

0 1k M  in a filter bank in Fig. 1 as , ,[ , ]k k

p l p r , , ,[ , ]k k

t l t r , and , ,[ , ]k k

s l s r , where p , t  

and s  stand for pass-band, transition-band, and stop-band, respectively. The subscription r  

and l  denote the right and left limits of frequency range, respectively. Random numbers are 

also generated and shall be used to initialize the unitary matrices iW  and iU  in the lattice 

factorization as described in the following steps.   

2) Lattice factorization: The polyphase matrix ( )zE  in (10) is formulated as the lattice 

factorization in (10)-(12), where the unitary matrices iW  and iU  in (12) are further 

factorized into a set of (2 2)  rotation matrices in (13).    

0

2

1

ji,

ji,

. . .

. . .

. . .

. . .... ...... ...

n- 1

0

2

1

n- 1

ji,

ji,

i

j

i

j

1,2 nn
R

1,0
R

2,0
R

ji
R

,
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3) Accumulation of pass-band and stop-band errors: The unitary property of the polyphase 

matrix ( )zE  and power complementary property in pass-bands and stop-bands among the 

channels are utilized to construct the objective function . The symmetry and anti-

symmetry in linear phase filter banks can also be exploited in formulating the objective 

function. For filter banks with high orders N  in (8) and (10), fast Fourier transform (FFT) 

can be employed to reduce the computational complexity and finite precision effects caused 

by round-off errors.   

4) Conjugate gradient algorithm: Conjugate gradient algorithm can be applied to optimize the 

planar rotations m  in (13)-(17). The frequency responses are optimized to meet the 

prescription of stopband attenuations.   

5) SOPOT multiplier-less approximation: To facilitate multiplier-less approximation, the planar 

rotation matrix R  in (13) is factorized as (14).  In the SOPOT representation,  and  

are then approximated with (15) (16). In a filter bank with M  multiplicative elements 1( , 

2 , , )M , the system response T  can be expressed as 1(T T , 2 , , )M . Let [ ]
ii n  

denote the multiplier-less representation of i  with in  adders. Let T̂  be the multiplier-less 

approximation of T  and be expressed as
11

ˆ ([ ]nT , [
22 ]n , , [ ] )

MM n .  The total number 

of adders can be written as ˆ 0

1

M

iT
i

N N n .  The term 0N  stands for the “inherent” number 

of adders in the filter bank, i.e., the residue number of adders even when all the 

multiplication coefficients 1( , 2 , , )M  are set to 1. For example, 0N  in 

1 202 .5T  is 1, as one “inherent” adder is found inT .  On the other hand, 0N  in 

1 22T  is 0, as no “inherent” adder is found in T . In the multiplier-less 

approximation algorithm, the total number of available adders is constrained, i.e., 
T̂
N N .  

The multiplier-less approximation algorithm seeks to optimally distribute a total number 

( 0N N ) of adders among all the multiplicative elements 1( , 2 , , )M  so that the 

deviation error of T̂  from $T$  is minimized in a predefined criteria. In the experiment, we 

adopt the least-mean-square (LMS) error as the performance criteria. The sequential 

allocation algorithm (SAA) is employed in the experiment. It allocates one adder to the most 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 5, DECEMBER 2013 

2244



 

 

“effective” multiplier i  in each round. The most “effective” multiplier is the one that 

would give the least approximation error among all the multiplier 1( , 2 , , )M . The 

iterative process proceeds until all the available adders are exhausted.  

b. Experimental results and discussions 

Fig. 7 shows the magnitude responses of an 8 -channel SOPOT filter bank obtained by the 

proposed method.  It can be observed that all the filters have stop band attenuations over 20  dB.  

The impulse responses of the 8 -channel SOPOT filter bank are shown in Table 1.  The filters are 

of length {24, 24, 24, 24, 24, 24, 24 and 24}. Because of the linear-phase property, only the first 

12 samples (0)kh , (1)kh , …, (11)kh  are tabulated.  The remaining 12  samples (12)kh , (13)kh , 

…, (23)kh  can be determined by the symmetry/anti-symmetry of analysis filters.  The filters in 

channel 0 , 2 , 4 , 6  are symmetric while the filters in channel 1 , 3 , 5 , 7  are anti-symmetric.  

The SOPOT coefficients  and  for W  and U  in the lattice structures are displayed in 

Table 2 and Table 3, respectively.  The subscript m   in  m  is used to differentiate the 

independent planar rotations in iW  or iU . When the number (M ) of channel is even, each sub-

matrix iW  or iU  in (12) requires (( / 2) ( / 2 1)) / 2M M  independent planar rotations m .  As 

the number of iT  in (10) is 1N , the number of iW   in (10) is  1N  and the number of iU  in 

(10) is 1N . Hence, the total number of planar rotations is 2 ( 1)(( / 2) ( / 2 1)) / 2N M M , 

or ( 1)( 2) / 8N M M .  Similarly, for the case when the number (M ) of channel is odd, it can 

be shown that the total number of planar rotations is 2( 1)(2 4 2) / 8N M M . In Fig. 7, the 

number ( )M  of channels in the filter bank is 8  and 1N  is 3 .  By substituting M  and 1N  

to ( 1)( 2) / 8N M M , the total number of planar rotations m  is18 .  It is consistent with the 

observation that there are 18 rows in Table 2 and Table 3.  In the experiments, the conjugate 

gradient algorithm is employed to search optimal values of planar rotations m   in an 18 

dimensional parameter space for the nonlinear function . For filter banks with a parameter 

space of high dimension to search, more than one set of initial values should be employed and the 

resulted filters are selected to avoid the problem of local minimum in designing the floating-point 

coefficients by the conjugate gradient algorithm. 
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Table 1:  Impulse responses of 8-channel SOPOT filter banks 
 

n  
0( )h n  1( )h n  2( )h n  3( )h n  

0 -0.005336 0.013032 -0.011571 -0.002494 

1 -0.005108 0.005148 -0.004309 -0.000623 

2 -0.006042 0.008393 -0.003295 0.006699 

3 -0.015215 0.004426 0.001650 0.003358 

4 -0.021915 0.035720 -0.017008 0.024019 

5 0.009044 0.030617 -0.048899 -0.026869 

6 0.018585 0.012751 -0.046939 -0.076080 

7 0.043321 -0.040332 0.035753 0.012693 

8 0.093588 -0.118828 0.119920 0.124015 

9 0.112551 -0.153744 0.116121 0.059580 

10 0.132910 -0.131523 -0.015586 -0.144894 

11 0.140054 -0.052020 -0.166959 -0.114357 
n  

4( )h n  5( )h n  6( )h n  7( )h n  

0 0.001050 0.005861 0.007994 -0.002069 

1 -0.001498 -0.005324 -0.006040 0.004789 

2 -0.007094 0.000903 0.005996 -0.003100 

3 0.006228 0.001431 -0.005509 0.015985 

4 -0.028193 0.004697 0.026283 -0.015613 

5 -0.026063 -0.051136 -0.038538 -0.008565 

6 0.076924 0.046099 0.014699 0.009734 

7 -0.001581 0.035927 0.049773 -0.047041 

8 -0.132892 -0.140030 -0.113126 0.080031 

9 0.037724 0.114625 0.158983 -0.110656 

10 0.152508 0.020681 -0.119958 0.127193 

11 -0.100508 -0.139821 0.055651 -0.148909 

 

 

 

Table 2:  SOPOT coefficients of  and  in W  

 

W    

0 ,0W  1 3 41 2 2 2  
1 2 3 42 2 2 2  

0 ,1W  1  1  

0 ,2W  1  2 41 2 2  

0 ,3W  12  
1 22 2  

0 ,4W  3 41 2 2  
1 2 3 41 2 2 2 2  

0 ,5W  1 2 3 41 2 2 2 2  
1 32 2  

1 ,0W  41 2  
1 21 2 2  

1 ,1W  1 2 41 2 2 2  
1 3 42 2 2  

1 ,2W  2 41 2 2  
11 2  

1 ,3W  3 41 2 2  
1 2 3 41 2 2 2 2  

1 ,4W  1  2 41 2 2  

1 ,5W  32  
42  

2 ,0W  41 2  
1 21 2 2  
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2 ,1W  1 2 3 42 2 2 2  
2 3 42 2 2  

2 ,2W  1 31 2 2  
1 2 3 42 2 2 2  

2 ,3W  3 41 2 2  
1 2 41 2 2 2  

2 ,4W  1  41 2  

2 ,5W  1 2 41 2 2 2  
1 3 42 2 2  

 

 

 

Table 3:  SOPOT coefficients of  and  in U  

 

U    

0 ,0U  1  3 41 2 2  

0 ,1U  42  0  

0 ,2U  2 32 2  
3 42 2  

0 ,3U  41 2  
21 2  

0 ,4U  3 42 2  
42  

0 ,5U  1 2 32 2 2  
2 3 42 2 2  

1 ,0U  1 2 31 2 2 2  
1 2 32 2 2  

1 ,1U  1  1  

1 ,2U  3 41 2 2  
1 2 3 41 2 2 2 2  

1 ,3U  31 2  
1 31 2 2  

1 ,4U  2 41 2 2  
12  

1 ,5U  2 42 2  
32  

2 ,0U  1  31 2  

2 ,1U  12  
1 22 2  

2 ,2U  41 2  
1 2 41 2 2 2  

2 ,3U  1 2 3 42 2 2 2  
2 3 42 2 2  

2 ,4U  1 31 2 2  
1 2 3 42 2 2 2  

2 ,5U  2 31 2 2  
1 3 41 2 2 2  
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After optimizing the floating-point values of planar rotations m , the sequential allocation 

algorithm (SAA) is employed.  The results of multiplier-less approximation are tabulated in 

Table 2 and Table 3. Among the 36 coefficients ( , ) in Table 2, 8 coefficients have only one 

term of 2 k , which indicates that no addition is needed in multiplier-less implementation. In Table 

2, there are also 6, 11, 7, 4 coefficients with 2, 3, 4, 5 terms of 2 k , respectively.  This implies 1, 2, 

3 4 additions are required in multiplier-less implementation of each of these coefficients, 

respectively. It can be shown the total number of additions for the 36 coefficients,  and , is 

56. The average number of additions for each of the 36 coefficients,  and , is 1.81. Among 

the 36 coefficients ( , ) in Table 3, one coefficient is 0, and 9 coefficients have only one 

term of 2 k . No addition is needed in multiplier-less implementation of these 10 coefficients. In 

Table 3, t there are 10, 10, 5, 1 coefficient have 2, 3, 4, 5 terms of 2 k , respectively. This implies 

1, 2, 3 4 additions are required in multiplier-less implementation of each of these coefficients, 

respectively. It can be shown that the total number of additions for the 36 coefficients,  and , 

is 49. The average number of additions for each of he 36 coefficients,  and , is 1.36.  In 

general, the approximation error will be reduced as the number of SOPOT terms ( t  in (15) and 

(16)) increases. In the experiment, the maximum number of SOPOT terms in coefficients  and 

 (Table 2 and Table 3) is 5  and the filters are very close to the real-valued counterparts.  Two 

5-channel filter banks with a length distribution ( 20 , 20 , 20 , 20 , 20 ) and ( 30 , 30 , 30 , 30 , 30 )  

are also shown in Fig. 8 and Fig. 9, respectively.     In Fig. 8, the number ( )M  of channels in the 

filter bank is 5  and N  is 3 .  By substituting M and N  to 2( 1)(2 4 2) / 8N M M , the total 

number of planar rotations m  is16 . In Fig. 9, the number ( )M  of channels in the filter bank is 

5  and N  is 5 .  By substituting M and N  to 2( 1)(2 4 2) / 8N M M , the total number of 

planar rotations m  is 24 . The conjugate gradient algorithm is employed to search optimal values 

of planar rotations m   in an 18 and 24-dimension space for the nonlinear function  for Fig. 8 

and Fig. 9. As the coefficient multiplications can be implemented with limited number of 

additions, the implementation complexity of the filter banks is considerably reduced.  Moreover, 
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filter banks are implemented with the lattice structures and the factorization in (14) and (17) and 

the perfect-reconstruction (PR) property is preserved, despite of the SOPOT approximation. 

Fig. 7  Frequency responses of the proposed 8-channel SOPOT LP filter bank 

 

Fig. 8  A 5-channel filter bank with filter lengths (20, 20, 20, 20, 20) 
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Fig. 9 A 5-channel filter bank (30, 30, 30, 30, 30) 

 

VI. CONCLUSIONS 

 

A new multiplier-fewer algorithm for linear-phase perfection reconstruction filter banks has been 

presented by using multiplier-less approximation of the coefficients in the lattice structures. The 

property of perfection reconstruction is preserved, regardless the multiplier-less approximation of 

lattice structures in the factorization of polyphase matrix.  Design examples of multiplier-less 5-

channel and 8-channel linear-phase perfect reconstruction filter banks have been demonstrated. 

The coefficient multiplications have been replaced with a limited number of additions and hence 

the implementation complexity was significantly reduced.  The multiplier-less linear-phase 

perfect reconstruction filter banks can be used in image data compression and signal 

enhancement.  
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