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Abstract- Activated sludge system is the essential technology in use for municipal wastewater treatment 

plant. The system design for pollutants removal, safety analysis and experimentation relied upon an 

effective, straightforward and reliable model. However, most of the available models are too complex to 

use for control purposes either practically or via simulation. Therefore, vehement need for a simplistic 
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and efficient model could not be avoided. This paper presents a simplified model structure for an 

activated sludge system using neuro-fuzzy system. Efficiency, ease of use, effectiveness and fast 

convergence are some of the alluring qualities of neuro-fuzzy technique. Building a reliable and 

flexible model requires validation with full scale or experimental data. Therefore, with the use of the 

full-scale data from the domestic wastewater treatment plant in Malaysia, the validation was achieved. 

For comparison, auto regressive with exogenous input (ARX) model was used. Simulation studies 

showed that the proposed method produced promising results, thus revealing the technique is effective 

and robust in modelling the activated sludge system. 

 

Index terms: Model, pollutants, neuro-fuzzy, anfis, parameters. 

 

 

I. INTRODUCTION 

 

Activated sludge systems are characterized by their complexity and non-linearity. Efficient 

system design, operation, analysis and control relied solidly upon an accurate model capable of 

describing the activities taking place in the system. Models are crucial for improving 

performance of the system which in turn reduced the operational and maintenance costs 

drastically. The activities responsible for pollutants removal from wastewater are highly intricate 

and involve large biological interactions. However, effective organic pollutants removal from 

wastewater is essential not only to minimize the impact on subsequent processes in the system 

but to our health and the environment, also to produce an effluent that could meet the 

recommended standard quality at low cost.  

The current modelling tools in use consists of activated sludge models built by international 

association on water quality (IAWQ) such as activated sludge model no. 1 (ASM1) and its 

families [1-4]. These mathematical models are powerful tools that have been in use in wastewater 

treatment industries, particularly the ASM1 which serves as a state-of-art model [5]. However, 

complex architecture of the ASM1 and large parameters associated with the model contributed to 

the difficulties in utilizing the model for control or optimization purpose [6-8]. Literature 

revealed that several studies were proposed to simplify the complexity of ASM1 so that 

applications leading to minimizing the operational and maintenance costs could be easily 

achieved. From linearization perspective, suggestion by [9] linearized based on the reaction rate 
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through linear combination of states to realized locally equivalent to the ASM1 model. The linear 

rates are substituted in the dynamic equation of ASM1. The linearized model significantly tracks 

much closely the ASM1 responses. The proposal by [10] uses linearization around one or more 

operating point to obtain a multi-model, the global model is realized by combining the valid local 

multi-model. Another linearized model based on Taylor's series linearization principle was 

proposed [11], the approach significantly reduced the computational time. However, loss of 

information is the main disadvantage of the aforementioned methods.    

Also, [12] proposed statistical models whereby the original non-linear model was linearized 

using Taylor's series principle to obtain a linearized continuous model and then discretize the 

continuous linear model through approximations of derivatives. The parameters are estimated 

using recursive identification method. The technique shows severe reduction of computational 

time for model parameters' estimation. Despite the large amount of computations and time 

required to obtain the statistical model, there are drifts and the behaviour of the system was not 

well captured.  Another proposal, [13] suggested a systematic analytical approach in order to 

avoid loss of information, the nonlinear model is transformed into a multiple model which 

constitutes a set of sub models with a simple linear architecture and suitable weighting functions, 

the combination of these sub models realized the global model. The approach requires rigorous 

computation and significant amount of time before realizing the final model. Vehement need for 

simple and efficient modelling approach capable of conserving the intricate nature of the original 

carbon removal model could not be avoided. Neuro-fuzzy technique is a good and promising 

candidate for this challenge. Neuro-fuzzy has proven to be a powerful, robust and efficient tool 

for solving many complex scientific and engineering problems. 

Neuro-fuzzy approach evolved from integration of neural network and fuzzy system, which 

creates an effective tool for real-world application. Adaptability, fast learning abilities, accuracy 

and less computational cost contributed to the success of the approach. Apparently, the neuro-

fuzzy method has become the preferred choice than conventional techniques due to its ability to 

endure uncertainties in a system. Neuro fuzzy techniques have been implemented to activated 

sludge system [14-16], however, the implementation do not focused on simplifying the complex 

structure of the state of art model (ASM1), particularly conserving the original ASM1 nature and 

the states biological interpretation. As mostly control strategies and optimization techniques 

requires straightforward model and easy to use. 
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ARX is a black box modelling approach based on input, output and transfer characteristics 

without detailed knowledge of internal operation and structure of the system under consideration. 

It is powerful and provides unique solution that satisfies the global minimum of the loss function. 

ARX has being widely used in many scientific and engineering problems [17]. The main 

objective is to provide a simple, reliable and easy to use model capable of effectively 

describing/predicting the activated sludge system. The system and the proposed technique are 

described; comparisons were made with ARX model. 

 

II. ACTIVATED SLUDGE SYSTEM 

 

The existing mathematical model is valuable in describing the activities taking place in an 

activated sludge system. The model serves as the basis for implementing control strategies and 

optimizing the performance of the system. The Fig. 1 shows the schematic of the most commonly 

used activated sludge system for carbon removal (aerobic process) which consists of a biological 

reactor and a settler.  In the biological reactor, a favourable condition is provided to keep 

microorganisms responsible for oxidizing most of the suspended and dissolved organic pollutants 

from the wastewater. The settler performs the separation of activated sludge from the treated 

wastewater by gravity sedimentation. Part of the activated sludge is returned to the biological 

reactor.  

 

 

Figure 1.  A schematic of an activated sludge system 
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Mostly the settler is assumed to be perfect, no dynamics and no biomass in the effluent [18]. The 

applying mass balance around the biological reactor [19] the dynamics of the system (aerobic 

process) can be described by the following nonlinear differential equations: 

 

,
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where 
SS  is the substrate concentration, 

OS  is the dissolved oxygen concentration, 
BX  is the 

biomass concentration,  is the biomass growth rate, b  is the decay rate, Y  is the yield 

coefficient, 
,O satS  is the saturated dissolved oxygen concentration, 

inQ is the inlet flow rate and 
oQ  

refers to the outlet flow rate. The biomass growth rate   depends on soluble substrate and 

dissolved oxygen concentration as given by: 

 
,

*S O
m

S S O H O

S S

K S K S
       (2) 

where 
m

 is the maximum specific biomass growth rate, 
SK  and 

,O HK  are constant and have 

dimension of a concentration, they indicate for substrate and dissolved oxygen respectively. 

The mathematical model equation (1) describes carbon removal in the activated sludge process. 

However, in practice, the nature and strength of wastewater are measured based on parameters 

such as biological oxygen demand ( BOD ), chemical oxygen demand ( COD ) and suspended solids 

( SS ). The COD consists of substrate ( S ) and the active biomass (
BX ). The substrate is further 

subdivided into biodegradable and non-biodegradable. Moreover, the biomass is often expressed 

in terms of suspended solids (SS), since the biomass comprises of solids that are suspended in the 

biological reactor tank [20]. Therefore, the typical state variables for carbon removal practically 

include chemical oxygen demand ( COD ), suspended solids ( SS ) and dissolved oxygen (
OS ) [18]. 

The treatment efficiency of the plant is determined based on these variables. Therefore, this paper 

considered these variables. 

 

III. NEURO-FUZZY SYSTEM 
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Neural network and fuzzy system are robust tools capable of estimating functions without any 

mathematical representation. However, the weakness of the individual technique serves as an 

impetus of creating a hybrid structure where the two methods (neural network and fuzzy system) 

are combined to overcome the limitations of individual approach. This hybrid system is powerful 

and flexible enough to deal with large system involving ill-defined behaviour. The system 

determines its parameters by learning algorithm and has a neural network structure constructed 

from fuzzy reasoning [21-22]. The learning is used to update the rules in the rule base and 

optimize the membership functions of a fuzzy system. There are several neuro-fuzzy systems, but 

here an adaptive neuro-fuzzy inference system (ANFIS) is considered. 

ANFIS is an adaptive network trained using a hybrid learning algorithm [Jang, 1993]. The 

algorithm uses the least square estimation and gradient descent to adapt the parameters in the 

network. The architecture of the ANFIS is shown in Fig. 2 comprising of five layers with output 

node in each layer. For illustration, suppose that the fuzzy inference system (FIS) has two inputs 

(x and y) and one output (z). For the first order Sugeno fuzzy system, a distinctive rule set with 

two fuzzy “if-then rules” can be given as: 

Rule 1: if x  is 1A  and y  is 1B  then 1 1 1 1f p x q y r  

Rule 2: if x  is 2A  and y  is 2B  then 2 2 2 2f p x q y r  

The round nodes are fixed whereas the square nodes have parameters in them. The layers could 

be described as; 

Layer 1: This layer creates the membership grades 

1, ( )
ii AO x            1,2i   (3) 

Or 

21, ( )
ii BO y          3,4i   (4) 

The membership functions could be bell-shaped or triangular or Gaussian. Here Gaussian 

membership function is used. 

2

( ) exp i
A

i

x c
x

a
  (5) 

where ,i ia c are premise parameters 
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Layer 2: The output of this layer is the product of all incoming signals 

2, ( ). ( )
i ii A BO x y       1,2i   (6) 

Layer 3: Every node in this layer is fixed and computes the ratio of firing strength of the rules 

3,

1 2

i
i

W
O W

W W
  (7) 

Layer 4: This layer contain adaptive nodes with a node function 

4,i i i i iO W f W p x q y r   (8) 

where these parameters , ,i i ip q r  are called consequent parameters. 

Layer 5: In this layer, the single node calculates the overall output 

5,

i
i

i i i
i

i
i

W f
O W f

W
  (9) 

The premise and consequent parameters are estimated using the hybrid learning algorithm. The 

ANFIS uses forward pass and backward pass. In the forward pass, the node outputs go forward 

until layer 4, the consequent parameters are identified using the least square techniques and then 

the error measure is calculated. As the values of the premise parameters are fixed, the overall 

output can be expressed as linear combinations of consequent parameters. 

1 2
1 2

1 2 1 2

1 1 2 2

1 1 1 1 1 1 2 2 2 2 2 2

W W
f f f

W W W W

W f W f

W x p W y q W r W x p W y q W r

    (10) 

which is linear in the consequent parameters 1 1 1 2 2, , , ,p q r p q and 2r . 

In the backward pass, the error signal propagates backward and the set of premise parameters are 

updated by gradient descent method. Typically, once the training data (input-output data) is made 

available, this is how ANFIS model is realized. 
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 Figure 2.  The ANFIS architecture 

 

Sufficient training data which comprises of high and low values of the system are required to 

build the model. In order to avoid inaccuracies the data set need to be within the training data 

range and converted into trainable form. The data was normalized between zero (0) and one 

(1).The normalized full-scale data set of 170 days was divided into 127 days data for training and 

43 days data for validation. The selections of the data were done arbitrarily. ANFIS model is 

implemented using the available fuzzy toolbox in Matlab 7.1. The function “genfis 1” was used 

to generate the fuzzy inference system (FIS) based on grid partition on the data set.  Four (4) 

Gaussian membership functions were assigned to each input variable. As the FIS structure is 

made available, the hybrid learning algorithm is utilized to train the parameters of the FIS by 

learning from the data to realize the desired model. 

 

IV. RESULTS AND DISCUSSION 

 

Simulation offers a better means of evaluating the performance of different models in predicting 

the process under consideration. The accuracies of prediction of the models were determining 

using the root mean square error (RMSE) and mean absolute percentage deviation (MAPD) given 

by the following expressions: 

2

i ix y
RMSE

N
          (11) 

| |

| |

i i

i

x y
MAPD

x
          (12) 
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where 
ix is the measured value, 

iy is the predicted value and N is the number of samples. The 

concentration level of dissolved oxygen is nil at the inlet of the plant. The influent concentrations 

for the COD and SS are shown in Fig 3. 

 

 

Figure 3. The influent concentration 

The performance of the models in predicting the variables are presented in table 1. Minimal 

RMSE and smaller MAPD signify how well a model predicts the measured value. The accuracy 

in prediction can easily be obtained using these measures. The model predictions of the validation 

pattern are illustrated in Fig. 4, 5 and 6. 

Table 1:  Model prediction performance 

Variable Model Training Validation 

RMSE MAPD (%) RMSE MAPD (%) 

COD ANFIS 0.00148 0.51 0.04623 8.79 

ARX 0.05494 37.14 0.05713 39.19 

SS ANFIS 0.00050 0.35 0.01308 7.78 

ARX 0.05989 38.79 0.06054 45.12 

SO ANFIS 0.00428 2.20 0.04751 3.45 

ARX 0.03499 12.64 0.3278 14.93 

 

For all the variables in the both training and validation the MAPD for ANFIS model were below 

10%, this demonstrated that the ANFIS model has accurately predicted the measured values. 
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From the Fig. 4 the ANFIS model was able to follow the measured COD as compared to the 

ARX model. 

 

 

Figure 4. The validation of models for COD variable 

As illustrated in Fig. 5 the prediction errors in ANFIS model were quite small, which resulted in 

having the MAPD of 7.78%.  The model demonstrated good capability in estimating the 

suspended solids (SS). The MAPD for ARX model in both training and validation were high, 

which indicate the model do not well predicted the measured values. 

 

Figure 5. The validation of models for SS variable 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0 50 100 150 200 

C
o

n
ce

n
tr

at
io

n
 (

m
g
/l

) 

Day of operation 

Measured COD 

ANFIS 

ARX 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 50 100 150 200 

C
o

n
ce

n
tr

at
io

n
 (

m
g
/l

) 

Day of opeartion 

Measured SS 

ANFIS 

ARX 

M.S. Gaya, N. A. Wahab, Y. M. Sam, A.N Anuar, S.I. Samsuddin and  M.C.Razali, 
A SIMPLIFIED MODEL STRUCTURE FOR AN ACTIVATED SLUDGE SYSTEM

1176



Although, there are some drifts, but both the models show good agreement with the measured So, 

as shown in Fig. 6. The RMSE for ANFIS is slightly smaller than that of ARX model, which 

means ANFIS model has better prediction. 

 

Figure 6. The validation of models for SO variable 

 

V. CONCLUSIONS 

 

In this paper a simplified model structure for an activated sludge system has been presented. The 

proposed technique performed remarkably, which could be connected to its flexibility and 

adaptability in handling complex noisy data. The results demonstrate the robustness and 

effectiveness of the method in modelling this uncertain system, there are significant reduction in 

the error and good MAPD percentages compared to the ARX model. The proposed method is 

quite meaningful in simplifying the complexity of the most widely use model especially for 

control and optimization of the system. The approach is valuable and powerful tool for the 

wastewater treatment industry. 
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