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Abstract- Due to the disadvantages of traditional localization & tracking at those aspects of users’ 

privacy protection, system configuration and maintenance, this paper proposes a new approach for 

infrared object localization and tracking with distributed wireless pyroelectric infrared sensors. A 

hierarchical architecture of visibility of Fresnel lens array is presented with spatial-modulated field 

of view (FOV). Firstly, the FOVs of Fresnel lens array in a sensor node are modulated to achieve a 

single degree of freedom (DOF) spatial partition; then the localization algorithm is proposed to 

coordinate multiple sensors nodes to achieve two DOF spatial partitions. To effectively solve the 

problem of WSN energy imbalance, a strategy of neighbor table multicast and an electoral method 

of the dynamic cluster head based on the biggest energy are presented in the distributed wireless 

sensor networks. The experiments show that the method proposed here has the advantages in high 

accuracy and strong anti-interference capability.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/226931499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Baihua Shen and Guoli Wang, DISTRIBUTED TARGET LOCALIZATION AND TRACKING WITH 

 WIRELESS PYROELECTRIC SENSOR NETWORKS 

 

1401 

Index terms: Wireless sensor networks, motion detecting, target localization, target tracking, pyroelectric 

infrared.  

 

I. INTRODUCTION 

 

Target localization and tracking, the common key technology and the controversial research 

hotspot in intelligent monitoring, advanced human-machine interaction [1] , motion analysis 

[2-6], activity understanding [7-9], are of widely application value in calamities aiding, 

security monitoring, medical monitoring, etc. PIR detector, in a form of non-contact, detects 

infrared radiation variation in the specific environment with high sensitivity to human motion 

and the advantages of low cost, non-invasion, strong concealment and little interference by 

ambient light. The localization and tracking by PIR detector have been receiving increased 

attention. 

Two major types of PIR sensing methods are adopted in pre-existing research, that is side 

view [10-15] and top view [16, 17]. 

In side view sensing research, paper [10] proposes passive infrared sensing model based on 

wireless sensor networks (WSN), which combines many sensors to form horizontal regional 

subdivisions of FOV, hence, achieves the human motion localization and tracking. 

Researched in paper [11], to obtain the object’s position, the PIWSNTT system synthesizes 

many object azimuth data sensed by passive infrared sensor nodes. But this method, relying 

on restricted condition of object keeping uniform linear movement, cannot manage the 

situation of constant turn-back movement. In paper[12-14], the horizontal angle modulation 

method is adopted to obtain object’s local fine granularity localization, tracking and 

identification, but these side-view sensing methods above are not applicable when the object 

is shielded by obstacles, therefore, their applicability are quite limited. 

In top view sensing research, PILAS system, proposed in paper [17], cross many PIR 

detectors’ top view FOV for regional division to realize object motion detecting and coarse 

granularity localization. Compared with side view sensing, it can effectively overcome the 

problem of obstacles shielding. Since the sensed granularity is depended on the scale of FOV 
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crossed area, in order to obtain fine granularity sensibility, the numbers of sensors should be 

increased by leaps and bounds. For example, if the location accuracy is 0.5m, one sensor node 

should be placed every 1m distance. That is far from the efficiency of side view sensing, 

therefore, sensibility improving is restricted by coarse granularity sensing. 

In order to solve the above-mentioned problems, in this paper, FOV modulation strategy is 

introduced into top view sensing mode to make it possess fine granularity sensibility. For 

different sensing view angle, the horizontal angle modulation method in side view sensing 

mode in paper [12] is not suitable for top view sensing mode. Therefore, this paper proposes 

radial distance modulation method. Particularly, this paper applies hierarchical structure and 

multiplexing system to spatially modulate the FOV of Fresnel lens array, to establish FOV 

modulation mode and localization model in spatial juxtaposition and to attribute movement 

spatial localization to multivariant FOV subdivision, which is formed by many collaboration 

sensors of single degree of freedom (SDOF) FOV subdivision for object localization. The 

method, extracting information directly from the radiation source’s movement characteristics 

and spatial position, applies to large-scale WSN space deployment, because of low cost data 

transport and processing. 

In large-scale WSN, due to limited resources and energy of a single node, the centralized 

telecommunication and information processing lead to energy consumption of each node 

unbalanced and especially center node possibly paralyzed and then the whole network. 

Therefore, distributed localization and tracking method can effectively solve the problem of 

WSN energy imbalance. According to the characteristics of infrared object localization and 

tracking, this paper implements the multicast strategy within moving nodes by establishing a 

neighbor table with six neighborhoods and presents an electoral method of the dynamic 

cluster head based on the biggest energy and distributed calculation algorithm. 
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II. HIERARCHIAL STRUCTRURE MODEL 

 

a. Pyroelectric Sensor Model 

Define ( , )s r t  as the infrared radiation field function of radiation source, where r  

represents position, and t  represents time, state space (object space) as the two dimensions 

plane space where infrared radiation source moving and measurement space as the point set of 

the location of each sensor node. Reference structure modulates the visibility from source 

space to measurement space.  

Define ( , )iv r r  or ( )iv r  as the visibility function between point r  in source space and 

point ir  in measurement space. ( , ) [0,1]iv r r ∈ , the bigger the value of ( , )iv r r  , the better 

the visibility, in which, "1" stands for fully visible, while "0" completely invisible. 

The response signal of a PIR detector at point ir  is given by 

 ( , ) ( ') ( , ) ( , ) {1,2, , }i im r t h t t v r r s r t d r i M= − ∈∫    (1) 

Where ( )h t  is the impulse response of PIR detector. Sensing model is showed in Figure 1. 

 
Figure 1. Sensing model of PIR detector 

 

b. Discrete Model 

Define C as the state space. We divide C into L  cells, defined as ( ){1,2, , }jC j L∈  . 

 
1

L

i
i

C C
=

=  (2) 

     ( , {1,2,... }  )i jC C i j L i j= ∅ ∈ ≠ and  (3) 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 4, SEPTEMBER 2013 

 

1404 

 

Thus formula (1) can be described as the discrete non-isomorphic model 

 =m Vs   (4) 

Where m is a M  dimensional vector of measurement space, [ ]( 1, 2, , )im i M= =m  ; V  

represents visibility matrix, decided by the modulated strategy of radiation field, 

[ ]( 1,2, , ; 1,2, , )ijv i M j L= = =V   ; and s  is the state vector, its dimension is decided by 

the cells number of state space, [ ]( 1,2, , )js j L= =s  .  

 

c. Boolean sensing model 

In Boolean sensing model, im , ijv  and js  are binary value. ijv =1, if and only if jC  is 

visible to i th (number i ) PIR detector, otherwise, ijv =0; js =1, if and only if the position of 

the object (radiation source) is in jC , otherwise, js =0. The output of i th detector 

 i ij jm v s= ∨  (5) 

Where “∨ ” represents Boolean sum. This is called Boolean sensing model in this paper, 

whose output is a binary value.  

Boolean sensing model improves the reliability of infrared sensing, and decreases the data 

size of data gathering and transmission process. The light-weight non-isomorphic sensing 

model turns complicated sampling of object space into simple binary state sampling process, 

and what need to be obtained is only to know in which sampling cell the object appears. This 

direct measurement of motion states can meet the needs of most target localization and 

tracking task.  

The output of M detectors in measurement space is a M  dimensional vector, and there are 

2M  different values. Excluding zero vector, it can divide state space into 2 1M −  cells at 

most, that is 2 1ML ≤ − . Define η  as the sensing efficiency,  

 2l g ( 1)o L
M

η +
=  (6) 

[0,1]η∈ , given the value of M , the bigger of the value of L , the higher the sensing 

efficiency. When 2 1ML = − , 100%η = .  
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III. MODULATION STRATEGY BASED ON RADIAL DISTANCE 

 

A single PIR detector can only output two different states and cannot be used to measure 

distances between the radiation object and detector. In order to estimate the position of an 

infrared radiation object, the problem of the location of object state space is down to 

multi-degree of freedom FOV division in this paper. At first a radial distance modulated 

method is proposed, therefore the distance between object and detector can be measured by 

several PIR detectors in a single sensor node, and then with several sensor nodes data fusion，

the position of the object can be estimated. 

The Fresnel lens array equipped on PIR detector cannot only enhance perception sensitivity, 

but also modulate its infrared visibility by infrared absorption or mask material. By designing 

the visibility of Fresnel lens array properly, we not only acquire motion characteristic 

information directly and effectively, but also simplify the data processing greatly.  

The FOV of a PIR detector with hemispherical Fresnel lens array is a cone-shape space, and 

its projection on the ground plane is an area with several concentric rings. The FOV of a PIR 

detector with 7-ring hemispherical Fresnel lens array is showed in Figure 2.  

 
Figure 2. FOV of a PIR detector with hemispherical Fresnel lens array 

 

Due to the restrictions of physical characteristics of the Fresnel lens array, a n -ring 

hemispherical lens array divides its FOV into n  concentric rings, therefore, we can achieve 

this functionality by using M  ( 2[log ( 1)]M n≥ + ) PIR detectors.  

As an example, if 7n = , 2log (7 1) 3M ≥ + = . The sensing model reaches its maximum 

efficiency when 3M = .  
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Gray code was applied in our model to encode the output of M detectors, which is a 

minimize-error code where two successive values differ in only one bit, thus gray code 

reduces the impact of error code on measuring result. An example of 3-bit wide gray code is 

listed in Table 1.  

Table 1: 3-bit wide gray code 

No. Bit 1 Bit 2 Bit 3 No. Bit 1 Bit 2 Bit 3 
1 0 0 1 5 1 1 1 

2 0 1 1 6 1 0 1 

3 0 1 0 7 1 0 0 

4 1 1 0 8 0 0 0 

 

 
Figure 3. Modulation strategy based on radial distance 

 

Table 2: Output parameters of each detector 

Rings 

No. 

Detectors 

outputs 

Range of horizontal 

distance to detector 

center 

Estimated 

horizontal 

distance 

Which 

detectors can 

sense object s1 s2 s3 

1 0 0 1 10～r  1 / 2r  s3 

2 0 1 1 1 2r r～  ( )1 2 / 2r r+  s2 s3 

3 0 1 0 2 3r r～  ( )2 3 / 2r r+  s2 

4 1 1 0 3 4r r～  ( )3 4 / 2r r+  s1 s2 

5 1 1 1 4 5r r～  ( )4 5 / 2r r+  s1 s2 s3 

6 1 0 1 5 6r r～  ( )5 6 / 2r r+  s1 s3 

7 1 0 0 6 7r r～  ( )6 7 / 2r r+  s1 

According to the order of gray code as showed in Table 1, we use masks to restrict the FOV 

of each Fresnel lens array. The restriction region of each Fresnel lens array is the shading 

pattern as showed in Figure 3. The object can’t be detected by the PIR detector if it is in the 
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shading areas. The outputs of 3 detectors are listed in Table 2 when the object is located in 

each different ring area, thus on the basis of the modulation strategy, the horizontal distance 

between the object and the detectors can be estimated.  

 

IV. ALGORITHM OF COOPERATIVE LOCALIZATION 

 

 
Figure 4. Cooperative localization with multiple sensor nodes 

 

According to the theory of trilateration, when the distance between the object and each sensor 

node has been estimated, the position of the object can be estimated too. Define 

( ), ...,i i iO x y i = 1,2, N（） as the position of the sensor node center in Cartesian coordinate and 

( )yxP ,  as the position of the object, which are showed in Figure 4. The measured distance of 

each sensor node is iD , thus we have the over-determinant equations,  

 ( ) ( )2 2 2 , ( 1,2,..., )i i ix x y y D i N− + − = =  (7) 

Matrix form of the over-determinant equations is 

 =Hx f  (8) 

Where 

2 2 2 2 2 2
2 1 2 1 1 2 2 1 2 112

2 2 2 2 2 2
3 2 3 2 2 3 3 2 3 223

2 2 2 2 2 2
3 1 3 1 1 3 3 1 3 113

2 , ,
x x y y D D x x y y

x
x x y y D D x x y y

y
x x y y D D x x y y

 − − − + − + − 
    = − − = = − + − + −         − − − + − + −   

H x f  

The least squares solution of x  is 

 ( )−=
1T Tx H H H f  (9) 
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V. DISTRIBUTED LOCALIZATION ALGORITHM 

 

Deployment diagram of large-scale WSN is showed in Figure 5. Define d  as the distance 

between two adjacent nodes. The projection on the ground plane of FOV of the sensor node 

,i ja  is a circle area centered at the node center, whose radius is d . Define a WSN node as 

the active node, when the object appears in the scope of its FOV. Except a few routing nodes, 

all other inactive nodes can turn into sleep mode to save energy. When infrared object moves 

into the perception scope of sensor node, the sensor node will be awaked by the high level 

signal issued by PIR detectors.  

The object at any place of the whole WSN area, except some edge region, can be sensed by at 

least three WSN nodes, and three of these active nodes, adjacent to each other, were selected 

as task nodes to estimate the position of the object. For instance, when the object is at the red 

triangle point, as showed in Figure 5, node 1, 1i ja − − , 1,i ja −  and ,i ja  are active nodes, 

meanwhile, they are also task nodes. 

 
Figure 5. Deployment diagram of WSN 

 

a. Neighbor table and multicast strategy 

As mentioned before, three task nodes compose a basic localization module, and these task 

nodes only need to transfer its output to its neighbor node. To establish neighbor table and 

apply multicast telecommunication way in the tables can greatly reduce the communication 

data between each sensor node, save node energy consumption and prolong the network life 

cycle. Define ,(a )i jN  as the neighbor node of node ,i ja : 

 (1) If i  is an odd number  
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{ }, ,(a ) | 1,0 1i j k lN a k i j l∈ − ≤ ≤ − ≤   

or { }, ,(a ) | , 1i j k lN a k i l j∈ = = +  

As an example, in Figure 5, all nodes in circle centered at the node ,i ja , whose radius is d  , 

are the neighbor node of ,i ja , that is { },  -1, -1 -1, , -1 , +1 +1, -1 +1,(a ) , , , , ,i j i j i j i j i j i j i jN a a a a a a∈ .  

 (2) If i  is an even number 

{ }i,j ,(a ) | 1,0 1k lN a k i l j∈ − ≤ ≤ − ≤  

or { }i,j ,(a ) | , 1k lN a k i l j∈ = = −  

As an example, in Figure 5, { }+1,  , , +1 +1, -1 +1, +1 +2, +2, +1(a ) , , , , ,i j i j i j i j i j i j i jN a a a a a a∈ .  

Define ,( ) ( 1)*i jG a i n j= − +  as the serial number of node ,i ja . Node ,i ja and its all 

neighbor nodes are added to a group. Choose ,( )i jG a  as the group serial number, and one 

node might be granted to multiple groups. When active node ,i ja has sensed the motion of 

object, it sends a multicast packet to all its neighbor nodes with the group serial number 

,( )i jG a . This multicast strategy assures inactive node couldn’t receive the multicast packet, 

which decreases energy loss of WSN node, and prolong the WSN lifecycle.  

 

b. Algorithm of Cluster Head Election 

Three task nodes which are adjacent each other can be regarded as member nodes of a cluster, 

and we need to elect a cluster head from these task nodes to estimate the position of the object 

based on least-square algorithm, and to send position data to PC for store and display. Since 

the object is always in the course of movement and task nodes change accordingly, that is, 

member nodes of the cluster change accordingly. For the balance of energy consumption of 

each node, a cluster-head election algorithm based on maximum residual energy is applied in 

this paper, that is, the task node that has the maximum residual energy will be elected as the 

cluster head. The algorithm of cluster head election and distributed localization is listed as 

follows: 

1) Initialization: set coordinate of each sensor node, build neighbor table, and set group serial 

number;  

2) Sensor nodes switch to sleep mode by shutting down system clock to reduce energy 

consumption, without any motion detecting information of the object during a certain time;  
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3) Node ,i ja  will be waked up to normal mode by the high-level outputs of PIR detectors 

immediately as soon as the object moves to its sensing region;  

4) Node ,i ja  check whether received packets from other two task nodes, if yes, then to next 

step, otherwise, go to step 7;  

5) Node ,i ja  extracts the residual energy messages of the other two task nodes, and check 

whether its own residual energy is the maximum, if yes, elect itself as cluster head, otherwise, 

go to step 7;  

6) Estimate the position of the object based on least-square or look-up table algorithm as 

mentioned before, and send calculation result packet to PC (through router or coordinator), 

then go to step 2; 

7) Node ,i ja sends a multicast packet, which includes its residual energy, position coordinate 

and measurement result of its horizontal distance to the object, to its all neighbors with the 

group serial number ,( )i jG a , then go to step 2.  

 

VI. EXPERIMENTS 

 

a. Hardware configuration of WSN node 

A WSN node consists of three modules: CPU and radio communication module, PIR 

detectors module and power module. Chip CC2530 is used in CPU and radio communication 

module, which is the second generation system-on-chip solution for 2.4 GHz IEEE 802.15.4. 

PIR detectors module include three PIR detectors and three Fresnel lens arrays. Photos of 

sensor node are listed in Figure 6 and Figure 7.  
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Figure 6. Hardware prototype 

 
Figure 7. Assembled WSN node 

 

b. Experimental environment and parameters 

The network including 11 WSN nodes is deployed under the ceiling, 300cm height from 

ground, in an indoor environment with the size of 900cm*520cm. Relative parameters in 

Figure 2 and Figure 5 are listed in Table 3, and the maximum theoretical error of radial 

distance is ( )7 6 / 2 31.5r r− = cm. 

 

Table 3: Experimental parameters 

Parameter Value Unit Parameter Value Unit 

H  300 cm 3r  106 cm 

d  300 cm 4r  145 cm 

β  6.5 degree 5r  191 cm 

1r  34 cm 6r  242 cm 

2r  69 cm 7r  305 cm 
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Figure 8 is the layout of WSN nodes. The black circles represent the locations of sensor 

nodes, the number in the black circle represent the serial number ,( )i jG a  of node ,i ja . In 

Figure 9 the red ellipses represent the locations of sensor nodes in the real environment.  

 
Figure 8. Layout of WSN nodes 

 
Figure 9. Deployment photo of WSN nodes that correspond to Figure 8 

 

c. Tracking experiment of a smart toy car 

An autonomous tracing smart toy car, at uniform speed v  and act as the tracked object by 

WSN, is used in this experiment, and a bottle of hot water with temperature at 37 degrees 

Celsius, mounted on the smart car, is chosen as the infrared radiation source.  

 (1)”8”-shape path tracking 

Motion path of the smart car is showed in Figure 10, and its velocity 100 /v cm s= . 

In Figure 11 red solid line represents the actual motion path, red solid line with circle 

represents the original localization result of WSN nodes with least-square algorithm, and 

black solid line with asterisk represents the tracking result of block Extended Kalman Filter 

(EKF) algorithm, and blue solid line with box represents the localization result of mean filter 

algorithm. It can be seen that mean filter algorithm is better than EKF algorithm in this curve 

tracking experiment. Figure 12 shows the histogram of localization errors of the mean filter 

algorithm. It can be seen that the distribution of the localization errors follow a normal 

distribution closely. Table 4 shows the parameters of localization errors of direction X and 
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direction Y. The maximum localization error in X and Y direction is 38 cm, and 68 percent of 

absolute value of these localization errors are less than 18 cm.  

 

Table 4: Localization errors with “8”-shape path 

Localization error of direction X (cm) Localization error of direction Y (cm) 

Mean Standard deviation Maximum Mean Standard deviation Maximum 

12.2 9.3 37.5 11.6 9.0 38.3 

 

 

 
Figure 10. “8”-shape route 
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Figure 11. “8”-shape route tracking 
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Figure 12. Histogram of localization error 

  

（2）rectangular path tracking 

In this tracking experiment, we change the tracking path to a rectangular path with length 600 

cm and width 300 cm. The legend meaning in Figure 13 is the same as Figure 11. It can be 

seen from Figure 14, the maximum localization errors in direction X and Y is 34 cm and 22 

cm respectively, and over 70 percent of absolute value of these localization errors are less 
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than 12 cm. By comparison of these two experiments, it is easy to find that straight line path 

tracking has a better effect.  

0 200 400 600 800

-100

0

100

200

300

400

500

600

X(cm)

Y
(c

m
)

 

 
actual path
Estimated
EKF

 
Figure 13. rectangular path tracking 
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Figure 14. Histogram of localization error

The localization errors of rectangular path tracking experiments under three different 

velocities of smart car are listed in Table 5. Experiments show that it has the highest 

localization precision under 100 /v cm s= . 

Table 5: Localization errors under three different velocities 

 

Localization error of X direction 
(cm) 

Localization error of Y direction 
(cm) 

50cm/s 100cm/s 150cm/s 50cm/s 100cm/s 150cm/s 

Mean 11 9 13 12 8 12 

Standard 

deviation 
8 6 9 8 5 9 

Maximum 38 34 33 37 22 45 
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Figure 15. Endurance time of battery 



Baihua Shen and Guoli Wang, DISTRIBUTED TARGET LOCALIZATION AND TRACKING WITH 

 WIRELESS PYROELECTRIC SENSOR NETWORKS 

 

1415 

 

Figure 15 shows the batter endurance time comparison of a cluster-head election algorithm 

based on maximum residual energy (MRE) and Low Energy Adaptive Clustering Hierarchy 

(LEACH) algorithm in rectangular path tracking experiment. A rechargeable lithium ion 

battery with 2500mah capacity is used in this comparative experiment, and active node sends 

packet at the frequency of 10 packets per second. To be convenient for comparison, all sensor 

nodes don’t switch to sleep mode and always act as active nodes in this experiment. Each 

sensor node measures its battery voltage every 15 minutes. The voltage of 4200mv is 

regarded as maximum voltage of a rechargeable lithium ion battery, and the voltage of 

2700mv is regarded as critical point of low voltage. The result shows that LEACH algorithm 

experiment has the endurance time of 31 hours, and MRE algorithm experiment prolongs its 

time over 10%, with the endurance time of 35 hours.  

 

d. Compared with other methods 

Table 6 lists the result compared with other localization methods in the quoted references 

 

Table 6: Compared with other methods 

 PILAS [10] PIWSNTT[11] HTWDPS[12] our system 

Error 50cm at actual 

measurement 

50cm at simulation 

model 

120cm at actual 

measurement 

38cm at actual 

measurement 

Advantage Simple structure Simple structure & 

wide FOV 

Low computational 

complexity & wide 

FOV 

Low computational 

complexity & 

minimum localization 

error  

Disadvantage Low efficiency Need time 

synchronization; high 

computational 

complexity； 

Low accuracy  
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VII. CONCLUSIONS 

 

Due to the disadvantages of traditional localization & tracking at those aspects of users’ 

privacy protection, system configuration and maintenance, this paper presents a new method, 

based on radial distance modulation, to detect and locate moving object from top view angle. 

Our method has advantages of extracting information directly from the moving object 

characteristics of movement and spatial position, small computation, good robustness, 

convenient configuration, non-contact etc. The experiments demonstrate that although the 

output of PIR detectors only has two forms, “0” and “1”, we can locate the moving object 

with simple information after modulating and encoding the perception area of sensors.  

In addition, to effectively solve the problem of WSN energy imbalance, one strategy of 

neighbor table multicast and one electoral method of the dynamic cluster head based on the 

biggest energy are presented.  

The localization and tracking method proposed in this paper can be widely applied in monitor 

system for elders living alone. The validity and feasibility of the method have been proved by 

the localization experiments. Since the study of the technology is still in a fledging period, 

these aspects of location accuracy, real-time capability and multi-object tracking, etc. need to 

be studied further. On the basis of preliminarily accomplished localization and tracking of 

moving object, what can be carried on for further studies include: human height sensing, 

attitude perception, typical behavior (e.g. tumbling) detection and analysis, incident 

recognition and so on.  
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