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Abstract- The problem of multi-objective robust feedback linearization controller design of nonlinear 

system with parametric uncertainties is solved in this paper. The main objective of this paper is to 

propose an optimal technique to design a robust feedback linearization controller with multi-objective 

genetic algorithm. A nonlinear system is considered as a benchmark and feedback linearization 

controller is designed for deterministic and probabilistic model of the benchmark. Three and four 

conflicting objective functions are used in Pareto design of feedback linearization controller for 

deterministic and probabilistic design, respectively. The simulation results reveal the effectiveness of 

the proposed method. 
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I. INTRODUCTION 

 

Feedback linearization is a nonlinear control method which is used a coordinate transformation to 

change a nonlinear system into a linear one [1]. The obtained linear system can be controlled by a 

linear control method, such as state feedback control. Therefore, the feedback linearization 

method can be classified into two parts: one part cancels out the nonlinearities of the plant, and 

other part controls the linearized system [2]. There are many methods to design such controllers 

which can be regarded as optimization problems of certain performance measures of the 

controlled systems [3]. A very effective means of solving such optimum design of controllers is 

genetic algorithms (GAs) [4, 5]. The simplicity and global characteristics of such evolutionary 

methods have been the main reasons for their extensive applications in off-line optimum control 

system design. However, a major restriction of feedback linearization method is that the system 

should be precisely known, in order to cancel the nonlinearities exactly [1]. In real control 

engineering problems, however, exact models of the systems are not often known [6]. 

Additionally, there are many sources of uncertainties such as parametric uncertainties that 

prevent the effectiveness of such feedback linearization [7]. Therefore, it is strongly needed to 

design a robust feedback linearization method which can stand the uncertainties and provides 

satisfactory both robust stability and robust performance in the presence of uncertainties and 

modeling error. 

In this regard, many researches have been accomplished in robust feedback linearization method 

[8, 9]. Most of them are based on the worst case robust analysis and synthesis which use the most 

pessimistic value of the performance for a particular member of the set of uncertain models [10]. 

The conservatism involved in such approaches is not very desirable in robust control design and 

the most likely plants with respect to uncertainties should be considered [11]. There have been 

many efforts for designing robust controllers reducing the conservatism or accounting more for 

the most likely plants with respect to uncertainties. This idea results in propagating the 

probabilistic uncertainties through the uncertain model which builds the set of plants as the actual 

dynamic systems each with a separate probability density function (PDF) [12]. Therefore, such 

information regarding the likelihood of each plant allows a reliability-based design in which 

probability is incorporated in the robust design [13]. In this method, robustness and performance 
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are stochastic variables [12]. Stochastic behavior of the system can be simulated by Monte-Carlo 

Simulation (MCS) [6].  

Robustness and performance can be considered as objective functions with respect to the 

controller parameters in an optimization problem. Wang et al. [9] used genetic algorithms to 

design robust nonlinear controls, in which both stability and performances metrics was 

augmented for a single objective optimization problem. Since conflictions exist between 

robustness and performance metrics, choosing appropriate weighting factor in the cost function 

consisting of weighted quadratic sum of those non-commensurable objectives is inherently 

difficult and could be regarded as a subjective design concept. Moreover, the trade-offs existed 

between those objectives cannot be explored and it would be, therefore, impossible to choose an 

appropriate optimum design reflecting the compromise of the designer’s choice concerning the 

absolute values of objective functions. Therefore, this problem should be formulated as a multi 

objective optimization problem (MOP) so that the trade-offs between objectives can be found 

consequently [14, 15]. 

The aim of this paper is to use a multi-objective optimization approach to robustly design a 

feedback linearized controller for an uncertain nonlinear system. A nonlinear two masses and 

spring system is considered and the nonlinear controller will be designed for both deterministic 

and probabilistic situations. In this regard, three non-commensurable objective functions are 

considered for deterministic design and four non-commensurable objective functions are 

considered for probabilistic one. The comparison will be accomplished to show the robustness 

and superiority of the probabilistic design over the deterministic design in the presence of 

parametric uncertainties of the nonlinear model. 

The organization of the paper is as follows. After a general introduction of the effect of fault on 

the power system, the usefulness and requirement of a fault current limiter is presented to the 

students which has been discussed in section II. The traditional ways of fixing fault currents in 

power system has been discussed in section III. In section IV, operating principle, design details, 

and experimental results of magnetic current limiter has been presented. The analysis and 

simulation results of high temperature superconducting fault current limiter has been discussed in 

section V. The lecture has been concluded in section VI. 
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II. ROBUST FEEDBACK LINEARIZATION DESIGN 

 

Consider a nonlinear system as follow 
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,                                                 (1) 

where (.)f , (.)g , and (.)q  are nonlinear functions, nT

n

Tn Rxxxxxx   ]...,,,[]...,,,[ 21

)1(x   

is the state vector of the system, w is the bounded disturbance, and u and y are the input and 

output of the system, respectively. In the feedback linearization method, if the nominal system is 

feedback linearizable, there exists an algebraic transformation which is used to linearize 

nonlinear system [1]. The closed-loop system under the feedback linearization method is 

represented in the Figure 1. This control structure consists of two loops, with the inner loop 

achieving the linearization of the input-state (or input-output) relation, and the outer loop 

achieving the stabilization of the closed-loop dynamics [1]. 

 

Figure 1. Feedback Linearization [1] 

The linearized system equation with respect to disturbance w(t)  can be written as 

wwv )(zbCbAzz  ,                                                          (2) 
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The new linearizing state z can be defined as  Tn

ff hLhLh )](,),(),([ 1 xxxz   , and )(xhLk

f  is the 

Lie derivative of )(1
xhLk

f

  along the vector field f, and C is the 1n   constant matrix and (.)  is 

a nonlinear function [1]. The linear control law can be determined by a linear control design such 
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as pole placement method. The nonlinear feedback control law based on the feedback 

linearization method can be then obtained as 

,)()( vu xx                                       (4) 

where )(x  and )(x can be derived as 
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A closed-loop system in the feedback linearization method is stable with respect to the 

disturbance w(t) if a positive-definite matrix P can be found from the Riccati equation with the 

design parameters Q and r [7] 

01  
QPPbbPPA

TT rA ,                                                (7) 

where, Q is a positive-definite matrix and r is the positive real number. Therefore, the linear 

control law can be given as 

.
21

PzbPzb
TTrv  

                                   (8) 

In order to optimally design a feedback linearization controller the design vector },,{ rQd   

should be found appropriately. 

If there is any uncertainty in the model parameters in feedback linearization method, it will cause 

error in the new state and the control input, and the output of the system may deteriorate 

accordingly [1]. Therefore, it is beneficial for control engineers to design controllers robustly. 

In the stochastic robust control design, an uncertain nonlinear system with the set of uncertain 

parameters, p, is considered so that the deterministic nonlinear system given in (1) can be re-

written in a new form with parametric uncertainties as follows 
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In the stochastic robust design, the uncertain parameters, p, considered as probabilistic 

uncertainties which have PDFs, for example, normal distribution. Therefore, the propagation of 

the uncertain parameters through the system provides some probabilistic metrics such as random 

variables (e.g., settling time, maximum overshoot …), and random processes (e.g., step response, 
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Bode or Nyquist diagram …) in a control system design [12], [16, 17]. This situation leads to 

variations in the performance of main system. Therefore, it is very desirable to find robust design 

whose performance variation in the presence of uncertainties is low. Generally, there exist two 

approaches addressing the stochastic robustness issue, namely, robust design optimization (RDO) 

and reliability-based design optimization (RBDO) [18]. Both approaches represent non-

deterministic optimization formulations in which the probabilistic uncertainty is incorporated into 

the stochastic optimal design process. In this work, the reliability-based design optimization 

method is used to design a robust nonlinear controller. In this method, random samples are 

generated assuming some pre-defined probabilistic distributions for uncertain parameters. The 

system is then simulated with each of these randomly generated samples and the percentage of 

cases produced in failure region defined by a limit state function approximately reflects the 

probability of failure. 

Let X be a random variable, then the prevailing model for uncertainties in stochastic randomness 

is the probability density function (PDF),  xfX
or equivalently by the cumulative distribution 

function (CDF),  xFX
, where the subscript X refers to the random variable. This can be given by 

     




x

XX dxxfxXxF Pr                                                (10) 

where Pr(.) is the probability that an event (X ≤ x) will occur. 

In the reliability-based design, it is required to define reliability-based metrics via some 

inequality constraints. Therefore, in the presence of uncertain parameters of plant (p) whose PDF 

or CDF can be given by fp(p) or Fp(p), respectively, the reliability requirements can be given as 

     ,0Pr  pp i

i

f gP                                                            (11) 
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where, i
fP  denotes the probability of failure of the ith reliability measure, )(pg  is the limit state 

function which separates the failure region 0)( pg  from the safe region 0)( pg . In the 

reliability-based design   should be minimized. Therefore, taking into consideration the 

stochastic distribution of uncertain parameters (p) as  ppf , equation (13) can now be evaluated 

for each probability function as 

      
 
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ig
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i

f dfgP                            (12) 

This integral is, in fact, very complicated particularly for systems with complex g(p) [19] and 

MCS is alternatively used to approximate equation (14). Based on this method the probability 

using sampling technique can be estimated using 

     ,,,F
1
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pxp p uI

N
P i

N
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                           (13) 

where, (.)Fi  is the ith nonlinear system that is simulated by MCS. Also,  pgI  is an indicator which 

causes the probability of failure to be obtained numerically, and defined as 

 
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p
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g
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Therefore, the probability of failure which means the failure occurred is the number of samples in 

the failure region divided by the total number of samples. Evidently, such estimation of Pf 

approaches to the actual value in the limit as N  [9]. However, there have been many 

research activities on sampling techniques to reduce the number of samples keeping a high level 

of accuracy. Alternatively, the quasi-MCS has now been increasingly accepted as a better 

sampling technique which is also known as Hammersley Sequence Sampling (HSS) [19]. In this 

work, HSS has been used to generate samples for probability estimation of failures. In a RBDO 

problem, the probability of failure of some metrics should be minimized using an optimization 

method. In a multi-objective optimization of a RBDO problem presented in this paper, however, 

there are different conflicting robust metrics that should be minimized simultaneously. In this 

work, multi-objective Pareto genetic algorithm of MATLAB is used for RBDO of robust 

feedback linearization control design. 
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III. ROBUST CONTROL DESIGN FOR A NONLINEAR SPRING-MASS SYSTEM 

 

In this section, a multi-objective robust controller design is described. The problem is a two mass 

and spring benchmark which includes two masses (
21,mm ), a linear spring (

1k ), and a nonlinear 

cubic spring (
2k ).The control signal applies to 

1m  and unit impulse disturbance exerts on 
2m  

(Figure 2). The state space representation of the system is [7] 

 

Figure 2. A nonlinear spring-mass system 
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.2xy                                                                 (16) 

In this system the uncertain parameters include ],,,[ 2121 kkmmp . The nominal value of them 

are 10

2

0

1  mm , 25.10

1 k , and 15.00

2 k . The corresponding constraints are considered as 

follows 

.5.15.0,5.15.0

,2.05.0,25.0
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mm

kk
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The input-output linearization of this single input/output system can be accomplished by using 

21 xz  . The equations of this procedure which are adopted from [7] are given as 

21 )( xhz  x , 

42 xhLz f  , 
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As a result of the above transformation, the linear equation can be written as 
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Then transformed system can be formulated as 
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Then the control law of the system can be written as 
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In this study, the appropriate values of the parameters of the control law are designed by multi-

objective optimization. Four objective functions are considered to design robust optimal 

nonlinear controller for this benchmark. In the first place, the most important goal of the robust 

controller design is the robust stability which implies that all the closed-loop systems remain 

stable in the presence of any uncertainty. 

Definition. For the input control signal u(t) that leads the system to stability, there should exist a 

class KL  function   and a class 
K function   such that [20] 

),(),()( 0


 utxty                             (26) 

holds for all solutions. This system is input-to-output stable [20].   denotes Euclidean norm and 


  denotes infinity norm. 

Thus, in the case of stochastic robust design, the limit state function to define the probability of 

instability will be represented by 

)()(),()( 0 tyutxg ins 
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The probability of instability can now be computed as 
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The robust performance is another criterion for designing nonlinear controllers. In this study 

robust performance includes settling time and overshoot. Their limit state functions are defined as 

Tsg ts  7)(p ,                           (29) 

osgos 1)(p ,                            (30) 

where, Ts and OS are settling time and overshoot of the output (x2), respectively. Therefore, the 

probability of the failure for each of them can be defined as 
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The control effort plays a pivotal role in the control design, and in many practical cases, there is a 

limitation on control effort which must be considered by control engineers. The limit state 

function of this criterion is 


 ugu 1)(p ,                          (33) 

and the failure probability of the control effort can be formulated as 

  


N

i igu uI
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,,FPr px  .                         (34) 

These robust metrics should be minimized simultaneously using multi-objective optimization. In 

the next section the results of such multi-objective optimization procedure will be given. 

 

IV. RESULT 

 

In order to show the supremacy of the robust design, the multi-objective optimization will be 

accomplished for both determinist and probabilistic feedback linearization design. 

In the first place, it is obvious that displaying more than two objective functions to demonstrate 

the trade-off is not feasible. In this way, several multidimensional visualization methods are 

proposed [21, 22]. One of the methods which leads to comprehensive analysis of the Pareto front 

is called Level Diagrams method [22] which is used in this paper to visualize the Pareto fronts of 

the multi-objective optimization. 

In this method, each point of Pareto front must be normalized between 0 and 1 based on its 

minimum and maximum values [22] 
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Provided that the origin of the n-dimensional space is considered as the ideal point, the distance 

of the each Pareto front point can be used for comparison. In this paper, Euclidean norm of all 

objective functions (  


n

i
iJJ

1

2

2
) is used for this purpose. To represent the Pareto front, Y 

axis is specified for Euclidean norm of all objective functions and X axis is specified for each 
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objective function; therefore, each objective function has its own graphical representation whilst 

Y axis of each graph would be the same. 

a.  Deterministic Design 

The three objective functions are now considered simultaneously in a Pareto optimization process 

to obtain some important trade-offs among the conflicting objectives. In a deterministic design 

approach, the vector of objective functions to be optimized in a Pareto sense is given as follow  

 


 uOSTs ,,J


.             (37) 

In the deterministic design, in order to prevent instability, if a system is unstable, each objective 

function is coerced to  . 

The evolutionary process of the multi-objective optimization is accomplished with a population 

size of 100 which has been chosen with crossover probability Pc and mutation probability Pm as 

0.8 and 0.01, respectively. A total number of 120 non-dominated optimum design points have 

been obtained for optimal feedback linearized controller. The results of the 3-objective 

optimization process are shown in Figure 3. 

It is evident from figure 3, that there is confliction between settling time and control effort, also, 

between overshot and control effort. The V shape of the Pareto fronts confirms this situation. 

Take for illustration, the system whose settling time is low has the worse value of control effort. 

This situation is very evident in the Level Diagrams of both overshoot and infinity norm of 

control effort, because the system with lowest value of overshoot has the maximum value of the 

control effort and vice versa. Therefore the promising results show the confliction between each 

pair of objective functions which can be found from this figure. Also, the circled point which is 

the vertices of the V layout of each Pareto front (the nearest point to ideal) is very close to the 

minimum value of each objective function, hence, it can be chosen as a pivotal trade-off point. 

The objective functions and design variables for minimum value of each objective function and 

for minimum value of the 2-norm function are given in Table 1. 
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Figure 3: 2-Norm Level Diagrams of Pareto fronts for determinist design 

Table 1. The values of objective functions and the corresponding design variables of the selected 

optimum points. 

Optimum 

Points 

Design Variables Objective Functions 

1q  
2q  3q  

4q  r    Ts  OS  


u  
2

J  

Tsmin  1.967 0.692 0.324 0.183 0.223 0.362 3.960 0.903 3.951 0.992 

OSmin  2.028 1.863 0.440 0.975 0.052 0.667 4.640 0.852 3.949 0.987 


umin  0.030 0.921 1.122 0.561 0.375 0.793 15 1.338 0.745 1.414 

2
min J  2.020 0.718 0.371 0.387 0.383 0.407 4.240 0.953 1.304 0.270 
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The response of each considered optimal controller against unit impulse disturbance is shown in 

Figure 4. In addition, the corresponding control efforts are shown in Figure 5. 
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Figure 4: The responses of the optimum selected points with respect to the unit impulse 
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Figure 5: The control efforts of the optimum selected points with respect to the unit impulse 

According to figures 4 and 5, designing high-performance and cost effective controllers is a very 

complex subject which could be practically impossible, because the systems which have a good 

time response need high cost control effort, and, on the other hand, the system whose control 

effort is low has the adverse time response.  
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Each state of the controlled system with the circled point (
2

min J  or the trade-off design) is 

shown in Figure 6. It is obvious that the system is input-state stable system because all of the 

states are asymptotically stable, and they have acceptable settling times. 
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Figure 6: Time response of each state of the point with minimum 2-norm 

b. Probabilistic Design 

In this section the stochastic design will be accomplished to obtain robust feedback linearization 

controller. In this way, four objective functions are now considered simultaneously in a Pareto 

optimization process to obtain some important trade-offs among the conflicting objectives. In a 

robust design approach, the vector of objective functions to be optimized in a Pareto sense is 

given as follow 

 ,Pr,Pr,Pr,Pr uostsinsJ


                        (38) 

whose elements are computed by equations (28), (31), (32), and (34), respectively, in the quasi-

Monte Carlo simulation process. In this study, two kinds of uncertainty are considered, namely 

uniform distribution and Gaussian distribution. In uniform distribution the range of system 

parameters have been listed in equation (17), and for Gaussian distribution, mean and variance of 
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each parameter are chosen which have the same range as those of the uniform distribution. The 

parameters that describe the Gaussian distribution are listed in Table 2. 

The evolutionary process of the multi-objective optimization for both uniform and Gaussian 

distributions are accomplished with a population size of 100 which has been chosen with 

crossover probability Pc and mutation probability Pm as 0.8 and 0.01, respectively. The 

optimization process of the robust controller is accomplished for 200 Monte Carlo evaluations 

using HSS distribution for each candidate control law during the evolutionary process. 

Table 2. Uncertainty model 

 Mean Variance 

1k  1.25 0.065 

2k  -0.15 0.017 

1m  1 0.027 

2m  1 0.027 

 

b.i  Multi-objective optimization results for Gaussian distribution 

A total number of 72 non-dominated optimum design points have been obtained for robust 

feedback linearized controller with the considered Gaussian distribution for uncertain parameters. 

Since, the value of probability of instability ( insPr ) of all non-dominated optimum points has been 

found equal to zero, the results of the 4-objective optimization process, consequently, correspond 

to a 3-objective optimization process which is shown in Figure 7. 

Also, the circled point in Pareto front which has the lowest value of the 2-norm, can be selected 

as a significant trade-off point. This point which is located on the vertices of the V layout form of 

the Level Diagram has the low value of tsPr  and the moderate value of two other objective 

functions. For comparison, the objective functions and design variables for minimum value of 

each objective function and for minimum value of 2-norm are given in Table 3. 

It is obvious from the numerical results in Table 3 that the systems whose tsPr  and osPr  are low, 

have the 100% failure in the control signal requirement. 
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Figure 7: 2-Norm Level Diagrams of Pareto fronts for probabilistic design with Gaussian 

distribution 

 

Table 3. The values of objective functions and the corresponding design variables of the selected 

optimum points. 

Optimum 

Points 

Design Variables Objective Functions 

1q  
2q  3q  

4q  r    tsPr  osPr  uPr  
2

J  

tsPrmin  2.773 2.245 1.428 0.285 0.105 1.662 0.035 0.105 1 1.001 

osPrmin  3.083 2.270 0.992 0.218 0.112 1.479 0.085 0.070 1 1.001 

uPrmin  0.189 1.092 1.278 0.841 0.463 0.354 1 0.865 0.225 1.414 

2
min J  1.206 0.987 0.959 0.325 0.285 0.416 0.165 0.360 0.550 0.571 
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The stochastic response of each mentioned optimum point is shown in Figure 8. In this figure, 

upper interval and lower interval illustrate that all simulated response for 200 samples are laid 

between them. Also, the stochastic response of the proposed controller from [7] is shown in 

Figure 8. 
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Figure 8: Probabilistic responses 
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According to Figure 8, both points with the lowest value of tsPr  and osPr  have the same 

stochastic time responses with respect to the unit impulse. In contrast, the system whose uPr  is 

the lowest has the worse stochastic time responses in comparison with other points. Also, the 

point with the lowest value of 2-norm which can be considered as an outstanding trade-off point 

has the acceptable stochastic time responses. In addition, it can be seen that the stochastic time 

response of the proposed controller by [7] is worse than that of proposed controller by this paper. 

The PDFs of each stochastic variable for each selected optimum point are shown in Figure 9. 

It can be concluded from Figure 9 that the system with the lowest value of uPr  has the settling 

time bigger than 7 seconds. As it was shown in Figure 8, both systems with the lowest value of 

tsPr  and osPr  have the same stochastic time response and same uPr  and the maximum control 

effort are same for both of them. 

b.ii  Multi-objective optimization results for uniform distribution 

A total number of 65 non-dominated optimum design points have been obtained for robust 

feedback linearized controller with the considered uniform distribution for uncertain parameters. 

Unlike the Gaussian distribution, the value of probability of instability ( insPr ) of some non-

dominated optimum points has not been equal to zero. The results of the 4-objective optimization 

process are shown in Figure 10. 

The maximum probability of instability in this design is equal to 36%, it means that among 200 

HSS exist 72 unstable plants. Like as a prior design, there is no confliction between tsPr  and osPr . 

It is evident from Figure 10 that there is confliction between robust stability and robust 

performance, due to the fact that the systems with low insPr  have worse value of tsPr  and osPr , on 

the other hand, the systems with the low value of tsPr  and osPr  have the worse value of insPr . In 

addition, both tsPr  and osPr  have confliction with uPr . Therefore, the systems whose tsPr  and 

osPr  are low have the high value of uPr  , and the system with the lowest value of uPr  has the 

worse value of tsPr  and osPr . 

The circled point in Pareto front which has the lowest value of the 2-norm and is located on the 

vertices of the V layout form of the Level Diagram has the moderate value of each objective 

function; therefore, it can be considered as an outstanding optimum point. For comparison, the 
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objective functions and design variables for minimum value of each objective function and for 

minimum value of 2-norm are given in Table 4. 

Table 4. The values of objective functions and the corresponding design variables of the selected 

optimum points. 

Optimum 

Points 

Design Variables Objective Functions 

1q  
2q  3q  

4q  r    insPr  tsPr  osPr  uPr  
2

J  

insPrmin  0.135 1.608 0.565 0.400 0.946 0.398 0.005 0.969 0.768 0.404 1.390 

tsPrmin  2.562 1.659 1.955 0.402 0.101 1.009 0.32 0.147 0.162 1 1.338 

osPrmin  3.337 1.621 1.049 0.365 0.103 0.871 0.36 0.195 0.117 1 1.415 

uPrmin  0.126 1.423 0.794 0.349 0.469 0.366 0.02 1 0.729 0.311 1.368 

2
min J  2.106 1.579 0.950 0.507 0.275 0.670 0.145 0.362 0.380 0.538 0.698 

 

The numerical results in Table 3 and Table 4 show that the time response performance of the 

systems with normal distribution are better that those of uniform distribution, because of the fact 

that the uniform distribution uncertainties are more stringent than normal ones. 

The stochastic response of each mentioned optimum point is shown in Figure 11. Their stochastic 

behaviors are simulated for 200 samples, and upper bound and lower bound show the region of 

the responses. Also, the stochastic response of the proposed controller from [7] is shown in 

Figure 8. 

From Figure 11, the systems with the lowest value of insPr  and uPr  have the worse behaviors of 

the stochastic time responses with respect to the unit impulse. Also, the point with the lowest 

value of 2-norm which can be considered as an outstanding trade-off point has the acceptable 

stochastic time responses. It is obvious from Figure 11 that the proposed controller by [7] has the 

worse time response in comparison with proposed controller in this paper. In addition, according 

to the Figure 8 and Figure 11, the systems with the Gaussian distribution have the better time 

responses in comparison with the systems with the uniform distribution. It seems due to the fact 

that the uniform distribution is more stringent than Gaussian one. 

The PDFs of each stochastic variable for each selected optimum point are shown in Figure 12. 

It can be concluded from Figure 12 that the systems with the lowest value of insPr  and uPr  have 

the unacceptable settling time and overshoot. In addition, the systems with the lowest value of 

tsPr  and osPr  need big control effort signal. 
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In order to compare the robustness of each design, the trade-off point of each robust design is 

considered. Controller A and B are considered as the trade-off points of the systems with 

Gaussian probability distribution and uniform probability distribution design, respectively. Table 

5 shows the comparison of the robustness of the two controllers. Each evaluation data is based on 

20,000 quasi Monte Carlo simulations, against either uniform or Gaussian evaluation 

distributions. Also, the results of the proposed controllers by Wang et al. [7] are given in Table 5. 

The controller C was designed for Gaussian probability distribution, and D was designed for 

uniform probability distribution.  

 

Table 5. Comparison between different designs. 

 

insPr  tsPr  osPr  uPr  

Gaussian Uniform Gaussian Uniform Gaussian Uniform Gaussian Uniform 

Controller A 0.015 0.159 0.228 0.421 0.383 0.461 0.501 0.665 

Controller B 0.023 0.122 0.171 0.373 0.275 0.376 0.526 0.458 

Controller C 0.013 0.035 1 1 0.548 0.571 0.471 0.305 

Controller D 0.014 0.032 1 1 0.540 0.561 0.396 0.371 

  

As should be expected, if the controller is designed by the uniform probability distribution, it acts 

more robust than the controller with Gaussian one. Take for illustration, controller B which has 

been designed under uniform distribution, produces lower cost functions in comparison with 

controller A. But controller A whose probability distribution is Gaussian has better insPr  and uPr  

than controller A when they are evaluated by Gaussian probability distribution. 

Although the controllers which were designed by Wang et al. al [7] have the low value insPr  and 

uPr , the corresponding tsPr  and osPr  are worse than the proposed controllers. Because the 

parameters of the controller proposed by [7] were designed by minimizing a single objective 

function in which the weighting factor for insPr  has been chosen as 1 and others chosen as 0.01. 

Therefore they have low value of insPr  and it was shown in this paper that the system with low 

value of insPr  has also low value of uPr . 

 

 



A. Hajiloo, M. Samadi, N. Nariman-Zadeh, PARETO OPTIMAL ROBUST FEEDBACK LINEARIZATION 
CONTROL OF A NONLINEAR SYSTEM WITH PARAMETRIC UNCERTAINTIES 
 

235 
 

V. CONCLUSIONS 

 

This paper proposed an optimal robust design method for the feedback linearization method 

using a multi-objective optimization method. In this work, robust stability and robust 

performance metrics are used to define the objective functions. The parameters of the nonlinear 

system are as uncertain parameters with the known probability distribution. Two types of 

uncertainties were considered for the nonlinear systems. The multi-objective optimization of the 

nonlinear controller led to the discovering some important trade-offs among those objective 

functions. The design procedure in this paper can be applied very easily to any nonlinear systems 

with feedback linearization control. The multi-objective GAs of this work for the Pareto 

optimization of feedback linearization controllers using some non-commensurable objective 

functions is very promising and can be generally used in the optimum design of real-world 

complex control systems with uncertainties. 
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