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Abstract- We present a simple approximate algorithm to compute the Minimum Enclosing Ball (MEB) 

of training samples in high dimensional Euclidean space. We prove theoretically that the proposed 

algorithm converges to the optimum within any precision quickly. Compared to popular MEB 

algorithms, it has the competitive performances on both training time and accuracy. Besides, the 

proposed algorithm does not need any extra requirement on kernels, it can be linked with extensive 

kernel methods, consequently. We also use the proposed algorithm to handle Binary Classification, 

Multi-class Classification, and Image Clustering problems. Experiments on both synthetic and real-

world data sets demonstrate the validity of the algorithm we proposed. 
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I. INTRODUCTION 

 

With the popularization and development of computer science, machine learning has become an 

important branch of artificial intelligence (AI). Being one important research content and method 

of AI, classification problem has made many scientific research fruits, and achieved lots of 

successful applications in more and more fields, such as machine vision, image recognition, 

information retrieval, text classification, speech recognition, and so on. 

 

 a. Review on classification 

So far, the methods of classification can be roughly divided into the following three classes. 

(1) The first is classical statistical forecasting methods. Statistics is one of the important 

theoretical foundations of existing machine learning methods. In this method, the related form of 

parameters in the model is known, using the training samples to estimate parameters needs the 

form of samples’ distribution to be known, which has great limitations. In addition, the traditional 

statistical research is the gradual theory when sample size tends to infinity, but in the actual 

problems, the sample size is limited, so some excellent theoretically statistical learning methods 

do not perform well in actual applications. 

(2) The second is experiential nonlinear methods, such as the artificial neural network. For 

approximating real values, discrete values, or the vector-valued goal function, this method 

provides a solution with strong robustness. For certain types of problems, such as learning to 

explain the complex real-world sensor data, artificial neural network is so far known as the most 

effective learning way. It establishes the nonlinear model based on known samples, overcoming 

the difficulties of traditional parameter estimation method. But it is lack of unified mathematical 

theory, excessive training data fitting and poor generalization performance is also an important 

problem in the learning of artificial neural network. 

(3) The third way is Statistical Learning Theory (SLT), which is a specialized theory for the 

research of machine learning law under small sample, compared with the traditional statistics. 

This theory developed a new theoretical system on statistical problems with small samples, under 

which theory not only the requirements for asymptotic performance, but also the pursuit of the 

optimal results under the conditions of existing limited information are considered to obtain the 

statistical inference rules. Vapnik et al. started related researches from the 1960s. By the mid of 
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1990s, with the development and mature of its theory, meanwhile due to the lack of real progress 

in theory of the neural network learning method, SLT begins to get more and more extensive 

attention. 

It should be noted that, during the period of 1992 to 1995, based on SLT theory, Vapnik et al. 

proposed successfully the Support Vector Machine (SVM) method [1, 2, 3]. Compared with the 

traditional statistical learning methods, SVM method has more solid mathematics theory 

foundation, which can effectively dealing with high-dimensional data under the condition of 

limited samples, and has the merits of strong generalization ability, convergence to the global 

optimal, non-sensitive to dimension, etc. Based on these merits, SVM has become one of the 

most popular research direction in the field of machine learning, and achieved widely research 

and application successfully in many fields, such as pattern classification, regression analysis, 

and estimation of density function, and so on. 

 
b. Current researches on SVM 

For the SVM classifier, the aim of training is to find out which samples are support vectors, thus 

determine the decision function to predict the new samples. As a result, the number of support 

vector is the main factor affecting the training speed. The kernel matrix of training samples, to be 

computed and stored by SVM, increases with the square of training samples’ number, which 

becomes the bottleneck of SVM for large-scale problems and limits its application. In recent 

years, many domestic and foreign scholars are looking for more rapid and efficient algorithms of 

SVM, which can be used to solve the problem of large sample classification. The existing 

methods can be roughly divided into the following categories. 

 

b.i  Decomposition-based algorithms 

 

These algorithms have the common characteristics described as follows. Dividing the original 

massive quadratic programming problem into many small sub-problems, according to a certain 

iterative strategy, solving the sub-problems repeatedly to achieve the approximate solution, by 

which to gradually converge to the optimal solution of the original problem. For example, the 

Chunking Algorithm proposed by Boser, Guyon and Vapnik, the Decomposition Algorithm 

proposed by Osuna et al., the subsequent SVMLight Algorithm,  SMO Algorithm by Platt, and 

LiBSVM by Chang, all of which achieved good effect in application. At present, there are still 
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some scholars working on these decomposition-based strategies to design efficient SVM 

algorithms.  

 

b.ii  Online learning-based algorithms 

 

At present, there are some research results on using SVM to handle online learning problems, 

where data or model needs to be updated continually. The main strategy in these algorithms can 

be described as follows. Because of the addition of non-support vector has no effect on decision 

function, so for the new samples, according to the complementary slack conditions in the optimal 

theory, to determine whether or not to update Lagrange multipliers in the existing model. For 

considering all the historical data, these methods have disadvantages of unable to control the 

number of support vector. Only considering the sparseness of solution of the SVM, can we 

possibly to reduce the amount of calculation, and shorten the calculation time. 

 

b.iii  Deformation-based algorithms 

 

In order to improve the learning speed of standard SVM, except for seeking quick solving 

quadratic programming methods, there are still many algorithms for the simplified and deformed 

model. For example, the linear programming SVM, the quadratic loss function SVM, the least 

squares SVM, the proximal SVM, and so on. In order to improve the generalization ability, there 

are many methods based on the variant of standard SVM model. For example, fuzzy SVM, 

multiple kernel SVM, and prior knowledge-incorporated SVM, and so on. These algorithms 

made beneficial attempts from several aspects to improve the operation performance of SVM, 

and have achieved good effect in application. But this method has not yet formed a mature 

theoretical system, there are still many aspects need to be further discussed. 

 

b.iv  Parallel-based algorithm 

 

In recent years, there are lots of works devoted to parallel implementation method of training 

SVM. For example, Collobert [4] proposed parallel hybrid method of SVM, Dong [5] used block 

diagonal matrix to approximate the original kernel matrix, Zanghirati [6] proposed SVMlight 
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parallel method, Huang [7] proposed modular network realization method of SVM, Cao [8] 

proposed SMO parallel method, and so on. These methods have achieved obvious improvement 

for massive data problems in practical application. However, can the local optimal solution of 

sub-problem guarantee the global optimal solution in parallel algorithm, is still a research topic to 

be urgently solved. 

 

b.v  Data reduction-based algorithm 

 

The lower bound of support vector’s number is linear with the number of training sample. Taking 

some kind of strategy, therefore, by choosing the training samples most likely to be support 

vector, or deleting the training samples most unlikely to be support vector, or taking the above 

two methods at the same time to preprocess the training set, can reduce the size of training set, 

and then accelerates the training process without much loss of precision. But the experimental 

results show that, if the proportion of the support vector in the training set is large, the 

generalization ability of data reduction-based algorithm is lower than the standard SVM. Asharaf 

[9] claimed that, even though the decomposition or data-sampling techniques [10, 11, 12, 13] can 

help to reduce the complexity of the optimization problem, they are still expensive for use in 

applications involving large data sets. 

The quadratic matrix involved in the above five types of algebraic algorithms are required to be 

sparse, which results in the need for large memory and training process for many practical 

problems, where the conditions are not met. And that the series of intuitive interpretation-based 

geometric algorithms, can relieve the contradiction mentioned above. 

 
c. Current researches on SVM geometry methods 

Different from the algebraic algorithm of SVM, which solves the dual problem in transformed 

feature space, the geometry algorithm of SVM solves the original problem in the sample space. 

After Bennett and Crisp putting forward the idea of finding a pair of nearest points between the 

convex hulls of two points’ sets, there are many excellent SVM geometry algorithms based on 

the idea of nearest points. For example, projection method-based Swap algorithm is suitable only 

for linear separable problem, the rapid geometry iteration algorithm proposed by Keerthi can 

indirectly solve the inseparable problem, and the reduced convex hull algorithm proposed by 
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Mavroforakis can directly solve the inseparable problem. In addition, Tsang proved the 

equivalence between the MEB and SVM, introducing an excellent approximation MEB algorithm 

to solve the SVM classification and regression problems for massive data, called the Core Vector 

Machine (CVM) [14], whose time complexity is linear with the sample size, and the space 

complexity is independent of the number of samples. Therefore, CVM is suitable for handling 

large data classification problems. Although conceptually simple, a sophisticated numerical 

solver is required for its implementation, which is computationally expensive when applying on 

large-scale problems with very large core-sets. After that,  the Simpler Core Vector Machines 

(SCVM) [15] replace the numerical solver with an iterative algorithm, which results in a faster 

training than CVM with comparable accuracy on massive data sets. However, the Enclosing Ball 

(EB) problem solved in SCVM requires the ball's radius to be fixed, which limits the SCVM to 

be only feasible for certain kernels that satisfy kxxk ii ))(),((  , a constant. 

In this paper we develop a (1+  )-approximate algorithm for computing the MEB of a given 

points set without requirement of any numerical solver. Compared to CVM and SCVM 

algorithms, it has the competitive performances in both training time and accuracy. Besides, the 

proposed algorithm does not need any extra requirement on kernels, which guarantees the 

potential applications in extensive kernel methods, consequently. We also use the proposed 

SMEB algorithm to handle Binary Classification, Multi-class Classification, and Image 

Clustering problems. Experiments on both synthetic and real-world data sets demonstrate the 

validity of the algorithm we proposed. 

The rest of this paper is organized as follows. Section II provides a review on MEB problem. In 

Section III, we give the connection between SVM and MEB. Section IV presents the SMEB 

algorithm in detail and experimental results. In Section V we conclude this paper. 

 

II. REVIEW ON MEB ALGORITHMS 

  

 a. Formulation of MEB 

The Minimum Enclosing Ball (MEB) problem can be dated back to 1857, which was firstly 

proposed by Sylvester to investigate the smallest radius disk enclosing n points on the plane. It 

has found applications in diverse areas, such as computer graphics, machine learning, facility 

location and shape fitting problems.  
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Given a set of data points },...,1|{ mixS i  , where d
i Rx  , the minimum enclosing ball of S 

(denoted as MEB(S)) is defined as the smallest ball ),( RcB  that contains all the points in S, i.e., 

}|{),( RcxRxRcB i
d

i  . 

Let k be a kernel function with the associated feature map  , i.e. )(),(),( jiji xxxxk  , where 

.,. denotes the inner product. Then the primal MEB problem in the kernel-induced feature space 

to find the MEB(S) with center c and radius R can be formulated as 
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b. Exact algorithms of MEB 

Traditional exact MEB algorithms can not effectively deal with high-dimensional data. For 

example, prune-and-search algorithm proposed by Megiddo, heuristic-based move-to-front 

algorithm proposed by Welzl, quadratic programming method proposed by GÄartner,  the F-G-K 

algorithm proposed by Fischer [16]. We briefly present the iteration strategy of F-G-K algorithm 

below, called the dropping and walking (see Figure 1). 

 
Figure 1. Dropping and walking: Dropping s from },,{ 21 sssT   (left) and walking towards the 

center cc(T) of the circumsphere of },{ 21 ssT  until 's stop walking (right). 

 
c. Approximate algorithms of MEB 
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In recent years, MEB are required to solve the application problem in high dimension space. 

Therefore, from the perspective of practical application, many scholars are studying how to 

develop more rapid approximate MEB algorithm. Among them, Badoiu firstly proposed the 

concept of core set (see Figure 2) to solve the clustering problem in high dimensional. Thereafter, 

the idea of core set was introduced to improve the performance of MEB in B-K algorithm. In the 

following, we illustrate the strategy of B-K algorithm in Figure 3 [17]. 

 
Figure 2. Inner circle is the exact MEB contains all the square points, whose ( 1 ) expansion 

contains all the points, so the square points is the core set of all points. 

 

 
Figure 3. A 3-step of the B-K algorithm achieves a final core-set determined by four points on a 

five-point set. 

 

 

III. CONNECTIONS BETWEEN MEB AND SVM 

 

SVM and MEB were firstly connected in Support Vector Data Description (SVDD) in 1999 by 

Tax and Duin [18], thereafter many related research had been achieved. 

 
a. Support vector data description 
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We illustrate the idea of SVDD in Figure 4 below. The left figure presents the decisive curve of 

banana-shaped data without outliers under the parameter C = 1 in two-dimensional plane. The 

solid points represent the support vectors, the dotted line represents the boundary of the data 

description, and the grey value represents the distance from the center of sphere, where the 

deeper means the closer to the center. We can see that, only three support vectors are needed to 

describe all of the data set. Introducing a new outlier in the right picture (located with an arrow), 

large change occurred in the decisive curve, where the new outlier comes into the support vector 

of the new decisive curve. 

 
Figure 4. SVDD without outliers (left) and SVDD with outliers (right) 

 

b. Equivalent formulation under normalized kernels 

Considering only the situation where the kernel k satisfies ),( xxk , a constant. This holds true 

for kernels like Gaussian, polynomial kernel with normalized inputs, and any normalized kernels 

[14]. Then the dual of the MEB problem (2) can be rewritten as 
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When the involved kernels fulfill the requirements mentioned above, any Quadratic 

Programming (QP) of form (3) can be identified as an MEB problem. 

 

b.i  Formulating Binary SVM as MEB under Normalized Kernels  
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Binary SVM can be formulated as a QP to maximize the margin between two classes, and the 

consequent generalization ability is always better than the other machine learning methods. 

Given a training data sets },...,1|),{( miyxS ii  , where d
i Rx  and 1,-1}{iy , the primal for the 

Binary SVM problem can be formulated as 
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Where ij  is the Kronecker delta function, defined as                          
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Hence the Binary SVM can be viewing as an MEB problem [14]. 

 

b.ii  Formulating Multi-class SVM as MEB under Normalized Kernels 

 

Traditionally, multi-class pattern recognition problems are typically solved using voting scheme 

methods based on combining many binary classification decision functions. With the idea of a 

reinterpretation of the normal vector of the separating hyper-plane, Szedmak and Shawe-Taylor 

formulated multi-SVM as an SVM with vector output, where the vector can be seen as a 

projection operator of the feature vectors into a one-dimensional subspace. 
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Given a set of data points },...,1|),{( miyxS ii  , where d
i Rx  , T

i Ry  , i.e., we have m training 

data whose labels are vector valued. Obviously there are many choices of the vector labels, the 

simplest is the indicator vectors of the classes following the rule 
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Hence the multi-SVM can be viewed as an MEB problem [9]. 

 

c. Equivalent formulation under non-normalized kernels 

Taking into account that many real-world data sets in binary SVM are imbalanced and the 

majority class has much more training patterns than the minority class. As a result, the resultant 

hyper-plane will be shifted towards the majority class. A common remedy is to use different sC'  
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for the two classes. In the more general case, each training pattern can have its own penalty factor 

iC . The primal is then formulated as 
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Besides, the diagonal entry of kernel matrix ),( ii xxk  in Ranking SVM is not a constant either, 

does not satisfy the requirement that the involved kernels need to be normalized, under which 

cases, CCMEB [19] works. 

Instead of finding the smallest ball enclosing all Sxi )(  in the feature space described in (1), 

CCMEB [19] augments an extra Ri   to each )( ix , forming 






i

ix

 )(

. Then the task is to find the 

MEB for these augmented points, meanwhile constraining the last coordinate of the ball's center 

to be zero (i.e., of the form 





0
c

) (seen Figure 5). 

 

Figure 5. Center-Constrained MEB 

 

The primal in (1) is thus changed to 
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It easily shows that the corresponding dual is a QP problem 
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Using the same arguments adopted before, any QP problem of the form (17), with 0 , can also 

be regarded as a MEB problem (15). By defining }
~

{max,0)
~

(1}
~

{max ii
i

ii
i

KKdiagK   , the linear 

term in the objective function of (17) disappears. Consequently, all the QPs of (14) and (17) have 

the same form, without any extra requirement on the kernels. Therefore, the non-normalized 

kernel methods, such as the binary SVM for imbalanced data and Ranking SVM, can be viewed 

as a center-constrained MEB problem. 

 

IV. IMPROVED MEB ALGORITHM 

 

In this section we propose the Simpler Minimum Enclosing Ball (SMEB) algorithm to solve 

classification problems. By dropping the step of setting an appropriate radius of EB in advance in 

SCVM, we achieve an asymptotically expansive version with a similar process to SCVM without 

any requirement on the kernels. 

 

a. Detailed procedure of SMEB 

Table 1: The procedure of SMEB Algorithm  
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The proposed iterative algorithm is shown in Table 1 above. Unlike the CVM, the update in Step 

3 can be performed efficiently without the use of any numerical optimization solver. Unlike the 

SCVM, the radius in SMEB is asymptotically expansive and converges to the optimum in )
1

(


O  

iterations within any precision. The efficient update of the tth iteration is shown in figure 6. 

 

Figure 6. Update of ct at the tth iteration 
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r




 , which is a convex combination of tc and )( tz . Consequently, for any 

0t , tc is always a convex combination of 0c  and  t
iit zS 1)}({   , i.e., )(

0

i

t

i

it zc 


 , 

where ,1
0




t

i

i ,0i 00)( cz  .  

 

b. Performance analysis of SMEB algorithm 

In this Section we conclude that the iterative SMEB algorithm converges to the optimum within 

any precision, and the time/space complexities are superior to CVM and SCVM. 

Proposition 1. SMEB algorithm obtains an )1(  -approximation of MEB(S) in )
1

(


O   iterations. 

Proposition 2. Assume that the SMEB algorithm terminates at the th iteration with the solution 

),(  cr , then 
** )2( rcc   , where ),( ** cr  denotes the optimum of MEB(S). 
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Proposition 3. The time complexity of SMEB algorithm is )
1

(
32 


m

O , which is linear in m  for a 

fixed  . 

Proposition 4. The space complexity of SMEB algorithm is )
1

(
2

O , which is independent of m  

for a fixed  . 

The detailed proofs of these theorems are omitted here for conciseness, interested readers can 

refer to Wang [20]. 

 

c. Experiments on synthetic data 

Experiments are performed on five synthetic data sets, which follow a uniform distribution on the 

interval (0,10) (Table 2). All experiments do not adopt the probabilistic speedup method utilized 

in CVM for simplicity. We use Matlab 6.5 on a PC with Pentium-4 3.20 GHz CPU, 1GB of 

RAM running Windows XP to implement our experiments. 

 

Table 2: Data sets used in the experiments 

 

data sets data 1 data 2 data 3 data 4 data 5 

dimension 2 2 2 2 2 

number 10 100 1000 10000 100000 

 

We compare CVM, SCVM and SMEB on Optimum Bias Ratio and Training Time at different 

values of   on the five data sets, where Optimum Bias Ratio (OBR) is defined as 

optimum

optimum- valuealexperiment
OBR . Table 3 shows that all algorithms have low OBR’s for 

]10,10[ 46  , and SMEB has accuracies comparable with the other two algorithms, especially 

when   gets small enough. Table 4 indicates that when utilized to handle larger data set, e.g., 

data 5, the SMEB algorithm is usually faster than CVM and SCVM for the same value of  , with 

comparable accuracies, which implies that SMEB is more suitable for solving larger data 

problems (Fig. 7). When   decreases, the SMEB becomes closer to the exact optimal solution, 

but at the expense of higher time and space complexities. Such a tradeoff between efficiency and 

approximation quality is typical of all approximation schemes. 
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Table 3: OBR’s of the various MEB algorithms (%) 

 
 

Table 4: Training time of the various MEB algorithms (s) 

 

 
Figure 7. Performance with different value of   for data 5, (a) for Optimum Bias Ratio (%), (b) 

for training time (s). 
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d. Application of SMEB in binary classification 

We implemented CVM by utilizing the SMEB algorithm we proposed to handle large scale 

Binary SVM with smaller core sets (S-CVM). We generated synthetic 4×4 check-board data set, 

whose points follow the uniform distribution. We compare the performances of CVM and S-

CVM on the core sets' size, training time and training accuracy with different value of   and m 

on synthetic data sets (Table 5 and Table 6). In all the experiments we used Gaussian kernel 

function k(u,v)=exp(-p1(u-v)'(u-v))+ p2, where the parameters were chosen by grid search as p1=1, 

p2=0, penalty factor C=100. 

 

Table 5: Comparison on performances of CVM and S-CVM with different   in the case of data 

number m=160 

 

 

Observing from Table 5, we find that the size of final core set of S-CVM is smaller than that of 

CVM at the same  , and so does the training time. The numbers of support vectors and training 

accuracies of both algorithms are comparative. Besides, we can see that the training accuracies 

cannot be enhanced when 410 , so the value of   we adopt in this article is  = 410 . 

 

Table 6: Comparison on performances of CVM and S-CVM with different m in the case of 

410  

 

 

We observing from Table 6 that, the size of final core set of S-CVM is smaller than that of CVM 

at the same m and so does the training time. The numbers of support vectors and training 

accuracies of both algorithms are comparative. Besides, with the decrease of  , the rest of 
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training performances increase, which is a typical feature of approximate algorithm. It is worthy 

of noticing from Table 6 that, for larger data sets, S-CVM performs more well than CVM. For 

instance, S-CVM can shorten the training time almost one half for m=160, and two thirds for 

m=1600 with comparative accuracy. 

Figure 8 demonstrates the different performances of CVM and S-CVM under the best value of 

 = 410  on 4×4 check-board data, where the square points denote the support vectors, yellow 

dotted lines denote the hyper-plane the support vectors lie in, and the red dotted lines denote the 

maximum margin hyper-plane.  

 
(a)                                                                (b) 

Figure 8.  CVM (a) V.S. S-CVM (b) under 410  

 
e. Application of SMEB in multi-class classification 

We compare the results obtained with one-v.s.-all CVM (OVA-CVM), one-v.s.-one CVM (OVO-

CVM), multi-CVM (M-CVM) and multi-CVM with smaller core sets (SM-CVM) we proposed. 

The grid search method based on cross-validation is chosen to determine the values of the best 

model parameters in Gaussian kernel function k(u,v)=exp(-p1(u-v)'(u-v))+ p2, such as p1=1, p2=0, 

penalty factor C=100. 

 

e.i  Data Sets in Experiments 

 

1) Synthetic data sets: We generated six synthetic data sets, each of which is a 2 × 2 check-

board data set, and the points follow the uniform distribution. 

2) Benchmark data sets: The benchmark data sets we used are from the UCI machine learning 

repository (http://archive.ics.uci.edu/ml/), iris, glass and balance. 

The details of data sets used in this section are listed in Table 7 below.  
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Table 7: Details of data sets 

 

Data set Sy. 1 Sy. 2 Sy. 3 Sy. 4 Sy. 5 Sy. 6 Iris Glass Balance 

# Class 4 4 4 4 4 4 3 6 3 

# Dim. 2 2 2 2 2 2 4 9 4 

# Point 20 100 200 1000 2000 10000 150 214 625 

 

e.ii  Experimental results 

 

We conduct the experiments with different   on data sets mentioned before for all the algorithms 

to compare the performances. Training time and core vectors’ number for all the algorithms, 

which vary with data size on the synthetic data under the best choice of   are given in Figure 9. 

We can see that the proposed SM-CVM is of the smallest core vectors’ number and the shortest 

training time, expect for the training time of OVO-CVM, which is of the lowest accuracy. 

Generally speaking, we can conclude that the proposed SM-CVM is of the shortest training time, 

the highest accuracy and the smallest core vectors’ number. 

 

 
Figure 9. Training time vary with data size (a), and core vectors’ number vary with data size (b) 

for different algorithms 

 
f. Application of SMEB in image clustering 

In this section we utilize SMEB Algorithm in Table 1 to scale up image clustering problem, 

called SMEB-introduced Clustering.  
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Firstly, we tested the synthetic delta set (ftp.disi.unige.it/person/CamastraF/delta.dat) with the 

SMEB Algorithm. Delta set is formed by 424 training samples in 2R ．The points are randomly 

distributed on two semicircles with the same center and 1inearly inseparable．Figure 10 below 

presents the initial status (a) and the final status (b) in the SMEB-introduced Clustering 

procedures for delta set, where we can see the points are clustered into two classes finally. 

  
(a)                                                         (b) 

Figure 10. Different status in SMEB-introduced Clustering procedures for delta set 

 

Secondly, we scale up the delta sets to the size of )10( 4O , called the scaled-up delta sets. Figure 

11 below shows the performance of SMEB-introduced Clustering on scaled-up delta sets in terms 

of both CPU time and the average error ratio, where we can see in Fig.11 (a) that the CPU time 

increases with the increasing of the size of the data set. For fixed degree of approximation, i.e.,  , 

the CPU time increases 1inearly in the size of the data set.  Moreover，a larger   corresponds to 

a shorter time. Fig.11 (b) shows that the average clustering error increases slowly as a function of  

 , which means that the SMEB-introduced Clustering is a parameter non-sensitive algorithm for 

the degree of approximation  . 

 
Figure 11. Experiment results on scaled-up delta sets using the SMEB-introduced Clustering 
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Thirdly, we used the SMEB-introduced Clustering to handle image segmentation based on color. 

The original images to be segmented are taken from the Berkeley image segmentation database 

(http://www.eecs.berkeley.edu/Research/Projects/cs/vision/grouping/segbench). Each image is a 

48l×321×3 array of color pixels, where each color pixel is a triplet corresponding to red, green, 

and blue components. We explored the performance of our SMEB-introduced Clustering 

algorithm. The segmentation results were demonstrated in Fig. 12 and Fig. 13, where former 

presented the original images before being segmented, and later presented the segmented images. 

From the comparison we can see that the SMEB-introduced Clustering algorithm can achieve 

good performances in image clustering. 

 

 

Figure 12: Original images before being segmented 

 

 

Figure 13: Experiment results on original images after being segmented 

 

http://www.eecs.berkeley.edu/Research/Projects/cs/vision/grouping/segbench
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V. CONCLUSIONS 

 

In this paper we develop a (1+  )-approximate algorithm for computing the MEB of a given 

points set without requirement of any numerical solver. We prove theoretically that the proposed 

SMEB algorithm converges to the optimum within any precision in )1( O  iterations. The SMEB 

has time complexity of  )
1

(
32 


m

O , which is linear in the number of training samples m  for a 

fixed  , and space complexity of  )
1

(
2

O , which is independent of m  for a fixed  . Compared to 

CVM and SCVM algorithms, it has the competitive performances in both training time and 

accuracy. Besides, the proposed algorithm does not need any extra requirement on kernels, which 

guarantees the potential applications in extensive kernel methods, consequently. We also use the 

proposed SMEB algorithm to handle Binary Classification, Multi-class Classification, and Image 

Clustering problems. Experiments on both synthetic and real-world data sets demonstrate the 

validity of the algorithm we proposed. 
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